]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/dma/tegra20-apb-dma.c
dmaengine: tegra20: Fix runtime PM imbalance on error
[mirror_ubuntu-hirsute-kernel.git] / drivers / dma / tegra20-apb-dma.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * DMA driver for Nvidia's Tegra20 APB DMA controller.
4 *
5 * Copyright (c) 2012-2013, NVIDIA CORPORATION. All rights reserved.
6 */
7
8 #include <linux/bitops.h>
9 #include <linux/clk.h>
10 #include <linux/delay.h>
11 #include <linux/dmaengine.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/err.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/io.h>
17 #include <linux/mm.h>
18 #include <linux/module.h>
19 #include <linux/of.h>
20 #include <linux/of_device.h>
21 #include <linux/of_dma.h>
22 #include <linux/platform_device.h>
23 #include <linux/pm.h>
24 #include <linux/pm_runtime.h>
25 #include <linux/reset.h>
26 #include <linux/slab.h>
27 #include <linux/wait.h>
28
29 #include "dmaengine.h"
30
31 #define CREATE_TRACE_POINTS
32 #include <trace/events/tegra_apb_dma.h>
33
34 #define TEGRA_APBDMA_GENERAL 0x0
35 #define TEGRA_APBDMA_GENERAL_ENABLE BIT(31)
36
37 #define TEGRA_APBDMA_CONTROL 0x010
38 #define TEGRA_APBDMA_IRQ_MASK 0x01c
39 #define TEGRA_APBDMA_IRQ_MASK_SET 0x020
40
41 /* CSR register */
42 #define TEGRA_APBDMA_CHAN_CSR 0x00
43 #define TEGRA_APBDMA_CSR_ENB BIT(31)
44 #define TEGRA_APBDMA_CSR_IE_EOC BIT(30)
45 #define TEGRA_APBDMA_CSR_HOLD BIT(29)
46 #define TEGRA_APBDMA_CSR_DIR BIT(28)
47 #define TEGRA_APBDMA_CSR_ONCE BIT(27)
48 #define TEGRA_APBDMA_CSR_FLOW BIT(21)
49 #define TEGRA_APBDMA_CSR_REQ_SEL_SHIFT 16
50 #define TEGRA_APBDMA_CSR_REQ_SEL_MASK 0x1F
51 #define TEGRA_APBDMA_CSR_WCOUNT_MASK 0xFFFC
52
53 /* STATUS register */
54 #define TEGRA_APBDMA_CHAN_STATUS 0x004
55 #define TEGRA_APBDMA_STATUS_BUSY BIT(31)
56 #define TEGRA_APBDMA_STATUS_ISE_EOC BIT(30)
57 #define TEGRA_APBDMA_STATUS_HALT BIT(29)
58 #define TEGRA_APBDMA_STATUS_PING_PONG BIT(28)
59 #define TEGRA_APBDMA_STATUS_COUNT_SHIFT 2
60 #define TEGRA_APBDMA_STATUS_COUNT_MASK 0xFFFC
61
62 #define TEGRA_APBDMA_CHAN_CSRE 0x00C
63 #define TEGRA_APBDMA_CHAN_CSRE_PAUSE BIT(31)
64
65 /* AHB memory address */
66 #define TEGRA_APBDMA_CHAN_AHBPTR 0x010
67
68 /* AHB sequence register */
69 #define TEGRA_APBDMA_CHAN_AHBSEQ 0x14
70 #define TEGRA_APBDMA_AHBSEQ_INTR_ENB BIT(31)
71 #define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_8 (0 << 28)
72 #define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_16 (1 << 28)
73 #define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_32 (2 << 28)
74 #define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_64 (3 << 28)
75 #define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_128 (4 << 28)
76 #define TEGRA_APBDMA_AHBSEQ_DATA_SWAP BIT(27)
77 #define TEGRA_APBDMA_AHBSEQ_BURST_1 (4 << 24)
78 #define TEGRA_APBDMA_AHBSEQ_BURST_4 (5 << 24)
79 #define TEGRA_APBDMA_AHBSEQ_BURST_8 (6 << 24)
80 #define TEGRA_APBDMA_AHBSEQ_DBL_BUF BIT(19)
81 #define TEGRA_APBDMA_AHBSEQ_WRAP_SHIFT 16
82 #define TEGRA_APBDMA_AHBSEQ_WRAP_NONE 0
83
84 /* APB address */
85 #define TEGRA_APBDMA_CHAN_APBPTR 0x018
86
87 /* APB sequence register */
88 #define TEGRA_APBDMA_CHAN_APBSEQ 0x01c
89 #define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_8 (0 << 28)
90 #define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_16 (1 << 28)
91 #define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_32 (2 << 28)
92 #define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_64 (3 << 28)
93 #define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_128 (4 << 28)
94 #define TEGRA_APBDMA_APBSEQ_DATA_SWAP BIT(27)
95 #define TEGRA_APBDMA_APBSEQ_WRAP_WORD_1 (1 << 16)
96
97 /* Tegra148 specific registers */
98 #define TEGRA_APBDMA_CHAN_WCOUNT 0x20
99
100 #define TEGRA_APBDMA_CHAN_WORD_TRANSFER 0x24
101
102 /*
103 * If any burst is in flight and DMA paused then this is the time to complete
104 * on-flight burst and update DMA status register.
105 */
106 #define TEGRA_APBDMA_BURST_COMPLETE_TIME 20
107
108 /* Channel base address offset from APBDMA base address */
109 #define TEGRA_APBDMA_CHANNEL_BASE_ADD_OFFSET 0x1000
110
111 #define TEGRA_APBDMA_SLAVE_ID_INVALID (TEGRA_APBDMA_CSR_REQ_SEL_MASK + 1)
112
113 struct tegra_dma;
114
115 /*
116 * tegra_dma_chip_data Tegra chip specific DMA data
117 * @nr_channels: Number of channels available in the controller.
118 * @channel_reg_size: Channel register size/stride.
119 * @max_dma_count: Maximum DMA transfer count supported by DMA controller.
120 * @support_channel_pause: Support channel wise pause of dma.
121 * @support_separate_wcount_reg: Support separate word count register.
122 */
123 struct tegra_dma_chip_data {
124 unsigned int nr_channels;
125 unsigned int channel_reg_size;
126 unsigned int max_dma_count;
127 bool support_channel_pause;
128 bool support_separate_wcount_reg;
129 };
130
131 /* DMA channel registers */
132 struct tegra_dma_channel_regs {
133 u32 csr;
134 u32 ahb_ptr;
135 u32 apb_ptr;
136 u32 ahb_seq;
137 u32 apb_seq;
138 u32 wcount;
139 };
140
141 /*
142 * tegra_dma_sg_req: DMA request details to configure hardware. This
143 * contains the details for one transfer to configure DMA hw.
144 * The client's request for data transfer can be broken into multiple
145 * sub-transfer as per requester details and hw support.
146 * This sub transfer get added in the list of transfer and point to Tegra
147 * DMA descriptor which manages the transfer details.
148 */
149 struct tegra_dma_sg_req {
150 struct tegra_dma_channel_regs ch_regs;
151 unsigned int req_len;
152 bool configured;
153 bool last_sg;
154 struct list_head node;
155 struct tegra_dma_desc *dma_desc;
156 unsigned int words_xferred;
157 };
158
159 /*
160 * tegra_dma_desc: Tegra DMA descriptors which manages the client requests.
161 * This descriptor keep track of transfer status, callbacks and request
162 * counts etc.
163 */
164 struct tegra_dma_desc {
165 struct dma_async_tx_descriptor txd;
166 unsigned int bytes_requested;
167 unsigned int bytes_transferred;
168 enum dma_status dma_status;
169 struct list_head node;
170 struct list_head tx_list;
171 struct list_head cb_node;
172 unsigned int cb_count;
173 };
174
175 struct tegra_dma_channel;
176
177 typedef void (*dma_isr_handler)(struct tegra_dma_channel *tdc,
178 bool to_terminate);
179
180 /* tegra_dma_channel: Channel specific information */
181 struct tegra_dma_channel {
182 struct dma_chan dma_chan;
183 char name[12];
184 bool config_init;
185 unsigned int id;
186 void __iomem *chan_addr;
187 spinlock_t lock;
188 bool busy;
189 struct tegra_dma *tdma;
190 bool cyclic;
191
192 /* Different lists for managing the requests */
193 struct list_head free_sg_req;
194 struct list_head pending_sg_req;
195 struct list_head free_dma_desc;
196 struct list_head cb_desc;
197
198 /* ISR handler and tasklet for bottom half of isr handling */
199 dma_isr_handler isr_handler;
200 struct tasklet_struct tasklet;
201
202 /* Channel-slave specific configuration */
203 unsigned int slave_id;
204 struct dma_slave_config dma_sconfig;
205 struct tegra_dma_channel_regs channel_reg;
206
207 struct wait_queue_head wq;
208 };
209
210 /* tegra_dma: Tegra DMA specific information */
211 struct tegra_dma {
212 struct dma_device dma_dev;
213 struct device *dev;
214 struct clk *dma_clk;
215 struct reset_control *rst;
216 spinlock_t global_lock;
217 void __iomem *base_addr;
218 const struct tegra_dma_chip_data *chip_data;
219
220 /*
221 * Counter for managing global pausing of the DMA controller.
222 * Only applicable for devices that don't support individual
223 * channel pausing.
224 */
225 u32 global_pause_count;
226
227 /* Last member of the structure */
228 struct tegra_dma_channel channels[];
229 };
230
231 static inline void tdma_write(struct tegra_dma *tdma, u32 reg, u32 val)
232 {
233 writel(val, tdma->base_addr + reg);
234 }
235
236 static inline u32 tdma_read(struct tegra_dma *tdma, u32 reg)
237 {
238 return readl(tdma->base_addr + reg);
239 }
240
241 static inline void tdc_write(struct tegra_dma_channel *tdc,
242 u32 reg, u32 val)
243 {
244 writel(val, tdc->chan_addr + reg);
245 }
246
247 static inline u32 tdc_read(struct tegra_dma_channel *tdc, u32 reg)
248 {
249 return readl(tdc->chan_addr + reg);
250 }
251
252 static inline struct tegra_dma_channel *to_tegra_dma_chan(struct dma_chan *dc)
253 {
254 return container_of(dc, struct tegra_dma_channel, dma_chan);
255 }
256
257 static inline struct tegra_dma_desc *
258 txd_to_tegra_dma_desc(struct dma_async_tx_descriptor *td)
259 {
260 return container_of(td, struct tegra_dma_desc, txd);
261 }
262
263 static inline struct device *tdc2dev(struct tegra_dma_channel *tdc)
264 {
265 return &tdc->dma_chan.dev->device;
266 }
267
268 static dma_cookie_t tegra_dma_tx_submit(struct dma_async_tx_descriptor *tx);
269
270 /* Get DMA desc from free list, if not there then allocate it. */
271 static struct tegra_dma_desc *tegra_dma_desc_get(struct tegra_dma_channel *tdc)
272 {
273 struct tegra_dma_desc *dma_desc;
274 unsigned long flags;
275
276 spin_lock_irqsave(&tdc->lock, flags);
277
278 /* Do not allocate if desc are waiting for ack */
279 list_for_each_entry(dma_desc, &tdc->free_dma_desc, node) {
280 if (async_tx_test_ack(&dma_desc->txd) && !dma_desc->cb_count) {
281 list_del(&dma_desc->node);
282 spin_unlock_irqrestore(&tdc->lock, flags);
283 dma_desc->txd.flags = 0;
284 return dma_desc;
285 }
286 }
287
288 spin_unlock_irqrestore(&tdc->lock, flags);
289
290 /* Allocate DMA desc */
291 dma_desc = kzalloc(sizeof(*dma_desc), GFP_NOWAIT);
292 if (!dma_desc)
293 return NULL;
294
295 dma_async_tx_descriptor_init(&dma_desc->txd, &tdc->dma_chan);
296 dma_desc->txd.tx_submit = tegra_dma_tx_submit;
297 dma_desc->txd.flags = 0;
298
299 return dma_desc;
300 }
301
302 static void tegra_dma_desc_put(struct tegra_dma_channel *tdc,
303 struct tegra_dma_desc *dma_desc)
304 {
305 unsigned long flags;
306
307 spin_lock_irqsave(&tdc->lock, flags);
308 if (!list_empty(&dma_desc->tx_list))
309 list_splice_init(&dma_desc->tx_list, &tdc->free_sg_req);
310 list_add_tail(&dma_desc->node, &tdc->free_dma_desc);
311 spin_unlock_irqrestore(&tdc->lock, flags);
312 }
313
314 static struct tegra_dma_sg_req *
315 tegra_dma_sg_req_get(struct tegra_dma_channel *tdc)
316 {
317 struct tegra_dma_sg_req *sg_req;
318 unsigned long flags;
319
320 spin_lock_irqsave(&tdc->lock, flags);
321 if (!list_empty(&tdc->free_sg_req)) {
322 sg_req = list_first_entry(&tdc->free_sg_req, typeof(*sg_req),
323 node);
324 list_del(&sg_req->node);
325 spin_unlock_irqrestore(&tdc->lock, flags);
326 return sg_req;
327 }
328 spin_unlock_irqrestore(&tdc->lock, flags);
329
330 sg_req = kzalloc(sizeof(*sg_req), GFP_NOWAIT);
331
332 return sg_req;
333 }
334
335 static int tegra_dma_slave_config(struct dma_chan *dc,
336 struct dma_slave_config *sconfig)
337 {
338 struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
339
340 if (!list_empty(&tdc->pending_sg_req)) {
341 dev_err(tdc2dev(tdc), "Configuration not allowed\n");
342 return -EBUSY;
343 }
344
345 memcpy(&tdc->dma_sconfig, sconfig, sizeof(*sconfig));
346 if (tdc->slave_id == TEGRA_APBDMA_SLAVE_ID_INVALID &&
347 sconfig->device_fc) {
348 if (sconfig->slave_id > TEGRA_APBDMA_CSR_REQ_SEL_MASK)
349 return -EINVAL;
350 tdc->slave_id = sconfig->slave_id;
351 }
352 tdc->config_init = true;
353
354 return 0;
355 }
356
357 static void tegra_dma_global_pause(struct tegra_dma_channel *tdc,
358 bool wait_for_burst_complete)
359 {
360 struct tegra_dma *tdma = tdc->tdma;
361
362 spin_lock(&tdma->global_lock);
363
364 if (tdc->tdma->global_pause_count == 0) {
365 tdma_write(tdma, TEGRA_APBDMA_GENERAL, 0);
366 if (wait_for_burst_complete)
367 udelay(TEGRA_APBDMA_BURST_COMPLETE_TIME);
368 }
369
370 tdc->tdma->global_pause_count++;
371
372 spin_unlock(&tdma->global_lock);
373 }
374
375 static void tegra_dma_global_resume(struct tegra_dma_channel *tdc)
376 {
377 struct tegra_dma *tdma = tdc->tdma;
378
379 spin_lock(&tdma->global_lock);
380
381 if (WARN_ON(tdc->tdma->global_pause_count == 0))
382 goto out;
383
384 if (--tdc->tdma->global_pause_count == 0)
385 tdma_write(tdma, TEGRA_APBDMA_GENERAL,
386 TEGRA_APBDMA_GENERAL_ENABLE);
387
388 out:
389 spin_unlock(&tdma->global_lock);
390 }
391
392 static void tegra_dma_pause(struct tegra_dma_channel *tdc,
393 bool wait_for_burst_complete)
394 {
395 struct tegra_dma *tdma = tdc->tdma;
396
397 if (tdma->chip_data->support_channel_pause) {
398 tdc_write(tdc, TEGRA_APBDMA_CHAN_CSRE,
399 TEGRA_APBDMA_CHAN_CSRE_PAUSE);
400 if (wait_for_burst_complete)
401 udelay(TEGRA_APBDMA_BURST_COMPLETE_TIME);
402 } else {
403 tegra_dma_global_pause(tdc, wait_for_burst_complete);
404 }
405 }
406
407 static void tegra_dma_resume(struct tegra_dma_channel *tdc)
408 {
409 struct tegra_dma *tdma = tdc->tdma;
410
411 if (tdma->chip_data->support_channel_pause)
412 tdc_write(tdc, TEGRA_APBDMA_CHAN_CSRE, 0);
413 else
414 tegra_dma_global_resume(tdc);
415 }
416
417 static void tegra_dma_stop(struct tegra_dma_channel *tdc)
418 {
419 u32 csr, status;
420
421 /* Disable interrupts */
422 csr = tdc_read(tdc, TEGRA_APBDMA_CHAN_CSR);
423 csr &= ~TEGRA_APBDMA_CSR_IE_EOC;
424 tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR, csr);
425
426 /* Disable DMA */
427 csr &= ~TEGRA_APBDMA_CSR_ENB;
428 tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR, csr);
429
430 /* Clear interrupt status if it is there */
431 status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
432 if (status & TEGRA_APBDMA_STATUS_ISE_EOC) {
433 dev_dbg(tdc2dev(tdc), "%s():clearing interrupt\n", __func__);
434 tdc_write(tdc, TEGRA_APBDMA_CHAN_STATUS, status);
435 }
436 tdc->busy = false;
437 }
438
439 static void tegra_dma_start(struct tegra_dma_channel *tdc,
440 struct tegra_dma_sg_req *sg_req)
441 {
442 struct tegra_dma_channel_regs *ch_regs = &sg_req->ch_regs;
443
444 tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR, ch_regs->csr);
445 tdc_write(tdc, TEGRA_APBDMA_CHAN_APBSEQ, ch_regs->apb_seq);
446 tdc_write(tdc, TEGRA_APBDMA_CHAN_APBPTR, ch_regs->apb_ptr);
447 tdc_write(tdc, TEGRA_APBDMA_CHAN_AHBSEQ, ch_regs->ahb_seq);
448 tdc_write(tdc, TEGRA_APBDMA_CHAN_AHBPTR, ch_regs->ahb_ptr);
449 if (tdc->tdma->chip_data->support_separate_wcount_reg)
450 tdc_write(tdc, TEGRA_APBDMA_CHAN_WCOUNT, ch_regs->wcount);
451
452 /* Start DMA */
453 tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR,
454 ch_regs->csr | TEGRA_APBDMA_CSR_ENB);
455 }
456
457 static void tegra_dma_configure_for_next(struct tegra_dma_channel *tdc,
458 struct tegra_dma_sg_req *nsg_req)
459 {
460 unsigned long status;
461
462 /*
463 * The DMA controller reloads the new configuration for next transfer
464 * after last burst of current transfer completes.
465 * If there is no IEC status then this makes sure that last burst
466 * has not be completed. There may be case that last burst is on
467 * flight and so it can complete but because DMA is paused, it
468 * will not generates interrupt as well as not reload the new
469 * configuration.
470 * If there is already IEC status then interrupt handler need to
471 * load new configuration.
472 */
473 tegra_dma_pause(tdc, false);
474 status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
475
476 /*
477 * If interrupt is pending then do nothing as the ISR will handle
478 * the programing for new request.
479 */
480 if (status & TEGRA_APBDMA_STATUS_ISE_EOC) {
481 dev_err(tdc2dev(tdc),
482 "Skipping new configuration as interrupt is pending\n");
483 tegra_dma_resume(tdc);
484 return;
485 }
486
487 /* Safe to program new configuration */
488 tdc_write(tdc, TEGRA_APBDMA_CHAN_APBPTR, nsg_req->ch_regs.apb_ptr);
489 tdc_write(tdc, TEGRA_APBDMA_CHAN_AHBPTR, nsg_req->ch_regs.ahb_ptr);
490 if (tdc->tdma->chip_data->support_separate_wcount_reg)
491 tdc_write(tdc, TEGRA_APBDMA_CHAN_WCOUNT,
492 nsg_req->ch_regs.wcount);
493 tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR,
494 nsg_req->ch_regs.csr | TEGRA_APBDMA_CSR_ENB);
495 nsg_req->configured = true;
496 nsg_req->words_xferred = 0;
497
498 tegra_dma_resume(tdc);
499 }
500
501 static void tdc_start_head_req(struct tegra_dma_channel *tdc)
502 {
503 struct tegra_dma_sg_req *sg_req;
504
505 sg_req = list_first_entry(&tdc->pending_sg_req, typeof(*sg_req), node);
506 tegra_dma_start(tdc, sg_req);
507 sg_req->configured = true;
508 sg_req->words_xferred = 0;
509 tdc->busy = true;
510 }
511
512 static void tdc_configure_next_head_desc(struct tegra_dma_channel *tdc)
513 {
514 struct tegra_dma_sg_req *hsgreq, *hnsgreq;
515
516 hsgreq = list_first_entry(&tdc->pending_sg_req, typeof(*hsgreq), node);
517 if (!list_is_last(&hsgreq->node, &tdc->pending_sg_req)) {
518 hnsgreq = list_first_entry(&hsgreq->node, typeof(*hnsgreq),
519 node);
520 tegra_dma_configure_for_next(tdc, hnsgreq);
521 }
522 }
523
524 static inline unsigned int
525 get_current_xferred_count(struct tegra_dma_channel *tdc,
526 struct tegra_dma_sg_req *sg_req,
527 unsigned long status)
528 {
529 return sg_req->req_len - (status & TEGRA_APBDMA_STATUS_COUNT_MASK) - 4;
530 }
531
532 static void tegra_dma_abort_all(struct tegra_dma_channel *tdc)
533 {
534 struct tegra_dma_desc *dma_desc;
535 struct tegra_dma_sg_req *sgreq;
536
537 while (!list_empty(&tdc->pending_sg_req)) {
538 sgreq = list_first_entry(&tdc->pending_sg_req, typeof(*sgreq),
539 node);
540 list_move_tail(&sgreq->node, &tdc->free_sg_req);
541 if (sgreq->last_sg) {
542 dma_desc = sgreq->dma_desc;
543 dma_desc->dma_status = DMA_ERROR;
544 list_add_tail(&dma_desc->node, &tdc->free_dma_desc);
545
546 /* Add in cb list if it is not there. */
547 if (!dma_desc->cb_count)
548 list_add_tail(&dma_desc->cb_node,
549 &tdc->cb_desc);
550 dma_desc->cb_count++;
551 }
552 }
553 tdc->isr_handler = NULL;
554 }
555
556 static bool handle_continuous_head_request(struct tegra_dma_channel *tdc,
557 bool to_terminate)
558 {
559 struct tegra_dma_sg_req *hsgreq;
560
561 /*
562 * Check that head req on list should be in flight.
563 * If it is not in flight then abort transfer as
564 * looping of transfer can not continue.
565 */
566 hsgreq = list_first_entry(&tdc->pending_sg_req, typeof(*hsgreq), node);
567 if (!hsgreq->configured) {
568 tegra_dma_stop(tdc);
569 pm_runtime_put(tdc->tdma->dev);
570 dev_err(tdc2dev(tdc), "DMA transfer underflow, aborting DMA\n");
571 tegra_dma_abort_all(tdc);
572 return false;
573 }
574
575 /* Configure next request */
576 if (!to_terminate)
577 tdc_configure_next_head_desc(tdc);
578
579 return true;
580 }
581
582 static void handle_once_dma_done(struct tegra_dma_channel *tdc,
583 bool to_terminate)
584 {
585 struct tegra_dma_desc *dma_desc;
586 struct tegra_dma_sg_req *sgreq;
587
588 tdc->busy = false;
589 sgreq = list_first_entry(&tdc->pending_sg_req, typeof(*sgreq), node);
590 dma_desc = sgreq->dma_desc;
591 dma_desc->bytes_transferred += sgreq->req_len;
592
593 list_del(&sgreq->node);
594 if (sgreq->last_sg) {
595 dma_desc->dma_status = DMA_COMPLETE;
596 dma_cookie_complete(&dma_desc->txd);
597 if (!dma_desc->cb_count)
598 list_add_tail(&dma_desc->cb_node, &tdc->cb_desc);
599 dma_desc->cb_count++;
600 list_add_tail(&dma_desc->node, &tdc->free_dma_desc);
601 }
602 list_add_tail(&sgreq->node, &tdc->free_sg_req);
603
604 /* Do not start DMA if it is going to be terminate */
605 if (to_terminate)
606 return;
607
608 if (list_empty(&tdc->pending_sg_req)) {
609 pm_runtime_put(tdc->tdma->dev);
610 return;
611 }
612
613 tdc_start_head_req(tdc);
614 }
615
616 static void handle_cont_sngl_cycle_dma_done(struct tegra_dma_channel *tdc,
617 bool to_terminate)
618 {
619 struct tegra_dma_desc *dma_desc;
620 struct tegra_dma_sg_req *sgreq;
621 bool st;
622
623 sgreq = list_first_entry(&tdc->pending_sg_req, typeof(*sgreq), node);
624 dma_desc = sgreq->dma_desc;
625 /* if we dma for long enough the transfer count will wrap */
626 dma_desc->bytes_transferred =
627 (dma_desc->bytes_transferred + sgreq->req_len) %
628 dma_desc->bytes_requested;
629
630 /* Callback need to be call */
631 if (!dma_desc->cb_count)
632 list_add_tail(&dma_desc->cb_node, &tdc->cb_desc);
633 dma_desc->cb_count++;
634
635 sgreq->words_xferred = 0;
636
637 /* If not last req then put at end of pending list */
638 if (!list_is_last(&sgreq->node, &tdc->pending_sg_req)) {
639 list_move_tail(&sgreq->node, &tdc->pending_sg_req);
640 sgreq->configured = false;
641 st = handle_continuous_head_request(tdc, to_terminate);
642 if (!st)
643 dma_desc->dma_status = DMA_ERROR;
644 }
645 }
646
647 static void tegra_dma_tasklet(struct tasklet_struct *t)
648 {
649 struct tegra_dma_channel *tdc = from_tasklet(tdc, t, tasklet);
650 struct dmaengine_desc_callback cb;
651 struct tegra_dma_desc *dma_desc;
652 unsigned int cb_count;
653 unsigned long flags;
654
655 spin_lock_irqsave(&tdc->lock, flags);
656 while (!list_empty(&tdc->cb_desc)) {
657 dma_desc = list_first_entry(&tdc->cb_desc, typeof(*dma_desc),
658 cb_node);
659 list_del(&dma_desc->cb_node);
660 dmaengine_desc_get_callback(&dma_desc->txd, &cb);
661 cb_count = dma_desc->cb_count;
662 dma_desc->cb_count = 0;
663 trace_tegra_dma_complete_cb(&tdc->dma_chan, cb_count,
664 cb.callback);
665 spin_unlock_irqrestore(&tdc->lock, flags);
666 while (cb_count--)
667 dmaengine_desc_callback_invoke(&cb, NULL);
668 spin_lock_irqsave(&tdc->lock, flags);
669 }
670 spin_unlock_irqrestore(&tdc->lock, flags);
671 }
672
673 static irqreturn_t tegra_dma_isr(int irq, void *dev_id)
674 {
675 struct tegra_dma_channel *tdc = dev_id;
676 u32 status;
677
678 spin_lock(&tdc->lock);
679
680 trace_tegra_dma_isr(&tdc->dma_chan, irq);
681 status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
682 if (status & TEGRA_APBDMA_STATUS_ISE_EOC) {
683 tdc_write(tdc, TEGRA_APBDMA_CHAN_STATUS, status);
684 tdc->isr_handler(tdc, false);
685 tasklet_schedule(&tdc->tasklet);
686 wake_up_all(&tdc->wq);
687 spin_unlock(&tdc->lock);
688 return IRQ_HANDLED;
689 }
690
691 spin_unlock(&tdc->lock);
692 dev_info(tdc2dev(tdc), "Interrupt already served status 0x%08x\n",
693 status);
694
695 return IRQ_NONE;
696 }
697
698 static dma_cookie_t tegra_dma_tx_submit(struct dma_async_tx_descriptor *txd)
699 {
700 struct tegra_dma_desc *dma_desc = txd_to_tegra_dma_desc(txd);
701 struct tegra_dma_channel *tdc = to_tegra_dma_chan(txd->chan);
702 unsigned long flags;
703 dma_cookie_t cookie;
704
705 spin_lock_irqsave(&tdc->lock, flags);
706 dma_desc->dma_status = DMA_IN_PROGRESS;
707 cookie = dma_cookie_assign(&dma_desc->txd);
708 list_splice_tail_init(&dma_desc->tx_list, &tdc->pending_sg_req);
709 spin_unlock_irqrestore(&tdc->lock, flags);
710
711 return cookie;
712 }
713
714 static void tegra_dma_issue_pending(struct dma_chan *dc)
715 {
716 struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
717 unsigned long flags;
718 int err;
719
720 spin_lock_irqsave(&tdc->lock, flags);
721 if (list_empty(&tdc->pending_sg_req)) {
722 dev_err(tdc2dev(tdc), "No DMA request\n");
723 goto end;
724 }
725 if (!tdc->busy) {
726 err = pm_runtime_resume_and_get(tdc->tdma->dev);
727 if (err < 0) {
728 dev_err(tdc2dev(tdc), "Failed to enable DMA\n");
729 goto end;
730 }
731
732 tdc_start_head_req(tdc);
733
734 /* Continuous single mode: Configure next req */
735 if (tdc->cyclic) {
736 /*
737 * Wait for 1 burst time for configure DMA for
738 * next transfer.
739 */
740 udelay(TEGRA_APBDMA_BURST_COMPLETE_TIME);
741 tdc_configure_next_head_desc(tdc);
742 }
743 }
744 end:
745 spin_unlock_irqrestore(&tdc->lock, flags);
746 }
747
748 static int tegra_dma_terminate_all(struct dma_chan *dc)
749 {
750 struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
751 struct tegra_dma_desc *dma_desc;
752 struct tegra_dma_sg_req *sgreq;
753 unsigned long flags;
754 u32 status, wcount;
755 bool was_busy;
756
757 spin_lock_irqsave(&tdc->lock, flags);
758
759 if (!tdc->busy)
760 goto skip_dma_stop;
761
762 /* Pause DMA before checking the queue status */
763 tegra_dma_pause(tdc, true);
764
765 status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
766 if (status & TEGRA_APBDMA_STATUS_ISE_EOC) {
767 dev_dbg(tdc2dev(tdc), "%s():handling isr\n", __func__);
768 tdc->isr_handler(tdc, true);
769 status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
770 }
771 if (tdc->tdma->chip_data->support_separate_wcount_reg)
772 wcount = tdc_read(tdc, TEGRA_APBDMA_CHAN_WORD_TRANSFER);
773 else
774 wcount = status;
775
776 was_busy = tdc->busy;
777 tegra_dma_stop(tdc);
778
779 if (!list_empty(&tdc->pending_sg_req) && was_busy) {
780 sgreq = list_first_entry(&tdc->pending_sg_req, typeof(*sgreq),
781 node);
782 sgreq->dma_desc->bytes_transferred +=
783 get_current_xferred_count(tdc, sgreq, wcount);
784 }
785 tegra_dma_resume(tdc);
786
787 pm_runtime_put(tdc->tdma->dev);
788 wake_up_all(&tdc->wq);
789
790 skip_dma_stop:
791 tegra_dma_abort_all(tdc);
792
793 while (!list_empty(&tdc->cb_desc)) {
794 dma_desc = list_first_entry(&tdc->cb_desc, typeof(*dma_desc),
795 cb_node);
796 list_del(&dma_desc->cb_node);
797 dma_desc->cb_count = 0;
798 }
799 spin_unlock_irqrestore(&tdc->lock, flags);
800
801 return 0;
802 }
803
804 static bool tegra_dma_eoc_interrupt_deasserted(struct tegra_dma_channel *tdc)
805 {
806 unsigned long flags;
807 u32 status;
808
809 spin_lock_irqsave(&tdc->lock, flags);
810 status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
811 spin_unlock_irqrestore(&tdc->lock, flags);
812
813 return !(status & TEGRA_APBDMA_STATUS_ISE_EOC);
814 }
815
816 static void tegra_dma_synchronize(struct dma_chan *dc)
817 {
818 struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
819 int err;
820
821 err = pm_runtime_resume_and_get(tdc->tdma->dev);
822 if (err < 0) {
823 dev_err(tdc2dev(tdc), "Failed to synchronize DMA: %d\n", err);
824 return;
825 }
826
827 /*
828 * CPU, which handles interrupt, could be busy in
829 * uninterruptible state, in this case sibling CPU
830 * should wait until interrupt is handled.
831 */
832 wait_event(tdc->wq, tegra_dma_eoc_interrupt_deasserted(tdc));
833
834 tasklet_kill(&tdc->tasklet);
835
836 pm_runtime_put(tdc->tdma->dev);
837 }
838
839 static unsigned int tegra_dma_sg_bytes_xferred(struct tegra_dma_channel *tdc,
840 struct tegra_dma_sg_req *sg_req)
841 {
842 u32 status, wcount = 0;
843
844 if (!list_is_first(&sg_req->node, &tdc->pending_sg_req))
845 return 0;
846
847 if (tdc->tdma->chip_data->support_separate_wcount_reg)
848 wcount = tdc_read(tdc, TEGRA_APBDMA_CHAN_WORD_TRANSFER);
849
850 status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
851
852 if (!tdc->tdma->chip_data->support_separate_wcount_reg)
853 wcount = status;
854
855 if (status & TEGRA_APBDMA_STATUS_ISE_EOC)
856 return sg_req->req_len;
857
858 wcount = get_current_xferred_count(tdc, sg_req, wcount);
859
860 if (!wcount) {
861 /*
862 * If wcount wasn't ever polled for this SG before, then
863 * simply assume that transfer hasn't started yet.
864 *
865 * Otherwise it's the end of the transfer.
866 *
867 * The alternative would be to poll the status register
868 * until EOC bit is set or wcount goes UP. That's so
869 * because EOC bit is getting set only after the last
870 * burst's completion and counter is less than the actual
871 * transfer size by 4 bytes. The counter value wraps around
872 * in a cyclic mode before EOC is set(!), so we can't easily
873 * distinguish start of transfer from its end.
874 */
875 if (sg_req->words_xferred)
876 wcount = sg_req->req_len - 4;
877
878 } else if (wcount < sg_req->words_xferred) {
879 /*
880 * This case will never happen for a non-cyclic transfer.
881 *
882 * For a cyclic transfer, although it is possible for the
883 * next transfer to have already started (resetting the word
884 * count), this case should still not happen because we should
885 * have detected that the EOC bit is set and hence the transfer
886 * was completed.
887 */
888 WARN_ON_ONCE(1);
889
890 wcount = sg_req->req_len - 4;
891 } else {
892 sg_req->words_xferred = wcount;
893 }
894
895 return wcount;
896 }
897
898 static enum dma_status tegra_dma_tx_status(struct dma_chan *dc,
899 dma_cookie_t cookie,
900 struct dma_tx_state *txstate)
901 {
902 struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
903 struct tegra_dma_desc *dma_desc;
904 struct tegra_dma_sg_req *sg_req;
905 enum dma_status ret;
906 unsigned long flags;
907 unsigned int residual;
908 unsigned int bytes = 0;
909
910 ret = dma_cookie_status(dc, cookie, txstate);
911 if (ret == DMA_COMPLETE)
912 return ret;
913
914 spin_lock_irqsave(&tdc->lock, flags);
915
916 /* Check on wait_ack desc status */
917 list_for_each_entry(dma_desc, &tdc->free_dma_desc, node) {
918 if (dma_desc->txd.cookie == cookie) {
919 ret = dma_desc->dma_status;
920 goto found;
921 }
922 }
923
924 /* Check in pending list */
925 list_for_each_entry(sg_req, &tdc->pending_sg_req, node) {
926 dma_desc = sg_req->dma_desc;
927 if (dma_desc->txd.cookie == cookie) {
928 bytes = tegra_dma_sg_bytes_xferred(tdc, sg_req);
929 ret = dma_desc->dma_status;
930 goto found;
931 }
932 }
933
934 dev_dbg(tdc2dev(tdc), "cookie %d not found\n", cookie);
935 dma_desc = NULL;
936
937 found:
938 if (dma_desc && txstate) {
939 residual = dma_desc->bytes_requested -
940 ((dma_desc->bytes_transferred + bytes) %
941 dma_desc->bytes_requested);
942 dma_set_residue(txstate, residual);
943 }
944
945 trace_tegra_dma_tx_status(&tdc->dma_chan, cookie, txstate);
946 spin_unlock_irqrestore(&tdc->lock, flags);
947
948 return ret;
949 }
950
951 static inline unsigned int get_bus_width(struct tegra_dma_channel *tdc,
952 enum dma_slave_buswidth slave_bw)
953 {
954 switch (slave_bw) {
955 case DMA_SLAVE_BUSWIDTH_1_BYTE:
956 return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_8;
957 case DMA_SLAVE_BUSWIDTH_2_BYTES:
958 return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_16;
959 case DMA_SLAVE_BUSWIDTH_4_BYTES:
960 return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_32;
961 case DMA_SLAVE_BUSWIDTH_8_BYTES:
962 return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_64;
963 default:
964 dev_warn(tdc2dev(tdc),
965 "slave bw is not supported, using 32bits\n");
966 return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_32;
967 }
968 }
969
970 static inline unsigned int get_burst_size(struct tegra_dma_channel *tdc,
971 u32 burst_size,
972 enum dma_slave_buswidth slave_bw,
973 u32 len)
974 {
975 unsigned int burst_byte, burst_ahb_width;
976
977 /*
978 * burst_size from client is in terms of the bus_width.
979 * convert them into AHB memory width which is 4 byte.
980 */
981 burst_byte = burst_size * slave_bw;
982 burst_ahb_width = burst_byte / 4;
983
984 /* If burst size is 0 then calculate the burst size based on length */
985 if (!burst_ahb_width) {
986 if (len & 0xF)
987 return TEGRA_APBDMA_AHBSEQ_BURST_1;
988 else if ((len >> 4) & 0x1)
989 return TEGRA_APBDMA_AHBSEQ_BURST_4;
990 else
991 return TEGRA_APBDMA_AHBSEQ_BURST_8;
992 }
993 if (burst_ahb_width < 4)
994 return TEGRA_APBDMA_AHBSEQ_BURST_1;
995 else if (burst_ahb_width < 8)
996 return TEGRA_APBDMA_AHBSEQ_BURST_4;
997 else
998 return TEGRA_APBDMA_AHBSEQ_BURST_8;
999 }
1000
1001 static int get_transfer_param(struct tegra_dma_channel *tdc,
1002 enum dma_transfer_direction direction,
1003 u32 *apb_addr,
1004 u32 *apb_seq,
1005 u32 *csr,
1006 unsigned int *burst_size,
1007 enum dma_slave_buswidth *slave_bw)
1008 {
1009 switch (direction) {
1010 case DMA_MEM_TO_DEV:
1011 *apb_addr = tdc->dma_sconfig.dst_addr;
1012 *apb_seq = get_bus_width(tdc, tdc->dma_sconfig.dst_addr_width);
1013 *burst_size = tdc->dma_sconfig.dst_maxburst;
1014 *slave_bw = tdc->dma_sconfig.dst_addr_width;
1015 *csr = TEGRA_APBDMA_CSR_DIR;
1016 return 0;
1017
1018 case DMA_DEV_TO_MEM:
1019 *apb_addr = tdc->dma_sconfig.src_addr;
1020 *apb_seq = get_bus_width(tdc, tdc->dma_sconfig.src_addr_width);
1021 *burst_size = tdc->dma_sconfig.src_maxburst;
1022 *slave_bw = tdc->dma_sconfig.src_addr_width;
1023 *csr = 0;
1024 return 0;
1025
1026 default:
1027 dev_err(tdc2dev(tdc), "DMA direction is not supported\n");
1028 break;
1029 }
1030
1031 return -EINVAL;
1032 }
1033
1034 static void tegra_dma_prep_wcount(struct tegra_dma_channel *tdc,
1035 struct tegra_dma_channel_regs *ch_regs,
1036 u32 len)
1037 {
1038 u32 len_field = (len - 4) & 0xFFFC;
1039
1040 if (tdc->tdma->chip_data->support_separate_wcount_reg)
1041 ch_regs->wcount = len_field;
1042 else
1043 ch_regs->csr |= len_field;
1044 }
1045
1046 static struct dma_async_tx_descriptor *
1047 tegra_dma_prep_slave_sg(struct dma_chan *dc,
1048 struct scatterlist *sgl,
1049 unsigned int sg_len,
1050 enum dma_transfer_direction direction,
1051 unsigned long flags,
1052 void *context)
1053 {
1054 struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
1055 struct tegra_dma_sg_req *sg_req = NULL;
1056 u32 csr, ahb_seq, apb_ptr, apb_seq;
1057 enum dma_slave_buswidth slave_bw;
1058 struct tegra_dma_desc *dma_desc;
1059 struct list_head req_list;
1060 struct scatterlist *sg;
1061 unsigned int burst_size;
1062 unsigned int i;
1063
1064 if (!tdc->config_init) {
1065 dev_err(tdc2dev(tdc), "DMA channel is not configured\n");
1066 return NULL;
1067 }
1068 if (sg_len < 1) {
1069 dev_err(tdc2dev(tdc), "Invalid segment length %d\n", sg_len);
1070 return NULL;
1071 }
1072
1073 if (get_transfer_param(tdc, direction, &apb_ptr, &apb_seq, &csr,
1074 &burst_size, &slave_bw) < 0)
1075 return NULL;
1076
1077 INIT_LIST_HEAD(&req_list);
1078
1079 ahb_seq = TEGRA_APBDMA_AHBSEQ_INTR_ENB;
1080 ahb_seq |= TEGRA_APBDMA_AHBSEQ_WRAP_NONE <<
1081 TEGRA_APBDMA_AHBSEQ_WRAP_SHIFT;
1082 ahb_seq |= TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_32;
1083
1084 csr |= TEGRA_APBDMA_CSR_ONCE;
1085
1086 if (tdc->slave_id != TEGRA_APBDMA_SLAVE_ID_INVALID) {
1087 csr |= TEGRA_APBDMA_CSR_FLOW;
1088 csr |= tdc->slave_id << TEGRA_APBDMA_CSR_REQ_SEL_SHIFT;
1089 }
1090
1091 if (flags & DMA_PREP_INTERRUPT) {
1092 csr |= TEGRA_APBDMA_CSR_IE_EOC;
1093 } else {
1094 WARN_ON_ONCE(1);
1095 return NULL;
1096 }
1097
1098 apb_seq |= TEGRA_APBDMA_APBSEQ_WRAP_WORD_1;
1099
1100 dma_desc = tegra_dma_desc_get(tdc);
1101 if (!dma_desc) {
1102 dev_err(tdc2dev(tdc), "DMA descriptors not available\n");
1103 return NULL;
1104 }
1105 INIT_LIST_HEAD(&dma_desc->tx_list);
1106 INIT_LIST_HEAD(&dma_desc->cb_node);
1107 dma_desc->cb_count = 0;
1108 dma_desc->bytes_requested = 0;
1109 dma_desc->bytes_transferred = 0;
1110 dma_desc->dma_status = DMA_IN_PROGRESS;
1111
1112 /* Make transfer requests */
1113 for_each_sg(sgl, sg, sg_len, i) {
1114 u32 len, mem;
1115
1116 mem = sg_dma_address(sg);
1117 len = sg_dma_len(sg);
1118
1119 if ((len & 3) || (mem & 3) ||
1120 len > tdc->tdma->chip_data->max_dma_count) {
1121 dev_err(tdc2dev(tdc),
1122 "DMA length/memory address is not supported\n");
1123 tegra_dma_desc_put(tdc, dma_desc);
1124 return NULL;
1125 }
1126
1127 sg_req = tegra_dma_sg_req_get(tdc);
1128 if (!sg_req) {
1129 dev_err(tdc2dev(tdc), "DMA sg-req not available\n");
1130 tegra_dma_desc_put(tdc, dma_desc);
1131 return NULL;
1132 }
1133
1134 ahb_seq |= get_burst_size(tdc, burst_size, slave_bw, len);
1135 dma_desc->bytes_requested += len;
1136
1137 sg_req->ch_regs.apb_ptr = apb_ptr;
1138 sg_req->ch_regs.ahb_ptr = mem;
1139 sg_req->ch_regs.csr = csr;
1140 tegra_dma_prep_wcount(tdc, &sg_req->ch_regs, len);
1141 sg_req->ch_regs.apb_seq = apb_seq;
1142 sg_req->ch_regs.ahb_seq = ahb_seq;
1143 sg_req->configured = false;
1144 sg_req->last_sg = false;
1145 sg_req->dma_desc = dma_desc;
1146 sg_req->req_len = len;
1147
1148 list_add_tail(&sg_req->node, &dma_desc->tx_list);
1149 }
1150 sg_req->last_sg = true;
1151 if (flags & DMA_CTRL_ACK)
1152 dma_desc->txd.flags = DMA_CTRL_ACK;
1153
1154 /*
1155 * Make sure that mode should not be conflicting with currently
1156 * configured mode.
1157 */
1158 if (!tdc->isr_handler) {
1159 tdc->isr_handler = handle_once_dma_done;
1160 tdc->cyclic = false;
1161 } else {
1162 if (tdc->cyclic) {
1163 dev_err(tdc2dev(tdc), "DMA configured in cyclic mode\n");
1164 tegra_dma_desc_put(tdc, dma_desc);
1165 return NULL;
1166 }
1167 }
1168
1169 return &dma_desc->txd;
1170 }
1171
1172 static struct dma_async_tx_descriptor *
1173 tegra_dma_prep_dma_cyclic(struct dma_chan *dc, dma_addr_t buf_addr,
1174 size_t buf_len,
1175 size_t period_len,
1176 enum dma_transfer_direction direction,
1177 unsigned long flags)
1178 {
1179 struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
1180 struct tegra_dma_sg_req *sg_req = NULL;
1181 u32 csr, ahb_seq, apb_ptr, apb_seq;
1182 enum dma_slave_buswidth slave_bw;
1183 struct tegra_dma_desc *dma_desc;
1184 dma_addr_t mem = buf_addr;
1185 unsigned int burst_size;
1186 size_t len, remain_len;
1187
1188 if (!buf_len || !period_len) {
1189 dev_err(tdc2dev(tdc), "Invalid buffer/period len\n");
1190 return NULL;
1191 }
1192
1193 if (!tdc->config_init) {
1194 dev_err(tdc2dev(tdc), "DMA slave is not configured\n");
1195 return NULL;
1196 }
1197
1198 /*
1199 * We allow to take more number of requests till DMA is
1200 * not started. The driver will loop over all requests.
1201 * Once DMA is started then new requests can be queued only after
1202 * terminating the DMA.
1203 */
1204 if (tdc->busy) {
1205 dev_err(tdc2dev(tdc), "Request not allowed when DMA running\n");
1206 return NULL;
1207 }
1208
1209 /*
1210 * We only support cycle transfer when buf_len is multiple of
1211 * period_len.
1212 */
1213 if (buf_len % period_len) {
1214 dev_err(tdc2dev(tdc), "buf_len is not multiple of period_len\n");
1215 return NULL;
1216 }
1217
1218 len = period_len;
1219 if ((len & 3) || (buf_addr & 3) ||
1220 len > tdc->tdma->chip_data->max_dma_count) {
1221 dev_err(tdc2dev(tdc), "Req len/mem address is not correct\n");
1222 return NULL;
1223 }
1224
1225 if (get_transfer_param(tdc, direction, &apb_ptr, &apb_seq, &csr,
1226 &burst_size, &slave_bw) < 0)
1227 return NULL;
1228
1229 ahb_seq = TEGRA_APBDMA_AHBSEQ_INTR_ENB;
1230 ahb_seq |= TEGRA_APBDMA_AHBSEQ_WRAP_NONE <<
1231 TEGRA_APBDMA_AHBSEQ_WRAP_SHIFT;
1232 ahb_seq |= TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_32;
1233
1234 if (tdc->slave_id != TEGRA_APBDMA_SLAVE_ID_INVALID) {
1235 csr |= TEGRA_APBDMA_CSR_FLOW;
1236 csr |= tdc->slave_id << TEGRA_APBDMA_CSR_REQ_SEL_SHIFT;
1237 }
1238
1239 if (flags & DMA_PREP_INTERRUPT) {
1240 csr |= TEGRA_APBDMA_CSR_IE_EOC;
1241 } else {
1242 WARN_ON_ONCE(1);
1243 return NULL;
1244 }
1245
1246 apb_seq |= TEGRA_APBDMA_APBSEQ_WRAP_WORD_1;
1247
1248 dma_desc = tegra_dma_desc_get(tdc);
1249 if (!dma_desc) {
1250 dev_err(tdc2dev(tdc), "not enough descriptors available\n");
1251 return NULL;
1252 }
1253
1254 INIT_LIST_HEAD(&dma_desc->tx_list);
1255 INIT_LIST_HEAD(&dma_desc->cb_node);
1256 dma_desc->cb_count = 0;
1257
1258 dma_desc->bytes_transferred = 0;
1259 dma_desc->bytes_requested = buf_len;
1260 remain_len = buf_len;
1261
1262 /* Split transfer equal to period size */
1263 while (remain_len) {
1264 sg_req = tegra_dma_sg_req_get(tdc);
1265 if (!sg_req) {
1266 dev_err(tdc2dev(tdc), "DMA sg-req not available\n");
1267 tegra_dma_desc_put(tdc, dma_desc);
1268 return NULL;
1269 }
1270
1271 ahb_seq |= get_burst_size(tdc, burst_size, slave_bw, len);
1272 sg_req->ch_regs.apb_ptr = apb_ptr;
1273 sg_req->ch_regs.ahb_ptr = mem;
1274 sg_req->ch_regs.csr = csr;
1275 tegra_dma_prep_wcount(tdc, &sg_req->ch_regs, len);
1276 sg_req->ch_regs.apb_seq = apb_seq;
1277 sg_req->ch_regs.ahb_seq = ahb_seq;
1278 sg_req->configured = false;
1279 sg_req->last_sg = false;
1280 sg_req->dma_desc = dma_desc;
1281 sg_req->req_len = len;
1282
1283 list_add_tail(&sg_req->node, &dma_desc->tx_list);
1284 remain_len -= len;
1285 mem += len;
1286 }
1287 sg_req->last_sg = true;
1288 if (flags & DMA_CTRL_ACK)
1289 dma_desc->txd.flags = DMA_CTRL_ACK;
1290
1291 /*
1292 * Make sure that mode should not be conflicting with currently
1293 * configured mode.
1294 */
1295 if (!tdc->isr_handler) {
1296 tdc->isr_handler = handle_cont_sngl_cycle_dma_done;
1297 tdc->cyclic = true;
1298 } else {
1299 if (!tdc->cyclic) {
1300 dev_err(tdc2dev(tdc), "DMA configuration conflict\n");
1301 tegra_dma_desc_put(tdc, dma_desc);
1302 return NULL;
1303 }
1304 }
1305
1306 return &dma_desc->txd;
1307 }
1308
1309 static int tegra_dma_alloc_chan_resources(struct dma_chan *dc)
1310 {
1311 struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
1312
1313 dma_cookie_init(&tdc->dma_chan);
1314
1315 return 0;
1316 }
1317
1318 static void tegra_dma_free_chan_resources(struct dma_chan *dc)
1319 {
1320 struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
1321 struct tegra_dma_desc *dma_desc;
1322 struct tegra_dma_sg_req *sg_req;
1323 struct list_head dma_desc_list;
1324 struct list_head sg_req_list;
1325
1326 INIT_LIST_HEAD(&dma_desc_list);
1327 INIT_LIST_HEAD(&sg_req_list);
1328
1329 dev_dbg(tdc2dev(tdc), "Freeing channel %d\n", tdc->id);
1330
1331 tegra_dma_terminate_all(dc);
1332 tasklet_kill(&tdc->tasklet);
1333
1334 list_splice_init(&tdc->pending_sg_req, &sg_req_list);
1335 list_splice_init(&tdc->free_sg_req, &sg_req_list);
1336 list_splice_init(&tdc->free_dma_desc, &dma_desc_list);
1337 INIT_LIST_HEAD(&tdc->cb_desc);
1338 tdc->config_init = false;
1339 tdc->isr_handler = NULL;
1340
1341 while (!list_empty(&dma_desc_list)) {
1342 dma_desc = list_first_entry(&dma_desc_list, typeof(*dma_desc),
1343 node);
1344 list_del(&dma_desc->node);
1345 kfree(dma_desc);
1346 }
1347
1348 while (!list_empty(&sg_req_list)) {
1349 sg_req = list_first_entry(&sg_req_list, typeof(*sg_req), node);
1350 list_del(&sg_req->node);
1351 kfree(sg_req);
1352 }
1353
1354 tdc->slave_id = TEGRA_APBDMA_SLAVE_ID_INVALID;
1355 }
1356
1357 static struct dma_chan *tegra_dma_of_xlate(struct of_phandle_args *dma_spec,
1358 struct of_dma *ofdma)
1359 {
1360 struct tegra_dma *tdma = ofdma->of_dma_data;
1361 struct tegra_dma_channel *tdc;
1362 struct dma_chan *chan;
1363
1364 if (dma_spec->args[0] > TEGRA_APBDMA_CSR_REQ_SEL_MASK) {
1365 dev_err(tdma->dev, "Invalid slave id: %d\n", dma_spec->args[0]);
1366 return NULL;
1367 }
1368
1369 chan = dma_get_any_slave_channel(&tdma->dma_dev);
1370 if (!chan)
1371 return NULL;
1372
1373 tdc = to_tegra_dma_chan(chan);
1374 tdc->slave_id = dma_spec->args[0];
1375
1376 return chan;
1377 }
1378
1379 /* Tegra20 specific DMA controller information */
1380 static const struct tegra_dma_chip_data tegra20_dma_chip_data = {
1381 .nr_channels = 16,
1382 .channel_reg_size = 0x20,
1383 .max_dma_count = 1024UL * 64,
1384 .support_channel_pause = false,
1385 .support_separate_wcount_reg = false,
1386 };
1387
1388 /* Tegra30 specific DMA controller information */
1389 static const struct tegra_dma_chip_data tegra30_dma_chip_data = {
1390 .nr_channels = 32,
1391 .channel_reg_size = 0x20,
1392 .max_dma_count = 1024UL * 64,
1393 .support_channel_pause = false,
1394 .support_separate_wcount_reg = false,
1395 };
1396
1397 /* Tegra114 specific DMA controller information */
1398 static const struct tegra_dma_chip_data tegra114_dma_chip_data = {
1399 .nr_channels = 32,
1400 .channel_reg_size = 0x20,
1401 .max_dma_count = 1024UL * 64,
1402 .support_channel_pause = true,
1403 .support_separate_wcount_reg = false,
1404 };
1405
1406 /* Tegra148 specific DMA controller information */
1407 static const struct tegra_dma_chip_data tegra148_dma_chip_data = {
1408 .nr_channels = 32,
1409 .channel_reg_size = 0x40,
1410 .max_dma_count = 1024UL * 64,
1411 .support_channel_pause = true,
1412 .support_separate_wcount_reg = true,
1413 };
1414
1415 static int tegra_dma_init_hw(struct tegra_dma *tdma)
1416 {
1417 int err;
1418
1419 err = reset_control_assert(tdma->rst);
1420 if (err) {
1421 dev_err(tdma->dev, "failed to assert reset: %d\n", err);
1422 return err;
1423 }
1424
1425 err = clk_enable(tdma->dma_clk);
1426 if (err) {
1427 dev_err(tdma->dev, "failed to enable clk: %d\n", err);
1428 return err;
1429 }
1430
1431 /* reset DMA controller */
1432 udelay(2);
1433 reset_control_deassert(tdma->rst);
1434
1435 /* enable global DMA registers */
1436 tdma_write(tdma, TEGRA_APBDMA_GENERAL, TEGRA_APBDMA_GENERAL_ENABLE);
1437 tdma_write(tdma, TEGRA_APBDMA_CONTROL, 0);
1438 tdma_write(tdma, TEGRA_APBDMA_IRQ_MASK_SET, 0xFFFFFFFF);
1439
1440 clk_disable(tdma->dma_clk);
1441
1442 return 0;
1443 }
1444
1445 static int tegra_dma_probe(struct platform_device *pdev)
1446 {
1447 const struct tegra_dma_chip_data *cdata;
1448 struct tegra_dma *tdma;
1449 unsigned int i;
1450 size_t size;
1451 int ret;
1452
1453 cdata = of_device_get_match_data(&pdev->dev);
1454 size = struct_size(tdma, channels, cdata->nr_channels);
1455
1456 tdma = devm_kzalloc(&pdev->dev, size, GFP_KERNEL);
1457 if (!tdma)
1458 return -ENOMEM;
1459
1460 tdma->dev = &pdev->dev;
1461 tdma->chip_data = cdata;
1462 platform_set_drvdata(pdev, tdma);
1463
1464 tdma->base_addr = devm_platform_ioremap_resource(pdev, 0);
1465 if (IS_ERR(tdma->base_addr))
1466 return PTR_ERR(tdma->base_addr);
1467
1468 tdma->dma_clk = devm_clk_get(&pdev->dev, NULL);
1469 if (IS_ERR(tdma->dma_clk)) {
1470 dev_err(&pdev->dev, "Error: Missing controller clock\n");
1471 return PTR_ERR(tdma->dma_clk);
1472 }
1473
1474 tdma->rst = devm_reset_control_get(&pdev->dev, "dma");
1475 if (IS_ERR(tdma->rst)) {
1476 dev_err(&pdev->dev, "Error: Missing reset\n");
1477 return PTR_ERR(tdma->rst);
1478 }
1479
1480 spin_lock_init(&tdma->global_lock);
1481
1482 ret = clk_prepare(tdma->dma_clk);
1483 if (ret)
1484 return ret;
1485
1486 ret = tegra_dma_init_hw(tdma);
1487 if (ret)
1488 goto err_clk_unprepare;
1489
1490 pm_runtime_irq_safe(&pdev->dev);
1491 pm_runtime_enable(&pdev->dev);
1492
1493 INIT_LIST_HEAD(&tdma->dma_dev.channels);
1494 for (i = 0; i < cdata->nr_channels; i++) {
1495 struct tegra_dma_channel *tdc = &tdma->channels[i];
1496 int irq;
1497
1498 tdc->chan_addr = tdma->base_addr +
1499 TEGRA_APBDMA_CHANNEL_BASE_ADD_OFFSET +
1500 (i * cdata->channel_reg_size);
1501
1502 irq = platform_get_irq(pdev, i);
1503 if (irq < 0) {
1504 ret = irq;
1505 goto err_pm_disable;
1506 }
1507
1508 snprintf(tdc->name, sizeof(tdc->name), "apbdma.%d", i);
1509 ret = devm_request_irq(&pdev->dev, irq, tegra_dma_isr, 0,
1510 tdc->name, tdc);
1511 if (ret) {
1512 dev_err(&pdev->dev,
1513 "request_irq failed with err %d channel %d\n",
1514 ret, i);
1515 goto err_pm_disable;
1516 }
1517
1518 tdc->dma_chan.device = &tdma->dma_dev;
1519 dma_cookie_init(&tdc->dma_chan);
1520 list_add_tail(&tdc->dma_chan.device_node,
1521 &tdma->dma_dev.channels);
1522 tdc->tdma = tdma;
1523 tdc->id = i;
1524 tdc->slave_id = TEGRA_APBDMA_SLAVE_ID_INVALID;
1525
1526 tasklet_setup(&tdc->tasklet, tegra_dma_tasklet);
1527 spin_lock_init(&tdc->lock);
1528 init_waitqueue_head(&tdc->wq);
1529
1530 INIT_LIST_HEAD(&tdc->pending_sg_req);
1531 INIT_LIST_HEAD(&tdc->free_sg_req);
1532 INIT_LIST_HEAD(&tdc->free_dma_desc);
1533 INIT_LIST_HEAD(&tdc->cb_desc);
1534 }
1535
1536 dma_cap_set(DMA_SLAVE, tdma->dma_dev.cap_mask);
1537 dma_cap_set(DMA_PRIVATE, tdma->dma_dev.cap_mask);
1538 dma_cap_set(DMA_CYCLIC, tdma->dma_dev.cap_mask);
1539
1540 tdma->global_pause_count = 0;
1541 tdma->dma_dev.dev = &pdev->dev;
1542 tdma->dma_dev.device_alloc_chan_resources =
1543 tegra_dma_alloc_chan_resources;
1544 tdma->dma_dev.device_free_chan_resources =
1545 tegra_dma_free_chan_resources;
1546 tdma->dma_dev.device_prep_slave_sg = tegra_dma_prep_slave_sg;
1547 tdma->dma_dev.device_prep_dma_cyclic = tegra_dma_prep_dma_cyclic;
1548 tdma->dma_dev.src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1549 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1550 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) |
1551 BIT(DMA_SLAVE_BUSWIDTH_8_BYTES);
1552 tdma->dma_dev.dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1553 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1554 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) |
1555 BIT(DMA_SLAVE_BUSWIDTH_8_BYTES);
1556 tdma->dma_dev.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1557 tdma->dma_dev.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1558 tdma->dma_dev.device_config = tegra_dma_slave_config;
1559 tdma->dma_dev.device_terminate_all = tegra_dma_terminate_all;
1560 tdma->dma_dev.device_synchronize = tegra_dma_synchronize;
1561 tdma->dma_dev.device_tx_status = tegra_dma_tx_status;
1562 tdma->dma_dev.device_issue_pending = tegra_dma_issue_pending;
1563
1564 ret = dma_async_device_register(&tdma->dma_dev);
1565 if (ret < 0) {
1566 dev_err(&pdev->dev,
1567 "Tegra20 APB DMA driver registration failed %d\n", ret);
1568 goto err_pm_disable;
1569 }
1570
1571 ret = of_dma_controller_register(pdev->dev.of_node,
1572 tegra_dma_of_xlate, tdma);
1573 if (ret < 0) {
1574 dev_err(&pdev->dev,
1575 "Tegra20 APB DMA OF registration failed %d\n", ret);
1576 goto err_unregister_dma_dev;
1577 }
1578
1579 dev_info(&pdev->dev, "Tegra20 APB DMA driver registered %u channels\n",
1580 cdata->nr_channels);
1581
1582 return 0;
1583
1584 err_unregister_dma_dev:
1585 dma_async_device_unregister(&tdma->dma_dev);
1586
1587 err_pm_disable:
1588 pm_runtime_disable(&pdev->dev);
1589
1590 err_clk_unprepare:
1591 clk_unprepare(tdma->dma_clk);
1592
1593 return ret;
1594 }
1595
1596 static int tegra_dma_remove(struct platform_device *pdev)
1597 {
1598 struct tegra_dma *tdma = platform_get_drvdata(pdev);
1599
1600 of_dma_controller_free(pdev->dev.of_node);
1601 dma_async_device_unregister(&tdma->dma_dev);
1602 pm_runtime_disable(&pdev->dev);
1603 clk_unprepare(tdma->dma_clk);
1604
1605 return 0;
1606 }
1607
1608 static int __maybe_unused tegra_dma_runtime_suspend(struct device *dev)
1609 {
1610 struct tegra_dma *tdma = dev_get_drvdata(dev);
1611
1612 clk_disable(tdma->dma_clk);
1613
1614 return 0;
1615 }
1616
1617 static int __maybe_unused tegra_dma_runtime_resume(struct device *dev)
1618 {
1619 struct tegra_dma *tdma = dev_get_drvdata(dev);
1620
1621 return clk_enable(tdma->dma_clk);
1622 }
1623
1624 static int __maybe_unused tegra_dma_dev_suspend(struct device *dev)
1625 {
1626 struct tegra_dma *tdma = dev_get_drvdata(dev);
1627 unsigned long flags;
1628 unsigned int i;
1629 bool busy;
1630
1631 for (i = 0; i < tdma->chip_data->nr_channels; i++) {
1632 struct tegra_dma_channel *tdc = &tdma->channels[i];
1633
1634 tasklet_kill(&tdc->tasklet);
1635
1636 spin_lock_irqsave(&tdc->lock, flags);
1637 busy = tdc->busy;
1638 spin_unlock_irqrestore(&tdc->lock, flags);
1639
1640 if (busy) {
1641 dev_err(tdma->dev, "channel %u busy\n", i);
1642 return -EBUSY;
1643 }
1644 }
1645
1646 return pm_runtime_force_suspend(dev);
1647 }
1648
1649 static int __maybe_unused tegra_dma_dev_resume(struct device *dev)
1650 {
1651 struct tegra_dma *tdma = dev_get_drvdata(dev);
1652 int err;
1653
1654 err = tegra_dma_init_hw(tdma);
1655 if (err)
1656 return err;
1657
1658 return pm_runtime_force_resume(dev);
1659 }
1660
1661 static const struct dev_pm_ops tegra_dma_dev_pm_ops = {
1662 SET_RUNTIME_PM_OPS(tegra_dma_runtime_suspend, tegra_dma_runtime_resume,
1663 NULL)
1664 SET_SYSTEM_SLEEP_PM_OPS(tegra_dma_dev_suspend, tegra_dma_dev_resume)
1665 };
1666
1667 static const struct of_device_id tegra_dma_of_match[] = {
1668 {
1669 .compatible = "nvidia,tegra148-apbdma",
1670 .data = &tegra148_dma_chip_data,
1671 }, {
1672 .compatible = "nvidia,tegra114-apbdma",
1673 .data = &tegra114_dma_chip_data,
1674 }, {
1675 .compatible = "nvidia,tegra30-apbdma",
1676 .data = &tegra30_dma_chip_data,
1677 }, {
1678 .compatible = "nvidia,tegra20-apbdma",
1679 .data = &tegra20_dma_chip_data,
1680 }, {
1681 },
1682 };
1683 MODULE_DEVICE_TABLE(of, tegra_dma_of_match);
1684
1685 static struct platform_driver tegra_dmac_driver = {
1686 .driver = {
1687 .name = "tegra-apbdma",
1688 .pm = &tegra_dma_dev_pm_ops,
1689 .of_match_table = tegra_dma_of_match,
1690 },
1691 .probe = tegra_dma_probe,
1692 .remove = tegra_dma_remove,
1693 };
1694
1695 module_platform_driver(tegra_dmac_driver);
1696
1697 MODULE_DESCRIPTION("NVIDIA Tegra APB DMA Controller driver");
1698 MODULE_AUTHOR("Laxman Dewangan <ldewangan@nvidia.com>");
1699 MODULE_LICENSE("GPL v2");