]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/dma/ti/omap-dma.c
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 500
[mirror_ubuntu-hirsute-kernel.git] / drivers / dma / ti / omap-dma.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * OMAP DMAengine support
4 */
5 #include <linux/delay.h>
6 #include <linux/dmaengine.h>
7 #include <linux/dma-mapping.h>
8 #include <linux/dmapool.h>
9 #include <linux/err.h>
10 #include <linux/init.h>
11 #include <linux/interrupt.h>
12 #include <linux/list.h>
13 #include <linux/module.h>
14 #include <linux/omap-dma.h>
15 #include <linux/platform_device.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/of_dma.h>
19 #include <linux/of_device.h>
20
21 #include "../virt-dma.h"
22
23 #define OMAP_SDMA_REQUESTS 127
24 #define OMAP_SDMA_CHANNELS 32
25
26 struct omap_dmadev {
27 struct dma_device ddev;
28 spinlock_t lock;
29 void __iomem *base;
30 const struct omap_dma_reg *reg_map;
31 struct omap_system_dma_plat_info *plat;
32 bool legacy;
33 bool ll123_supported;
34 struct dma_pool *desc_pool;
35 unsigned dma_requests;
36 spinlock_t irq_lock;
37 uint32_t irq_enable_mask;
38 struct omap_chan **lch_map;
39 };
40
41 struct omap_chan {
42 struct virt_dma_chan vc;
43 void __iomem *channel_base;
44 const struct omap_dma_reg *reg_map;
45 uint32_t ccr;
46
47 struct dma_slave_config cfg;
48 unsigned dma_sig;
49 bool cyclic;
50 bool paused;
51 bool running;
52
53 int dma_ch;
54 struct omap_desc *desc;
55 unsigned sgidx;
56 };
57
58 #define DESC_NXT_SV_REFRESH (0x1 << 24)
59 #define DESC_NXT_SV_REUSE (0x2 << 24)
60 #define DESC_NXT_DV_REFRESH (0x1 << 26)
61 #define DESC_NXT_DV_REUSE (0x2 << 26)
62 #define DESC_NTYPE_TYPE2 (0x2 << 29)
63
64 /* Type 2 descriptor with Source or Destination address update */
65 struct omap_type2_desc {
66 uint32_t next_desc;
67 uint32_t en;
68 uint32_t addr; /* src or dst */
69 uint16_t fn;
70 uint16_t cicr;
71 int16_t cdei;
72 int16_t csei;
73 int32_t cdfi;
74 int32_t csfi;
75 } __packed;
76
77 struct omap_sg {
78 dma_addr_t addr;
79 uint32_t en; /* number of elements (24-bit) */
80 uint32_t fn; /* number of frames (16-bit) */
81 int32_t fi; /* for double indexing */
82 int16_t ei; /* for double indexing */
83
84 /* Linked list */
85 struct omap_type2_desc *t2_desc;
86 dma_addr_t t2_desc_paddr;
87 };
88
89 struct omap_desc {
90 struct virt_dma_desc vd;
91 bool using_ll;
92 enum dma_transfer_direction dir;
93 dma_addr_t dev_addr;
94
95 int32_t fi; /* for OMAP_DMA_SYNC_PACKET / double indexing */
96 int16_t ei; /* for double indexing */
97 uint8_t es; /* CSDP_DATA_TYPE_xxx */
98 uint32_t ccr; /* CCR value */
99 uint16_t clnk_ctrl; /* CLNK_CTRL value */
100 uint16_t cicr; /* CICR value */
101 uint32_t csdp; /* CSDP value */
102
103 unsigned sglen;
104 struct omap_sg sg[0];
105 };
106
107 enum {
108 CAPS_0_SUPPORT_LL123 = BIT(20), /* Linked List type1/2/3 */
109 CAPS_0_SUPPORT_LL4 = BIT(21), /* Linked List type4 */
110
111 CCR_FS = BIT(5),
112 CCR_READ_PRIORITY = BIT(6),
113 CCR_ENABLE = BIT(7),
114 CCR_AUTO_INIT = BIT(8), /* OMAP1 only */
115 CCR_REPEAT = BIT(9), /* OMAP1 only */
116 CCR_OMAP31_DISABLE = BIT(10), /* OMAP1 only */
117 CCR_SUSPEND_SENSITIVE = BIT(8), /* OMAP2+ only */
118 CCR_RD_ACTIVE = BIT(9), /* OMAP2+ only */
119 CCR_WR_ACTIVE = BIT(10), /* OMAP2+ only */
120 CCR_SRC_AMODE_CONSTANT = 0 << 12,
121 CCR_SRC_AMODE_POSTINC = 1 << 12,
122 CCR_SRC_AMODE_SGLIDX = 2 << 12,
123 CCR_SRC_AMODE_DBLIDX = 3 << 12,
124 CCR_DST_AMODE_CONSTANT = 0 << 14,
125 CCR_DST_AMODE_POSTINC = 1 << 14,
126 CCR_DST_AMODE_SGLIDX = 2 << 14,
127 CCR_DST_AMODE_DBLIDX = 3 << 14,
128 CCR_CONSTANT_FILL = BIT(16),
129 CCR_TRANSPARENT_COPY = BIT(17),
130 CCR_BS = BIT(18),
131 CCR_SUPERVISOR = BIT(22),
132 CCR_PREFETCH = BIT(23),
133 CCR_TRIGGER_SRC = BIT(24),
134 CCR_BUFFERING_DISABLE = BIT(25),
135 CCR_WRITE_PRIORITY = BIT(26),
136 CCR_SYNC_ELEMENT = 0,
137 CCR_SYNC_FRAME = CCR_FS,
138 CCR_SYNC_BLOCK = CCR_BS,
139 CCR_SYNC_PACKET = CCR_BS | CCR_FS,
140
141 CSDP_DATA_TYPE_8 = 0,
142 CSDP_DATA_TYPE_16 = 1,
143 CSDP_DATA_TYPE_32 = 2,
144 CSDP_SRC_PORT_EMIFF = 0 << 2, /* OMAP1 only */
145 CSDP_SRC_PORT_EMIFS = 1 << 2, /* OMAP1 only */
146 CSDP_SRC_PORT_OCP_T1 = 2 << 2, /* OMAP1 only */
147 CSDP_SRC_PORT_TIPB = 3 << 2, /* OMAP1 only */
148 CSDP_SRC_PORT_OCP_T2 = 4 << 2, /* OMAP1 only */
149 CSDP_SRC_PORT_MPUI = 5 << 2, /* OMAP1 only */
150 CSDP_SRC_PACKED = BIT(6),
151 CSDP_SRC_BURST_1 = 0 << 7,
152 CSDP_SRC_BURST_16 = 1 << 7,
153 CSDP_SRC_BURST_32 = 2 << 7,
154 CSDP_SRC_BURST_64 = 3 << 7,
155 CSDP_DST_PORT_EMIFF = 0 << 9, /* OMAP1 only */
156 CSDP_DST_PORT_EMIFS = 1 << 9, /* OMAP1 only */
157 CSDP_DST_PORT_OCP_T1 = 2 << 9, /* OMAP1 only */
158 CSDP_DST_PORT_TIPB = 3 << 9, /* OMAP1 only */
159 CSDP_DST_PORT_OCP_T2 = 4 << 9, /* OMAP1 only */
160 CSDP_DST_PORT_MPUI = 5 << 9, /* OMAP1 only */
161 CSDP_DST_PACKED = BIT(13),
162 CSDP_DST_BURST_1 = 0 << 14,
163 CSDP_DST_BURST_16 = 1 << 14,
164 CSDP_DST_BURST_32 = 2 << 14,
165 CSDP_DST_BURST_64 = 3 << 14,
166 CSDP_WRITE_NON_POSTED = 0 << 16,
167 CSDP_WRITE_POSTED = 1 << 16,
168 CSDP_WRITE_LAST_NON_POSTED = 2 << 16,
169
170 CICR_TOUT_IE = BIT(0), /* OMAP1 only */
171 CICR_DROP_IE = BIT(1),
172 CICR_HALF_IE = BIT(2),
173 CICR_FRAME_IE = BIT(3),
174 CICR_LAST_IE = BIT(4),
175 CICR_BLOCK_IE = BIT(5),
176 CICR_PKT_IE = BIT(7), /* OMAP2+ only */
177 CICR_TRANS_ERR_IE = BIT(8), /* OMAP2+ only */
178 CICR_SUPERVISOR_ERR_IE = BIT(10), /* OMAP2+ only */
179 CICR_MISALIGNED_ERR_IE = BIT(11), /* OMAP2+ only */
180 CICR_DRAIN_IE = BIT(12), /* OMAP2+ only */
181 CICR_SUPER_BLOCK_IE = BIT(14), /* OMAP2+ only */
182
183 CLNK_CTRL_ENABLE_LNK = BIT(15),
184
185 CDP_DST_VALID_INC = 0 << 0,
186 CDP_DST_VALID_RELOAD = 1 << 0,
187 CDP_DST_VALID_REUSE = 2 << 0,
188 CDP_SRC_VALID_INC = 0 << 2,
189 CDP_SRC_VALID_RELOAD = 1 << 2,
190 CDP_SRC_VALID_REUSE = 2 << 2,
191 CDP_NTYPE_TYPE1 = 1 << 4,
192 CDP_NTYPE_TYPE2 = 2 << 4,
193 CDP_NTYPE_TYPE3 = 3 << 4,
194 CDP_TMODE_NORMAL = 0 << 8,
195 CDP_TMODE_LLIST = 1 << 8,
196 CDP_FAST = BIT(10),
197 };
198
199 static const unsigned es_bytes[] = {
200 [CSDP_DATA_TYPE_8] = 1,
201 [CSDP_DATA_TYPE_16] = 2,
202 [CSDP_DATA_TYPE_32] = 4,
203 };
204
205 static struct of_dma_filter_info omap_dma_info = {
206 .filter_fn = omap_dma_filter_fn,
207 };
208
209 static inline struct omap_dmadev *to_omap_dma_dev(struct dma_device *d)
210 {
211 return container_of(d, struct omap_dmadev, ddev);
212 }
213
214 static inline struct omap_chan *to_omap_dma_chan(struct dma_chan *c)
215 {
216 return container_of(c, struct omap_chan, vc.chan);
217 }
218
219 static inline struct omap_desc *to_omap_dma_desc(struct dma_async_tx_descriptor *t)
220 {
221 return container_of(t, struct omap_desc, vd.tx);
222 }
223
224 static void omap_dma_desc_free(struct virt_dma_desc *vd)
225 {
226 struct omap_desc *d = to_omap_dma_desc(&vd->tx);
227
228 if (d->using_ll) {
229 struct omap_dmadev *od = to_omap_dma_dev(vd->tx.chan->device);
230 int i;
231
232 for (i = 0; i < d->sglen; i++) {
233 if (d->sg[i].t2_desc)
234 dma_pool_free(od->desc_pool, d->sg[i].t2_desc,
235 d->sg[i].t2_desc_paddr);
236 }
237 }
238
239 kfree(d);
240 }
241
242 static void omap_dma_fill_type2_desc(struct omap_desc *d, int idx,
243 enum dma_transfer_direction dir, bool last)
244 {
245 struct omap_sg *sg = &d->sg[idx];
246 struct omap_type2_desc *t2_desc = sg->t2_desc;
247
248 if (idx)
249 d->sg[idx - 1].t2_desc->next_desc = sg->t2_desc_paddr;
250 if (last)
251 t2_desc->next_desc = 0xfffffffc;
252
253 t2_desc->en = sg->en;
254 t2_desc->addr = sg->addr;
255 t2_desc->fn = sg->fn & 0xffff;
256 t2_desc->cicr = d->cicr;
257 if (!last)
258 t2_desc->cicr &= ~CICR_BLOCK_IE;
259
260 switch (dir) {
261 case DMA_DEV_TO_MEM:
262 t2_desc->cdei = sg->ei;
263 t2_desc->csei = d->ei;
264 t2_desc->cdfi = sg->fi;
265 t2_desc->csfi = d->fi;
266
267 t2_desc->en |= DESC_NXT_DV_REFRESH;
268 t2_desc->en |= DESC_NXT_SV_REUSE;
269 break;
270 case DMA_MEM_TO_DEV:
271 t2_desc->cdei = d->ei;
272 t2_desc->csei = sg->ei;
273 t2_desc->cdfi = d->fi;
274 t2_desc->csfi = sg->fi;
275
276 t2_desc->en |= DESC_NXT_SV_REFRESH;
277 t2_desc->en |= DESC_NXT_DV_REUSE;
278 break;
279 default:
280 return;
281 }
282
283 t2_desc->en |= DESC_NTYPE_TYPE2;
284 }
285
286 static void omap_dma_write(uint32_t val, unsigned type, void __iomem *addr)
287 {
288 switch (type) {
289 case OMAP_DMA_REG_16BIT:
290 writew_relaxed(val, addr);
291 break;
292 case OMAP_DMA_REG_2X16BIT:
293 writew_relaxed(val, addr);
294 writew_relaxed(val >> 16, addr + 2);
295 break;
296 case OMAP_DMA_REG_32BIT:
297 writel_relaxed(val, addr);
298 break;
299 default:
300 WARN_ON(1);
301 }
302 }
303
304 static unsigned omap_dma_read(unsigned type, void __iomem *addr)
305 {
306 unsigned val;
307
308 switch (type) {
309 case OMAP_DMA_REG_16BIT:
310 val = readw_relaxed(addr);
311 break;
312 case OMAP_DMA_REG_2X16BIT:
313 val = readw_relaxed(addr);
314 val |= readw_relaxed(addr + 2) << 16;
315 break;
316 case OMAP_DMA_REG_32BIT:
317 val = readl_relaxed(addr);
318 break;
319 default:
320 WARN_ON(1);
321 val = 0;
322 }
323
324 return val;
325 }
326
327 static void omap_dma_glbl_write(struct omap_dmadev *od, unsigned reg, unsigned val)
328 {
329 const struct omap_dma_reg *r = od->reg_map + reg;
330
331 WARN_ON(r->stride);
332
333 omap_dma_write(val, r->type, od->base + r->offset);
334 }
335
336 static unsigned omap_dma_glbl_read(struct omap_dmadev *od, unsigned reg)
337 {
338 const struct omap_dma_reg *r = od->reg_map + reg;
339
340 WARN_ON(r->stride);
341
342 return omap_dma_read(r->type, od->base + r->offset);
343 }
344
345 static void omap_dma_chan_write(struct omap_chan *c, unsigned reg, unsigned val)
346 {
347 const struct omap_dma_reg *r = c->reg_map + reg;
348
349 omap_dma_write(val, r->type, c->channel_base + r->offset);
350 }
351
352 static unsigned omap_dma_chan_read(struct omap_chan *c, unsigned reg)
353 {
354 const struct omap_dma_reg *r = c->reg_map + reg;
355
356 return omap_dma_read(r->type, c->channel_base + r->offset);
357 }
358
359 static void omap_dma_clear_csr(struct omap_chan *c)
360 {
361 if (dma_omap1())
362 omap_dma_chan_read(c, CSR);
363 else
364 omap_dma_chan_write(c, CSR, ~0);
365 }
366
367 static unsigned omap_dma_get_csr(struct omap_chan *c)
368 {
369 unsigned val = omap_dma_chan_read(c, CSR);
370
371 if (!dma_omap1())
372 omap_dma_chan_write(c, CSR, val);
373
374 return val;
375 }
376
377 static void omap_dma_assign(struct omap_dmadev *od, struct omap_chan *c,
378 unsigned lch)
379 {
380 c->channel_base = od->base + od->plat->channel_stride * lch;
381
382 od->lch_map[lch] = c;
383 }
384
385 static void omap_dma_start(struct omap_chan *c, struct omap_desc *d)
386 {
387 struct omap_dmadev *od = to_omap_dma_dev(c->vc.chan.device);
388 uint16_t cicr = d->cicr;
389
390 if (__dma_omap15xx(od->plat->dma_attr))
391 omap_dma_chan_write(c, CPC, 0);
392 else
393 omap_dma_chan_write(c, CDAC, 0);
394
395 omap_dma_clear_csr(c);
396
397 if (d->using_ll) {
398 uint32_t cdp = CDP_TMODE_LLIST | CDP_NTYPE_TYPE2 | CDP_FAST;
399
400 if (d->dir == DMA_DEV_TO_MEM)
401 cdp |= (CDP_DST_VALID_RELOAD | CDP_SRC_VALID_REUSE);
402 else
403 cdp |= (CDP_DST_VALID_REUSE | CDP_SRC_VALID_RELOAD);
404 omap_dma_chan_write(c, CDP, cdp);
405
406 omap_dma_chan_write(c, CNDP, d->sg[0].t2_desc_paddr);
407 omap_dma_chan_write(c, CCDN, 0);
408 omap_dma_chan_write(c, CCFN, 0xffff);
409 omap_dma_chan_write(c, CCEN, 0xffffff);
410
411 cicr &= ~CICR_BLOCK_IE;
412 } else if (od->ll123_supported) {
413 omap_dma_chan_write(c, CDP, 0);
414 }
415
416 /* Enable interrupts */
417 omap_dma_chan_write(c, CICR, cicr);
418
419 /* Enable channel */
420 omap_dma_chan_write(c, CCR, d->ccr | CCR_ENABLE);
421
422 c->running = true;
423 }
424
425 static void omap_dma_drain_chan(struct omap_chan *c)
426 {
427 int i;
428 u32 val;
429
430 /* Wait for sDMA FIFO to drain */
431 for (i = 0; ; i++) {
432 val = omap_dma_chan_read(c, CCR);
433 if (!(val & (CCR_RD_ACTIVE | CCR_WR_ACTIVE)))
434 break;
435
436 if (i > 100)
437 break;
438
439 udelay(5);
440 }
441
442 if (val & (CCR_RD_ACTIVE | CCR_WR_ACTIVE))
443 dev_err(c->vc.chan.device->dev,
444 "DMA drain did not complete on lch %d\n",
445 c->dma_ch);
446 }
447
448 static int omap_dma_stop(struct omap_chan *c)
449 {
450 struct omap_dmadev *od = to_omap_dma_dev(c->vc.chan.device);
451 uint32_t val;
452
453 /* disable irq */
454 omap_dma_chan_write(c, CICR, 0);
455
456 omap_dma_clear_csr(c);
457
458 val = omap_dma_chan_read(c, CCR);
459 if (od->plat->errata & DMA_ERRATA_i541 && val & CCR_TRIGGER_SRC) {
460 uint32_t sysconfig;
461
462 sysconfig = omap_dma_glbl_read(od, OCP_SYSCONFIG);
463 val = sysconfig & ~DMA_SYSCONFIG_MIDLEMODE_MASK;
464 val |= DMA_SYSCONFIG_MIDLEMODE(DMA_IDLEMODE_NO_IDLE);
465 omap_dma_glbl_write(od, OCP_SYSCONFIG, val);
466
467 val = omap_dma_chan_read(c, CCR);
468 val &= ~CCR_ENABLE;
469 omap_dma_chan_write(c, CCR, val);
470
471 if (!(c->ccr & CCR_BUFFERING_DISABLE))
472 omap_dma_drain_chan(c);
473
474 omap_dma_glbl_write(od, OCP_SYSCONFIG, sysconfig);
475 } else {
476 if (!(val & CCR_ENABLE))
477 return -EINVAL;
478
479 val &= ~CCR_ENABLE;
480 omap_dma_chan_write(c, CCR, val);
481
482 if (!(c->ccr & CCR_BUFFERING_DISABLE))
483 omap_dma_drain_chan(c);
484 }
485
486 mb();
487
488 if (!__dma_omap15xx(od->plat->dma_attr) && c->cyclic) {
489 val = omap_dma_chan_read(c, CLNK_CTRL);
490
491 if (dma_omap1())
492 val |= 1 << 14; /* set the STOP_LNK bit */
493 else
494 val &= ~CLNK_CTRL_ENABLE_LNK;
495
496 omap_dma_chan_write(c, CLNK_CTRL, val);
497 }
498 c->running = false;
499 return 0;
500 }
501
502 static void omap_dma_start_sg(struct omap_chan *c, struct omap_desc *d)
503 {
504 struct omap_sg *sg = d->sg + c->sgidx;
505 unsigned cxsa, cxei, cxfi;
506
507 if (d->dir == DMA_DEV_TO_MEM || d->dir == DMA_MEM_TO_MEM) {
508 cxsa = CDSA;
509 cxei = CDEI;
510 cxfi = CDFI;
511 } else {
512 cxsa = CSSA;
513 cxei = CSEI;
514 cxfi = CSFI;
515 }
516
517 omap_dma_chan_write(c, cxsa, sg->addr);
518 omap_dma_chan_write(c, cxei, sg->ei);
519 omap_dma_chan_write(c, cxfi, sg->fi);
520 omap_dma_chan_write(c, CEN, sg->en);
521 omap_dma_chan_write(c, CFN, sg->fn);
522
523 omap_dma_start(c, d);
524 c->sgidx++;
525 }
526
527 static void omap_dma_start_desc(struct omap_chan *c)
528 {
529 struct virt_dma_desc *vd = vchan_next_desc(&c->vc);
530 struct omap_desc *d;
531 unsigned cxsa, cxei, cxfi;
532
533 if (!vd) {
534 c->desc = NULL;
535 return;
536 }
537
538 list_del(&vd->node);
539
540 c->desc = d = to_omap_dma_desc(&vd->tx);
541 c->sgidx = 0;
542
543 /*
544 * This provides the necessary barrier to ensure data held in
545 * DMA coherent memory is visible to the DMA engine prior to
546 * the transfer starting.
547 */
548 mb();
549
550 omap_dma_chan_write(c, CCR, d->ccr);
551 if (dma_omap1())
552 omap_dma_chan_write(c, CCR2, d->ccr >> 16);
553
554 if (d->dir == DMA_DEV_TO_MEM || d->dir == DMA_MEM_TO_MEM) {
555 cxsa = CSSA;
556 cxei = CSEI;
557 cxfi = CSFI;
558 } else {
559 cxsa = CDSA;
560 cxei = CDEI;
561 cxfi = CDFI;
562 }
563
564 omap_dma_chan_write(c, cxsa, d->dev_addr);
565 omap_dma_chan_write(c, cxei, d->ei);
566 omap_dma_chan_write(c, cxfi, d->fi);
567 omap_dma_chan_write(c, CSDP, d->csdp);
568 omap_dma_chan_write(c, CLNK_CTRL, d->clnk_ctrl);
569
570 omap_dma_start_sg(c, d);
571 }
572
573 static void omap_dma_callback(int ch, u16 status, void *data)
574 {
575 struct omap_chan *c = data;
576 struct omap_desc *d;
577 unsigned long flags;
578
579 spin_lock_irqsave(&c->vc.lock, flags);
580 d = c->desc;
581 if (d) {
582 if (c->cyclic) {
583 vchan_cyclic_callback(&d->vd);
584 } else if (d->using_ll || c->sgidx == d->sglen) {
585 omap_dma_start_desc(c);
586 vchan_cookie_complete(&d->vd);
587 } else {
588 omap_dma_start_sg(c, d);
589 }
590 }
591 spin_unlock_irqrestore(&c->vc.lock, flags);
592 }
593
594 static irqreturn_t omap_dma_irq(int irq, void *devid)
595 {
596 struct omap_dmadev *od = devid;
597 unsigned status, channel;
598
599 spin_lock(&od->irq_lock);
600
601 status = omap_dma_glbl_read(od, IRQSTATUS_L1);
602 status &= od->irq_enable_mask;
603 if (status == 0) {
604 spin_unlock(&od->irq_lock);
605 return IRQ_NONE;
606 }
607
608 while ((channel = ffs(status)) != 0) {
609 unsigned mask, csr;
610 struct omap_chan *c;
611
612 channel -= 1;
613 mask = BIT(channel);
614 status &= ~mask;
615
616 c = od->lch_map[channel];
617 if (c == NULL) {
618 /* This should never happen */
619 dev_err(od->ddev.dev, "invalid channel %u\n", channel);
620 continue;
621 }
622
623 csr = omap_dma_get_csr(c);
624 omap_dma_glbl_write(od, IRQSTATUS_L1, mask);
625
626 omap_dma_callback(channel, csr, c);
627 }
628
629 spin_unlock(&od->irq_lock);
630
631 return IRQ_HANDLED;
632 }
633
634 static int omap_dma_alloc_chan_resources(struct dma_chan *chan)
635 {
636 struct omap_dmadev *od = to_omap_dma_dev(chan->device);
637 struct omap_chan *c = to_omap_dma_chan(chan);
638 struct device *dev = od->ddev.dev;
639 int ret;
640
641 if (od->legacy) {
642 ret = omap_request_dma(c->dma_sig, "DMA engine",
643 omap_dma_callback, c, &c->dma_ch);
644 } else {
645 ret = omap_request_dma(c->dma_sig, "DMA engine", NULL, NULL,
646 &c->dma_ch);
647 }
648
649 dev_dbg(dev, "allocating channel %u for %u\n", c->dma_ch, c->dma_sig);
650
651 if (ret >= 0) {
652 omap_dma_assign(od, c, c->dma_ch);
653
654 if (!od->legacy) {
655 unsigned val;
656
657 spin_lock_irq(&od->irq_lock);
658 val = BIT(c->dma_ch);
659 omap_dma_glbl_write(od, IRQSTATUS_L1, val);
660 od->irq_enable_mask |= val;
661 omap_dma_glbl_write(od, IRQENABLE_L1, od->irq_enable_mask);
662
663 val = omap_dma_glbl_read(od, IRQENABLE_L0);
664 val &= ~BIT(c->dma_ch);
665 omap_dma_glbl_write(od, IRQENABLE_L0, val);
666 spin_unlock_irq(&od->irq_lock);
667 }
668 }
669
670 if (dma_omap1()) {
671 if (__dma_omap16xx(od->plat->dma_attr)) {
672 c->ccr = CCR_OMAP31_DISABLE;
673 /* Duplicate what plat-omap/dma.c does */
674 c->ccr |= c->dma_ch + 1;
675 } else {
676 c->ccr = c->dma_sig & 0x1f;
677 }
678 } else {
679 c->ccr = c->dma_sig & 0x1f;
680 c->ccr |= (c->dma_sig & ~0x1f) << 14;
681 }
682 if (od->plat->errata & DMA_ERRATA_IFRAME_BUFFERING)
683 c->ccr |= CCR_BUFFERING_DISABLE;
684
685 return ret;
686 }
687
688 static void omap_dma_free_chan_resources(struct dma_chan *chan)
689 {
690 struct omap_dmadev *od = to_omap_dma_dev(chan->device);
691 struct omap_chan *c = to_omap_dma_chan(chan);
692
693 if (!od->legacy) {
694 spin_lock_irq(&od->irq_lock);
695 od->irq_enable_mask &= ~BIT(c->dma_ch);
696 omap_dma_glbl_write(od, IRQENABLE_L1, od->irq_enable_mask);
697 spin_unlock_irq(&od->irq_lock);
698 }
699
700 c->channel_base = NULL;
701 od->lch_map[c->dma_ch] = NULL;
702 vchan_free_chan_resources(&c->vc);
703 omap_free_dma(c->dma_ch);
704
705 dev_dbg(od->ddev.dev, "freeing channel %u used for %u\n", c->dma_ch,
706 c->dma_sig);
707 c->dma_sig = 0;
708 }
709
710 static size_t omap_dma_sg_size(struct omap_sg *sg)
711 {
712 return sg->en * sg->fn;
713 }
714
715 static size_t omap_dma_desc_size(struct omap_desc *d)
716 {
717 unsigned i;
718 size_t size;
719
720 for (size = i = 0; i < d->sglen; i++)
721 size += omap_dma_sg_size(&d->sg[i]);
722
723 return size * es_bytes[d->es];
724 }
725
726 static size_t omap_dma_desc_size_pos(struct omap_desc *d, dma_addr_t addr)
727 {
728 unsigned i;
729 size_t size, es_size = es_bytes[d->es];
730
731 for (size = i = 0; i < d->sglen; i++) {
732 size_t this_size = omap_dma_sg_size(&d->sg[i]) * es_size;
733
734 if (size)
735 size += this_size;
736 else if (addr >= d->sg[i].addr &&
737 addr < d->sg[i].addr + this_size)
738 size += d->sg[i].addr + this_size - addr;
739 }
740 return size;
741 }
742
743 /*
744 * OMAP 3.2/3.3 erratum: sometimes 0 is returned if CSAC/CDAC is
745 * read before the DMA controller finished disabling the channel.
746 */
747 static uint32_t omap_dma_chan_read_3_3(struct omap_chan *c, unsigned reg)
748 {
749 struct omap_dmadev *od = to_omap_dma_dev(c->vc.chan.device);
750 uint32_t val;
751
752 val = omap_dma_chan_read(c, reg);
753 if (val == 0 && od->plat->errata & DMA_ERRATA_3_3)
754 val = omap_dma_chan_read(c, reg);
755
756 return val;
757 }
758
759 static dma_addr_t omap_dma_get_src_pos(struct omap_chan *c)
760 {
761 struct omap_dmadev *od = to_omap_dma_dev(c->vc.chan.device);
762 dma_addr_t addr, cdac;
763
764 if (__dma_omap15xx(od->plat->dma_attr)) {
765 addr = omap_dma_chan_read(c, CPC);
766 } else {
767 addr = omap_dma_chan_read_3_3(c, CSAC);
768 cdac = omap_dma_chan_read_3_3(c, CDAC);
769
770 /*
771 * CDAC == 0 indicates that the DMA transfer on the channel has
772 * not been started (no data has been transferred so far).
773 * Return the programmed source start address in this case.
774 */
775 if (cdac == 0)
776 addr = omap_dma_chan_read(c, CSSA);
777 }
778
779 if (dma_omap1())
780 addr |= omap_dma_chan_read(c, CSSA) & 0xffff0000;
781
782 return addr;
783 }
784
785 static dma_addr_t omap_dma_get_dst_pos(struct omap_chan *c)
786 {
787 struct omap_dmadev *od = to_omap_dma_dev(c->vc.chan.device);
788 dma_addr_t addr;
789
790 if (__dma_omap15xx(od->plat->dma_attr)) {
791 addr = omap_dma_chan_read(c, CPC);
792 } else {
793 addr = omap_dma_chan_read_3_3(c, CDAC);
794
795 /*
796 * CDAC == 0 indicates that the DMA transfer on the channel
797 * has not been started (no data has been transferred so
798 * far). Return the programmed destination start address in
799 * this case.
800 */
801 if (addr == 0)
802 addr = omap_dma_chan_read(c, CDSA);
803 }
804
805 if (dma_omap1())
806 addr |= omap_dma_chan_read(c, CDSA) & 0xffff0000;
807
808 return addr;
809 }
810
811 static enum dma_status omap_dma_tx_status(struct dma_chan *chan,
812 dma_cookie_t cookie, struct dma_tx_state *txstate)
813 {
814 struct omap_chan *c = to_omap_dma_chan(chan);
815 struct virt_dma_desc *vd;
816 enum dma_status ret;
817 unsigned long flags;
818
819 ret = dma_cookie_status(chan, cookie, txstate);
820
821 if (!c->paused && c->running) {
822 uint32_t ccr = omap_dma_chan_read(c, CCR);
823 /*
824 * The channel is no longer active, set the return value
825 * accordingly
826 */
827 if (!(ccr & CCR_ENABLE))
828 ret = DMA_COMPLETE;
829 }
830
831 if (ret == DMA_COMPLETE || !txstate)
832 return ret;
833
834 spin_lock_irqsave(&c->vc.lock, flags);
835 vd = vchan_find_desc(&c->vc, cookie);
836 if (vd) {
837 txstate->residue = omap_dma_desc_size(to_omap_dma_desc(&vd->tx));
838 } else if (c->desc && c->desc->vd.tx.cookie == cookie) {
839 struct omap_desc *d = c->desc;
840 dma_addr_t pos;
841
842 if (d->dir == DMA_MEM_TO_DEV)
843 pos = omap_dma_get_src_pos(c);
844 else if (d->dir == DMA_DEV_TO_MEM || d->dir == DMA_MEM_TO_MEM)
845 pos = omap_dma_get_dst_pos(c);
846 else
847 pos = 0;
848
849 txstate->residue = omap_dma_desc_size_pos(d, pos);
850 } else {
851 txstate->residue = 0;
852 }
853 if (ret == DMA_IN_PROGRESS && c->paused)
854 ret = DMA_PAUSED;
855 spin_unlock_irqrestore(&c->vc.lock, flags);
856
857 return ret;
858 }
859
860 static void omap_dma_issue_pending(struct dma_chan *chan)
861 {
862 struct omap_chan *c = to_omap_dma_chan(chan);
863 unsigned long flags;
864
865 spin_lock_irqsave(&c->vc.lock, flags);
866 if (vchan_issue_pending(&c->vc) && !c->desc)
867 omap_dma_start_desc(c);
868 spin_unlock_irqrestore(&c->vc.lock, flags);
869 }
870
871 static struct dma_async_tx_descriptor *omap_dma_prep_slave_sg(
872 struct dma_chan *chan, struct scatterlist *sgl, unsigned sglen,
873 enum dma_transfer_direction dir, unsigned long tx_flags, void *context)
874 {
875 struct omap_dmadev *od = to_omap_dma_dev(chan->device);
876 struct omap_chan *c = to_omap_dma_chan(chan);
877 enum dma_slave_buswidth dev_width;
878 struct scatterlist *sgent;
879 struct omap_desc *d;
880 dma_addr_t dev_addr;
881 unsigned i, es, en, frame_bytes;
882 bool ll_failed = false;
883 u32 burst;
884 u32 port_window, port_window_bytes;
885
886 if (dir == DMA_DEV_TO_MEM) {
887 dev_addr = c->cfg.src_addr;
888 dev_width = c->cfg.src_addr_width;
889 burst = c->cfg.src_maxburst;
890 port_window = c->cfg.src_port_window_size;
891 } else if (dir == DMA_MEM_TO_DEV) {
892 dev_addr = c->cfg.dst_addr;
893 dev_width = c->cfg.dst_addr_width;
894 burst = c->cfg.dst_maxburst;
895 port_window = c->cfg.dst_port_window_size;
896 } else {
897 dev_err(chan->device->dev, "%s: bad direction?\n", __func__);
898 return NULL;
899 }
900
901 /* Bus width translates to the element size (ES) */
902 switch (dev_width) {
903 case DMA_SLAVE_BUSWIDTH_1_BYTE:
904 es = CSDP_DATA_TYPE_8;
905 break;
906 case DMA_SLAVE_BUSWIDTH_2_BYTES:
907 es = CSDP_DATA_TYPE_16;
908 break;
909 case DMA_SLAVE_BUSWIDTH_4_BYTES:
910 es = CSDP_DATA_TYPE_32;
911 break;
912 default: /* not reached */
913 return NULL;
914 }
915
916 /* Now allocate and setup the descriptor. */
917 d = kzalloc(struct_size(d, sg, sglen), GFP_ATOMIC);
918 if (!d)
919 return NULL;
920
921 d->dir = dir;
922 d->dev_addr = dev_addr;
923 d->es = es;
924
925 /* When the port_window is used, one frame must cover the window */
926 if (port_window) {
927 burst = port_window;
928 port_window_bytes = port_window * es_bytes[es];
929
930 d->ei = 1;
931 /*
932 * One frame covers the port_window and by configure
933 * the source frame index to be -1 * (port_window - 1)
934 * we instruct the sDMA that after a frame is processed
935 * it should move back to the start of the window.
936 */
937 d->fi = -(port_window_bytes - 1);
938 }
939
940 d->ccr = c->ccr | CCR_SYNC_FRAME;
941 if (dir == DMA_DEV_TO_MEM) {
942 d->csdp = CSDP_DST_BURST_64 | CSDP_DST_PACKED;
943
944 d->ccr |= CCR_DST_AMODE_POSTINC;
945 if (port_window) {
946 d->ccr |= CCR_SRC_AMODE_DBLIDX;
947
948 if (port_window_bytes >= 64)
949 d->csdp |= CSDP_SRC_BURST_64;
950 else if (port_window_bytes >= 32)
951 d->csdp |= CSDP_SRC_BURST_32;
952 else if (port_window_bytes >= 16)
953 d->csdp |= CSDP_SRC_BURST_16;
954
955 } else {
956 d->ccr |= CCR_SRC_AMODE_CONSTANT;
957 }
958 } else {
959 d->csdp = CSDP_SRC_BURST_64 | CSDP_SRC_PACKED;
960
961 d->ccr |= CCR_SRC_AMODE_POSTINC;
962 if (port_window) {
963 d->ccr |= CCR_DST_AMODE_DBLIDX;
964
965 if (port_window_bytes >= 64)
966 d->csdp |= CSDP_DST_BURST_64;
967 else if (port_window_bytes >= 32)
968 d->csdp |= CSDP_DST_BURST_32;
969 else if (port_window_bytes >= 16)
970 d->csdp |= CSDP_DST_BURST_16;
971 } else {
972 d->ccr |= CCR_DST_AMODE_CONSTANT;
973 }
974 }
975
976 d->cicr = CICR_DROP_IE | CICR_BLOCK_IE;
977 d->csdp |= es;
978
979 if (dma_omap1()) {
980 d->cicr |= CICR_TOUT_IE;
981
982 if (dir == DMA_DEV_TO_MEM)
983 d->csdp |= CSDP_DST_PORT_EMIFF | CSDP_SRC_PORT_TIPB;
984 else
985 d->csdp |= CSDP_DST_PORT_TIPB | CSDP_SRC_PORT_EMIFF;
986 } else {
987 if (dir == DMA_DEV_TO_MEM)
988 d->ccr |= CCR_TRIGGER_SRC;
989
990 d->cicr |= CICR_MISALIGNED_ERR_IE | CICR_TRANS_ERR_IE;
991
992 if (port_window)
993 d->csdp |= CSDP_WRITE_LAST_NON_POSTED;
994 }
995 if (od->plat->errata & DMA_ERRATA_PARALLEL_CHANNELS)
996 d->clnk_ctrl = c->dma_ch;
997
998 /*
999 * Build our scatterlist entries: each contains the address,
1000 * the number of elements (EN) in each frame, and the number of
1001 * frames (FN). Number of bytes for this entry = ES * EN * FN.
1002 *
1003 * Burst size translates to number of elements with frame sync.
1004 * Note: DMA engine defines burst to be the number of dev-width
1005 * transfers.
1006 */
1007 en = burst;
1008 frame_bytes = es_bytes[es] * en;
1009
1010 if (sglen >= 2)
1011 d->using_ll = od->ll123_supported;
1012
1013 for_each_sg(sgl, sgent, sglen, i) {
1014 struct omap_sg *osg = &d->sg[i];
1015
1016 osg->addr = sg_dma_address(sgent);
1017 osg->en = en;
1018 osg->fn = sg_dma_len(sgent) / frame_bytes;
1019
1020 if (d->using_ll) {
1021 osg->t2_desc = dma_pool_alloc(od->desc_pool, GFP_ATOMIC,
1022 &osg->t2_desc_paddr);
1023 if (!osg->t2_desc) {
1024 dev_err(chan->device->dev,
1025 "t2_desc[%d] allocation failed\n", i);
1026 ll_failed = true;
1027 d->using_ll = false;
1028 continue;
1029 }
1030
1031 omap_dma_fill_type2_desc(d, i, dir, (i == sglen - 1));
1032 }
1033 }
1034
1035 d->sglen = sglen;
1036
1037 /* Release the dma_pool entries if one allocation failed */
1038 if (ll_failed) {
1039 for (i = 0; i < d->sglen; i++) {
1040 struct omap_sg *osg = &d->sg[i];
1041
1042 if (osg->t2_desc) {
1043 dma_pool_free(od->desc_pool, osg->t2_desc,
1044 osg->t2_desc_paddr);
1045 osg->t2_desc = NULL;
1046 }
1047 }
1048 }
1049
1050 return vchan_tx_prep(&c->vc, &d->vd, tx_flags);
1051 }
1052
1053 static struct dma_async_tx_descriptor *omap_dma_prep_dma_cyclic(
1054 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
1055 size_t period_len, enum dma_transfer_direction dir, unsigned long flags)
1056 {
1057 struct omap_dmadev *od = to_omap_dma_dev(chan->device);
1058 struct omap_chan *c = to_omap_dma_chan(chan);
1059 enum dma_slave_buswidth dev_width;
1060 struct omap_desc *d;
1061 dma_addr_t dev_addr;
1062 unsigned es;
1063 u32 burst;
1064
1065 if (dir == DMA_DEV_TO_MEM) {
1066 dev_addr = c->cfg.src_addr;
1067 dev_width = c->cfg.src_addr_width;
1068 burst = c->cfg.src_maxburst;
1069 } else if (dir == DMA_MEM_TO_DEV) {
1070 dev_addr = c->cfg.dst_addr;
1071 dev_width = c->cfg.dst_addr_width;
1072 burst = c->cfg.dst_maxburst;
1073 } else {
1074 dev_err(chan->device->dev, "%s: bad direction?\n", __func__);
1075 return NULL;
1076 }
1077
1078 /* Bus width translates to the element size (ES) */
1079 switch (dev_width) {
1080 case DMA_SLAVE_BUSWIDTH_1_BYTE:
1081 es = CSDP_DATA_TYPE_8;
1082 break;
1083 case DMA_SLAVE_BUSWIDTH_2_BYTES:
1084 es = CSDP_DATA_TYPE_16;
1085 break;
1086 case DMA_SLAVE_BUSWIDTH_4_BYTES:
1087 es = CSDP_DATA_TYPE_32;
1088 break;
1089 default: /* not reached */
1090 return NULL;
1091 }
1092
1093 /* Now allocate and setup the descriptor. */
1094 d = kzalloc(sizeof(*d) + sizeof(d->sg[0]), GFP_ATOMIC);
1095 if (!d)
1096 return NULL;
1097
1098 d->dir = dir;
1099 d->dev_addr = dev_addr;
1100 d->fi = burst;
1101 d->es = es;
1102 d->sg[0].addr = buf_addr;
1103 d->sg[0].en = period_len / es_bytes[es];
1104 d->sg[0].fn = buf_len / period_len;
1105 d->sglen = 1;
1106
1107 d->ccr = c->ccr;
1108 if (dir == DMA_DEV_TO_MEM)
1109 d->ccr |= CCR_DST_AMODE_POSTINC | CCR_SRC_AMODE_CONSTANT;
1110 else
1111 d->ccr |= CCR_DST_AMODE_CONSTANT | CCR_SRC_AMODE_POSTINC;
1112
1113 d->cicr = CICR_DROP_IE;
1114 if (flags & DMA_PREP_INTERRUPT)
1115 d->cicr |= CICR_FRAME_IE;
1116
1117 d->csdp = es;
1118
1119 if (dma_omap1()) {
1120 d->cicr |= CICR_TOUT_IE;
1121
1122 if (dir == DMA_DEV_TO_MEM)
1123 d->csdp |= CSDP_DST_PORT_EMIFF | CSDP_SRC_PORT_MPUI;
1124 else
1125 d->csdp |= CSDP_DST_PORT_MPUI | CSDP_SRC_PORT_EMIFF;
1126 } else {
1127 if (burst)
1128 d->ccr |= CCR_SYNC_PACKET;
1129 else
1130 d->ccr |= CCR_SYNC_ELEMENT;
1131
1132 if (dir == DMA_DEV_TO_MEM) {
1133 d->ccr |= CCR_TRIGGER_SRC;
1134 d->csdp |= CSDP_DST_PACKED;
1135 } else {
1136 d->csdp |= CSDP_SRC_PACKED;
1137 }
1138
1139 d->cicr |= CICR_MISALIGNED_ERR_IE | CICR_TRANS_ERR_IE;
1140
1141 d->csdp |= CSDP_DST_BURST_64 | CSDP_SRC_BURST_64;
1142 }
1143
1144 if (__dma_omap15xx(od->plat->dma_attr))
1145 d->ccr |= CCR_AUTO_INIT | CCR_REPEAT;
1146 else
1147 d->clnk_ctrl = c->dma_ch | CLNK_CTRL_ENABLE_LNK;
1148
1149 c->cyclic = true;
1150
1151 return vchan_tx_prep(&c->vc, &d->vd, flags);
1152 }
1153
1154 static struct dma_async_tx_descriptor *omap_dma_prep_dma_memcpy(
1155 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1156 size_t len, unsigned long tx_flags)
1157 {
1158 struct omap_chan *c = to_omap_dma_chan(chan);
1159 struct omap_desc *d;
1160 uint8_t data_type;
1161
1162 d = kzalloc(sizeof(*d) + sizeof(d->sg[0]), GFP_ATOMIC);
1163 if (!d)
1164 return NULL;
1165
1166 data_type = __ffs((src | dest | len));
1167 if (data_type > CSDP_DATA_TYPE_32)
1168 data_type = CSDP_DATA_TYPE_32;
1169
1170 d->dir = DMA_MEM_TO_MEM;
1171 d->dev_addr = src;
1172 d->fi = 0;
1173 d->es = data_type;
1174 d->sg[0].en = len / BIT(data_type);
1175 d->sg[0].fn = 1;
1176 d->sg[0].addr = dest;
1177 d->sglen = 1;
1178 d->ccr = c->ccr;
1179 d->ccr |= CCR_DST_AMODE_POSTINC | CCR_SRC_AMODE_POSTINC;
1180
1181 d->cicr = CICR_DROP_IE | CICR_FRAME_IE;
1182
1183 d->csdp = data_type;
1184
1185 if (dma_omap1()) {
1186 d->cicr |= CICR_TOUT_IE;
1187 d->csdp |= CSDP_DST_PORT_EMIFF | CSDP_SRC_PORT_EMIFF;
1188 } else {
1189 d->csdp |= CSDP_DST_PACKED | CSDP_SRC_PACKED;
1190 d->cicr |= CICR_MISALIGNED_ERR_IE | CICR_TRANS_ERR_IE;
1191 d->csdp |= CSDP_DST_BURST_64 | CSDP_SRC_BURST_64;
1192 }
1193
1194 return vchan_tx_prep(&c->vc, &d->vd, tx_flags);
1195 }
1196
1197 static struct dma_async_tx_descriptor *omap_dma_prep_dma_interleaved(
1198 struct dma_chan *chan, struct dma_interleaved_template *xt,
1199 unsigned long flags)
1200 {
1201 struct omap_chan *c = to_omap_dma_chan(chan);
1202 struct omap_desc *d;
1203 struct omap_sg *sg;
1204 uint8_t data_type;
1205 size_t src_icg, dst_icg;
1206
1207 /* Slave mode is not supported */
1208 if (is_slave_direction(xt->dir))
1209 return NULL;
1210
1211 if (xt->frame_size != 1 || xt->numf == 0)
1212 return NULL;
1213
1214 d = kzalloc(sizeof(*d) + sizeof(d->sg[0]), GFP_ATOMIC);
1215 if (!d)
1216 return NULL;
1217
1218 data_type = __ffs((xt->src_start | xt->dst_start | xt->sgl[0].size));
1219 if (data_type > CSDP_DATA_TYPE_32)
1220 data_type = CSDP_DATA_TYPE_32;
1221
1222 sg = &d->sg[0];
1223 d->dir = DMA_MEM_TO_MEM;
1224 d->dev_addr = xt->src_start;
1225 d->es = data_type;
1226 sg->en = xt->sgl[0].size / BIT(data_type);
1227 sg->fn = xt->numf;
1228 sg->addr = xt->dst_start;
1229 d->sglen = 1;
1230 d->ccr = c->ccr;
1231
1232 src_icg = dmaengine_get_src_icg(xt, &xt->sgl[0]);
1233 dst_icg = dmaengine_get_dst_icg(xt, &xt->sgl[0]);
1234 if (src_icg) {
1235 d->ccr |= CCR_SRC_AMODE_DBLIDX;
1236 d->ei = 1;
1237 d->fi = src_icg;
1238 } else if (xt->src_inc) {
1239 d->ccr |= CCR_SRC_AMODE_POSTINC;
1240 d->fi = 0;
1241 } else {
1242 dev_err(chan->device->dev,
1243 "%s: SRC constant addressing is not supported\n",
1244 __func__);
1245 kfree(d);
1246 return NULL;
1247 }
1248
1249 if (dst_icg) {
1250 d->ccr |= CCR_DST_AMODE_DBLIDX;
1251 sg->ei = 1;
1252 sg->fi = dst_icg;
1253 } else if (xt->dst_inc) {
1254 d->ccr |= CCR_DST_AMODE_POSTINC;
1255 sg->fi = 0;
1256 } else {
1257 dev_err(chan->device->dev,
1258 "%s: DST constant addressing is not supported\n",
1259 __func__);
1260 kfree(d);
1261 return NULL;
1262 }
1263
1264 d->cicr = CICR_DROP_IE | CICR_FRAME_IE;
1265
1266 d->csdp = data_type;
1267
1268 if (dma_omap1()) {
1269 d->cicr |= CICR_TOUT_IE;
1270 d->csdp |= CSDP_DST_PORT_EMIFF | CSDP_SRC_PORT_EMIFF;
1271 } else {
1272 d->csdp |= CSDP_DST_PACKED | CSDP_SRC_PACKED;
1273 d->cicr |= CICR_MISALIGNED_ERR_IE | CICR_TRANS_ERR_IE;
1274 d->csdp |= CSDP_DST_BURST_64 | CSDP_SRC_BURST_64;
1275 }
1276
1277 return vchan_tx_prep(&c->vc, &d->vd, flags);
1278 }
1279
1280 static int omap_dma_slave_config(struct dma_chan *chan, struct dma_slave_config *cfg)
1281 {
1282 struct omap_chan *c = to_omap_dma_chan(chan);
1283
1284 if (cfg->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
1285 cfg->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
1286 return -EINVAL;
1287
1288 if (cfg->src_maxburst > chan->device->max_burst ||
1289 cfg->dst_maxburst > chan->device->max_burst)
1290 return -EINVAL;
1291
1292 memcpy(&c->cfg, cfg, sizeof(c->cfg));
1293
1294 return 0;
1295 }
1296
1297 static int omap_dma_terminate_all(struct dma_chan *chan)
1298 {
1299 struct omap_chan *c = to_omap_dma_chan(chan);
1300 unsigned long flags;
1301 LIST_HEAD(head);
1302
1303 spin_lock_irqsave(&c->vc.lock, flags);
1304
1305 /*
1306 * Stop DMA activity: we assume the callback will not be called
1307 * after omap_dma_stop() returns (even if it does, it will see
1308 * c->desc is NULL and exit.)
1309 */
1310 if (c->desc) {
1311 vchan_terminate_vdesc(&c->desc->vd);
1312 c->desc = NULL;
1313 /* Avoid stopping the dma twice */
1314 if (!c->paused)
1315 omap_dma_stop(c);
1316 }
1317
1318 c->cyclic = false;
1319 c->paused = false;
1320
1321 vchan_get_all_descriptors(&c->vc, &head);
1322 spin_unlock_irqrestore(&c->vc.lock, flags);
1323 vchan_dma_desc_free_list(&c->vc, &head);
1324
1325 return 0;
1326 }
1327
1328 static void omap_dma_synchronize(struct dma_chan *chan)
1329 {
1330 struct omap_chan *c = to_omap_dma_chan(chan);
1331
1332 vchan_synchronize(&c->vc);
1333 }
1334
1335 static int omap_dma_pause(struct dma_chan *chan)
1336 {
1337 struct omap_chan *c = to_omap_dma_chan(chan);
1338 struct omap_dmadev *od = to_omap_dma_dev(chan->device);
1339 unsigned long flags;
1340 int ret = -EINVAL;
1341 bool can_pause = false;
1342
1343 spin_lock_irqsave(&od->irq_lock, flags);
1344
1345 if (!c->desc)
1346 goto out;
1347
1348 if (c->cyclic)
1349 can_pause = true;
1350
1351 /*
1352 * We do not allow DMA_MEM_TO_DEV transfers to be paused.
1353 * From the AM572x TRM, 16.1.4.18 Disabling a Channel During Transfer:
1354 * "When a channel is disabled during a transfer, the channel undergoes
1355 * an abort, unless it is hardware-source-synchronized …".
1356 * A source-synchronised channel is one where the fetching of data is
1357 * under control of the device. In other words, a device-to-memory
1358 * transfer. So, a destination-synchronised channel (which would be a
1359 * memory-to-device transfer) undergoes an abort if the the CCR_ENABLE
1360 * bit is cleared.
1361 * From 16.1.4.20.4.6.2 Abort: "If an abort trigger occurs, the channel
1362 * aborts immediately after completion of current read/write
1363 * transactions and then the FIFO is cleaned up." The term "cleaned up"
1364 * is not defined. TI recommends to check that RD_ACTIVE and WR_ACTIVE
1365 * are both clear _before_ disabling the channel, otherwise data loss
1366 * will occur.
1367 * The problem is that if the channel is active, then device activity
1368 * can result in DMA activity starting between reading those as both
1369 * clear and the write to DMA_CCR to clear the enable bit hitting the
1370 * hardware. If the DMA hardware can't drain the data in its FIFO to the
1371 * destination, then data loss "might" occur (say if we write to an UART
1372 * and the UART is not accepting any further data).
1373 */
1374 else if (c->desc->dir == DMA_DEV_TO_MEM)
1375 can_pause = true;
1376
1377 if (can_pause && !c->paused) {
1378 ret = omap_dma_stop(c);
1379 if (!ret)
1380 c->paused = true;
1381 }
1382 out:
1383 spin_unlock_irqrestore(&od->irq_lock, flags);
1384
1385 return ret;
1386 }
1387
1388 static int omap_dma_resume(struct dma_chan *chan)
1389 {
1390 struct omap_chan *c = to_omap_dma_chan(chan);
1391 struct omap_dmadev *od = to_omap_dma_dev(chan->device);
1392 unsigned long flags;
1393 int ret = -EINVAL;
1394
1395 spin_lock_irqsave(&od->irq_lock, flags);
1396
1397 if (c->paused && c->desc) {
1398 mb();
1399
1400 /* Restore channel link register */
1401 omap_dma_chan_write(c, CLNK_CTRL, c->desc->clnk_ctrl);
1402
1403 omap_dma_start(c, c->desc);
1404 c->paused = false;
1405 ret = 0;
1406 }
1407 spin_unlock_irqrestore(&od->irq_lock, flags);
1408
1409 return ret;
1410 }
1411
1412 static int omap_dma_chan_init(struct omap_dmadev *od)
1413 {
1414 struct omap_chan *c;
1415
1416 c = kzalloc(sizeof(*c), GFP_KERNEL);
1417 if (!c)
1418 return -ENOMEM;
1419
1420 c->reg_map = od->reg_map;
1421 c->vc.desc_free = omap_dma_desc_free;
1422 vchan_init(&c->vc, &od->ddev);
1423
1424 return 0;
1425 }
1426
1427 static void omap_dma_free(struct omap_dmadev *od)
1428 {
1429 while (!list_empty(&od->ddev.channels)) {
1430 struct omap_chan *c = list_first_entry(&od->ddev.channels,
1431 struct omap_chan, vc.chan.device_node);
1432
1433 list_del(&c->vc.chan.device_node);
1434 tasklet_kill(&c->vc.task);
1435 kfree(c);
1436 }
1437 }
1438
1439 #define OMAP_DMA_BUSWIDTHS (BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
1440 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
1441 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
1442
1443 static int omap_dma_probe(struct platform_device *pdev)
1444 {
1445 struct omap_dmadev *od;
1446 struct resource *res;
1447 int rc, i, irq;
1448 u32 lch_count;
1449
1450 od = devm_kzalloc(&pdev->dev, sizeof(*od), GFP_KERNEL);
1451 if (!od)
1452 return -ENOMEM;
1453
1454 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1455 od->base = devm_ioremap_resource(&pdev->dev, res);
1456 if (IS_ERR(od->base))
1457 return PTR_ERR(od->base);
1458
1459 od->plat = omap_get_plat_info();
1460 if (!od->plat)
1461 return -EPROBE_DEFER;
1462
1463 od->reg_map = od->plat->reg_map;
1464
1465 dma_cap_set(DMA_SLAVE, od->ddev.cap_mask);
1466 dma_cap_set(DMA_CYCLIC, od->ddev.cap_mask);
1467 dma_cap_set(DMA_MEMCPY, od->ddev.cap_mask);
1468 dma_cap_set(DMA_INTERLEAVE, od->ddev.cap_mask);
1469 od->ddev.device_alloc_chan_resources = omap_dma_alloc_chan_resources;
1470 od->ddev.device_free_chan_resources = omap_dma_free_chan_resources;
1471 od->ddev.device_tx_status = omap_dma_tx_status;
1472 od->ddev.device_issue_pending = omap_dma_issue_pending;
1473 od->ddev.device_prep_slave_sg = omap_dma_prep_slave_sg;
1474 od->ddev.device_prep_dma_cyclic = omap_dma_prep_dma_cyclic;
1475 od->ddev.device_prep_dma_memcpy = omap_dma_prep_dma_memcpy;
1476 od->ddev.device_prep_interleaved_dma = omap_dma_prep_dma_interleaved;
1477 od->ddev.device_config = omap_dma_slave_config;
1478 od->ddev.device_pause = omap_dma_pause;
1479 od->ddev.device_resume = omap_dma_resume;
1480 od->ddev.device_terminate_all = omap_dma_terminate_all;
1481 od->ddev.device_synchronize = omap_dma_synchronize;
1482 od->ddev.src_addr_widths = OMAP_DMA_BUSWIDTHS;
1483 od->ddev.dst_addr_widths = OMAP_DMA_BUSWIDTHS;
1484 od->ddev.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1485 if (__dma_omap15xx(od->plat->dma_attr))
1486 od->ddev.residue_granularity =
1487 DMA_RESIDUE_GRANULARITY_DESCRIPTOR;
1488 else
1489 od->ddev.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1490 od->ddev.max_burst = SZ_16M - 1; /* CCEN: 24bit unsigned */
1491 od->ddev.dev = &pdev->dev;
1492 INIT_LIST_HEAD(&od->ddev.channels);
1493 spin_lock_init(&od->lock);
1494 spin_lock_init(&od->irq_lock);
1495
1496 /* Number of DMA requests */
1497 od->dma_requests = OMAP_SDMA_REQUESTS;
1498 if (pdev->dev.of_node && of_property_read_u32(pdev->dev.of_node,
1499 "dma-requests",
1500 &od->dma_requests)) {
1501 dev_info(&pdev->dev,
1502 "Missing dma-requests property, using %u.\n",
1503 OMAP_SDMA_REQUESTS);
1504 }
1505
1506 /* Number of available logical channels */
1507 if (!pdev->dev.of_node) {
1508 lch_count = od->plat->dma_attr->lch_count;
1509 if (unlikely(!lch_count))
1510 lch_count = OMAP_SDMA_CHANNELS;
1511 } else if (of_property_read_u32(pdev->dev.of_node, "dma-channels",
1512 &lch_count)) {
1513 dev_info(&pdev->dev,
1514 "Missing dma-channels property, using %u.\n",
1515 OMAP_SDMA_CHANNELS);
1516 lch_count = OMAP_SDMA_CHANNELS;
1517 }
1518
1519 od->lch_map = devm_kcalloc(&pdev->dev, lch_count, sizeof(*od->lch_map),
1520 GFP_KERNEL);
1521 if (!od->lch_map)
1522 return -ENOMEM;
1523
1524 for (i = 0; i < od->dma_requests; i++) {
1525 rc = omap_dma_chan_init(od);
1526 if (rc) {
1527 omap_dma_free(od);
1528 return rc;
1529 }
1530 }
1531
1532 irq = platform_get_irq(pdev, 1);
1533 if (irq <= 0) {
1534 dev_info(&pdev->dev, "failed to get L1 IRQ: %d\n", irq);
1535 od->legacy = true;
1536 } else {
1537 /* Disable all interrupts */
1538 od->irq_enable_mask = 0;
1539 omap_dma_glbl_write(od, IRQENABLE_L1, 0);
1540
1541 rc = devm_request_irq(&pdev->dev, irq, omap_dma_irq,
1542 IRQF_SHARED, "omap-dma-engine", od);
1543 if (rc)
1544 return rc;
1545 }
1546
1547 if (omap_dma_glbl_read(od, CAPS_0) & CAPS_0_SUPPORT_LL123)
1548 od->ll123_supported = true;
1549
1550 od->ddev.filter.map = od->plat->slave_map;
1551 od->ddev.filter.mapcnt = od->plat->slavecnt;
1552 od->ddev.filter.fn = omap_dma_filter_fn;
1553
1554 if (od->ll123_supported) {
1555 od->desc_pool = dma_pool_create(dev_name(&pdev->dev),
1556 &pdev->dev,
1557 sizeof(struct omap_type2_desc),
1558 4, 0);
1559 if (!od->desc_pool) {
1560 dev_err(&pdev->dev,
1561 "unable to allocate descriptor pool\n");
1562 od->ll123_supported = false;
1563 }
1564 }
1565
1566 rc = dma_async_device_register(&od->ddev);
1567 if (rc) {
1568 pr_warn("OMAP-DMA: failed to register slave DMA engine device: %d\n",
1569 rc);
1570 omap_dma_free(od);
1571 return rc;
1572 }
1573
1574 platform_set_drvdata(pdev, od);
1575
1576 if (pdev->dev.of_node) {
1577 omap_dma_info.dma_cap = od->ddev.cap_mask;
1578
1579 /* Device-tree DMA controller registration */
1580 rc = of_dma_controller_register(pdev->dev.of_node,
1581 of_dma_simple_xlate, &omap_dma_info);
1582 if (rc) {
1583 pr_warn("OMAP-DMA: failed to register DMA controller\n");
1584 dma_async_device_unregister(&od->ddev);
1585 omap_dma_free(od);
1586 }
1587 }
1588
1589 dev_info(&pdev->dev, "OMAP DMA engine driver%s\n",
1590 od->ll123_supported ? " (LinkedList1/2/3 supported)" : "");
1591
1592 return rc;
1593 }
1594
1595 static int omap_dma_remove(struct platform_device *pdev)
1596 {
1597 struct omap_dmadev *od = platform_get_drvdata(pdev);
1598 int irq;
1599
1600 if (pdev->dev.of_node)
1601 of_dma_controller_free(pdev->dev.of_node);
1602
1603 irq = platform_get_irq(pdev, 1);
1604 devm_free_irq(&pdev->dev, irq, od);
1605
1606 dma_async_device_unregister(&od->ddev);
1607
1608 if (!od->legacy) {
1609 /* Disable all interrupts */
1610 omap_dma_glbl_write(od, IRQENABLE_L0, 0);
1611 }
1612
1613 if (od->ll123_supported)
1614 dma_pool_destroy(od->desc_pool);
1615
1616 omap_dma_free(od);
1617
1618 return 0;
1619 }
1620
1621 static const struct of_device_id omap_dma_match[] = {
1622 { .compatible = "ti,omap2420-sdma", },
1623 { .compatible = "ti,omap2430-sdma", },
1624 { .compatible = "ti,omap3430-sdma", },
1625 { .compatible = "ti,omap3630-sdma", },
1626 { .compatible = "ti,omap4430-sdma", },
1627 {},
1628 };
1629 MODULE_DEVICE_TABLE(of, omap_dma_match);
1630
1631 static struct platform_driver omap_dma_driver = {
1632 .probe = omap_dma_probe,
1633 .remove = omap_dma_remove,
1634 .driver = {
1635 .name = "omap-dma-engine",
1636 .of_match_table = of_match_ptr(omap_dma_match),
1637 },
1638 };
1639
1640 bool omap_dma_filter_fn(struct dma_chan *chan, void *param)
1641 {
1642 if (chan->device->dev->driver == &omap_dma_driver.driver) {
1643 struct omap_dmadev *od = to_omap_dma_dev(chan->device);
1644 struct omap_chan *c = to_omap_dma_chan(chan);
1645 unsigned req = *(unsigned *)param;
1646
1647 if (req <= od->dma_requests) {
1648 c->dma_sig = req;
1649 return true;
1650 }
1651 }
1652 return false;
1653 }
1654 EXPORT_SYMBOL_GPL(omap_dma_filter_fn);
1655
1656 static int omap_dma_init(void)
1657 {
1658 return platform_driver_register(&omap_dma_driver);
1659 }
1660 subsys_initcall(omap_dma_init);
1661
1662 static void __exit omap_dma_exit(void)
1663 {
1664 platform_driver_unregister(&omap_dma_driver);
1665 }
1666 module_exit(omap_dma_exit);
1667
1668 MODULE_AUTHOR("Russell King");
1669 MODULE_LICENSE("GPL");