]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/dma/xgene-dma.c
x86/msr-index: Cleanup bit defines
[mirror_ubuntu-bionic-kernel.git] / drivers / dma / xgene-dma.c
1 /*
2 * Applied Micro X-Gene SoC DMA engine Driver
3 *
4 * Copyright (c) 2015, Applied Micro Circuits Corporation
5 * Authors: Rameshwar Prasad Sahu <rsahu@apm.com>
6 * Loc Ho <lho@apm.com>
7 *
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License as published by the
10 * Free Software Foundation; either version 2 of the License, or (at your
11 * option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program. If not, see <http://www.gnu.org/licenses/>.
20 *
21 * NOTE: PM support is currently not available.
22 */
23
24 #include <linux/acpi.h>
25 #include <linux/clk.h>
26 #include <linux/delay.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/dmaengine.h>
29 #include <linux/dmapool.h>
30 #include <linux/interrupt.h>
31 #include <linux/io.h>
32 #include <linux/irq.h>
33 #include <linux/module.h>
34 #include <linux/of_device.h>
35
36 #include "dmaengine.h"
37
38 /* X-Gene DMA ring csr registers and bit definations */
39 #define XGENE_DMA_RING_CONFIG 0x04
40 #define XGENE_DMA_RING_ENABLE BIT(31)
41 #define XGENE_DMA_RING_ID 0x08
42 #define XGENE_DMA_RING_ID_SETUP(v) ((v) | BIT(31))
43 #define XGENE_DMA_RING_ID_BUF 0x0C
44 #define XGENE_DMA_RING_ID_BUF_SETUP(v) (((v) << 9) | BIT(21))
45 #define XGENE_DMA_RING_THRESLD0_SET1 0x30
46 #define XGENE_DMA_RING_THRESLD0_SET1_VAL 0X64
47 #define XGENE_DMA_RING_THRESLD1_SET1 0x34
48 #define XGENE_DMA_RING_THRESLD1_SET1_VAL 0xC8
49 #define XGENE_DMA_RING_HYSTERESIS 0x68
50 #define XGENE_DMA_RING_HYSTERESIS_VAL 0xFFFFFFFF
51 #define XGENE_DMA_RING_STATE 0x6C
52 #define XGENE_DMA_RING_STATE_WR_BASE 0x70
53 #define XGENE_DMA_RING_NE_INT_MODE 0x017C
54 #define XGENE_DMA_RING_NE_INT_MODE_SET(m, v) \
55 ((m) = ((m) & ~BIT(31 - (v))) | BIT(31 - (v)))
56 #define XGENE_DMA_RING_NE_INT_MODE_RESET(m, v) \
57 ((m) &= (~BIT(31 - (v))))
58 #define XGENE_DMA_RING_CLKEN 0xC208
59 #define XGENE_DMA_RING_SRST 0xC200
60 #define XGENE_DMA_RING_MEM_RAM_SHUTDOWN 0xD070
61 #define XGENE_DMA_RING_BLK_MEM_RDY 0xD074
62 #define XGENE_DMA_RING_BLK_MEM_RDY_VAL 0xFFFFFFFF
63 #define XGENE_DMA_RING_ID_GET(owner, num) (((owner) << 6) | (num))
64 #define XGENE_DMA_RING_DST_ID(v) ((1 << 10) | (v))
65 #define XGENE_DMA_RING_CMD_OFFSET 0x2C
66 #define XGENE_DMA_RING_CMD_BASE_OFFSET(v) ((v) << 6)
67 #define XGENE_DMA_RING_COHERENT_SET(m) \
68 (((u32 *)(m))[2] |= BIT(4))
69 #define XGENE_DMA_RING_ADDRL_SET(m, v) \
70 (((u32 *)(m))[2] |= (((v) >> 8) << 5))
71 #define XGENE_DMA_RING_ADDRH_SET(m, v) \
72 (((u32 *)(m))[3] |= ((v) >> 35))
73 #define XGENE_DMA_RING_ACCEPTLERR_SET(m) \
74 (((u32 *)(m))[3] |= BIT(19))
75 #define XGENE_DMA_RING_SIZE_SET(m, v) \
76 (((u32 *)(m))[3] |= ((v) << 23))
77 #define XGENE_DMA_RING_RECOMBBUF_SET(m) \
78 (((u32 *)(m))[3] |= BIT(27))
79 #define XGENE_DMA_RING_RECOMTIMEOUTL_SET(m) \
80 (((u32 *)(m))[3] |= (0x7 << 28))
81 #define XGENE_DMA_RING_RECOMTIMEOUTH_SET(m) \
82 (((u32 *)(m))[4] |= 0x3)
83 #define XGENE_DMA_RING_SELTHRSH_SET(m) \
84 (((u32 *)(m))[4] |= BIT(3))
85 #define XGENE_DMA_RING_TYPE_SET(m, v) \
86 (((u32 *)(m))[4] |= ((v) << 19))
87
88 /* X-Gene DMA device csr registers and bit definitions */
89 #define XGENE_DMA_IPBRR 0x0
90 #define XGENE_DMA_DEV_ID_RD(v) ((v) & 0x00000FFF)
91 #define XGENE_DMA_BUS_ID_RD(v) (((v) >> 12) & 3)
92 #define XGENE_DMA_REV_NO_RD(v) (((v) >> 14) & 3)
93 #define XGENE_DMA_GCR 0x10
94 #define XGENE_DMA_CH_SETUP(v) \
95 ((v) = ((v) & ~0x000FFFFF) | 0x000AAFFF)
96 #define XGENE_DMA_ENABLE(v) ((v) |= BIT(31))
97 #define XGENE_DMA_DISABLE(v) ((v) &= ~BIT(31))
98 #define XGENE_DMA_RAID6_CONT 0x14
99 #define XGENE_DMA_RAID6_MULTI_CTRL(v) ((v) << 24)
100 #define XGENE_DMA_INT 0x70
101 #define XGENE_DMA_INT_MASK 0x74
102 #define XGENE_DMA_INT_ALL_MASK 0xFFFFFFFF
103 #define XGENE_DMA_INT_ALL_UNMASK 0x0
104 #define XGENE_DMA_INT_MASK_SHIFT 0x14
105 #define XGENE_DMA_RING_INT0_MASK 0x90A0
106 #define XGENE_DMA_RING_INT1_MASK 0x90A8
107 #define XGENE_DMA_RING_INT2_MASK 0x90B0
108 #define XGENE_DMA_RING_INT3_MASK 0x90B8
109 #define XGENE_DMA_RING_INT4_MASK 0x90C0
110 #define XGENE_DMA_CFG_RING_WQ_ASSOC 0x90E0
111 #define XGENE_DMA_ASSOC_RING_MNGR1 0xFFFFFFFF
112 #define XGENE_DMA_MEM_RAM_SHUTDOWN 0xD070
113 #define XGENE_DMA_BLK_MEM_RDY 0xD074
114 #define XGENE_DMA_BLK_MEM_RDY_VAL 0xFFFFFFFF
115 #define XGENE_DMA_RING_CMD_SM_OFFSET 0x8000
116
117 /* X-Gene SoC EFUSE csr register and bit defination */
118 #define XGENE_SOC_JTAG1_SHADOW 0x18
119 #define XGENE_DMA_PQ_DISABLE_MASK BIT(13)
120
121 /* X-Gene DMA Descriptor format */
122 #define XGENE_DMA_DESC_NV_BIT BIT_ULL(50)
123 #define XGENE_DMA_DESC_IN_BIT BIT_ULL(55)
124 #define XGENE_DMA_DESC_C_BIT BIT_ULL(63)
125 #define XGENE_DMA_DESC_DR_BIT BIT_ULL(61)
126 #define XGENE_DMA_DESC_ELERR_POS 46
127 #define XGENE_DMA_DESC_RTYPE_POS 56
128 #define XGENE_DMA_DESC_LERR_POS 60
129 #define XGENE_DMA_DESC_BUFLEN_POS 48
130 #define XGENE_DMA_DESC_HOENQ_NUM_POS 48
131 #define XGENE_DMA_DESC_ELERR_RD(m) \
132 (((m) >> XGENE_DMA_DESC_ELERR_POS) & 0x3)
133 #define XGENE_DMA_DESC_LERR_RD(m) \
134 (((m) >> XGENE_DMA_DESC_LERR_POS) & 0x7)
135 #define XGENE_DMA_DESC_STATUS(elerr, lerr) \
136 (((elerr) << 4) | (lerr))
137
138 /* X-Gene DMA descriptor empty s/w signature */
139 #define XGENE_DMA_DESC_EMPTY_SIGNATURE ~0ULL
140
141 /* X-Gene DMA configurable parameters defines */
142 #define XGENE_DMA_RING_NUM 512
143 #define XGENE_DMA_BUFNUM 0x0
144 #define XGENE_DMA_CPU_BUFNUM 0x18
145 #define XGENE_DMA_RING_OWNER_DMA 0x03
146 #define XGENE_DMA_RING_OWNER_CPU 0x0F
147 #define XGENE_DMA_RING_TYPE_REGULAR 0x01
148 #define XGENE_DMA_RING_WQ_DESC_SIZE 32 /* 32 Bytes */
149 #define XGENE_DMA_RING_NUM_CONFIG 5
150 #define XGENE_DMA_MAX_CHANNEL 4
151 #define XGENE_DMA_XOR_CHANNEL 0
152 #define XGENE_DMA_PQ_CHANNEL 1
153 #define XGENE_DMA_MAX_BYTE_CNT 0x4000 /* 16 KB */
154 #define XGENE_DMA_MAX_64B_DESC_BYTE_CNT 0x14000 /* 80 KB */
155 #define XGENE_DMA_MAX_XOR_SRC 5
156 #define XGENE_DMA_16K_BUFFER_LEN_CODE 0x0
157 #define XGENE_DMA_INVALID_LEN_CODE 0x7800000000000000ULL
158
159 /* X-Gene DMA descriptor error codes */
160 #define ERR_DESC_AXI 0x01
161 #define ERR_BAD_DESC 0x02
162 #define ERR_READ_DATA_AXI 0x03
163 #define ERR_WRITE_DATA_AXI 0x04
164 #define ERR_FBP_TIMEOUT 0x05
165 #define ERR_ECC 0x06
166 #define ERR_DIFF_SIZE 0x08
167 #define ERR_SCT_GAT_LEN 0x09
168 #define ERR_CRC_ERR 0x11
169 #define ERR_CHKSUM 0x12
170 #define ERR_DIF 0x13
171
172 /* X-Gene DMA error interrupt codes */
173 #define ERR_DIF_SIZE_INT 0x0
174 #define ERR_GS_ERR_INT 0x1
175 #define ERR_FPB_TIMEO_INT 0x2
176 #define ERR_WFIFO_OVF_INT 0x3
177 #define ERR_RFIFO_OVF_INT 0x4
178 #define ERR_WR_TIMEO_INT 0x5
179 #define ERR_RD_TIMEO_INT 0x6
180 #define ERR_WR_ERR_INT 0x7
181 #define ERR_RD_ERR_INT 0x8
182 #define ERR_BAD_DESC_INT 0x9
183 #define ERR_DESC_DST_INT 0xA
184 #define ERR_DESC_SRC_INT 0xB
185
186 /* X-Gene DMA flyby operation code */
187 #define FLYBY_2SRC_XOR 0x80
188 #define FLYBY_3SRC_XOR 0x90
189 #define FLYBY_4SRC_XOR 0xA0
190 #define FLYBY_5SRC_XOR 0xB0
191
192 /* X-Gene DMA SW descriptor flags */
193 #define XGENE_DMA_FLAG_64B_DESC BIT(0)
194
195 /* Define to dump X-Gene DMA descriptor */
196 #define XGENE_DMA_DESC_DUMP(desc, m) \
197 print_hex_dump(KERN_ERR, (m), \
198 DUMP_PREFIX_ADDRESS, 16, 8, (desc), 32, 0)
199
200 #define to_dma_desc_sw(tx) \
201 container_of(tx, struct xgene_dma_desc_sw, tx)
202 #define to_dma_chan(dchan) \
203 container_of(dchan, struct xgene_dma_chan, dma_chan)
204
205 #define chan_dbg(chan, fmt, arg...) \
206 dev_dbg(chan->dev, "%s: " fmt, chan->name, ##arg)
207 #define chan_err(chan, fmt, arg...) \
208 dev_err(chan->dev, "%s: " fmt, chan->name, ##arg)
209
210 struct xgene_dma_desc_hw {
211 __le64 m0;
212 __le64 m1;
213 __le64 m2;
214 __le64 m3;
215 };
216
217 enum xgene_dma_ring_cfgsize {
218 XGENE_DMA_RING_CFG_SIZE_512B,
219 XGENE_DMA_RING_CFG_SIZE_2KB,
220 XGENE_DMA_RING_CFG_SIZE_16KB,
221 XGENE_DMA_RING_CFG_SIZE_64KB,
222 XGENE_DMA_RING_CFG_SIZE_512KB,
223 XGENE_DMA_RING_CFG_SIZE_INVALID
224 };
225
226 struct xgene_dma_ring {
227 struct xgene_dma *pdma;
228 u8 buf_num;
229 u16 id;
230 u16 num;
231 u16 head;
232 u16 owner;
233 u16 slots;
234 u16 dst_ring_num;
235 u32 size;
236 void __iomem *cmd;
237 void __iomem *cmd_base;
238 dma_addr_t desc_paddr;
239 u32 state[XGENE_DMA_RING_NUM_CONFIG];
240 enum xgene_dma_ring_cfgsize cfgsize;
241 union {
242 void *desc_vaddr;
243 struct xgene_dma_desc_hw *desc_hw;
244 };
245 };
246
247 struct xgene_dma_desc_sw {
248 struct xgene_dma_desc_hw desc1;
249 struct xgene_dma_desc_hw desc2;
250 u32 flags;
251 struct list_head node;
252 struct list_head tx_list;
253 struct dma_async_tx_descriptor tx;
254 };
255
256 /**
257 * struct xgene_dma_chan - internal representation of an X-Gene DMA channel
258 * @dma_chan: dmaengine channel object member
259 * @pdma: X-Gene DMA device structure reference
260 * @dev: struct device reference for dma mapping api
261 * @id: raw id of this channel
262 * @rx_irq: channel IRQ
263 * @name: name of X-Gene DMA channel
264 * @lock: serializes enqueue/dequeue operations to the descriptor pool
265 * @pending: number of transaction request pushed to DMA controller for
266 * execution, but still waiting for completion,
267 * @max_outstanding: max number of outstanding request we can push to channel
268 * @ld_pending: descriptors which are queued to run, but have not yet been
269 * submitted to the hardware for execution
270 * @ld_running: descriptors which are currently being executing by the hardware
271 * @ld_completed: descriptors which have finished execution by the hardware.
272 * These descriptors have already had their cleanup actions run. They
273 * are waiting for the ACK bit to be set by the async tx API.
274 * @desc_pool: descriptor pool for DMA operations
275 * @tasklet: bottom half where all completed descriptors cleans
276 * @tx_ring: transmit ring descriptor that we use to prepare actual
277 * descriptors for further executions
278 * @rx_ring: receive ring descriptor that we use to get completed DMA
279 * descriptors during cleanup time
280 */
281 struct xgene_dma_chan {
282 struct dma_chan dma_chan;
283 struct xgene_dma *pdma;
284 struct device *dev;
285 int id;
286 int rx_irq;
287 char name[10];
288 spinlock_t lock;
289 int pending;
290 int max_outstanding;
291 struct list_head ld_pending;
292 struct list_head ld_running;
293 struct list_head ld_completed;
294 struct dma_pool *desc_pool;
295 struct tasklet_struct tasklet;
296 struct xgene_dma_ring tx_ring;
297 struct xgene_dma_ring rx_ring;
298 };
299
300 /**
301 * struct xgene_dma - internal representation of an X-Gene DMA device
302 * @err_irq: DMA error irq number
303 * @ring_num: start id number for DMA ring
304 * @csr_dma: base for DMA register access
305 * @csr_ring: base for DMA ring register access
306 * @csr_ring_cmd: base for DMA ring command register access
307 * @csr_efuse: base for efuse register access
308 * @dma_dev: embedded struct dma_device
309 * @chan: reference to X-Gene DMA channels
310 */
311 struct xgene_dma {
312 struct device *dev;
313 struct clk *clk;
314 int err_irq;
315 int ring_num;
316 void __iomem *csr_dma;
317 void __iomem *csr_ring;
318 void __iomem *csr_ring_cmd;
319 void __iomem *csr_efuse;
320 struct dma_device dma_dev[XGENE_DMA_MAX_CHANNEL];
321 struct xgene_dma_chan chan[XGENE_DMA_MAX_CHANNEL];
322 };
323
324 static const char * const xgene_dma_desc_err[] = {
325 [ERR_DESC_AXI] = "AXI error when reading src/dst link list",
326 [ERR_BAD_DESC] = "ERR or El_ERR fields not set to zero in desc",
327 [ERR_READ_DATA_AXI] = "AXI error when reading data",
328 [ERR_WRITE_DATA_AXI] = "AXI error when writing data",
329 [ERR_FBP_TIMEOUT] = "Timeout on bufpool fetch",
330 [ERR_ECC] = "ECC double bit error",
331 [ERR_DIFF_SIZE] = "Bufpool too small to hold all the DIF result",
332 [ERR_SCT_GAT_LEN] = "Gather and scatter data length not same",
333 [ERR_CRC_ERR] = "CRC error",
334 [ERR_CHKSUM] = "Checksum error",
335 [ERR_DIF] = "DIF error",
336 };
337
338 static const char * const xgene_dma_err[] = {
339 [ERR_DIF_SIZE_INT] = "DIF size error",
340 [ERR_GS_ERR_INT] = "Gather scatter not same size error",
341 [ERR_FPB_TIMEO_INT] = "Free pool time out error",
342 [ERR_WFIFO_OVF_INT] = "Write FIFO over flow error",
343 [ERR_RFIFO_OVF_INT] = "Read FIFO over flow error",
344 [ERR_WR_TIMEO_INT] = "Write time out error",
345 [ERR_RD_TIMEO_INT] = "Read time out error",
346 [ERR_WR_ERR_INT] = "HBF bus write error",
347 [ERR_RD_ERR_INT] = "HBF bus read error",
348 [ERR_BAD_DESC_INT] = "Ring descriptor HE0 not set error",
349 [ERR_DESC_DST_INT] = "HFB reading dst link address error",
350 [ERR_DESC_SRC_INT] = "HFB reading src link address error",
351 };
352
353 static bool is_pq_enabled(struct xgene_dma *pdma)
354 {
355 u32 val;
356
357 val = ioread32(pdma->csr_efuse + XGENE_SOC_JTAG1_SHADOW);
358 return !(val & XGENE_DMA_PQ_DISABLE_MASK);
359 }
360
361 static u64 xgene_dma_encode_len(size_t len)
362 {
363 return (len < XGENE_DMA_MAX_BYTE_CNT) ?
364 ((u64)len << XGENE_DMA_DESC_BUFLEN_POS) :
365 XGENE_DMA_16K_BUFFER_LEN_CODE;
366 }
367
368 static u8 xgene_dma_encode_xor_flyby(u32 src_cnt)
369 {
370 static u8 flyby_type[] = {
371 FLYBY_2SRC_XOR, /* Dummy */
372 FLYBY_2SRC_XOR, /* Dummy */
373 FLYBY_2SRC_XOR,
374 FLYBY_3SRC_XOR,
375 FLYBY_4SRC_XOR,
376 FLYBY_5SRC_XOR
377 };
378
379 return flyby_type[src_cnt];
380 }
381
382 static void xgene_dma_set_src_buffer(__le64 *ext8, size_t *len,
383 dma_addr_t *paddr)
384 {
385 size_t nbytes = (*len < XGENE_DMA_MAX_BYTE_CNT) ?
386 *len : XGENE_DMA_MAX_BYTE_CNT;
387
388 *ext8 |= cpu_to_le64(*paddr);
389 *ext8 |= cpu_to_le64(xgene_dma_encode_len(nbytes));
390 *len -= nbytes;
391 *paddr += nbytes;
392 }
393
394 static __le64 *xgene_dma_lookup_ext8(struct xgene_dma_desc_hw *desc, int idx)
395 {
396 switch (idx) {
397 case 0:
398 return &desc->m1;
399 case 1:
400 return &desc->m0;
401 case 2:
402 return &desc->m3;
403 case 3:
404 return &desc->m2;
405 default:
406 pr_err("Invalid dma descriptor index\n");
407 }
408
409 return NULL;
410 }
411
412 static void xgene_dma_init_desc(struct xgene_dma_desc_hw *desc,
413 u16 dst_ring_num)
414 {
415 desc->m0 |= cpu_to_le64(XGENE_DMA_DESC_IN_BIT);
416 desc->m0 |= cpu_to_le64((u64)XGENE_DMA_RING_OWNER_DMA <<
417 XGENE_DMA_DESC_RTYPE_POS);
418 desc->m1 |= cpu_to_le64(XGENE_DMA_DESC_C_BIT);
419 desc->m3 |= cpu_to_le64((u64)dst_ring_num <<
420 XGENE_DMA_DESC_HOENQ_NUM_POS);
421 }
422
423 static void xgene_dma_prep_xor_desc(struct xgene_dma_chan *chan,
424 struct xgene_dma_desc_sw *desc_sw,
425 dma_addr_t *dst, dma_addr_t *src,
426 u32 src_cnt, size_t *nbytes,
427 const u8 *scf)
428 {
429 struct xgene_dma_desc_hw *desc1, *desc2;
430 size_t len = *nbytes;
431 int i;
432
433 desc1 = &desc_sw->desc1;
434 desc2 = &desc_sw->desc2;
435
436 /* Initialize DMA descriptor */
437 xgene_dma_init_desc(desc1, chan->tx_ring.dst_ring_num);
438
439 /* Set destination address */
440 desc1->m2 |= cpu_to_le64(XGENE_DMA_DESC_DR_BIT);
441 desc1->m3 |= cpu_to_le64(*dst);
442
443 /* We have multiple source addresses, so need to set NV bit*/
444 desc1->m0 |= cpu_to_le64(XGENE_DMA_DESC_NV_BIT);
445
446 /* Set flyby opcode */
447 desc1->m2 |= cpu_to_le64(xgene_dma_encode_xor_flyby(src_cnt));
448
449 /* Set 1st to 5th source addresses */
450 for (i = 0; i < src_cnt; i++) {
451 len = *nbytes;
452 xgene_dma_set_src_buffer((i == 0) ? &desc1->m1 :
453 xgene_dma_lookup_ext8(desc2, i - 1),
454 &len, &src[i]);
455 desc1->m2 |= cpu_to_le64((scf[i] << ((i + 1) * 8)));
456 }
457
458 /* Update meta data */
459 *nbytes = len;
460 *dst += XGENE_DMA_MAX_BYTE_CNT;
461
462 /* We need always 64B descriptor to perform xor or pq operations */
463 desc_sw->flags |= XGENE_DMA_FLAG_64B_DESC;
464 }
465
466 static dma_cookie_t xgene_dma_tx_submit(struct dma_async_tx_descriptor *tx)
467 {
468 struct xgene_dma_desc_sw *desc;
469 struct xgene_dma_chan *chan;
470 dma_cookie_t cookie;
471
472 if (unlikely(!tx))
473 return -EINVAL;
474
475 chan = to_dma_chan(tx->chan);
476 desc = to_dma_desc_sw(tx);
477
478 spin_lock_bh(&chan->lock);
479
480 cookie = dma_cookie_assign(tx);
481
482 /* Add this transaction list onto the tail of the pending queue */
483 list_splice_tail_init(&desc->tx_list, &chan->ld_pending);
484
485 spin_unlock_bh(&chan->lock);
486
487 return cookie;
488 }
489
490 static void xgene_dma_clean_descriptor(struct xgene_dma_chan *chan,
491 struct xgene_dma_desc_sw *desc)
492 {
493 list_del(&desc->node);
494 chan_dbg(chan, "LD %p free\n", desc);
495 dma_pool_free(chan->desc_pool, desc, desc->tx.phys);
496 }
497
498 static struct xgene_dma_desc_sw *xgene_dma_alloc_descriptor(
499 struct xgene_dma_chan *chan)
500 {
501 struct xgene_dma_desc_sw *desc;
502 dma_addr_t phys;
503
504 desc = dma_pool_zalloc(chan->desc_pool, GFP_NOWAIT, &phys);
505 if (!desc) {
506 chan_err(chan, "Failed to allocate LDs\n");
507 return NULL;
508 }
509
510 INIT_LIST_HEAD(&desc->tx_list);
511 desc->tx.phys = phys;
512 desc->tx.tx_submit = xgene_dma_tx_submit;
513 dma_async_tx_descriptor_init(&desc->tx, &chan->dma_chan);
514
515 chan_dbg(chan, "LD %p allocated\n", desc);
516
517 return desc;
518 }
519
520 /**
521 * xgene_dma_clean_completed_descriptor - free all descriptors which
522 * has been completed and acked
523 * @chan: X-Gene DMA channel
524 *
525 * This function is used on all completed and acked descriptors.
526 */
527 static void xgene_dma_clean_completed_descriptor(struct xgene_dma_chan *chan)
528 {
529 struct xgene_dma_desc_sw *desc, *_desc;
530
531 /* Run the callback for each descriptor, in order */
532 list_for_each_entry_safe(desc, _desc, &chan->ld_completed, node) {
533 if (async_tx_test_ack(&desc->tx))
534 xgene_dma_clean_descriptor(chan, desc);
535 }
536 }
537
538 /**
539 * xgene_dma_run_tx_complete_actions - cleanup a single link descriptor
540 * @chan: X-Gene DMA channel
541 * @desc: descriptor to cleanup and free
542 *
543 * This function is used on a descriptor which has been executed by the DMA
544 * controller. It will run any callbacks, submit any dependencies.
545 */
546 static void xgene_dma_run_tx_complete_actions(struct xgene_dma_chan *chan,
547 struct xgene_dma_desc_sw *desc)
548 {
549 struct dma_async_tx_descriptor *tx = &desc->tx;
550
551 /*
552 * If this is not the last transaction in the group,
553 * then no need to complete cookie and run any callback as
554 * this is not the tx_descriptor which had been sent to caller
555 * of this DMA request
556 */
557
558 if (tx->cookie == 0)
559 return;
560
561 dma_cookie_complete(tx);
562 dma_descriptor_unmap(tx);
563
564 /* Run the link descriptor callback function */
565 dmaengine_desc_get_callback_invoke(tx, NULL);
566
567 /* Run any dependencies */
568 dma_run_dependencies(tx);
569 }
570
571 /**
572 * xgene_dma_clean_running_descriptor - move the completed descriptor from
573 * ld_running to ld_completed
574 * @chan: X-Gene DMA channel
575 * @desc: the descriptor which is completed
576 *
577 * Free the descriptor directly if acked by async_tx api,
578 * else move it to queue ld_completed.
579 */
580 static void xgene_dma_clean_running_descriptor(struct xgene_dma_chan *chan,
581 struct xgene_dma_desc_sw *desc)
582 {
583 /* Remove from the list of running transactions */
584 list_del(&desc->node);
585
586 /*
587 * the client is allowed to attach dependent operations
588 * until 'ack' is set
589 */
590 if (!async_tx_test_ack(&desc->tx)) {
591 /*
592 * Move this descriptor to the list of descriptors which is
593 * completed, but still awaiting the 'ack' bit to be set.
594 */
595 list_add_tail(&desc->node, &chan->ld_completed);
596 return;
597 }
598
599 chan_dbg(chan, "LD %p free\n", desc);
600 dma_pool_free(chan->desc_pool, desc, desc->tx.phys);
601 }
602
603 static void xgene_chan_xfer_request(struct xgene_dma_chan *chan,
604 struct xgene_dma_desc_sw *desc_sw)
605 {
606 struct xgene_dma_ring *ring = &chan->tx_ring;
607 struct xgene_dma_desc_hw *desc_hw;
608
609 /* Get hw descriptor from DMA tx ring */
610 desc_hw = &ring->desc_hw[ring->head];
611
612 /*
613 * Increment the head count to point next
614 * descriptor for next time
615 */
616 if (++ring->head == ring->slots)
617 ring->head = 0;
618
619 /* Copy prepared sw descriptor data to hw descriptor */
620 memcpy(desc_hw, &desc_sw->desc1, sizeof(*desc_hw));
621
622 /*
623 * Check if we have prepared 64B descriptor,
624 * in this case we need one more hw descriptor
625 */
626 if (desc_sw->flags & XGENE_DMA_FLAG_64B_DESC) {
627 desc_hw = &ring->desc_hw[ring->head];
628
629 if (++ring->head == ring->slots)
630 ring->head = 0;
631
632 memcpy(desc_hw, &desc_sw->desc2, sizeof(*desc_hw));
633 }
634
635 /* Increment the pending transaction count */
636 chan->pending += ((desc_sw->flags &
637 XGENE_DMA_FLAG_64B_DESC) ? 2 : 1);
638
639 /* Notify the hw that we have descriptor ready for execution */
640 iowrite32((desc_sw->flags & XGENE_DMA_FLAG_64B_DESC) ?
641 2 : 1, ring->cmd);
642 }
643
644 /**
645 * xgene_chan_xfer_ld_pending - push any pending transactions to hw
646 * @chan : X-Gene DMA channel
647 *
648 * LOCKING: must hold chan->lock
649 */
650 static void xgene_chan_xfer_ld_pending(struct xgene_dma_chan *chan)
651 {
652 struct xgene_dma_desc_sw *desc_sw, *_desc_sw;
653
654 /*
655 * If the list of pending descriptors is empty, then we
656 * don't need to do any work at all
657 */
658 if (list_empty(&chan->ld_pending)) {
659 chan_dbg(chan, "No pending LDs\n");
660 return;
661 }
662
663 /*
664 * Move elements from the queue of pending transactions onto the list
665 * of running transactions and push it to hw for further executions
666 */
667 list_for_each_entry_safe(desc_sw, _desc_sw, &chan->ld_pending, node) {
668 /*
669 * Check if have pushed max number of transactions to hw
670 * as capable, so let's stop here and will push remaining
671 * elements from pening ld queue after completing some
672 * descriptors that we have already pushed
673 */
674 if (chan->pending >= chan->max_outstanding)
675 return;
676
677 xgene_chan_xfer_request(chan, desc_sw);
678
679 /*
680 * Delete this element from ld pending queue and append it to
681 * ld running queue
682 */
683 list_move_tail(&desc_sw->node, &chan->ld_running);
684 }
685 }
686
687 /**
688 * xgene_dma_cleanup_descriptors - cleanup link descriptors which are completed
689 * and move them to ld_completed to free until flag 'ack' is set
690 * @chan: X-Gene DMA channel
691 *
692 * This function is used on descriptors which have been executed by the DMA
693 * controller. It will run any callbacks, submit any dependencies, then
694 * free these descriptors if flag 'ack' is set.
695 */
696 static void xgene_dma_cleanup_descriptors(struct xgene_dma_chan *chan)
697 {
698 struct xgene_dma_ring *ring = &chan->rx_ring;
699 struct xgene_dma_desc_sw *desc_sw, *_desc_sw;
700 struct xgene_dma_desc_hw *desc_hw;
701 struct list_head ld_completed;
702 u8 status;
703
704 INIT_LIST_HEAD(&ld_completed);
705
706 spin_lock_bh(&chan->lock);
707
708 /* Clean already completed and acked descriptors */
709 xgene_dma_clean_completed_descriptor(chan);
710
711 /* Move all completed descriptors to ld completed queue, in order */
712 list_for_each_entry_safe(desc_sw, _desc_sw, &chan->ld_running, node) {
713 /* Get subsequent hw descriptor from DMA rx ring */
714 desc_hw = &ring->desc_hw[ring->head];
715
716 /* Check if this descriptor has been completed */
717 if (unlikely(le64_to_cpu(desc_hw->m0) ==
718 XGENE_DMA_DESC_EMPTY_SIGNATURE))
719 break;
720
721 if (++ring->head == ring->slots)
722 ring->head = 0;
723
724 /* Check if we have any error with DMA transactions */
725 status = XGENE_DMA_DESC_STATUS(
726 XGENE_DMA_DESC_ELERR_RD(le64_to_cpu(
727 desc_hw->m0)),
728 XGENE_DMA_DESC_LERR_RD(le64_to_cpu(
729 desc_hw->m0)));
730 if (status) {
731 /* Print the DMA error type */
732 chan_err(chan, "%s\n", xgene_dma_desc_err[status]);
733
734 /*
735 * We have DMA transactions error here. Dump DMA Tx
736 * and Rx descriptors for this request */
737 XGENE_DMA_DESC_DUMP(&desc_sw->desc1,
738 "X-Gene DMA TX DESC1: ");
739
740 if (desc_sw->flags & XGENE_DMA_FLAG_64B_DESC)
741 XGENE_DMA_DESC_DUMP(&desc_sw->desc2,
742 "X-Gene DMA TX DESC2: ");
743
744 XGENE_DMA_DESC_DUMP(desc_hw,
745 "X-Gene DMA RX ERR DESC: ");
746 }
747
748 /* Notify the hw about this completed descriptor */
749 iowrite32(-1, ring->cmd);
750
751 /* Mark this hw descriptor as processed */
752 desc_hw->m0 = cpu_to_le64(XGENE_DMA_DESC_EMPTY_SIGNATURE);
753
754 /*
755 * Decrement the pending transaction count
756 * as we have processed one
757 */
758 chan->pending -= ((desc_sw->flags &
759 XGENE_DMA_FLAG_64B_DESC) ? 2 : 1);
760
761 /*
762 * Delete this node from ld running queue and append it to
763 * ld completed queue for further processing
764 */
765 list_move_tail(&desc_sw->node, &ld_completed);
766 }
767
768 /*
769 * Start any pending transactions automatically
770 * In the ideal case, we keep the DMA controller busy while we go
771 * ahead and free the descriptors below.
772 */
773 xgene_chan_xfer_ld_pending(chan);
774
775 spin_unlock_bh(&chan->lock);
776
777 /* Run the callback for each descriptor, in order */
778 list_for_each_entry_safe(desc_sw, _desc_sw, &ld_completed, node) {
779 xgene_dma_run_tx_complete_actions(chan, desc_sw);
780 xgene_dma_clean_running_descriptor(chan, desc_sw);
781 }
782 }
783
784 static int xgene_dma_alloc_chan_resources(struct dma_chan *dchan)
785 {
786 struct xgene_dma_chan *chan = to_dma_chan(dchan);
787
788 /* Has this channel already been allocated? */
789 if (chan->desc_pool)
790 return 1;
791
792 chan->desc_pool = dma_pool_create(chan->name, chan->dev,
793 sizeof(struct xgene_dma_desc_sw),
794 0, 0);
795 if (!chan->desc_pool) {
796 chan_err(chan, "Failed to allocate descriptor pool\n");
797 return -ENOMEM;
798 }
799
800 chan_dbg(chan, "Allocate descripto pool\n");
801
802 return 1;
803 }
804
805 /**
806 * xgene_dma_free_desc_list - Free all descriptors in a queue
807 * @chan: X-Gene DMA channel
808 * @list: the list to free
809 *
810 * LOCKING: must hold chan->lock
811 */
812 static void xgene_dma_free_desc_list(struct xgene_dma_chan *chan,
813 struct list_head *list)
814 {
815 struct xgene_dma_desc_sw *desc, *_desc;
816
817 list_for_each_entry_safe(desc, _desc, list, node)
818 xgene_dma_clean_descriptor(chan, desc);
819 }
820
821 static void xgene_dma_free_chan_resources(struct dma_chan *dchan)
822 {
823 struct xgene_dma_chan *chan = to_dma_chan(dchan);
824
825 chan_dbg(chan, "Free all resources\n");
826
827 if (!chan->desc_pool)
828 return;
829
830 /* Process all running descriptor */
831 xgene_dma_cleanup_descriptors(chan);
832
833 spin_lock_bh(&chan->lock);
834
835 /* Clean all link descriptor queues */
836 xgene_dma_free_desc_list(chan, &chan->ld_pending);
837 xgene_dma_free_desc_list(chan, &chan->ld_running);
838 xgene_dma_free_desc_list(chan, &chan->ld_completed);
839
840 spin_unlock_bh(&chan->lock);
841
842 /* Delete this channel DMA pool */
843 dma_pool_destroy(chan->desc_pool);
844 chan->desc_pool = NULL;
845 }
846
847 static struct dma_async_tx_descriptor *xgene_dma_prep_xor(
848 struct dma_chan *dchan, dma_addr_t dst, dma_addr_t *src,
849 u32 src_cnt, size_t len, unsigned long flags)
850 {
851 struct xgene_dma_desc_sw *first = NULL, *new;
852 struct xgene_dma_chan *chan;
853 static u8 multi[XGENE_DMA_MAX_XOR_SRC] = {
854 0x01, 0x01, 0x01, 0x01, 0x01};
855
856 if (unlikely(!dchan || !len))
857 return NULL;
858
859 chan = to_dma_chan(dchan);
860
861 do {
862 /* Allocate the link descriptor from DMA pool */
863 new = xgene_dma_alloc_descriptor(chan);
864 if (!new)
865 goto fail;
866
867 /* Prepare xor DMA descriptor */
868 xgene_dma_prep_xor_desc(chan, new, &dst, src,
869 src_cnt, &len, multi);
870
871 if (!first)
872 first = new;
873
874 new->tx.cookie = 0;
875 async_tx_ack(&new->tx);
876
877 /* Insert the link descriptor to the LD ring */
878 list_add_tail(&new->node, &first->tx_list);
879 } while (len);
880
881 new->tx.flags = flags; /* client is in control of this ack */
882 new->tx.cookie = -EBUSY;
883 list_splice(&first->tx_list, &new->tx_list);
884
885 return &new->tx;
886
887 fail:
888 if (!first)
889 return NULL;
890
891 xgene_dma_free_desc_list(chan, &first->tx_list);
892 return NULL;
893 }
894
895 static struct dma_async_tx_descriptor *xgene_dma_prep_pq(
896 struct dma_chan *dchan, dma_addr_t *dst, dma_addr_t *src,
897 u32 src_cnt, const u8 *scf, size_t len, unsigned long flags)
898 {
899 struct xgene_dma_desc_sw *first = NULL, *new;
900 struct xgene_dma_chan *chan;
901 size_t _len = len;
902 dma_addr_t _src[XGENE_DMA_MAX_XOR_SRC];
903 static u8 multi[XGENE_DMA_MAX_XOR_SRC] = {0x01, 0x01, 0x01, 0x01, 0x01};
904
905 if (unlikely(!dchan || !len))
906 return NULL;
907
908 chan = to_dma_chan(dchan);
909
910 /*
911 * Save source addresses on local variable, may be we have to
912 * prepare two descriptor to generate P and Q if both enabled
913 * in the flags by client
914 */
915 memcpy(_src, src, sizeof(*src) * src_cnt);
916
917 if (flags & DMA_PREP_PQ_DISABLE_P)
918 len = 0;
919
920 if (flags & DMA_PREP_PQ_DISABLE_Q)
921 _len = 0;
922
923 do {
924 /* Allocate the link descriptor from DMA pool */
925 new = xgene_dma_alloc_descriptor(chan);
926 if (!new)
927 goto fail;
928
929 if (!first)
930 first = new;
931
932 new->tx.cookie = 0;
933 async_tx_ack(&new->tx);
934
935 /* Insert the link descriptor to the LD ring */
936 list_add_tail(&new->node, &first->tx_list);
937
938 /*
939 * Prepare DMA descriptor to generate P,
940 * if DMA_PREP_PQ_DISABLE_P flag is not set
941 */
942 if (len) {
943 xgene_dma_prep_xor_desc(chan, new, &dst[0], src,
944 src_cnt, &len, multi);
945 continue;
946 }
947
948 /*
949 * Prepare DMA descriptor to generate Q,
950 * if DMA_PREP_PQ_DISABLE_Q flag is not set
951 */
952 if (_len) {
953 xgene_dma_prep_xor_desc(chan, new, &dst[1], _src,
954 src_cnt, &_len, scf);
955 }
956 } while (len || _len);
957
958 new->tx.flags = flags; /* client is in control of this ack */
959 new->tx.cookie = -EBUSY;
960 list_splice(&first->tx_list, &new->tx_list);
961
962 return &new->tx;
963
964 fail:
965 if (!first)
966 return NULL;
967
968 xgene_dma_free_desc_list(chan, &first->tx_list);
969 return NULL;
970 }
971
972 static void xgene_dma_issue_pending(struct dma_chan *dchan)
973 {
974 struct xgene_dma_chan *chan = to_dma_chan(dchan);
975
976 spin_lock_bh(&chan->lock);
977 xgene_chan_xfer_ld_pending(chan);
978 spin_unlock_bh(&chan->lock);
979 }
980
981 static enum dma_status xgene_dma_tx_status(struct dma_chan *dchan,
982 dma_cookie_t cookie,
983 struct dma_tx_state *txstate)
984 {
985 return dma_cookie_status(dchan, cookie, txstate);
986 }
987
988 static void xgene_dma_tasklet_cb(unsigned long data)
989 {
990 struct xgene_dma_chan *chan = (struct xgene_dma_chan *)data;
991
992 /* Run all cleanup for descriptors which have been completed */
993 xgene_dma_cleanup_descriptors(chan);
994
995 /* Re-enable DMA channel IRQ */
996 enable_irq(chan->rx_irq);
997 }
998
999 static irqreturn_t xgene_dma_chan_ring_isr(int irq, void *id)
1000 {
1001 struct xgene_dma_chan *chan = (struct xgene_dma_chan *)id;
1002
1003 BUG_ON(!chan);
1004
1005 /*
1006 * Disable DMA channel IRQ until we process completed
1007 * descriptors
1008 */
1009 disable_irq_nosync(chan->rx_irq);
1010
1011 /*
1012 * Schedule the tasklet to handle all cleanup of the current
1013 * transaction. It will start a new transaction if there is
1014 * one pending.
1015 */
1016 tasklet_schedule(&chan->tasklet);
1017
1018 return IRQ_HANDLED;
1019 }
1020
1021 static irqreturn_t xgene_dma_err_isr(int irq, void *id)
1022 {
1023 struct xgene_dma *pdma = (struct xgene_dma *)id;
1024 unsigned long int_mask;
1025 u32 val, i;
1026
1027 val = ioread32(pdma->csr_dma + XGENE_DMA_INT);
1028
1029 /* Clear DMA interrupts */
1030 iowrite32(val, pdma->csr_dma + XGENE_DMA_INT);
1031
1032 /* Print DMA error info */
1033 int_mask = val >> XGENE_DMA_INT_MASK_SHIFT;
1034 for_each_set_bit(i, &int_mask, ARRAY_SIZE(xgene_dma_err))
1035 dev_err(pdma->dev,
1036 "Interrupt status 0x%08X %s\n", val, xgene_dma_err[i]);
1037
1038 return IRQ_HANDLED;
1039 }
1040
1041 static void xgene_dma_wr_ring_state(struct xgene_dma_ring *ring)
1042 {
1043 int i;
1044
1045 iowrite32(ring->num, ring->pdma->csr_ring + XGENE_DMA_RING_STATE);
1046
1047 for (i = 0; i < XGENE_DMA_RING_NUM_CONFIG; i++)
1048 iowrite32(ring->state[i], ring->pdma->csr_ring +
1049 XGENE_DMA_RING_STATE_WR_BASE + (i * 4));
1050 }
1051
1052 static void xgene_dma_clr_ring_state(struct xgene_dma_ring *ring)
1053 {
1054 memset(ring->state, 0, sizeof(u32) * XGENE_DMA_RING_NUM_CONFIG);
1055 xgene_dma_wr_ring_state(ring);
1056 }
1057
1058 static void xgene_dma_setup_ring(struct xgene_dma_ring *ring)
1059 {
1060 void *ring_cfg = ring->state;
1061 u64 addr = ring->desc_paddr;
1062 u32 i, val;
1063
1064 ring->slots = ring->size / XGENE_DMA_RING_WQ_DESC_SIZE;
1065
1066 /* Clear DMA ring state */
1067 xgene_dma_clr_ring_state(ring);
1068
1069 /* Set DMA ring type */
1070 XGENE_DMA_RING_TYPE_SET(ring_cfg, XGENE_DMA_RING_TYPE_REGULAR);
1071
1072 if (ring->owner == XGENE_DMA_RING_OWNER_DMA) {
1073 /* Set recombination buffer and timeout */
1074 XGENE_DMA_RING_RECOMBBUF_SET(ring_cfg);
1075 XGENE_DMA_RING_RECOMTIMEOUTL_SET(ring_cfg);
1076 XGENE_DMA_RING_RECOMTIMEOUTH_SET(ring_cfg);
1077 }
1078
1079 /* Initialize DMA ring state */
1080 XGENE_DMA_RING_SELTHRSH_SET(ring_cfg);
1081 XGENE_DMA_RING_ACCEPTLERR_SET(ring_cfg);
1082 XGENE_DMA_RING_COHERENT_SET(ring_cfg);
1083 XGENE_DMA_RING_ADDRL_SET(ring_cfg, addr);
1084 XGENE_DMA_RING_ADDRH_SET(ring_cfg, addr);
1085 XGENE_DMA_RING_SIZE_SET(ring_cfg, ring->cfgsize);
1086
1087 /* Write DMA ring configurations */
1088 xgene_dma_wr_ring_state(ring);
1089
1090 /* Set DMA ring id */
1091 iowrite32(XGENE_DMA_RING_ID_SETUP(ring->id),
1092 ring->pdma->csr_ring + XGENE_DMA_RING_ID);
1093
1094 /* Set DMA ring buffer */
1095 iowrite32(XGENE_DMA_RING_ID_BUF_SETUP(ring->num),
1096 ring->pdma->csr_ring + XGENE_DMA_RING_ID_BUF);
1097
1098 if (ring->owner != XGENE_DMA_RING_OWNER_CPU)
1099 return;
1100
1101 /* Set empty signature to DMA Rx ring descriptors */
1102 for (i = 0; i < ring->slots; i++) {
1103 struct xgene_dma_desc_hw *desc;
1104
1105 desc = &ring->desc_hw[i];
1106 desc->m0 = cpu_to_le64(XGENE_DMA_DESC_EMPTY_SIGNATURE);
1107 }
1108
1109 /* Enable DMA Rx ring interrupt */
1110 val = ioread32(ring->pdma->csr_ring + XGENE_DMA_RING_NE_INT_MODE);
1111 XGENE_DMA_RING_NE_INT_MODE_SET(val, ring->buf_num);
1112 iowrite32(val, ring->pdma->csr_ring + XGENE_DMA_RING_NE_INT_MODE);
1113 }
1114
1115 static void xgene_dma_clear_ring(struct xgene_dma_ring *ring)
1116 {
1117 u32 ring_id, val;
1118
1119 if (ring->owner == XGENE_DMA_RING_OWNER_CPU) {
1120 /* Disable DMA Rx ring interrupt */
1121 val = ioread32(ring->pdma->csr_ring +
1122 XGENE_DMA_RING_NE_INT_MODE);
1123 XGENE_DMA_RING_NE_INT_MODE_RESET(val, ring->buf_num);
1124 iowrite32(val, ring->pdma->csr_ring +
1125 XGENE_DMA_RING_NE_INT_MODE);
1126 }
1127
1128 /* Clear DMA ring state */
1129 ring_id = XGENE_DMA_RING_ID_SETUP(ring->id);
1130 iowrite32(ring_id, ring->pdma->csr_ring + XGENE_DMA_RING_ID);
1131
1132 iowrite32(0, ring->pdma->csr_ring + XGENE_DMA_RING_ID_BUF);
1133 xgene_dma_clr_ring_state(ring);
1134 }
1135
1136 static void xgene_dma_set_ring_cmd(struct xgene_dma_ring *ring)
1137 {
1138 ring->cmd_base = ring->pdma->csr_ring_cmd +
1139 XGENE_DMA_RING_CMD_BASE_OFFSET((ring->num -
1140 XGENE_DMA_RING_NUM));
1141
1142 ring->cmd = ring->cmd_base + XGENE_DMA_RING_CMD_OFFSET;
1143 }
1144
1145 static int xgene_dma_get_ring_size(struct xgene_dma_chan *chan,
1146 enum xgene_dma_ring_cfgsize cfgsize)
1147 {
1148 int size;
1149
1150 switch (cfgsize) {
1151 case XGENE_DMA_RING_CFG_SIZE_512B:
1152 size = 0x200;
1153 break;
1154 case XGENE_DMA_RING_CFG_SIZE_2KB:
1155 size = 0x800;
1156 break;
1157 case XGENE_DMA_RING_CFG_SIZE_16KB:
1158 size = 0x4000;
1159 break;
1160 case XGENE_DMA_RING_CFG_SIZE_64KB:
1161 size = 0x10000;
1162 break;
1163 case XGENE_DMA_RING_CFG_SIZE_512KB:
1164 size = 0x80000;
1165 break;
1166 default:
1167 chan_err(chan, "Unsupported cfg ring size %d\n", cfgsize);
1168 return -EINVAL;
1169 }
1170
1171 return size;
1172 }
1173
1174 static void xgene_dma_delete_ring_one(struct xgene_dma_ring *ring)
1175 {
1176 /* Clear DMA ring configurations */
1177 xgene_dma_clear_ring(ring);
1178
1179 /* De-allocate DMA ring descriptor */
1180 if (ring->desc_vaddr) {
1181 dma_free_coherent(ring->pdma->dev, ring->size,
1182 ring->desc_vaddr, ring->desc_paddr);
1183 ring->desc_vaddr = NULL;
1184 }
1185 }
1186
1187 static void xgene_dma_delete_chan_rings(struct xgene_dma_chan *chan)
1188 {
1189 xgene_dma_delete_ring_one(&chan->rx_ring);
1190 xgene_dma_delete_ring_one(&chan->tx_ring);
1191 }
1192
1193 static int xgene_dma_create_ring_one(struct xgene_dma_chan *chan,
1194 struct xgene_dma_ring *ring,
1195 enum xgene_dma_ring_cfgsize cfgsize)
1196 {
1197 int ret;
1198
1199 /* Setup DMA ring descriptor variables */
1200 ring->pdma = chan->pdma;
1201 ring->cfgsize = cfgsize;
1202 ring->num = chan->pdma->ring_num++;
1203 ring->id = XGENE_DMA_RING_ID_GET(ring->owner, ring->buf_num);
1204
1205 ret = xgene_dma_get_ring_size(chan, cfgsize);
1206 if (ret <= 0)
1207 return ret;
1208 ring->size = ret;
1209
1210 /* Allocate memory for DMA ring descriptor */
1211 ring->desc_vaddr = dma_zalloc_coherent(chan->dev, ring->size,
1212 &ring->desc_paddr, GFP_KERNEL);
1213 if (!ring->desc_vaddr) {
1214 chan_err(chan, "Failed to allocate ring desc\n");
1215 return -ENOMEM;
1216 }
1217
1218 /* Configure and enable DMA ring */
1219 xgene_dma_set_ring_cmd(ring);
1220 xgene_dma_setup_ring(ring);
1221
1222 return 0;
1223 }
1224
1225 static int xgene_dma_create_chan_rings(struct xgene_dma_chan *chan)
1226 {
1227 struct xgene_dma_ring *rx_ring = &chan->rx_ring;
1228 struct xgene_dma_ring *tx_ring = &chan->tx_ring;
1229 int ret;
1230
1231 /* Create DMA Rx ring descriptor */
1232 rx_ring->owner = XGENE_DMA_RING_OWNER_CPU;
1233 rx_ring->buf_num = XGENE_DMA_CPU_BUFNUM + chan->id;
1234
1235 ret = xgene_dma_create_ring_one(chan, rx_ring,
1236 XGENE_DMA_RING_CFG_SIZE_64KB);
1237 if (ret)
1238 return ret;
1239
1240 chan_dbg(chan, "Rx ring id 0x%X num %d desc 0x%p\n",
1241 rx_ring->id, rx_ring->num, rx_ring->desc_vaddr);
1242
1243 /* Create DMA Tx ring descriptor */
1244 tx_ring->owner = XGENE_DMA_RING_OWNER_DMA;
1245 tx_ring->buf_num = XGENE_DMA_BUFNUM + chan->id;
1246
1247 ret = xgene_dma_create_ring_one(chan, tx_ring,
1248 XGENE_DMA_RING_CFG_SIZE_64KB);
1249 if (ret) {
1250 xgene_dma_delete_ring_one(rx_ring);
1251 return ret;
1252 }
1253
1254 tx_ring->dst_ring_num = XGENE_DMA_RING_DST_ID(rx_ring->num);
1255
1256 chan_dbg(chan,
1257 "Tx ring id 0x%X num %d desc 0x%p\n",
1258 tx_ring->id, tx_ring->num, tx_ring->desc_vaddr);
1259
1260 /* Set the max outstanding request possible to this channel */
1261 chan->max_outstanding = tx_ring->slots;
1262
1263 return ret;
1264 }
1265
1266 static int xgene_dma_init_rings(struct xgene_dma *pdma)
1267 {
1268 int ret, i, j;
1269
1270 for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++) {
1271 ret = xgene_dma_create_chan_rings(&pdma->chan[i]);
1272 if (ret) {
1273 for (j = 0; j < i; j++)
1274 xgene_dma_delete_chan_rings(&pdma->chan[j]);
1275 return ret;
1276 }
1277 }
1278
1279 return ret;
1280 }
1281
1282 static void xgene_dma_enable(struct xgene_dma *pdma)
1283 {
1284 u32 val;
1285
1286 /* Configure and enable DMA engine */
1287 val = ioread32(pdma->csr_dma + XGENE_DMA_GCR);
1288 XGENE_DMA_CH_SETUP(val);
1289 XGENE_DMA_ENABLE(val);
1290 iowrite32(val, pdma->csr_dma + XGENE_DMA_GCR);
1291 }
1292
1293 static void xgene_dma_disable(struct xgene_dma *pdma)
1294 {
1295 u32 val;
1296
1297 val = ioread32(pdma->csr_dma + XGENE_DMA_GCR);
1298 XGENE_DMA_DISABLE(val);
1299 iowrite32(val, pdma->csr_dma + XGENE_DMA_GCR);
1300 }
1301
1302 static void xgene_dma_mask_interrupts(struct xgene_dma *pdma)
1303 {
1304 /*
1305 * Mask DMA ring overflow, underflow and
1306 * AXI write/read error interrupts
1307 */
1308 iowrite32(XGENE_DMA_INT_ALL_MASK,
1309 pdma->csr_dma + XGENE_DMA_RING_INT0_MASK);
1310 iowrite32(XGENE_DMA_INT_ALL_MASK,
1311 pdma->csr_dma + XGENE_DMA_RING_INT1_MASK);
1312 iowrite32(XGENE_DMA_INT_ALL_MASK,
1313 pdma->csr_dma + XGENE_DMA_RING_INT2_MASK);
1314 iowrite32(XGENE_DMA_INT_ALL_MASK,
1315 pdma->csr_dma + XGENE_DMA_RING_INT3_MASK);
1316 iowrite32(XGENE_DMA_INT_ALL_MASK,
1317 pdma->csr_dma + XGENE_DMA_RING_INT4_MASK);
1318
1319 /* Mask DMA error interrupts */
1320 iowrite32(XGENE_DMA_INT_ALL_MASK, pdma->csr_dma + XGENE_DMA_INT_MASK);
1321 }
1322
1323 static void xgene_dma_unmask_interrupts(struct xgene_dma *pdma)
1324 {
1325 /*
1326 * Unmask DMA ring overflow, underflow and
1327 * AXI write/read error interrupts
1328 */
1329 iowrite32(XGENE_DMA_INT_ALL_UNMASK,
1330 pdma->csr_dma + XGENE_DMA_RING_INT0_MASK);
1331 iowrite32(XGENE_DMA_INT_ALL_UNMASK,
1332 pdma->csr_dma + XGENE_DMA_RING_INT1_MASK);
1333 iowrite32(XGENE_DMA_INT_ALL_UNMASK,
1334 pdma->csr_dma + XGENE_DMA_RING_INT2_MASK);
1335 iowrite32(XGENE_DMA_INT_ALL_UNMASK,
1336 pdma->csr_dma + XGENE_DMA_RING_INT3_MASK);
1337 iowrite32(XGENE_DMA_INT_ALL_UNMASK,
1338 pdma->csr_dma + XGENE_DMA_RING_INT4_MASK);
1339
1340 /* Unmask DMA error interrupts */
1341 iowrite32(XGENE_DMA_INT_ALL_UNMASK,
1342 pdma->csr_dma + XGENE_DMA_INT_MASK);
1343 }
1344
1345 static void xgene_dma_init_hw(struct xgene_dma *pdma)
1346 {
1347 u32 val;
1348
1349 /* Associate DMA ring to corresponding ring HW */
1350 iowrite32(XGENE_DMA_ASSOC_RING_MNGR1,
1351 pdma->csr_dma + XGENE_DMA_CFG_RING_WQ_ASSOC);
1352
1353 /* Configure RAID6 polynomial control setting */
1354 if (is_pq_enabled(pdma))
1355 iowrite32(XGENE_DMA_RAID6_MULTI_CTRL(0x1D),
1356 pdma->csr_dma + XGENE_DMA_RAID6_CONT);
1357 else
1358 dev_info(pdma->dev, "PQ is disabled in HW\n");
1359
1360 xgene_dma_enable(pdma);
1361 xgene_dma_unmask_interrupts(pdma);
1362
1363 /* Get DMA id and version info */
1364 val = ioread32(pdma->csr_dma + XGENE_DMA_IPBRR);
1365
1366 /* DMA device info */
1367 dev_info(pdma->dev,
1368 "X-Gene DMA v%d.%02d.%02d driver registered %d channels",
1369 XGENE_DMA_REV_NO_RD(val), XGENE_DMA_BUS_ID_RD(val),
1370 XGENE_DMA_DEV_ID_RD(val), XGENE_DMA_MAX_CHANNEL);
1371 }
1372
1373 static int xgene_dma_init_ring_mngr(struct xgene_dma *pdma)
1374 {
1375 if (ioread32(pdma->csr_ring + XGENE_DMA_RING_CLKEN) &&
1376 (!ioread32(pdma->csr_ring + XGENE_DMA_RING_SRST)))
1377 return 0;
1378
1379 iowrite32(0x3, pdma->csr_ring + XGENE_DMA_RING_CLKEN);
1380 iowrite32(0x0, pdma->csr_ring + XGENE_DMA_RING_SRST);
1381
1382 /* Bring up memory */
1383 iowrite32(0x0, pdma->csr_ring + XGENE_DMA_RING_MEM_RAM_SHUTDOWN);
1384
1385 /* Force a barrier */
1386 ioread32(pdma->csr_ring + XGENE_DMA_RING_MEM_RAM_SHUTDOWN);
1387
1388 /* reset may take up to 1ms */
1389 usleep_range(1000, 1100);
1390
1391 if (ioread32(pdma->csr_ring + XGENE_DMA_RING_BLK_MEM_RDY)
1392 != XGENE_DMA_RING_BLK_MEM_RDY_VAL) {
1393 dev_err(pdma->dev,
1394 "Failed to release ring mngr memory from shutdown\n");
1395 return -ENODEV;
1396 }
1397
1398 /* program threshold set 1 and all hysteresis */
1399 iowrite32(XGENE_DMA_RING_THRESLD0_SET1_VAL,
1400 pdma->csr_ring + XGENE_DMA_RING_THRESLD0_SET1);
1401 iowrite32(XGENE_DMA_RING_THRESLD1_SET1_VAL,
1402 pdma->csr_ring + XGENE_DMA_RING_THRESLD1_SET1);
1403 iowrite32(XGENE_DMA_RING_HYSTERESIS_VAL,
1404 pdma->csr_ring + XGENE_DMA_RING_HYSTERESIS);
1405
1406 /* Enable QPcore and assign error queue */
1407 iowrite32(XGENE_DMA_RING_ENABLE,
1408 pdma->csr_ring + XGENE_DMA_RING_CONFIG);
1409
1410 return 0;
1411 }
1412
1413 static int xgene_dma_init_mem(struct xgene_dma *pdma)
1414 {
1415 int ret;
1416
1417 ret = xgene_dma_init_ring_mngr(pdma);
1418 if (ret)
1419 return ret;
1420
1421 /* Bring up memory */
1422 iowrite32(0x0, pdma->csr_dma + XGENE_DMA_MEM_RAM_SHUTDOWN);
1423
1424 /* Force a barrier */
1425 ioread32(pdma->csr_dma + XGENE_DMA_MEM_RAM_SHUTDOWN);
1426
1427 /* reset may take up to 1ms */
1428 usleep_range(1000, 1100);
1429
1430 if (ioread32(pdma->csr_dma + XGENE_DMA_BLK_MEM_RDY)
1431 != XGENE_DMA_BLK_MEM_RDY_VAL) {
1432 dev_err(pdma->dev,
1433 "Failed to release DMA memory from shutdown\n");
1434 return -ENODEV;
1435 }
1436
1437 return 0;
1438 }
1439
1440 static int xgene_dma_request_irqs(struct xgene_dma *pdma)
1441 {
1442 struct xgene_dma_chan *chan;
1443 int ret, i, j;
1444
1445 /* Register DMA error irq */
1446 ret = devm_request_irq(pdma->dev, pdma->err_irq, xgene_dma_err_isr,
1447 0, "dma_error", pdma);
1448 if (ret) {
1449 dev_err(pdma->dev,
1450 "Failed to register error IRQ %d\n", pdma->err_irq);
1451 return ret;
1452 }
1453
1454 /* Register DMA channel rx irq */
1455 for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++) {
1456 chan = &pdma->chan[i];
1457 irq_set_status_flags(chan->rx_irq, IRQ_DISABLE_UNLAZY);
1458 ret = devm_request_irq(chan->dev, chan->rx_irq,
1459 xgene_dma_chan_ring_isr,
1460 0, chan->name, chan);
1461 if (ret) {
1462 chan_err(chan, "Failed to register Rx IRQ %d\n",
1463 chan->rx_irq);
1464 devm_free_irq(pdma->dev, pdma->err_irq, pdma);
1465
1466 for (j = 0; j < i; j++) {
1467 chan = &pdma->chan[i];
1468 irq_clear_status_flags(chan->rx_irq, IRQ_DISABLE_UNLAZY);
1469 devm_free_irq(chan->dev, chan->rx_irq, chan);
1470 }
1471
1472 return ret;
1473 }
1474 }
1475
1476 return 0;
1477 }
1478
1479 static void xgene_dma_free_irqs(struct xgene_dma *pdma)
1480 {
1481 struct xgene_dma_chan *chan;
1482 int i;
1483
1484 /* Free DMA device error irq */
1485 devm_free_irq(pdma->dev, pdma->err_irq, pdma);
1486
1487 for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++) {
1488 chan = &pdma->chan[i];
1489 irq_clear_status_flags(chan->rx_irq, IRQ_DISABLE_UNLAZY);
1490 devm_free_irq(chan->dev, chan->rx_irq, chan);
1491 }
1492 }
1493
1494 static void xgene_dma_set_caps(struct xgene_dma_chan *chan,
1495 struct dma_device *dma_dev)
1496 {
1497 /* Initialize DMA device capability mask */
1498 dma_cap_zero(dma_dev->cap_mask);
1499
1500 /* Set DMA device capability */
1501
1502 /* Basically here, the X-Gene SoC DMA engine channel 0 supports XOR
1503 * and channel 1 supports XOR, PQ both. First thing here is we have
1504 * mechanism in hw to enable/disable PQ/XOR supports on channel 1,
1505 * we can make sure this by reading SoC Efuse register.
1506 * Second thing, we have hw errata that if we run channel 0 and
1507 * channel 1 simultaneously with executing XOR and PQ request,
1508 * suddenly DMA engine hangs, So here we enable XOR on channel 0 only
1509 * if XOR and PQ supports on channel 1 is disabled.
1510 */
1511 if ((chan->id == XGENE_DMA_PQ_CHANNEL) &&
1512 is_pq_enabled(chan->pdma)) {
1513 dma_cap_set(DMA_PQ, dma_dev->cap_mask);
1514 dma_cap_set(DMA_XOR, dma_dev->cap_mask);
1515 } else if ((chan->id == XGENE_DMA_XOR_CHANNEL) &&
1516 !is_pq_enabled(chan->pdma)) {
1517 dma_cap_set(DMA_XOR, dma_dev->cap_mask);
1518 }
1519
1520 /* Set base and prep routines */
1521 dma_dev->dev = chan->dev;
1522 dma_dev->device_alloc_chan_resources = xgene_dma_alloc_chan_resources;
1523 dma_dev->device_free_chan_resources = xgene_dma_free_chan_resources;
1524 dma_dev->device_issue_pending = xgene_dma_issue_pending;
1525 dma_dev->device_tx_status = xgene_dma_tx_status;
1526
1527 if (dma_has_cap(DMA_XOR, dma_dev->cap_mask)) {
1528 dma_dev->device_prep_dma_xor = xgene_dma_prep_xor;
1529 dma_dev->max_xor = XGENE_DMA_MAX_XOR_SRC;
1530 dma_dev->xor_align = DMAENGINE_ALIGN_64_BYTES;
1531 }
1532
1533 if (dma_has_cap(DMA_PQ, dma_dev->cap_mask)) {
1534 dma_dev->device_prep_dma_pq = xgene_dma_prep_pq;
1535 dma_dev->max_pq = XGENE_DMA_MAX_XOR_SRC;
1536 dma_dev->pq_align = DMAENGINE_ALIGN_64_BYTES;
1537 }
1538 }
1539
1540 static int xgene_dma_async_register(struct xgene_dma *pdma, int id)
1541 {
1542 struct xgene_dma_chan *chan = &pdma->chan[id];
1543 struct dma_device *dma_dev = &pdma->dma_dev[id];
1544 int ret;
1545
1546 chan->dma_chan.device = dma_dev;
1547
1548 spin_lock_init(&chan->lock);
1549 INIT_LIST_HEAD(&chan->ld_pending);
1550 INIT_LIST_HEAD(&chan->ld_running);
1551 INIT_LIST_HEAD(&chan->ld_completed);
1552 tasklet_init(&chan->tasklet, xgene_dma_tasklet_cb,
1553 (unsigned long)chan);
1554
1555 chan->pending = 0;
1556 chan->desc_pool = NULL;
1557 dma_cookie_init(&chan->dma_chan);
1558
1559 /* Setup dma device capabilities and prep routines */
1560 xgene_dma_set_caps(chan, dma_dev);
1561
1562 /* Initialize DMA device list head */
1563 INIT_LIST_HEAD(&dma_dev->channels);
1564 list_add_tail(&chan->dma_chan.device_node, &dma_dev->channels);
1565
1566 /* Register with Linux async DMA framework*/
1567 ret = dma_async_device_register(dma_dev);
1568 if (ret) {
1569 chan_err(chan, "Failed to register async device %d", ret);
1570 tasklet_kill(&chan->tasklet);
1571
1572 return ret;
1573 }
1574
1575 /* DMA capability info */
1576 dev_info(pdma->dev,
1577 "%s: CAPABILITY ( %s%s)\n", dma_chan_name(&chan->dma_chan),
1578 dma_has_cap(DMA_XOR, dma_dev->cap_mask) ? "XOR " : "",
1579 dma_has_cap(DMA_PQ, dma_dev->cap_mask) ? "PQ " : "");
1580
1581 return 0;
1582 }
1583
1584 static int xgene_dma_init_async(struct xgene_dma *pdma)
1585 {
1586 int ret, i, j;
1587
1588 for (i = 0; i < XGENE_DMA_MAX_CHANNEL ; i++) {
1589 ret = xgene_dma_async_register(pdma, i);
1590 if (ret) {
1591 for (j = 0; j < i; j++) {
1592 dma_async_device_unregister(&pdma->dma_dev[j]);
1593 tasklet_kill(&pdma->chan[j].tasklet);
1594 }
1595
1596 return ret;
1597 }
1598 }
1599
1600 return ret;
1601 }
1602
1603 static void xgene_dma_async_unregister(struct xgene_dma *pdma)
1604 {
1605 int i;
1606
1607 for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++)
1608 dma_async_device_unregister(&pdma->dma_dev[i]);
1609 }
1610
1611 static void xgene_dma_init_channels(struct xgene_dma *pdma)
1612 {
1613 struct xgene_dma_chan *chan;
1614 int i;
1615
1616 pdma->ring_num = XGENE_DMA_RING_NUM;
1617
1618 for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++) {
1619 chan = &pdma->chan[i];
1620 chan->dev = pdma->dev;
1621 chan->pdma = pdma;
1622 chan->id = i;
1623 snprintf(chan->name, sizeof(chan->name), "dmachan%d", chan->id);
1624 }
1625 }
1626
1627 static int xgene_dma_get_resources(struct platform_device *pdev,
1628 struct xgene_dma *pdma)
1629 {
1630 struct resource *res;
1631 int irq, i;
1632
1633 /* Get DMA csr region */
1634 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1635 if (!res) {
1636 dev_err(&pdev->dev, "Failed to get csr region\n");
1637 return -ENXIO;
1638 }
1639
1640 pdma->csr_dma = devm_ioremap(&pdev->dev, res->start,
1641 resource_size(res));
1642 if (!pdma->csr_dma) {
1643 dev_err(&pdev->dev, "Failed to ioremap csr region");
1644 return -ENOMEM;
1645 }
1646
1647 /* Get DMA ring csr region */
1648 res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1649 if (!res) {
1650 dev_err(&pdev->dev, "Failed to get ring csr region\n");
1651 return -ENXIO;
1652 }
1653
1654 pdma->csr_ring = devm_ioremap(&pdev->dev, res->start,
1655 resource_size(res));
1656 if (!pdma->csr_ring) {
1657 dev_err(&pdev->dev, "Failed to ioremap ring csr region");
1658 return -ENOMEM;
1659 }
1660
1661 /* Get DMA ring cmd csr region */
1662 res = platform_get_resource(pdev, IORESOURCE_MEM, 2);
1663 if (!res) {
1664 dev_err(&pdev->dev, "Failed to get ring cmd csr region\n");
1665 return -ENXIO;
1666 }
1667
1668 pdma->csr_ring_cmd = devm_ioremap(&pdev->dev, res->start,
1669 resource_size(res));
1670 if (!pdma->csr_ring_cmd) {
1671 dev_err(&pdev->dev, "Failed to ioremap ring cmd csr region");
1672 return -ENOMEM;
1673 }
1674
1675 pdma->csr_ring_cmd += XGENE_DMA_RING_CMD_SM_OFFSET;
1676
1677 /* Get efuse csr region */
1678 res = platform_get_resource(pdev, IORESOURCE_MEM, 3);
1679 if (!res) {
1680 dev_err(&pdev->dev, "Failed to get efuse csr region\n");
1681 return -ENXIO;
1682 }
1683
1684 pdma->csr_efuse = devm_ioremap(&pdev->dev, res->start,
1685 resource_size(res));
1686 if (!pdma->csr_efuse) {
1687 dev_err(&pdev->dev, "Failed to ioremap efuse csr region");
1688 return -ENOMEM;
1689 }
1690
1691 /* Get DMA error interrupt */
1692 irq = platform_get_irq(pdev, 0);
1693 if (irq <= 0) {
1694 dev_err(&pdev->dev, "Failed to get Error IRQ\n");
1695 return -ENXIO;
1696 }
1697
1698 pdma->err_irq = irq;
1699
1700 /* Get DMA Rx ring descriptor interrupts for all DMA channels */
1701 for (i = 1; i <= XGENE_DMA_MAX_CHANNEL; i++) {
1702 irq = platform_get_irq(pdev, i);
1703 if (irq <= 0) {
1704 dev_err(&pdev->dev, "Failed to get Rx IRQ\n");
1705 return -ENXIO;
1706 }
1707
1708 pdma->chan[i - 1].rx_irq = irq;
1709 }
1710
1711 return 0;
1712 }
1713
1714 static int xgene_dma_probe(struct platform_device *pdev)
1715 {
1716 struct xgene_dma *pdma;
1717 int ret, i;
1718
1719 pdma = devm_kzalloc(&pdev->dev, sizeof(*pdma), GFP_KERNEL);
1720 if (!pdma)
1721 return -ENOMEM;
1722
1723 pdma->dev = &pdev->dev;
1724 platform_set_drvdata(pdev, pdma);
1725
1726 ret = xgene_dma_get_resources(pdev, pdma);
1727 if (ret)
1728 return ret;
1729
1730 pdma->clk = devm_clk_get(&pdev->dev, NULL);
1731 if (IS_ERR(pdma->clk) && !ACPI_COMPANION(&pdev->dev)) {
1732 dev_err(&pdev->dev, "Failed to get clk\n");
1733 return PTR_ERR(pdma->clk);
1734 }
1735
1736 /* Enable clk before accessing registers */
1737 if (!IS_ERR(pdma->clk)) {
1738 ret = clk_prepare_enable(pdma->clk);
1739 if (ret) {
1740 dev_err(&pdev->dev, "Failed to enable clk %d\n", ret);
1741 return ret;
1742 }
1743 }
1744
1745 /* Remove DMA RAM out of shutdown */
1746 ret = xgene_dma_init_mem(pdma);
1747 if (ret)
1748 goto err_clk_enable;
1749
1750 ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(42));
1751 if (ret) {
1752 dev_err(&pdev->dev, "No usable DMA configuration\n");
1753 goto err_dma_mask;
1754 }
1755
1756 /* Initialize DMA channels software state */
1757 xgene_dma_init_channels(pdma);
1758
1759 /* Configue DMA rings */
1760 ret = xgene_dma_init_rings(pdma);
1761 if (ret)
1762 goto err_clk_enable;
1763
1764 ret = xgene_dma_request_irqs(pdma);
1765 if (ret)
1766 goto err_request_irq;
1767
1768 /* Configure and enable DMA engine */
1769 xgene_dma_init_hw(pdma);
1770
1771 /* Register DMA device with linux async framework */
1772 ret = xgene_dma_init_async(pdma);
1773 if (ret)
1774 goto err_async_init;
1775
1776 return 0;
1777
1778 err_async_init:
1779 xgene_dma_free_irqs(pdma);
1780
1781 err_request_irq:
1782 for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++)
1783 xgene_dma_delete_chan_rings(&pdma->chan[i]);
1784
1785 err_dma_mask:
1786 err_clk_enable:
1787 if (!IS_ERR(pdma->clk))
1788 clk_disable_unprepare(pdma->clk);
1789
1790 return ret;
1791 }
1792
1793 static int xgene_dma_remove(struct platform_device *pdev)
1794 {
1795 struct xgene_dma *pdma = platform_get_drvdata(pdev);
1796 struct xgene_dma_chan *chan;
1797 int i;
1798
1799 xgene_dma_async_unregister(pdma);
1800
1801 /* Mask interrupts and disable DMA engine */
1802 xgene_dma_mask_interrupts(pdma);
1803 xgene_dma_disable(pdma);
1804 xgene_dma_free_irqs(pdma);
1805
1806 for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++) {
1807 chan = &pdma->chan[i];
1808 tasklet_kill(&chan->tasklet);
1809 xgene_dma_delete_chan_rings(chan);
1810 }
1811
1812 if (!IS_ERR(pdma->clk))
1813 clk_disable_unprepare(pdma->clk);
1814
1815 return 0;
1816 }
1817
1818 #ifdef CONFIG_ACPI
1819 static const struct acpi_device_id xgene_dma_acpi_match_ptr[] = {
1820 {"APMC0D43", 0},
1821 {},
1822 };
1823 MODULE_DEVICE_TABLE(acpi, xgene_dma_acpi_match_ptr);
1824 #endif
1825
1826 static const struct of_device_id xgene_dma_of_match_ptr[] = {
1827 {.compatible = "apm,xgene-storm-dma",},
1828 {},
1829 };
1830 MODULE_DEVICE_TABLE(of, xgene_dma_of_match_ptr);
1831
1832 static struct platform_driver xgene_dma_driver = {
1833 .probe = xgene_dma_probe,
1834 .remove = xgene_dma_remove,
1835 .driver = {
1836 .name = "X-Gene-DMA",
1837 .of_match_table = xgene_dma_of_match_ptr,
1838 .acpi_match_table = ACPI_PTR(xgene_dma_acpi_match_ptr),
1839 },
1840 };
1841
1842 module_platform_driver(xgene_dma_driver);
1843
1844 MODULE_DESCRIPTION("APM X-Gene SoC DMA driver");
1845 MODULE_AUTHOR("Rameshwar Prasad Sahu <rsahu@apm.com>");
1846 MODULE_AUTHOR("Loc Ho <lho@apm.com>");
1847 MODULE_LICENSE("GPL");
1848 MODULE_VERSION("1.0");