]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/dma/xgene-dma.c
Merge tag 'dmaengine-4.4-rc1' of git://git.infradead.org/users/vkoul/slave-dma
[mirror_ubuntu-zesty-kernel.git] / drivers / dma / xgene-dma.c
1 /*
2 * Applied Micro X-Gene SoC DMA engine Driver
3 *
4 * Copyright (c) 2015, Applied Micro Circuits Corporation
5 * Authors: Rameshwar Prasad Sahu <rsahu@apm.com>
6 * Loc Ho <lho@apm.com>
7 *
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License as published by the
10 * Free Software Foundation; either version 2 of the License, or (at your
11 * option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program. If not, see <http://www.gnu.org/licenses/>.
20 *
21 * NOTE: PM support is currently not available.
22 */
23
24 #include <linux/acpi.h>
25 #include <linux/clk.h>
26 #include <linux/delay.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/dmaengine.h>
29 #include <linux/dmapool.h>
30 #include <linux/interrupt.h>
31 #include <linux/io.h>
32 #include <linux/module.h>
33 #include <linux/of_device.h>
34
35 #include "dmaengine.h"
36
37 /* X-Gene DMA ring csr registers and bit definations */
38 #define XGENE_DMA_RING_CONFIG 0x04
39 #define XGENE_DMA_RING_ENABLE BIT(31)
40 #define XGENE_DMA_RING_ID 0x08
41 #define XGENE_DMA_RING_ID_SETUP(v) ((v) | BIT(31))
42 #define XGENE_DMA_RING_ID_BUF 0x0C
43 #define XGENE_DMA_RING_ID_BUF_SETUP(v) (((v) << 9) | BIT(21))
44 #define XGENE_DMA_RING_THRESLD0_SET1 0x30
45 #define XGENE_DMA_RING_THRESLD0_SET1_VAL 0X64
46 #define XGENE_DMA_RING_THRESLD1_SET1 0x34
47 #define XGENE_DMA_RING_THRESLD1_SET1_VAL 0xC8
48 #define XGENE_DMA_RING_HYSTERESIS 0x68
49 #define XGENE_DMA_RING_HYSTERESIS_VAL 0xFFFFFFFF
50 #define XGENE_DMA_RING_STATE 0x6C
51 #define XGENE_DMA_RING_STATE_WR_BASE 0x70
52 #define XGENE_DMA_RING_NE_INT_MODE 0x017C
53 #define XGENE_DMA_RING_NE_INT_MODE_SET(m, v) \
54 ((m) = ((m) & ~BIT(31 - (v))) | BIT(31 - (v)))
55 #define XGENE_DMA_RING_NE_INT_MODE_RESET(m, v) \
56 ((m) &= (~BIT(31 - (v))))
57 #define XGENE_DMA_RING_CLKEN 0xC208
58 #define XGENE_DMA_RING_SRST 0xC200
59 #define XGENE_DMA_RING_MEM_RAM_SHUTDOWN 0xD070
60 #define XGENE_DMA_RING_BLK_MEM_RDY 0xD074
61 #define XGENE_DMA_RING_BLK_MEM_RDY_VAL 0xFFFFFFFF
62 #define XGENE_DMA_RING_ID_GET(owner, num) (((owner) << 6) | (num))
63 #define XGENE_DMA_RING_DST_ID(v) ((1 << 10) | (v))
64 #define XGENE_DMA_RING_CMD_OFFSET 0x2C
65 #define XGENE_DMA_RING_CMD_BASE_OFFSET(v) ((v) << 6)
66 #define XGENE_DMA_RING_COHERENT_SET(m) \
67 (((u32 *)(m))[2] |= BIT(4))
68 #define XGENE_DMA_RING_ADDRL_SET(m, v) \
69 (((u32 *)(m))[2] |= (((v) >> 8) << 5))
70 #define XGENE_DMA_RING_ADDRH_SET(m, v) \
71 (((u32 *)(m))[3] |= ((v) >> 35))
72 #define XGENE_DMA_RING_ACCEPTLERR_SET(m) \
73 (((u32 *)(m))[3] |= BIT(19))
74 #define XGENE_DMA_RING_SIZE_SET(m, v) \
75 (((u32 *)(m))[3] |= ((v) << 23))
76 #define XGENE_DMA_RING_RECOMBBUF_SET(m) \
77 (((u32 *)(m))[3] |= BIT(27))
78 #define XGENE_DMA_RING_RECOMTIMEOUTL_SET(m) \
79 (((u32 *)(m))[3] |= (0x7 << 28))
80 #define XGENE_DMA_RING_RECOMTIMEOUTH_SET(m) \
81 (((u32 *)(m))[4] |= 0x3)
82 #define XGENE_DMA_RING_SELTHRSH_SET(m) \
83 (((u32 *)(m))[4] |= BIT(3))
84 #define XGENE_DMA_RING_TYPE_SET(m, v) \
85 (((u32 *)(m))[4] |= ((v) << 19))
86
87 /* X-Gene DMA device csr registers and bit definitions */
88 #define XGENE_DMA_IPBRR 0x0
89 #define XGENE_DMA_DEV_ID_RD(v) ((v) & 0x00000FFF)
90 #define XGENE_DMA_BUS_ID_RD(v) (((v) >> 12) & 3)
91 #define XGENE_DMA_REV_NO_RD(v) (((v) >> 14) & 3)
92 #define XGENE_DMA_GCR 0x10
93 #define XGENE_DMA_CH_SETUP(v) \
94 ((v) = ((v) & ~0x000FFFFF) | 0x000AAFFF)
95 #define XGENE_DMA_ENABLE(v) ((v) |= BIT(31))
96 #define XGENE_DMA_DISABLE(v) ((v) &= ~BIT(31))
97 #define XGENE_DMA_RAID6_CONT 0x14
98 #define XGENE_DMA_RAID6_MULTI_CTRL(v) ((v) << 24)
99 #define XGENE_DMA_INT 0x70
100 #define XGENE_DMA_INT_MASK 0x74
101 #define XGENE_DMA_INT_ALL_MASK 0xFFFFFFFF
102 #define XGENE_DMA_INT_ALL_UNMASK 0x0
103 #define XGENE_DMA_INT_MASK_SHIFT 0x14
104 #define XGENE_DMA_RING_INT0_MASK 0x90A0
105 #define XGENE_DMA_RING_INT1_MASK 0x90A8
106 #define XGENE_DMA_RING_INT2_MASK 0x90B0
107 #define XGENE_DMA_RING_INT3_MASK 0x90B8
108 #define XGENE_DMA_RING_INT4_MASK 0x90C0
109 #define XGENE_DMA_CFG_RING_WQ_ASSOC 0x90E0
110 #define XGENE_DMA_ASSOC_RING_MNGR1 0xFFFFFFFF
111 #define XGENE_DMA_MEM_RAM_SHUTDOWN 0xD070
112 #define XGENE_DMA_BLK_MEM_RDY 0xD074
113 #define XGENE_DMA_BLK_MEM_RDY_VAL 0xFFFFFFFF
114 #define XGENE_DMA_RING_CMD_SM_OFFSET 0x8000
115
116 /* X-Gene SoC EFUSE csr register and bit defination */
117 #define XGENE_SOC_JTAG1_SHADOW 0x18
118 #define XGENE_DMA_PQ_DISABLE_MASK BIT(13)
119
120 /* X-Gene DMA Descriptor format */
121 #define XGENE_DMA_DESC_NV_BIT BIT_ULL(50)
122 #define XGENE_DMA_DESC_IN_BIT BIT_ULL(55)
123 #define XGENE_DMA_DESC_C_BIT BIT_ULL(63)
124 #define XGENE_DMA_DESC_DR_BIT BIT_ULL(61)
125 #define XGENE_DMA_DESC_ELERR_POS 46
126 #define XGENE_DMA_DESC_RTYPE_POS 56
127 #define XGENE_DMA_DESC_LERR_POS 60
128 #define XGENE_DMA_DESC_BUFLEN_POS 48
129 #define XGENE_DMA_DESC_HOENQ_NUM_POS 48
130 #define XGENE_DMA_DESC_ELERR_RD(m) \
131 (((m) >> XGENE_DMA_DESC_ELERR_POS) & 0x3)
132 #define XGENE_DMA_DESC_LERR_RD(m) \
133 (((m) >> XGENE_DMA_DESC_LERR_POS) & 0x7)
134 #define XGENE_DMA_DESC_STATUS(elerr, lerr) \
135 (((elerr) << 4) | (lerr))
136
137 /* X-Gene DMA descriptor empty s/w signature */
138 #define XGENE_DMA_DESC_EMPTY_SIGNATURE ~0ULL
139
140 /* X-Gene DMA configurable parameters defines */
141 #define XGENE_DMA_RING_NUM 512
142 #define XGENE_DMA_BUFNUM 0x0
143 #define XGENE_DMA_CPU_BUFNUM 0x18
144 #define XGENE_DMA_RING_OWNER_DMA 0x03
145 #define XGENE_DMA_RING_OWNER_CPU 0x0F
146 #define XGENE_DMA_RING_TYPE_REGULAR 0x01
147 #define XGENE_DMA_RING_WQ_DESC_SIZE 32 /* 32 Bytes */
148 #define XGENE_DMA_RING_NUM_CONFIG 5
149 #define XGENE_DMA_MAX_CHANNEL 4
150 #define XGENE_DMA_XOR_CHANNEL 0
151 #define XGENE_DMA_PQ_CHANNEL 1
152 #define XGENE_DMA_MAX_BYTE_CNT 0x4000 /* 16 KB */
153 #define XGENE_DMA_MAX_64B_DESC_BYTE_CNT 0x14000 /* 80 KB */
154 #define XGENE_DMA_MAX_XOR_SRC 5
155 #define XGENE_DMA_16K_BUFFER_LEN_CODE 0x0
156 #define XGENE_DMA_INVALID_LEN_CODE 0x7800000000000000ULL
157
158 /* X-Gene DMA descriptor error codes */
159 #define ERR_DESC_AXI 0x01
160 #define ERR_BAD_DESC 0x02
161 #define ERR_READ_DATA_AXI 0x03
162 #define ERR_WRITE_DATA_AXI 0x04
163 #define ERR_FBP_TIMEOUT 0x05
164 #define ERR_ECC 0x06
165 #define ERR_DIFF_SIZE 0x08
166 #define ERR_SCT_GAT_LEN 0x09
167 #define ERR_CRC_ERR 0x11
168 #define ERR_CHKSUM 0x12
169 #define ERR_DIF 0x13
170
171 /* X-Gene DMA error interrupt codes */
172 #define ERR_DIF_SIZE_INT 0x0
173 #define ERR_GS_ERR_INT 0x1
174 #define ERR_FPB_TIMEO_INT 0x2
175 #define ERR_WFIFO_OVF_INT 0x3
176 #define ERR_RFIFO_OVF_INT 0x4
177 #define ERR_WR_TIMEO_INT 0x5
178 #define ERR_RD_TIMEO_INT 0x6
179 #define ERR_WR_ERR_INT 0x7
180 #define ERR_RD_ERR_INT 0x8
181 #define ERR_BAD_DESC_INT 0x9
182 #define ERR_DESC_DST_INT 0xA
183 #define ERR_DESC_SRC_INT 0xB
184
185 /* X-Gene DMA flyby operation code */
186 #define FLYBY_2SRC_XOR 0x80
187 #define FLYBY_3SRC_XOR 0x90
188 #define FLYBY_4SRC_XOR 0xA0
189 #define FLYBY_5SRC_XOR 0xB0
190
191 /* X-Gene DMA SW descriptor flags */
192 #define XGENE_DMA_FLAG_64B_DESC BIT(0)
193
194 /* Define to dump X-Gene DMA descriptor */
195 #define XGENE_DMA_DESC_DUMP(desc, m) \
196 print_hex_dump(KERN_ERR, (m), \
197 DUMP_PREFIX_ADDRESS, 16, 8, (desc), 32, 0)
198
199 #define to_dma_desc_sw(tx) \
200 container_of(tx, struct xgene_dma_desc_sw, tx)
201 #define to_dma_chan(dchan) \
202 container_of(dchan, struct xgene_dma_chan, dma_chan)
203
204 #define chan_dbg(chan, fmt, arg...) \
205 dev_dbg(chan->dev, "%s: " fmt, chan->name, ##arg)
206 #define chan_err(chan, fmt, arg...) \
207 dev_err(chan->dev, "%s: " fmt, chan->name, ##arg)
208
209 struct xgene_dma_desc_hw {
210 __le64 m0;
211 __le64 m1;
212 __le64 m2;
213 __le64 m3;
214 };
215
216 enum xgene_dma_ring_cfgsize {
217 XGENE_DMA_RING_CFG_SIZE_512B,
218 XGENE_DMA_RING_CFG_SIZE_2KB,
219 XGENE_DMA_RING_CFG_SIZE_16KB,
220 XGENE_DMA_RING_CFG_SIZE_64KB,
221 XGENE_DMA_RING_CFG_SIZE_512KB,
222 XGENE_DMA_RING_CFG_SIZE_INVALID
223 };
224
225 struct xgene_dma_ring {
226 struct xgene_dma *pdma;
227 u8 buf_num;
228 u16 id;
229 u16 num;
230 u16 head;
231 u16 owner;
232 u16 slots;
233 u16 dst_ring_num;
234 u32 size;
235 void __iomem *cmd;
236 void __iomem *cmd_base;
237 dma_addr_t desc_paddr;
238 u32 state[XGENE_DMA_RING_NUM_CONFIG];
239 enum xgene_dma_ring_cfgsize cfgsize;
240 union {
241 void *desc_vaddr;
242 struct xgene_dma_desc_hw *desc_hw;
243 };
244 };
245
246 struct xgene_dma_desc_sw {
247 struct xgene_dma_desc_hw desc1;
248 struct xgene_dma_desc_hw desc2;
249 u32 flags;
250 struct list_head node;
251 struct list_head tx_list;
252 struct dma_async_tx_descriptor tx;
253 };
254
255 /**
256 * struct xgene_dma_chan - internal representation of an X-Gene DMA channel
257 * @dma_chan: dmaengine channel object member
258 * @pdma: X-Gene DMA device structure reference
259 * @dev: struct device reference for dma mapping api
260 * @id: raw id of this channel
261 * @rx_irq: channel IRQ
262 * @name: name of X-Gene DMA channel
263 * @lock: serializes enqueue/dequeue operations to the descriptor pool
264 * @pending: number of transaction request pushed to DMA controller for
265 * execution, but still waiting for completion,
266 * @max_outstanding: max number of outstanding request we can push to channel
267 * @ld_pending: descriptors which are queued to run, but have not yet been
268 * submitted to the hardware for execution
269 * @ld_running: descriptors which are currently being executing by the hardware
270 * @ld_completed: descriptors which have finished execution by the hardware.
271 * These descriptors have already had their cleanup actions run. They
272 * are waiting for the ACK bit to be set by the async tx API.
273 * @desc_pool: descriptor pool for DMA operations
274 * @tasklet: bottom half where all completed descriptors cleans
275 * @tx_ring: transmit ring descriptor that we use to prepare actual
276 * descriptors for further executions
277 * @rx_ring: receive ring descriptor that we use to get completed DMA
278 * descriptors during cleanup time
279 */
280 struct xgene_dma_chan {
281 struct dma_chan dma_chan;
282 struct xgene_dma *pdma;
283 struct device *dev;
284 int id;
285 int rx_irq;
286 char name[10];
287 spinlock_t lock;
288 int pending;
289 int max_outstanding;
290 struct list_head ld_pending;
291 struct list_head ld_running;
292 struct list_head ld_completed;
293 struct dma_pool *desc_pool;
294 struct tasklet_struct tasklet;
295 struct xgene_dma_ring tx_ring;
296 struct xgene_dma_ring rx_ring;
297 };
298
299 /**
300 * struct xgene_dma - internal representation of an X-Gene DMA device
301 * @err_irq: DMA error irq number
302 * @ring_num: start id number for DMA ring
303 * @csr_dma: base for DMA register access
304 * @csr_ring: base for DMA ring register access
305 * @csr_ring_cmd: base for DMA ring command register access
306 * @csr_efuse: base for efuse register access
307 * @dma_dev: embedded struct dma_device
308 * @chan: reference to X-Gene DMA channels
309 */
310 struct xgene_dma {
311 struct device *dev;
312 struct clk *clk;
313 int err_irq;
314 int ring_num;
315 void __iomem *csr_dma;
316 void __iomem *csr_ring;
317 void __iomem *csr_ring_cmd;
318 void __iomem *csr_efuse;
319 struct dma_device dma_dev[XGENE_DMA_MAX_CHANNEL];
320 struct xgene_dma_chan chan[XGENE_DMA_MAX_CHANNEL];
321 };
322
323 static const char * const xgene_dma_desc_err[] = {
324 [ERR_DESC_AXI] = "AXI error when reading src/dst link list",
325 [ERR_BAD_DESC] = "ERR or El_ERR fields not set to zero in desc",
326 [ERR_READ_DATA_AXI] = "AXI error when reading data",
327 [ERR_WRITE_DATA_AXI] = "AXI error when writing data",
328 [ERR_FBP_TIMEOUT] = "Timeout on bufpool fetch",
329 [ERR_ECC] = "ECC double bit error",
330 [ERR_DIFF_SIZE] = "Bufpool too small to hold all the DIF result",
331 [ERR_SCT_GAT_LEN] = "Gather and scatter data length not same",
332 [ERR_CRC_ERR] = "CRC error",
333 [ERR_CHKSUM] = "Checksum error",
334 [ERR_DIF] = "DIF error",
335 };
336
337 static const char * const xgene_dma_err[] = {
338 [ERR_DIF_SIZE_INT] = "DIF size error",
339 [ERR_GS_ERR_INT] = "Gather scatter not same size error",
340 [ERR_FPB_TIMEO_INT] = "Free pool time out error",
341 [ERR_WFIFO_OVF_INT] = "Write FIFO over flow error",
342 [ERR_RFIFO_OVF_INT] = "Read FIFO over flow error",
343 [ERR_WR_TIMEO_INT] = "Write time out error",
344 [ERR_RD_TIMEO_INT] = "Read time out error",
345 [ERR_WR_ERR_INT] = "HBF bus write error",
346 [ERR_RD_ERR_INT] = "HBF bus read error",
347 [ERR_BAD_DESC_INT] = "Ring descriptor HE0 not set error",
348 [ERR_DESC_DST_INT] = "HFB reading dst link address error",
349 [ERR_DESC_SRC_INT] = "HFB reading src link address error",
350 };
351
352 static bool is_pq_enabled(struct xgene_dma *pdma)
353 {
354 u32 val;
355
356 val = ioread32(pdma->csr_efuse + XGENE_SOC_JTAG1_SHADOW);
357 return !(val & XGENE_DMA_PQ_DISABLE_MASK);
358 }
359
360 static u64 xgene_dma_encode_len(size_t len)
361 {
362 return (len < XGENE_DMA_MAX_BYTE_CNT) ?
363 ((u64)len << XGENE_DMA_DESC_BUFLEN_POS) :
364 XGENE_DMA_16K_BUFFER_LEN_CODE;
365 }
366
367 static u8 xgene_dma_encode_xor_flyby(u32 src_cnt)
368 {
369 static u8 flyby_type[] = {
370 FLYBY_2SRC_XOR, /* Dummy */
371 FLYBY_2SRC_XOR, /* Dummy */
372 FLYBY_2SRC_XOR,
373 FLYBY_3SRC_XOR,
374 FLYBY_4SRC_XOR,
375 FLYBY_5SRC_XOR
376 };
377
378 return flyby_type[src_cnt];
379 }
380
381 static void xgene_dma_set_src_buffer(__le64 *ext8, size_t *len,
382 dma_addr_t *paddr)
383 {
384 size_t nbytes = (*len < XGENE_DMA_MAX_BYTE_CNT) ?
385 *len : XGENE_DMA_MAX_BYTE_CNT;
386
387 *ext8 |= cpu_to_le64(*paddr);
388 *ext8 |= cpu_to_le64(xgene_dma_encode_len(nbytes));
389 *len -= nbytes;
390 *paddr += nbytes;
391 }
392
393 static void xgene_dma_invalidate_buffer(__le64 *ext8)
394 {
395 *ext8 |= cpu_to_le64(XGENE_DMA_INVALID_LEN_CODE);
396 }
397
398 static __le64 *xgene_dma_lookup_ext8(struct xgene_dma_desc_hw *desc, int idx)
399 {
400 switch (idx) {
401 case 0:
402 return &desc->m1;
403 case 1:
404 return &desc->m0;
405 case 2:
406 return &desc->m3;
407 case 3:
408 return &desc->m2;
409 default:
410 pr_err("Invalid dma descriptor index\n");
411 }
412
413 return NULL;
414 }
415
416 static void xgene_dma_init_desc(struct xgene_dma_desc_hw *desc,
417 u16 dst_ring_num)
418 {
419 desc->m0 |= cpu_to_le64(XGENE_DMA_DESC_IN_BIT);
420 desc->m0 |= cpu_to_le64((u64)XGENE_DMA_RING_OWNER_DMA <<
421 XGENE_DMA_DESC_RTYPE_POS);
422 desc->m1 |= cpu_to_le64(XGENE_DMA_DESC_C_BIT);
423 desc->m3 |= cpu_to_le64((u64)dst_ring_num <<
424 XGENE_DMA_DESC_HOENQ_NUM_POS);
425 }
426
427 static void xgene_dma_prep_cpy_desc(struct xgene_dma_chan *chan,
428 struct xgene_dma_desc_sw *desc_sw,
429 dma_addr_t dst, dma_addr_t src,
430 size_t len)
431 {
432 struct xgene_dma_desc_hw *desc1, *desc2;
433 int i;
434
435 /* Get 1st descriptor */
436 desc1 = &desc_sw->desc1;
437 xgene_dma_init_desc(desc1, chan->tx_ring.dst_ring_num);
438
439 /* Set destination address */
440 desc1->m2 |= cpu_to_le64(XGENE_DMA_DESC_DR_BIT);
441 desc1->m3 |= cpu_to_le64(dst);
442
443 /* Set 1st source address */
444 xgene_dma_set_src_buffer(&desc1->m1, &len, &src);
445
446 if (!len)
447 return;
448
449 /*
450 * We need to split this source buffer,
451 * and need to use 2nd descriptor
452 */
453 desc2 = &desc_sw->desc2;
454 desc1->m0 |= cpu_to_le64(XGENE_DMA_DESC_NV_BIT);
455
456 /* Set 2nd to 5th source address */
457 for (i = 0; i < 4 && len; i++)
458 xgene_dma_set_src_buffer(xgene_dma_lookup_ext8(desc2, i),
459 &len, &src);
460
461 /* Invalidate unused source address field */
462 for (; i < 4; i++)
463 xgene_dma_invalidate_buffer(xgene_dma_lookup_ext8(desc2, i));
464
465 /* Updated flag that we have prepared 64B descriptor */
466 desc_sw->flags |= XGENE_DMA_FLAG_64B_DESC;
467 }
468
469 static void xgene_dma_prep_xor_desc(struct xgene_dma_chan *chan,
470 struct xgene_dma_desc_sw *desc_sw,
471 dma_addr_t *dst, dma_addr_t *src,
472 u32 src_cnt, size_t *nbytes,
473 const u8 *scf)
474 {
475 struct xgene_dma_desc_hw *desc1, *desc2;
476 size_t len = *nbytes;
477 int i;
478
479 desc1 = &desc_sw->desc1;
480 desc2 = &desc_sw->desc2;
481
482 /* Initialize DMA descriptor */
483 xgene_dma_init_desc(desc1, chan->tx_ring.dst_ring_num);
484
485 /* Set destination address */
486 desc1->m2 |= cpu_to_le64(XGENE_DMA_DESC_DR_BIT);
487 desc1->m3 |= cpu_to_le64(*dst);
488
489 /* We have multiple source addresses, so need to set NV bit*/
490 desc1->m0 |= cpu_to_le64(XGENE_DMA_DESC_NV_BIT);
491
492 /* Set flyby opcode */
493 desc1->m2 |= cpu_to_le64(xgene_dma_encode_xor_flyby(src_cnt));
494
495 /* Set 1st to 5th source addresses */
496 for (i = 0; i < src_cnt; i++) {
497 len = *nbytes;
498 xgene_dma_set_src_buffer((i == 0) ? &desc1->m1 :
499 xgene_dma_lookup_ext8(desc2, i - 1),
500 &len, &src[i]);
501 desc1->m2 |= cpu_to_le64((scf[i] << ((i + 1) * 8)));
502 }
503
504 /* Update meta data */
505 *nbytes = len;
506 *dst += XGENE_DMA_MAX_BYTE_CNT;
507
508 /* We need always 64B descriptor to perform xor or pq operations */
509 desc_sw->flags |= XGENE_DMA_FLAG_64B_DESC;
510 }
511
512 static dma_cookie_t xgene_dma_tx_submit(struct dma_async_tx_descriptor *tx)
513 {
514 struct xgene_dma_desc_sw *desc;
515 struct xgene_dma_chan *chan;
516 dma_cookie_t cookie;
517
518 if (unlikely(!tx))
519 return -EINVAL;
520
521 chan = to_dma_chan(tx->chan);
522 desc = to_dma_desc_sw(tx);
523
524 spin_lock_bh(&chan->lock);
525
526 cookie = dma_cookie_assign(tx);
527
528 /* Add this transaction list onto the tail of the pending queue */
529 list_splice_tail_init(&desc->tx_list, &chan->ld_pending);
530
531 spin_unlock_bh(&chan->lock);
532
533 return cookie;
534 }
535
536 static void xgene_dma_clean_descriptor(struct xgene_dma_chan *chan,
537 struct xgene_dma_desc_sw *desc)
538 {
539 list_del(&desc->node);
540 chan_dbg(chan, "LD %p free\n", desc);
541 dma_pool_free(chan->desc_pool, desc, desc->tx.phys);
542 }
543
544 static struct xgene_dma_desc_sw *xgene_dma_alloc_descriptor(
545 struct xgene_dma_chan *chan)
546 {
547 struct xgene_dma_desc_sw *desc;
548 dma_addr_t phys;
549
550 desc = dma_pool_zalloc(chan->desc_pool, GFP_NOWAIT, &phys);
551 if (!desc) {
552 chan_err(chan, "Failed to allocate LDs\n");
553 return NULL;
554 }
555
556 INIT_LIST_HEAD(&desc->tx_list);
557 desc->tx.phys = phys;
558 desc->tx.tx_submit = xgene_dma_tx_submit;
559 dma_async_tx_descriptor_init(&desc->tx, &chan->dma_chan);
560
561 chan_dbg(chan, "LD %p allocated\n", desc);
562
563 return desc;
564 }
565
566 /**
567 * xgene_dma_clean_completed_descriptor - free all descriptors which
568 * has been completed and acked
569 * @chan: X-Gene DMA channel
570 *
571 * This function is used on all completed and acked descriptors.
572 */
573 static void xgene_dma_clean_completed_descriptor(struct xgene_dma_chan *chan)
574 {
575 struct xgene_dma_desc_sw *desc, *_desc;
576
577 /* Run the callback for each descriptor, in order */
578 list_for_each_entry_safe(desc, _desc, &chan->ld_completed, node) {
579 if (async_tx_test_ack(&desc->tx))
580 xgene_dma_clean_descriptor(chan, desc);
581 }
582 }
583
584 /**
585 * xgene_dma_run_tx_complete_actions - cleanup a single link descriptor
586 * @chan: X-Gene DMA channel
587 * @desc: descriptor to cleanup and free
588 *
589 * This function is used on a descriptor which has been executed by the DMA
590 * controller. It will run any callbacks, submit any dependencies.
591 */
592 static void xgene_dma_run_tx_complete_actions(struct xgene_dma_chan *chan,
593 struct xgene_dma_desc_sw *desc)
594 {
595 struct dma_async_tx_descriptor *tx = &desc->tx;
596
597 /*
598 * If this is not the last transaction in the group,
599 * then no need to complete cookie and run any callback as
600 * this is not the tx_descriptor which had been sent to caller
601 * of this DMA request
602 */
603
604 if (tx->cookie == 0)
605 return;
606
607 dma_cookie_complete(tx);
608
609 /* Run the link descriptor callback function */
610 if (tx->callback)
611 tx->callback(tx->callback_param);
612
613 dma_descriptor_unmap(tx);
614
615 /* Run any dependencies */
616 dma_run_dependencies(tx);
617 }
618
619 /**
620 * xgene_dma_clean_running_descriptor - move the completed descriptor from
621 * ld_running to ld_completed
622 * @chan: X-Gene DMA channel
623 * @desc: the descriptor which is completed
624 *
625 * Free the descriptor directly if acked by async_tx api,
626 * else move it to queue ld_completed.
627 */
628 static void xgene_dma_clean_running_descriptor(struct xgene_dma_chan *chan,
629 struct xgene_dma_desc_sw *desc)
630 {
631 /* Remove from the list of running transactions */
632 list_del(&desc->node);
633
634 /*
635 * the client is allowed to attach dependent operations
636 * until 'ack' is set
637 */
638 if (!async_tx_test_ack(&desc->tx)) {
639 /*
640 * Move this descriptor to the list of descriptors which is
641 * completed, but still awaiting the 'ack' bit to be set.
642 */
643 list_add_tail(&desc->node, &chan->ld_completed);
644 return;
645 }
646
647 chan_dbg(chan, "LD %p free\n", desc);
648 dma_pool_free(chan->desc_pool, desc, desc->tx.phys);
649 }
650
651 static void xgene_chan_xfer_request(struct xgene_dma_chan *chan,
652 struct xgene_dma_desc_sw *desc_sw)
653 {
654 struct xgene_dma_ring *ring = &chan->tx_ring;
655 struct xgene_dma_desc_hw *desc_hw;
656
657 /* Get hw descriptor from DMA tx ring */
658 desc_hw = &ring->desc_hw[ring->head];
659
660 /*
661 * Increment the head count to point next
662 * descriptor for next time
663 */
664 if (++ring->head == ring->slots)
665 ring->head = 0;
666
667 /* Copy prepared sw descriptor data to hw descriptor */
668 memcpy(desc_hw, &desc_sw->desc1, sizeof(*desc_hw));
669
670 /*
671 * Check if we have prepared 64B descriptor,
672 * in this case we need one more hw descriptor
673 */
674 if (desc_sw->flags & XGENE_DMA_FLAG_64B_DESC) {
675 desc_hw = &ring->desc_hw[ring->head];
676
677 if (++ring->head == ring->slots)
678 ring->head = 0;
679
680 memcpy(desc_hw, &desc_sw->desc2, sizeof(*desc_hw));
681 }
682
683 /* Increment the pending transaction count */
684 chan->pending += ((desc_sw->flags &
685 XGENE_DMA_FLAG_64B_DESC) ? 2 : 1);
686
687 /* Notify the hw that we have descriptor ready for execution */
688 iowrite32((desc_sw->flags & XGENE_DMA_FLAG_64B_DESC) ?
689 2 : 1, ring->cmd);
690 }
691
692 /**
693 * xgene_chan_xfer_ld_pending - push any pending transactions to hw
694 * @chan : X-Gene DMA channel
695 *
696 * LOCKING: must hold chan->lock
697 */
698 static void xgene_chan_xfer_ld_pending(struct xgene_dma_chan *chan)
699 {
700 struct xgene_dma_desc_sw *desc_sw, *_desc_sw;
701
702 /*
703 * If the list of pending descriptors is empty, then we
704 * don't need to do any work at all
705 */
706 if (list_empty(&chan->ld_pending)) {
707 chan_dbg(chan, "No pending LDs\n");
708 return;
709 }
710
711 /*
712 * Move elements from the queue of pending transactions onto the list
713 * of running transactions and push it to hw for further executions
714 */
715 list_for_each_entry_safe(desc_sw, _desc_sw, &chan->ld_pending, node) {
716 /*
717 * Check if have pushed max number of transactions to hw
718 * as capable, so let's stop here and will push remaining
719 * elements from pening ld queue after completing some
720 * descriptors that we have already pushed
721 */
722 if (chan->pending >= chan->max_outstanding)
723 return;
724
725 xgene_chan_xfer_request(chan, desc_sw);
726
727 /*
728 * Delete this element from ld pending queue and append it to
729 * ld running queue
730 */
731 list_move_tail(&desc_sw->node, &chan->ld_running);
732 }
733 }
734
735 /**
736 * xgene_dma_cleanup_descriptors - cleanup link descriptors which are completed
737 * and move them to ld_completed to free until flag 'ack' is set
738 * @chan: X-Gene DMA channel
739 *
740 * This function is used on descriptors which have been executed by the DMA
741 * controller. It will run any callbacks, submit any dependencies, then
742 * free these descriptors if flag 'ack' is set.
743 */
744 static void xgene_dma_cleanup_descriptors(struct xgene_dma_chan *chan)
745 {
746 struct xgene_dma_ring *ring = &chan->rx_ring;
747 struct xgene_dma_desc_sw *desc_sw, *_desc_sw;
748 struct xgene_dma_desc_hw *desc_hw;
749 struct list_head ld_completed;
750 u8 status;
751
752 INIT_LIST_HEAD(&ld_completed);
753
754 spin_lock_bh(&chan->lock);
755
756 /* Clean already completed and acked descriptors */
757 xgene_dma_clean_completed_descriptor(chan);
758
759 /* Move all completed descriptors to ld completed queue, in order */
760 list_for_each_entry_safe(desc_sw, _desc_sw, &chan->ld_running, node) {
761 /* Get subsequent hw descriptor from DMA rx ring */
762 desc_hw = &ring->desc_hw[ring->head];
763
764 /* Check if this descriptor has been completed */
765 if (unlikely(le64_to_cpu(desc_hw->m0) ==
766 XGENE_DMA_DESC_EMPTY_SIGNATURE))
767 break;
768
769 if (++ring->head == ring->slots)
770 ring->head = 0;
771
772 /* Check if we have any error with DMA transactions */
773 status = XGENE_DMA_DESC_STATUS(
774 XGENE_DMA_DESC_ELERR_RD(le64_to_cpu(
775 desc_hw->m0)),
776 XGENE_DMA_DESC_LERR_RD(le64_to_cpu(
777 desc_hw->m0)));
778 if (status) {
779 /* Print the DMA error type */
780 chan_err(chan, "%s\n", xgene_dma_desc_err[status]);
781
782 /*
783 * We have DMA transactions error here. Dump DMA Tx
784 * and Rx descriptors for this request */
785 XGENE_DMA_DESC_DUMP(&desc_sw->desc1,
786 "X-Gene DMA TX DESC1: ");
787
788 if (desc_sw->flags & XGENE_DMA_FLAG_64B_DESC)
789 XGENE_DMA_DESC_DUMP(&desc_sw->desc2,
790 "X-Gene DMA TX DESC2: ");
791
792 XGENE_DMA_DESC_DUMP(desc_hw,
793 "X-Gene DMA RX ERR DESC: ");
794 }
795
796 /* Notify the hw about this completed descriptor */
797 iowrite32(-1, ring->cmd);
798
799 /* Mark this hw descriptor as processed */
800 desc_hw->m0 = cpu_to_le64(XGENE_DMA_DESC_EMPTY_SIGNATURE);
801
802 /*
803 * Decrement the pending transaction count
804 * as we have processed one
805 */
806 chan->pending -= ((desc_sw->flags &
807 XGENE_DMA_FLAG_64B_DESC) ? 2 : 1);
808
809 /*
810 * Delete this node from ld running queue and append it to
811 * ld completed queue for further processing
812 */
813 list_move_tail(&desc_sw->node, &ld_completed);
814 }
815
816 /*
817 * Start any pending transactions automatically
818 * In the ideal case, we keep the DMA controller busy while we go
819 * ahead and free the descriptors below.
820 */
821 xgene_chan_xfer_ld_pending(chan);
822
823 spin_unlock_bh(&chan->lock);
824
825 /* Run the callback for each descriptor, in order */
826 list_for_each_entry_safe(desc_sw, _desc_sw, &ld_completed, node) {
827 xgene_dma_run_tx_complete_actions(chan, desc_sw);
828 xgene_dma_clean_running_descriptor(chan, desc_sw);
829 }
830 }
831
832 static int xgene_dma_alloc_chan_resources(struct dma_chan *dchan)
833 {
834 struct xgene_dma_chan *chan = to_dma_chan(dchan);
835
836 /* Has this channel already been allocated? */
837 if (chan->desc_pool)
838 return 1;
839
840 chan->desc_pool = dma_pool_create(chan->name, chan->dev,
841 sizeof(struct xgene_dma_desc_sw),
842 0, 0);
843 if (!chan->desc_pool) {
844 chan_err(chan, "Failed to allocate descriptor pool\n");
845 return -ENOMEM;
846 }
847
848 chan_dbg(chan, "Allocate descripto pool\n");
849
850 return 1;
851 }
852
853 /**
854 * xgene_dma_free_desc_list - Free all descriptors in a queue
855 * @chan: X-Gene DMA channel
856 * @list: the list to free
857 *
858 * LOCKING: must hold chan->lock
859 */
860 static void xgene_dma_free_desc_list(struct xgene_dma_chan *chan,
861 struct list_head *list)
862 {
863 struct xgene_dma_desc_sw *desc, *_desc;
864
865 list_for_each_entry_safe(desc, _desc, list, node)
866 xgene_dma_clean_descriptor(chan, desc);
867 }
868
869 static void xgene_dma_free_chan_resources(struct dma_chan *dchan)
870 {
871 struct xgene_dma_chan *chan = to_dma_chan(dchan);
872
873 chan_dbg(chan, "Free all resources\n");
874
875 if (!chan->desc_pool)
876 return;
877
878 /* Process all running descriptor */
879 xgene_dma_cleanup_descriptors(chan);
880
881 spin_lock_bh(&chan->lock);
882
883 /* Clean all link descriptor queues */
884 xgene_dma_free_desc_list(chan, &chan->ld_pending);
885 xgene_dma_free_desc_list(chan, &chan->ld_running);
886 xgene_dma_free_desc_list(chan, &chan->ld_completed);
887
888 spin_unlock_bh(&chan->lock);
889
890 /* Delete this channel DMA pool */
891 dma_pool_destroy(chan->desc_pool);
892 chan->desc_pool = NULL;
893 }
894
895 static struct dma_async_tx_descriptor *xgene_dma_prep_sg(
896 struct dma_chan *dchan, struct scatterlist *dst_sg,
897 u32 dst_nents, struct scatterlist *src_sg,
898 u32 src_nents, unsigned long flags)
899 {
900 struct xgene_dma_desc_sw *first = NULL, *new = NULL;
901 struct xgene_dma_chan *chan;
902 size_t dst_avail, src_avail;
903 dma_addr_t dst, src;
904 size_t len;
905
906 if (unlikely(!dchan))
907 return NULL;
908
909 if (unlikely(!dst_nents || !src_nents))
910 return NULL;
911
912 if (unlikely(!dst_sg || !src_sg))
913 return NULL;
914
915 chan = to_dma_chan(dchan);
916
917 /* Get prepared for the loop */
918 dst_avail = sg_dma_len(dst_sg);
919 src_avail = sg_dma_len(src_sg);
920 dst_nents--;
921 src_nents--;
922
923 /* Run until we are out of scatterlist entries */
924 while (true) {
925 /* Create the largest transaction possible */
926 len = min_t(size_t, src_avail, dst_avail);
927 len = min_t(size_t, len, XGENE_DMA_MAX_64B_DESC_BYTE_CNT);
928 if (len == 0)
929 goto fetch;
930
931 dst = sg_dma_address(dst_sg) + sg_dma_len(dst_sg) - dst_avail;
932 src = sg_dma_address(src_sg) + sg_dma_len(src_sg) - src_avail;
933
934 /* Allocate the link descriptor from DMA pool */
935 new = xgene_dma_alloc_descriptor(chan);
936 if (!new)
937 goto fail;
938
939 /* Prepare DMA descriptor */
940 xgene_dma_prep_cpy_desc(chan, new, dst, src, len);
941
942 if (!first)
943 first = new;
944
945 new->tx.cookie = 0;
946 async_tx_ack(&new->tx);
947
948 /* update metadata */
949 dst_avail -= len;
950 src_avail -= len;
951
952 /* Insert the link descriptor to the LD ring */
953 list_add_tail(&new->node, &first->tx_list);
954
955 fetch:
956 /* fetch the next dst scatterlist entry */
957 if (dst_avail == 0) {
958 /* no more entries: we're done */
959 if (dst_nents == 0)
960 break;
961
962 /* fetch the next entry: if there are no more: done */
963 dst_sg = sg_next(dst_sg);
964 if (!dst_sg)
965 break;
966
967 dst_nents--;
968 dst_avail = sg_dma_len(dst_sg);
969 }
970
971 /* fetch the next src scatterlist entry */
972 if (src_avail == 0) {
973 /* no more entries: we're done */
974 if (src_nents == 0)
975 break;
976
977 /* fetch the next entry: if there are no more: done */
978 src_sg = sg_next(src_sg);
979 if (!src_sg)
980 break;
981
982 src_nents--;
983 src_avail = sg_dma_len(src_sg);
984 }
985 }
986
987 if (!new)
988 return NULL;
989
990 new->tx.flags = flags; /* client is in control of this ack */
991 new->tx.cookie = -EBUSY;
992 list_splice(&first->tx_list, &new->tx_list);
993
994 return &new->tx;
995 fail:
996 if (!first)
997 return NULL;
998
999 xgene_dma_free_desc_list(chan, &first->tx_list);
1000 return NULL;
1001 }
1002
1003 static struct dma_async_tx_descriptor *xgene_dma_prep_xor(
1004 struct dma_chan *dchan, dma_addr_t dst, dma_addr_t *src,
1005 u32 src_cnt, size_t len, unsigned long flags)
1006 {
1007 struct xgene_dma_desc_sw *first = NULL, *new;
1008 struct xgene_dma_chan *chan;
1009 static u8 multi[XGENE_DMA_MAX_XOR_SRC] = {
1010 0x01, 0x01, 0x01, 0x01, 0x01};
1011
1012 if (unlikely(!dchan || !len))
1013 return NULL;
1014
1015 chan = to_dma_chan(dchan);
1016
1017 do {
1018 /* Allocate the link descriptor from DMA pool */
1019 new = xgene_dma_alloc_descriptor(chan);
1020 if (!new)
1021 goto fail;
1022
1023 /* Prepare xor DMA descriptor */
1024 xgene_dma_prep_xor_desc(chan, new, &dst, src,
1025 src_cnt, &len, multi);
1026
1027 if (!first)
1028 first = new;
1029
1030 new->tx.cookie = 0;
1031 async_tx_ack(&new->tx);
1032
1033 /* Insert the link descriptor to the LD ring */
1034 list_add_tail(&new->node, &first->tx_list);
1035 } while (len);
1036
1037 new->tx.flags = flags; /* client is in control of this ack */
1038 new->tx.cookie = -EBUSY;
1039 list_splice(&first->tx_list, &new->tx_list);
1040
1041 return &new->tx;
1042
1043 fail:
1044 if (!first)
1045 return NULL;
1046
1047 xgene_dma_free_desc_list(chan, &first->tx_list);
1048 return NULL;
1049 }
1050
1051 static struct dma_async_tx_descriptor *xgene_dma_prep_pq(
1052 struct dma_chan *dchan, dma_addr_t *dst, dma_addr_t *src,
1053 u32 src_cnt, const u8 *scf, size_t len, unsigned long flags)
1054 {
1055 struct xgene_dma_desc_sw *first = NULL, *new;
1056 struct xgene_dma_chan *chan;
1057 size_t _len = len;
1058 dma_addr_t _src[XGENE_DMA_MAX_XOR_SRC];
1059 static u8 multi[XGENE_DMA_MAX_XOR_SRC] = {0x01, 0x01, 0x01, 0x01, 0x01};
1060
1061 if (unlikely(!dchan || !len))
1062 return NULL;
1063
1064 chan = to_dma_chan(dchan);
1065
1066 /*
1067 * Save source addresses on local variable, may be we have to
1068 * prepare two descriptor to generate P and Q if both enabled
1069 * in the flags by client
1070 */
1071 memcpy(_src, src, sizeof(*src) * src_cnt);
1072
1073 if (flags & DMA_PREP_PQ_DISABLE_P)
1074 len = 0;
1075
1076 if (flags & DMA_PREP_PQ_DISABLE_Q)
1077 _len = 0;
1078
1079 do {
1080 /* Allocate the link descriptor from DMA pool */
1081 new = xgene_dma_alloc_descriptor(chan);
1082 if (!new)
1083 goto fail;
1084
1085 if (!first)
1086 first = new;
1087
1088 new->tx.cookie = 0;
1089 async_tx_ack(&new->tx);
1090
1091 /* Insert the link descriptor to the LD ring */
1092 list_add_tail(&new->node, &first->tx_list);
1093
1094 /*
1095 * Prepare DMA descriptor to generate P,
1096 * if DMA_PREP_PQ_DISABLE_P flag is not set
1097 */
1098 if (len) {
1099 xgene_dma_prep_xor_desc(chan, new, &dst[0], src,
1100 src_cnt, &len, multi);
1101 continue;
1102 }
1103
1104 /*
1105 * Prepare DMA descriptor to generate Q,
1106 * if DMA_PREP_PQ_DISABLE_Q flag is not set
1107 */
1108 if (_len) {
1109 xgene_dma_prep_xor_desc(chan, new, &dst[1], _src,
1110 src_cnt, &_len, scf);
1111 }
1112 } while (len || _len);
1113
1114 new->tx.flags = flags; /* client is in control of this ack */
1115 new->tx.cookie = -EBUSY;
1116 list_splice(&first->tx_list, &new->tx_list);
1117
1118 return &new->tx;
1119
1120 fail:
1121 if (!first)
1122 return NULL;
1123
1124 xgene_dma_free_desc_list(chan, &first->tx_list);
1125 return NULL;
1126 }
1127
1128 static void xgene_dma_issue_pending(struct dma_chan *dchan)
1129 {
1130 struct xgene_dma_chan *chan = to_dma_chan(dchan);
1131
1132 spin_lock_bh(&chan->lock);
1133 xgene_chan_xfer_ld_pending(chan);
1134 spin_unlock_bh(&chan->lock);
1135 }
1136
1137 static enum dma_status xgene_dma_tx_status(struct dma_chan *dchan,
1138 dma_cookie_t cookie,
1139 struct dma_tx_state *txstate)
1140 {
1141 return dma_cookie_status(dchan, cookie, txstate);
1142 }
1143
1144 static void xgene_dma_tasklet_cb(unsigned long data)
1145 {
1146 struct xgene_dma_chan *chan = (struct xgene_dma_chan *)data;
1147
1148 /* Run all cleanup for descriptors which have been completed */
1149 xgene_dma_cleanup_descriptors(chan);
1150
1151 /* Re-enable DMA channel IRQ */
1152 enable_irq(chan->rx_irq);
1153 }
1154
1155 static irqreturn_t xgene_dma_chan_ring_isr(int irq, void *id)
1156 {
1157 struct xgene_dma_chan *chan = (struct xgene_dma_chan *)id;
1158
1159 BUG_ON(!chan);
1160
1161 /*
1162 * Disable DMA channel IRQ until we process completed
1163 * descriptors
1164 */
1165 disable_irq_nosync(chan->rx_irq);
1166
1167 /*
1168 * Schedule the tasklet to handle all cleanup of the current
1169 * transaction. It will start a new transaction if there is
1170 * one pending.
1171 */
1172 tasklet_schedule(&chan->tasklet);
1173
1174 return IRQ_HANDLED;
1175 }
1176
1177 static irqreturn_t xgene_dma_err_isr(int irq, void *id)
1178 {
1179 struct xgene_dma *pdma = (struct xgene_dma *)id;
1180 unsigned long int_mask;
1181 u32 val, i;
1182
1183 val = ioread32(pdma->csr_dma + XGENE_DMA_INT);
1184
1185 /* Clear DMA interrupts */
1186 iowrite32(val, pdma->csr_dma + XGENE_DMA_INT);
1187
1188 /* Print DMA error info */
1189 int_mask = val >> XGENE_DMA_INT_MASK_SHIFT;
1190 for_each_set_bit(i, &int_mask, ARRAY_SIZE(xgene_dma_err))
1191 dev_err(pdma->dev,
1192 "Interrupt status 0x%08X %s\n", val, xgene_dma_err[i]);
1193
1194 return IRQ_HANDLED;
1195 }
1196
1197 static void xgene_dma_wr_ring_state(struct xgene_dma_ring *ring)
1198 {
1199 int i;
1200
1201 iowrite32(ring->num, ring->pdma->csr_ring + XGENE_DMA_RING_STATE);
1202
1203 for (i = 0; i < XGENE_DMA_RING_NUM_CONFIG; i++)
1204 iowrite32(ring->state[i], ring->pdma->csr_ring +
1205 XGENE_DMA_RING_STATE_WR_BASE + (i * 4));
1206 }
1207
1208 static void xgene_dma_clr_ring_state(struct xgene_dma_ring *ring)
1209 {
1210 memset(ring->state, 0, sizeof(u32) * XGENE_DMA_RING_NUM_CONFIG);
1211 xgene_dma_wr_ring_state(ring);
1212 }
1213
1214 static void xgene_dma_setup_ring(struct xgene_dma_ring *ring)
1215 {
1216 void *ring_cfg = ring->state;
1217 u64 addr = ring->desc_paddr;
1218 u32 i, val;
1219
1220 ring->slots = ring->size / XGENE_DMA_RING_WQ_DESC_SIZE;
1221
1222 /* Clear DMA ring state */
1223 xgene_dma_clr_ring_state(ring);
1224
1225 /* Set DMA ring type */
1226 XGENE_DMA_RING_TYPE_SET(ring_cfg, XGENE_DMA_RING_TYPE_REGULAR);
1227
1228 if (ring->owner == XGENE_DMA_RING_OWNER_DMA) {
1229 /* Set recombination buffer and timeout */
1230 XGENE_DMA_RING_RECOMBBUF_SET(ring_cfg);
1231 XGENE_DMA_RING_RECOMTIMEOUTL_SET(ring_cfg);
1232 XGENE_DMA_RING_RECOMTIMEOUTH_SET(ring_cfg);
1233 }
1234
1235 /* Initialize DMA ring state */
1236 XGENE_DMA_RING_SELTHRSH_SET(ring_cfg);
1237 XGENE_DMA_RING_ACCEPTLERR_SET(ring_cfg);
1238 XGENE_DMA_RING_COHERENT_SET(ring_cfg);
1239 XGENE_DMA_RING_ADDRL_SET(ring_cfg, addr);
1240 XGENE_DMA_RING_ADDRH_SET(ring_cfg, addr);
1241 XGENE_DMA_RING_SIZE_SET(ring_cfg, ring->cfgsize);
1242
1243 /* Write DMA ring configurations */
1244 xgene_dma_wr_ring_state(ring);
1245
1246 /* Set DMA ring id */
1247 iowrite32(XGENE_DMA_RING_ID_SETUP(ring->id),
1248 ring->pdma->csr_ring + XGENE_DMA_RING_ID);
1249
1250 /* Set DMA ring buffer */
1251 iowrite32(XGENE_DMA_RING_ID_BUF_SETUP(ring->num),
1252 ring->pdma->csr_ring + XGENE_DMA_RING_ID_BUF);
1253
1254 if (ring->owner != XGENE_DMA_RING_OWNER_CPU)
1255 return;
1256
1257 /* Set empty signature to DMA Rx ring descriptors */
1258 for (i = 0; i < ring->slots; i++) {
1259 struct xgene_dma_desc_hw *desc;
1260
1261 desc = &ring->desc_hw[i];
1262 desc->m0 = cpu_to_le64(XGENE_DMA_DESC_EMPTY_SIGNATURE);
1263 }
1264
1265 /* Enable DMA Rx ring interrupt */
1266 val = ioread32(ring->pdma->csr_ring + XGENE_DMA_RING_NE_INT_MODE);
1267 XGENE_DMA_RING_NE_INT_MODE_SET(val, ring->buf_num);
1268 iowrite32(val, ring->pdma->csr_ring + XGENE_DMA_RING_NE_INT_MODE);
1269 }
1270
1271 static void xgene_dma_clear_ring(struct xgene_dma_ring *ring)
1272 {
1273 u32 ring_id, val;
1274
1275 if (ring->owner == XGENE_DMA_RING_OWNER_CPU) {
1276 /* Disable DMA Rx ring interrupt */
1277 val = ioread32(ring->pdma->csr_ring +
1278 XGENE_DMA_RING_NE_INT_MODE);
1279 XGENE_DMA_RING_NE_INT_MODE_RESET(val, ring->buf_num);
1280 iowrite32(val, ring->pdma->csr_ring +
1281 XGENE_DMA_RING_NE_INT_MODE);
1282 }
1283
1284 /* Clear DMA ring state */
1285 ring_id = XGENE_DMA_RING_ID_SETUP(ring->id);
1286 iowrite32(ring_id, ring->pdma->csr_ring + XGENE_DMA_RING_ID);
1287
1288 iowrite32(0, ring->pdma->csr_ring + XGENE_DMA_RING_ID_BUF);
1289 xgene_dma_clr_ring_state(ring);
1290 }
1291
1292 static void xgene_dma_set_ring_cmd(struct xgene_dma_ring *ring)
1293 {
1294 ring->cmd_base = ring->pdma->csr_ring_cmd +
1295 XGENE_DMA_RING_CMD_BASE_OFFSET((ring->num -
1296 XGENE_DMA_RING_NUM));
1297
1298 ring->cmd = ring->cmd_base + XGENE_DMA_RING_CMD_OFFSET;
1299 }
1300
1301 static int xgene_dma_get_ring_size(struct xgene_dma_chan *chan,
1302 enum xgene_dma_ring_cfgsize cfgsize)
1303 {
1304 int size;
1305
1306 switch (cfgsize) {
1307 case XGENE_DMA_RING_CFG_SIZE_512B:
1308 size = 0x200;
1309 break;
1310 case XGENE_DMA_RING_CFG_SIZE_2KB:
1311 size = 0x800;
1312 break;
1313 case XGENE_DMA_RING_CFG_SIZE_16KB:
1314 size = 0x4000;
1315 break;
1316 case XGENE_DMA_RING_CFG_SIZE_64KB:
1317 size = 0x10000;
1318 break;
1319 case XGENE_DMA_RING_CFG_SIZE_512KB:
1320 size = 0x80000;
1321 break;
1322 default:
1323 chan_err(chan, "Unsupported cfg ring size %d\n", cfgsize);
1324 return -EINVAL;
1325 }
1326
1327 return size;
1328 }
1329
1330 static void xgene_dma_delete_ring_one(struct xgene_dma_ring *ring)
1331 {
1332 /* Clear DMA ring configurations */
1333 xgene_dma_clear_ring(ring);
1334
1335 /* De-allocate DMA ring descriptor */
1336 if (ring->desc_vaddr) {
1337 dma_free_coherent(ring->pdma->dev, ring->size,
1338 ring->desc_vaddr, ring->desc_paddr);
1339 ring->desc_vaddr = NULL;
1340 }
1341 }
1342
1343 static void xgene_dma_delete_chan_rings(struct xgene_dma_chan *chan)
1344 {
1345 xgene_dma_delete_ring_one(&chan->rx_ring);
1346 xgene_dma_delete_ring_one(&chan->tx_ring);
1347 }
1348
1349 static int xgene_dma_create_ring_one(struct xgene_dma_chan *chan,
1350 struct xgene_dma_ring *ring,
1351 enum xgene_dma_ring_cfgsize cfgsize)
1352 {
1353 int ret;
1354
1355 /* Setup DMA ring descriptor variables */
1356 ring->pdma = chan->pdma;
1357 ring->cfgsize = cfgsize;
1358 ring->num = chan->pdma->ring_num++;
1359 ring->id = XGENE_DMA_RING_ID_GET(ring->owner, ring->buf_num);
1360
1361 ret = xgene_dma_get_ring_size(chan, cfgsize);
1362 if (ret <= 0)
1363 return ret;
1364 ring->size = ret;
1365
1366 /* Allocate memory for DMA ring descriptor */
1367 ring->desc_vaddr = dma_zalloc_coherent(chan->dev, ring->size,
1368 &ring->desc_paddr, GFP_KERNEL);
1369 if (!ring->desc_vaddr) {
1370 chan_err(chan, "Failed to allocate ring desc\n");
1371 return -ENOMEM;
1372 }
1373
1374 /* Configure and enable DMA ring */
1375 xgene_dma_set_ring_cmd(ring);
1376 xgene_dma_setup_ring(ring);
1377
1378 return 0;
1379 }
1380
1381 static int xgene_dma_create_chan_rings(struct xgene_dma_chan *chan)
1382 {
1383 struct xgene_dma_ring *rx_ring = &chan->rx_ring;
1384 struct xgene_dma_ring *tx_ring = &chan->tx_ring;
1385 int ret;
1386
1387 /* Create DMA Rx ring descriptor */
1388 rx_ring->owner = XGENE_DMA_RING_OWNER_CPU;
1389 rx_ring->buf_num = XGENE_DMA_CPU_BUFNUM + chan->id;
1390
1391 ret = xgene_dma_create_ring_one(chan, rx_ring,
1392 XGENE_DMA_RING_CFG_SIZE_64KB);
1393 if (ret)
1394 return ret;
1395
1396 chan_dbg(chan, "Rx ring id 0x%X num %d desc 0x%p\n",
1397 rx_ring->id, rx_ring->num, rx_ring->desc_vaddr);
1398
1399 /* Create DMA Tx ring descriptor */
1400 tx_ring->owner = XGENE_DMA_RING_OWNER_DMA;
1401 tx_ring->buf_num = XGENE_DMA_BUFNUM + chan->id;
1402
1403 ret = xgene_dma_create_ring_one(chan, tx_ring,
1404 XGENE_DMA_RING_CFG_SIZE_64KB);
1405 if (ret) {
1406 xgene_dma_delete_ring_one(rx_ring);
1407 return ret;
1408 }
1409
1410 tx_ring->dst_ring_num = XGENE_DMA_RING_DST_ID(rx_ring->num);
1411
1412 chan_dbg(chan,
1413 "Tx ring id 0x%X num %d desc 0x%p\n",
1414 tx_ring->id, tx_ring->num, tx_ring->desc_vaddr);
1415
1416 /* Set the max outstanding request possible to this channel */
1417 chan->max_outstanding = tx_ring->slots;
1418
1419 return ret;
1420 }
1421
1422 static int xgene_dma_init_rings(struct xgene_dma *pdma)
1423 {
1424 int ret, i, j;
1425
1426 for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++) {
1427 ret = xgene_dma_create_chan_rings(&pdma->chan[i]);
1428 if (ret) {
1429 for (j = 0; j < i; j++)
1430 xgene_dma_delete_chan_rings(&pdma->chan[j]);
1431 return ret;
1432 }
1433 }
1434
1435 return ret;
1436 }
1437
1438 static void xgene_dma_enable(struct xgene_dma *pdma)
1439 {
1440 u32 val;
1441
1442 /* Configure and enable DMA engine */
1443 val = ioread32(pdma->csr_dma + XGENE_DMA_GCR);
1444 XGENE_DMA_CH_SETUP(val);
1445 XGENE_DMA_ENABLE(val);
1446 iowrite32(val, pdma->csr_dma + XGENE_DMA_GCR);
1447 }
1448
1449 static void xgene_dma_disable(struct xgene_dma *pdma)
1450 {
1451 u32 val;
1452
1453 val = ioread32(pdma->csr_dma + XGENE_DMA_GCR);
1454 XGENE_DMA_DISABLE(val);
1455 iowrite32(val, pdma->csr_dma + XGENE_DMA_GCR);
1456 }
1457
1458 static void xgene_dma_mask_interrupts(struct xgene_dma *pdma)
1459 {
1460 /*
1461 * Mask DMA ring overflow, underflow and
1462 * AXI write/read error interrupts
1463 */
1464 iowrite32(XGENE_DMA_INT_ALL_MASK,
1465 pdma->csr_dma + XGENE_DMA_RING_INT0_MASK);
1466 iowrite32(XGENE_DMA_INT_ALL_MASK,
1467 pdma->csr_dma + XGENE_DMA_RING_INT1_MASK);
1468 iowrite32(XGENE_DMA_INT_ALL_MASK,
1469 pdma->csr_dma + XGENE_DMA_RING_INT2_MASK);
1470 iowrite32(XGENE_DMA_INT_ALL_MASK,
1471 pdma->csr_dma + XGENE_DMA_RING_INT3_MASK);
1472 iowrite32(XGENE_DMA_INT_ALL_MASK,
1473 pdma->csr_dma + XGENE_DMA_RING_INT4_MASK);
1474
1475 /* Mask DMA error interrupts */
1476 iowrite32(XGENE_DMA_INT_ALL_MASK, pdma->csr_dma + XGENE_DMA_INT_MASK);
1477 }
1478
1479 static void xgene_dma_unmask_interrupts(struct xgene_dma *pdma)
1480 {
1481 /*
1482 * Unmask DMA ring overflow, underflow and
1483 * AXI write/read error interrupts
1484 */
1485 iowrite32(XGENE_DMA_INT_ALL_UNMASK,
1486 pdma->csr_dma + XGENE_DMA_RING_INT0_MASK);
1487 iowrite32(XGENE_DMA_INT_ALL_UNMASK,
1488 pdma->csr_dma + XGENE_DMA_RING_INT1_MASK);
1489 iowrite32(XGENE_DMA_INT_ALL_UNMASK,
1490 pdma->csr_dma + XGENE_DMA_RING_INT2_MASK);
1491 iowrite32(XGENE_DMA_INT_ALL_UNMASK,
1492 pdma->csr_dma + XGENE_DMA_RING_INT3_MASK);
1493 iowrite32(XGENE_DMA_INT_ALL_UNMASK,
1494 pdma->csr_dma + XGENE_DMA_RING_INT4_MASK);
1495
1496 /* Unmask DMA error interrupts */
1497 iowrite32(XGENE_DMA_INT_ALL_UNMASK,
1498 pdma->csr_dma + XGENE_DMA_INT_MASK);
1499 }
1500
1501 static void xgene_dma_init_hw(struct xgene_dma *pdma)
1502 {
1503 u32 val;
1504
1505 /* Associate DMA ring to corresponding ring HW */
1506 iowrite32(XGENE_DMA_ASSOC_RING_MNGR1,
1507 pdma->csr_dma + XGENE_DMA_CFG_RING_WQ_ASSOC);
1508
1509 /* Configure RAID6 polynomial control setting */
1510 if (is_pq_enabled(pdma))
1511 iowrite32(XGENE_DMA_RAID6_MULTI_CTRL(0x1D),
1512 pdma->csr_dma + XGENE_DMA_RAID6_CONT);
1513 else
1514 dev_info(pdma->dev, "PQ is disabled in HW\n");
1515
1516 xgene_dma_enable(pdma);
1517 xgene_dma_unmask_interrupts(pdma);
1518
1519 /* Get DMA id and version info */
1520 val = ioread32(pdma->csr_dma + XGENE_DMA_IPBRR);
1521
1522 /* DMA device info */
1523 dev_info(pdma->dev,
1524 "X-Gene DMA v%d.%02d.%02d driver registered %d channels",
1525 XGENE_DMA_REV_NO_RD(val), XGENE_DMA_BUS_ID_RD(val),
1526 XGENE_DMA_DEV_ID_RD(val), XGENE_DMA_MAX_CHANNEL);
1527 }
1528
1529 static int xgene_dma_init_ring_mngr(struct xgene_dma *pdma)
1530 {
1531 if (ioread32(pdma->csr_ring + XGENE_DMA_RING_CLKEN) &&
1532 (!ioread32(pdma->csr_ring + XGENE_DMA_RING_SRST)))
1533 return 0;
1534
1535 iowrite32(0x3, pdma->csr_ring + XGENE_DMA_RING_CLKEN);
1536 iowrite32(0x0, pdma->csr_ring + XGENE_DMA_RING_SRST);
1537
1538 /* Bring up memory */
1539 iowrite32(0x0, pdma->csr_ring + XGENE_DMA_RING_MEM_RAM_SHUTDOWN);
1540
1541 /* Force a barrier */
1542 ioread32(pdma->csr_ring + XGENE_DMA_RING_MEM_RAM_SHUTDOWN);
1543
1544 /* reset may take up to 1ms */
1545 usleep_range(1000, 1100);
1546
1547 if (ioread32(pdma->csr_ring + XGENE_DMA_RING_BLK_MEM_RDY)
1548 != XGENE_DMA_RING_BLK_MEM_RDY_VAL) {
1549 dev_err(pdma->dev,
1550 "Failed to release ring mngr memory from shutdown\n");
1551 return -ENODEV;
1552 }
1553
1554 /* program threshold set 1 and all hysteresis */
1555 iowrite32(XGENE_DMA_RING_THRESLD0_SET1_VAL,
1556 pdma->csr_ring + XGENE_DMA_RING_THRESLD0_SET1);
1557 iowrite32(XGENE_DMA_RING_THRESLD1_SET1_VAL,
1558 pdma->csr_ring + XGENE_DMA_RING_THRESLD1_SET1);
1559 iowrite32(XGENE_DMA_RING_HYSTERESIS_VAL,
1560 pdma->csr_ring + XGENE_DMA_RING_HYSTERESIS);
1561
1562 /* Enable QPcore and assign error queue */
1563 iowrite32(XGENE_DMA_RING_ENABLE,
1564 pdma->csr_ring + XGENE_DMA_RING_CONFIG);
1565
1566 return 0;
1567 }
1568
1569 static int xgene_dma_init_mem(struct xgene_dma *pdma)
1570 {
1571 int ret;
1572
1573 ret = xgene_dma_init_ring_mngr(pdma);
1574 if (ret)
1575 return ret;
1576
1577 /* Bring up memory */
1578 iowrite32(0x0, pdma->csr_dma + XGENE_DMA_MEM_RAM_SHUTDOWN);
1579
1580 /* Force a barrier */
1581 ioread32(pdma->csr_dma + XGENE_DMA_MEM_RAM_SHUTDOWN);
1582
1583 /* reset may take up to 1ms */
1584 usleep_range(1000, 1100);
1585
1586 if (ioread32(pdma->csr_dma + XGENE_DMA_BLK_MEM_RDY)
1587 != XGENE_DMA_BLK_MEM_RDY_VAL) {
1588 dev_err(pdma->dev,
1589 "Failed to release DMA memory from shutdown\n");
1590 return -ENODEV;
1591 }
1592
1593 return 0;
1594 }
1595
1596 static int xgene_dma_request_irqs(struct xgene_dma *pdma)
1597 {
1598 struct xgene_dma_chan *chan;
1599 int ret, i, j;
1600
1601 /* Register DMA error irq */
1602 ret = devm_request_irq(pdma->dev, pdma->err_irq, xgene_dma_err_isr,
1603 0, "dma_error", pdma);
1604 if (ret) {
1605 dev_err(pdma->dev,
1606 "Failed to register error IRQ %d\n", pdma->err_irq);
1607 return ret;
1608 }
1609
1610 /* Register DMA channel rx irq */
1611 for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++) {
1612 chan = &pdma->chan[i];
1613 ret = devm_request_irq(chan->dev, chan->rx_irq,
1614 xgene_dma_chan_ring_isr,
1615 0, chan->name, chan);
1616 if (ret) {
1617 chan_err(chan, "Failed to register Rx IRQ %d\n",
1618 chan->rx_irq);
1619 devm_free_irq(pdma->dev, pdma->err_irq, pdma);
1620
1621 for (j = 0; j < i; j++) {
1622 chan = &pdma->chan[i];
1623 devm_free_irq(chan->dev, chan->rx_irq, chan);
1624 }
1625
1626 return ret;
1627 }
1628 }
1629
1630 return 0;
1631 }
1632
1633 static void xgene_dma_free_irqs(struct xgene_dma *pdma)
1634 {
1635 struct xgene_dma_chan *chan;
1636 int i;
1637
1638 /* Free DMA device error irq */
1639 devm_free_irq(pdma->dev, pdma->err_irq, pdma);
1640
1641 for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++) {
1642 chan = &pdma->chan[i];
1643 devm_free_irq(chan->dev, chan->rx_irq, chan);
1644 }
1645 }
1646
1647 static void xgene_dma_set_caps(struct xgene_dma_chan *chan,
1648 struct dma_device *dma_dev)
1649 {
1650 /* Initialize DMA device capability mask */
1651 dma_cap_zero(dma_dev->cap_mask);
1652
1653 /* Set DMA device capability */
1654 dma_cap_set(DMA_SG, dma_dev->cap_mask);
1655
1656 /* Basically here, the X-Gene SoC DMA engine channel 0 supports XOR
1657 * and channel 1 supports XOR, PQ both. First thing here is we have
1658 * mechanism in hw to enable/disable PQ/XOR supports on channel 1,
1659 * we can make sure this by reading SoC Efuse register.
1660 * Second thing, we have hw errata that if we run channel 0 and
1661 * channel 1 simultaneously with executing XOR and PQ request,
1662 * suddenly DMA engine hangs, So here we enable XOR on channel 0 only
1663 * if XOR and PQ supports on channel 1 is disabled.
1664 */
1665 if ((chan->id == XGENE_DMA_PQ_CHANNEL) &&
1666 is_pq_enabled(chan->pdma)) {
1667 dma_cap_set(DMA_PQ, dma_dev->cap_mask);
1668 dma_cap_set(DMA_XOR, dma_dev->cap_mask);
1669 } else if ((chan->id == XGENE_DMA_XOR_CHANNEL) &&
1670 !is_pq_enabled(chan->pdma)) {
1671 dma_cap_set(DMA_XOR, dma_dev->cap_mask);
1672 }
1673
1674 /* Set base and prep routines */
1675 dma_dev->dev = chan->dev;
1676 dma_dev->device_alloc_chan_resources = xgene_dma_alloc_chan_resources;
1677 dma_dev->device_free_chan_resources = xgene_dma_free_chan_resources;
1678 dma_dev->device_issue_pending = xgene_dma_issue_pending;
1679 dma_dev->device_tx_status = xgene_dma_tx_status;
1680 dma_dev->device_prep_dma_sg = xgene_dma_prep_sg;
1681
1682 if (dma_has_cap(DMA_XOR, dma_dev->cap_mask)) {
1683 dma_dev->device_prep_dma_xor = xgene_dma_prep_xor;
1684 dma_dev->max_xor = XGENE_DMA_MAX_XOR_SRC;
1685 dma_dev->xor_align = DMAENGINE_ALIGN_64_BYTES;
1686 }
1687
1688 if (dma_has_cap(DMA_PQ, dma_dev->cap_mask)) {
1689 dma_dev->device_prep_dma_pq = xgene_dma_prep_pq;
1690 dma_dev->max_pq = XGENE_DMA_MAX_XOR_SRC;
1691 dma_dev->pq_align = DMAENGINE_ALIGN_64_BYTES;
1692 }
1693 }
1694
1695 static int xgene_dma_async_register(struct xgene_dma *pdma, int id)
1696 {
1697 struct xgene_dma_chan *chan = &pdma->chan[id];
1698 struct dma_device *dma_dev = &pdma->dma_dev[id];
1699 int ret;
1700
1701 chan->dma_chan.device = dma_dev;
1702
1703 spin_lock_init(&chan->lock);
1704 INIT_LIST_HEAD(&chan->ld_pending);
1705 INIT_LIST_HEAD(&chan->ld_running);
1706 INIT_LIST_HEAD(&chan->ld_completed);
1707 tasklet_init(&chan->tasklet, xgene_dma_tasklet_cb,
1708 (unsigned long)chan);
1709
1710 chan->pending = 0;
1711 chan->desc_pool = NULL;
1712 dma_cookie_init(&chan->dma_chan);
1713
1714 /* Setup dma device capabilities and prep routines */
1715 xgene_dma_set_caps(chan, dma_dev);
1716
1717 /* Initialize DMA device list head */
1718 INIT_LIST_HEAD(&dma_dev->channels);
1719 list_add_tail(&chan->dma_chan.device_node, &dma_dev->channels);
1720
1721 /* Register with Linux async DMA framework*/
1722 ret = dma_async_device_register(dma_dev);
1723 if (ret) {
1724 chan_err(chan, "Failed to register async device %d", ret);
1725 tasklet_kill(&chan->tasklet);
1726
1727 return ret;
1728 }
1729
1730 /* DMA capability info */
1731 dev_info(pdma->dev,
1732 "%s: CAPABILITY ( %s%s%s)\n", dma_chan_name(&chan->dma_chan),
1733 dma_has_cap(DMA_SG, dma_dev->cap_mask) ? "SGCPY " : "",
1734 dma_has_cap(DMA_XOR, dma_dev->cap_mask) ? "XOR " : "",
1735 dma_has_cap(DMA_PQ, dma_dev->cap_mask) ? "PQ " : "");
1736
1737 return 0;
1738 }
1739
1740 static int xgene_dma_init_async(struct xgene_dma *pdma)
1741 {
1742 int ret, i, j;
1743
1744 for (i = 0; i < XGENE_DMA_MAX_CHANNEL ; i++) {
1745 ret = xgene_dma_async_register(pdma, i);
1746 if (ret) {
1747 for (j = 0; j < i; j++) {
1748 dma_async_device_unregister(&pdma->dma_dev[j]);
1749 tasklet_kill(&pdma->chan[j].tasklet);
1750 }
1751
1752 return ret;
1753 }
1754 }
1755
1756 return ret;
1757 }
1758
1759 static void xgene_dma_async_unregister(struct xgene_dma *pdma)
1760 {
1761 int i;
1762
1763 for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++)
1764 dma_async_device_unregister(&pdma->dma_dev[i]);
1765 }
1766
1767 static void xgene_dma_init_channels(struct xgene_dma *pdma)
1768 {
1769 struct xgene_dma_chan *chan;
1770 int i;
1771
1772 pdma->ring_num = XGENE_DMA_RING_NUM;
1773
1774 for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++) {
1775 chan = &pdma->chan[i];
1776 chan->dev = pdma->dev;
1777 chan->pdma = pdma;
1778 chan->id = i;
1779 snprintf(chan->name, sizeof(chan->name), "dmachan%d", chan->id);
1780 }
1781 }
1782
1783 static int xgene_dma_get_resources(struct platform_device *pdev,
1784 struct xgene_dma *pdma)
1785 {
1786 struct resource *res;
1787 int irq, i;
1788
1789 /* Get DMA csr region */
1790 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1791 if (!res) {
1792 dev_err(&pdev->dev, "Failed to get csr region\n");
1793 return -ENXIO;
1794 }
1795
1796 pdma->csr_dma = devm_ioremap(&pdev->dev, res->start,
1797 resource_size(res));
1798 if (!pdma->csr_dma) {
1799 dev_err(&pdev->dev, "Failed to ioremap csr region");
1800 return -ENOMEM;
1801 }
1802
1803 /* Get DMA ring csr region */
1804 res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1805 if (!res) {
1806 dev_err(&pdev->dev, "Failed to get ring csr region\n");
1807 return -ENXIO;
1808 }
1809
1810 pdma->csr_ring = devm_ioremap(&pdev->dev, res->start,
1811 resource_size(res));
1812 if (!pdma->csr_ring) {
1813 dev_err(&pdev->dev, "Failed to ioremap ring csr region");
1814 return -ENOMEM;
1815 }
1816
1817 /* Get DMA ring cmd csr region */
1818 res = platform_get_resource(pdev, IORESOURCE_MEM, 2);
1819 if (!res) {
1820 dev_err(&pdev->dev, "Failed to get ring cmd csr region\n");
1821 return -ENXIO;
1822 }
1823
1824 pdma->csr_ring_cmd = devm_ioremap(&pdev->dev, res->start,
1825 resource_size(res));
1826 if (!pdma->csr_ring_cmd) {
1827 dev_err(&pdev->dev, "Failed to ioremap ring cmd csr region");
1828 return -ENOMEM;
1829 }
1830
1831 pdma->csr_ring_cmd += XGENE_DMA_RING_CMD_SM_OFFSET;
1832
1833 /* Get efuse csr region */
1834 res = platform_get_resource(pdev, IORESOURCE_MEM, 3);
1835 if (!res) {
1836 dev_err(&pdev->dev, "Failed to get efuse csr region\n");
1837 return -ENXIO;
1838 }
1839
1840 pdma->csr_efuse = devm_ioremap(&pdev->dev, res->start,
1841 resource_size(res));
1842 if (!pdma->csr_efuse) {
1843 dev_err(&pdev->dev, "Failed to ioremap efuse csr region");
1844 return -ENOMEM;
1845 }
1846
1847 /* Get DMA error interrupt */
1848 irq = platform_get_irq(pdev, 0);
1849 if (irq <= 0) {
1850 dev_err(&pdev->dev, "Failed to get Error IRQ\n");
1851 return -ENXIO;
1852 }
1853
1854 pdma->err_irq = irq;
1855
1856 /* Get DMA Rx ring descriptor interrupts for all DMA channels */
1857 for (i = 1; i <= XGENE_DMA_MAX_CHANNEL; i++) {
1858 irq = platform_get_irq(pdev, i);
1859 if (irq <= 0) {
1860 dev_err(&pdev->dev, "Failed to get Rx IRQ\n");
1861 return -ENXIO;
1862 }
1863
1864 pdma->chan[i - 1].rx_irq = irq;
1865 }
1866
1867 return 0;
1868 }
1869
1870 static int xgene_dma_probe(struct platform_device *pdev)
1871 {
1872 struct xgene_dma *pdma;
1873 int ret, i;
1874
1875 pdma = devm_kzalloc(&pdev->dev, sizeof(*pdma), GFP_KERNEL);
1876 if (!pdma)
1877 return -ENOMEM;
1878
1879 pdma->dev = &pdev->dev;
1880 platform_set_drvdata(pdev, pdma);
1881
1882 ret = xgene_dma_get_resources(pdev, pdma);
1883 if (ret)
1884 return ret;
1885
1886 pdma->clk = devm_clk_get(&pdev->dev, NULL);
1887 if (IS_ERR(pdma->clk) && !ACPI_COMPANION(&pdev->dev)) {
1888 dev_err(&pdev->dev, "Failed to get clk\n");
1889 return PTR_ERR(pdma->clk);
1890 }
1891
1892 /* Enable clk before accessing registers */
1893 if (!IS_ERR(pdma->clk)) {
1894 ret = clk_prepare_enable(pdma->clk);
1895 if (ret) {
1896 dev_err(&pdev->dev, "Failed to enable clk %d\n", ret);
1897 return ret;
1898 }
1899 }
1900
1901 /* Remove DMA RAM out of shutdown */
1902 ret = xgene_dma_init_mem(pdma);
1903 if (ret)
1904 goto err_clk_enable;
1905
1906 ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(42));
1907 if (ret) {
1908 dev_err(&pdev->dev, "No usable DMA configuration\n");
1909 goto err_dma_mask;
1910 }
1911
1912 /* Initialize DMA channels software state */
1913 xgene_dma_init_channels(pdma);
1914
1915 /* Configue DMA rings */
1916 ret = xgene_dma_init_rings(pdma);
1917 if (ret)
1918 goto err_clk_enable;
1919
1920 ret = xgene_dma_request_irqs(pdma);
1921 if (ret)
1922 goto err_request_irq;
1923
1924 /* Configure and enable DMA engine */
1925 xgene_dma_init_hw(pdma);
1926
1927 /* Register DMA device with linux async framework */
1928 ret = xgene_dma_init_async(pdma);
1929 if (ret)
1930 goto err_async_init;
1931
1932 return 0;
1933
1934 err_async_init:
1935 xgene_dma_free_irqs(pdma);
1936
1937 err_request_irq:
1938 for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++)
1939 xgene_dma_delete_chan_rings(&pdma->chan[i]);
1940
1941 err_dma_mask:
1942 err_clk_enable:
1943 if (!IS_ERR(pdma->clk))
1944 clk_disable_unprepare(pdma->clk);
1945
1946 return ret;
1947 }
1948
1949 static int xgene_dma_remove(struct platform_device *pdev)
1950 {
1951 struct xgene_dma *pdma = platform_get_drvdata(pdev);
1952 struct xgene_dma_chan *chan;
1953 int i;
1954
1955 xgene_dma_async_unregister(pdma);
1956
1957 /* Mask interrupts and disable DMA engine */
1958 xgene_dma_mask_interrupts(pdma);
1959 xgene_dma_disable(pdma);
1960 xgene_dma_free_irqs(pdma);
1961
1962 for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++) {
1963 chan = &pdma->chan[i];
1964 tasklet_kill(&chan->tasklet);
1965 xgene_dma_delete_chan_rings(chan);
1966 }
1967
1968 if (!IS_ERR(pdma->clk))
1969 clk_disable_unprepare(pdma->clk);
1970
1971 return 0;
1972 }
1973
1974 #ifdef CONFIG_ACPI
1975 static const struct acpi_device_id xgene_dma_acpi_match_ptr[] = {
1976 {"APMC0D43", 0},
1977 {},
1978 };
1979 MODULE_DEVICE_TABLE(acpi, xgene_dma_acpi_match_ptr);
1980 #endif
1981
1982 static const struct of_device_id xgene_dma_of_match_ptr[] = {
1983 {.compatible = "apm,xgene-storm-dma",},
1984 {},
1985 };
1986 MODULE_DEVICE_TABLE(of, xgene_dma_of_match_ptr);
1987
1988 static struct platform_driver xgene_dma_driver = {
1989 .probe = xgene_dma_probe,
1990 .remove = xgene_dma_remove,
1991 .driver = {
1992 .name = "X-Gene-DMA",
1993 .of_match_table = xgene_dma_of_match_ptr,
1994 .acpi_match_table = ACPI_PTR(xgene_dma_acpi_match_ptr),
1995 },
1996 };
1997
1998 module_platform_driver(xgene_dma_driver);
1999
2000 MODULE_DESCRIPTION("APM X-Gene SoC DMA driver");
2001 MODULE_AUTHOR("Rameshwar Prasad Sahu <rsahu@apm.com>");
2002 MODULE_AUTHOR("Loc Ho <lho@apm.com>");
2003 MODULE_LICENSE("GPL");
2004 MODULE_VERSION("1.0");