]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/dma-buf/dma-buf.c
x86/msr-index: Cleanup bit defines
[mirror_ubuntu-bionic-kernel.git] / drivers / dma-buf / dma-buf.c
1 /*
2 * Framework for buffer objects that can be shared across devices/subsystems.
3 *
4 * Copyright(C) 2011 Linaro Limited. All rights reserved.
5 * Author: Sumit Semwal <sumit.semwal@ti.com>
6 *
7 * Many thanks to linaro-mm-sig list, and specially
8 * Arnd Bergmann <arnd@arndb.de>, Rob Clark <rob@ti.com> and
9 * Daniel Vetter <daniel@ffwll.ch> for their support in creation and
10 * refining of this idea.
11 *
12 * This program is free software; you can redistribute it and/or modify it
13 * under the terms of the GNU General Public License version 2 as published by
14 * the Free Software Foundation.
15 *
16 * This program is distributed in the hope that it will be useful, but WITHOUT
17 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
18 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
19 * more details.
20 *
21 * You should have received a copy of the GNU General Public License along with
22 * this program. If not, see <http://www.gnu.org/licenses/>.
23 */
24
25 #include <linux/fs.h>
26 #include <linux/slab.h>
27 #include <linux/dma-buf.h>
28 #include <linux/dma-fence.h>
29 #include <linux/anon_inodes.h>
30 #include <linux/export.h>
31 #include <linux/debugfs.h>
32 #include <linux/module.h>
33 #include <linux/seq_file.h>
34 #include <linux/poll.h>
35 #include <linux/reservation.h>
36 #include <linux/mm.h>
37
38 #include <uapi/linux/dma-buf.h>
39
40 static inline int is_dma_buf_file(struct file *);
41
42 struct dma_buf_list {
43 struct list_head head;
44 struct mutex lock;
45 };
46
47 static struct dma_buf_list db_list;
48
49 static int dma_buf_release(struct inode *inode, struct file *file)
50 {
51 struct dma_buf *dmabuf;
52
53 if (!is_dma_buf_file(file))
54 return -EINVAL;
55
56 dmabuf = file->private_data;
57
58 BUG_ON(dmabuf->vmapping_counter);
59
60 /*
61 * Any fences that a dma-buf poll can wait on should be signaled
62 * before releasing dma-buf. This is the responsibility of each
63 * driver that uses the reservation objects.
64 *
65 * If you hit this BUG() it means someone dropped their ref to the
66 * dma-buf while still having pending operation to the buffer.
67 */
68 BUG_ON(dmabuf->cb_shared.active || dmabuf->cb_excl.active);
69
70 dmabuf->ops->release(dmabuf);
71
72 mutex_lock(&db_list.lock);
73 list_del(&dmabuf->list_node);
74 mutex_unlock(&db_list.lock);
75
76 if (dmabuf->resv == (struct reservation_object *)&dmabuf[1])
77 reservation_object_fini(dmabuf->resv);
78
79 module_put(dmabuf->owner);
80 kfree(dmabuf);
81 return 0;
82 }
83
84 static int dma_buf_mmap_internal(struct file *file, struct vm_area_struct *vma)
85 {
86 struct dma_buf *dmabuf;
87
88 if (!is_dma_buf_file(file))
89 return -EINVAL;
90
91 dmabuf = file->private_data;
92
93 /* check for overflowing the buffer's size */
94 if (vma->vm_pgoff + vma_pages(vma) >
95 dmabuf->size >> PAGE_SHIFT)
96 return -EINVAL;
97
98 return dmabuf->ops->mmap(dmabuf, vma);
99 }
100
101 static loff_t dma_buf_llseek(struct file *file, loff_t offset, int whence)
102 {
103 struct dma_buf *dmabuf;
104 loff_t base;
105
106 if (!is_dma_buf_file(file))
107 return -EBADF;
108
109 dmabuf = file->private_data;
110
111 /* only support discovering the end of the buffer,
112 but also allow SEEK_SET to maintain the idiomatic
113 SEEK_END(0), SEEK_CUR(0) pattern */
114 if (whence == SEEK_END)
115 base = dmabuf->size;
116 else if (whence == SEEK_SET)
117 base = 0;
118 else
119 return -EINVAL;
120
121 if (offset != 0)
122 return -EINVAL;
123
124 return base + offset;
125 }
126
127 /**
128 * DOC: fence polling
129 *
130 * To support cross-device and cross-driver synchronization of buffer access
131 * implicit fences (represented internally in the kernel with &struct fence) can
132 * be attached to a &dma_buf. The glue for that and a few related things are
133 * provided in the &reservation_object structure.
134 *
135 * Userspace can query the state of these implicitly tracked fences using poll()
136 * and related system calls:
137 *
138 * - Checking for POLLIN, i.e. read access, can be use to query the state of the
139 * most recent write or exclusive fence.
140 *
141 * - Checking for POLLOUT, i.e. write access, can be used to query the state of
142 * all attached fences, shared and exclusive ones.
143 *
144 * Note that this only signals the completion of the respective fences, i.e. the
145 * DMA transfers are complete. Cache flushing and any other necessary
146 * preparations before CPU access can begin still need to happen.
147 */
148
149 static void dma_buf_poll_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
150 {
151 struct dma_buf_poll_cb_t *dcb = (struct dma_buf_poll_cb_t *)cb;
152 unsigned long flags;
153
154 spin_lock_irqsave(&dcb->poll->lock, flags);
155 wake_up_locked_poll(dcb->poll, dcb->active);
156 dcb->active = 0;
157 spin_unlock_irqrestore(&dcb->poll->lock, flags);
158 }
159
160 static unsigned int dma_buf_poll(struct file *file, poll_table *poll)
161 {
162 struct dma_buf *dmabuf;
163 struct reservation_object *resv;
164 struct reservation_object_list *fobj;
165 struct dma_fence *fence_excl;
166 unsigned long events;
167 unsigned shared_count, seq;
168
169 dmabuf = file->private_data;
170 if (!dmabuf || !dmabuf->resv)
171 return POLLERR;
172
173 resv = dmabuf->resv;
174
175 poll_wait(file, &dmabuf->poll, poll);
176
177 events = poll_requested_events(poll) & (POLLIN | POLLOUT);
178 if (!events)
179 return 0;
180
181 retry:
182 seq = read_seqcount_begin(&resv->seq);
183 rcu_read_lock();
184
185 fobj = rcu_dereference(resv->fence);
186 if (fobj)
187 shared_count = fobj->shared_count;
188 else
189 shared_count = 0;
190 fence_excl = rcu_dereference(resv->fence_excl);
191 if (read_seqcount_retry(&resv->seq, seq)) {
192 rcu_read_unlock();
193 goto retry;
194 }
195
196 if (fence_excl && (!(events & POLLOUT) || shared_count == 0)) {
197 struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_excl;
198 unsigned long pevents = POLLIN;
199
200 if (shared_count == 0)
201 pevents |= POLLOUT;
202
203 spin_lock_irq(&dmabuf->poll.lock);
204 if (dcb->active) {
205 dcb->active |= pevents;
206 events &= ~pevents;
207 } else
208 dcb->active = pevents;
209 spin_unlock_irq(&dmabuf->poll.lock);
210
211 if (events & pevents) {
212 if (!dma_fence_get_rcu(fence_excl)) {
213 /* force a recheck */
214 events &= ~pevents;
215 dma_buf_poll_cb(NULL, &dcb->cb);
216 } else if (!dma_fence_add_callback(fence_excl, &dcb->cb,
217 dma_buf_poll_cb)) {
218 events &= ~pevents;
219 dma_fence_put(fence_excl);
220 } else {
221 /*
222 * No callback queued, wake up any additional
223 * waiters.
224 */
225 dma_fence_put(fence_excl);
226 dma_buf_poll_cb(NULL, &dcb->cb);
227 }
228 }
229 }
230
231 if ((events & POLLOUT) && shared_count > 0) {
232 struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_shared;
233 int i;
234
235 /* Only queue a new callback if no event has fired yet */
236 spin_lock_irq(&dmabuf->poll.lock);
237 if (dcb->active)
238 events &= ~POLLOUT;
239 else
240 dcb->active = POLLOUT;
241 spin_unlock_irq(&dmabuf->poll.lock);
242
243 if (!(events & POLLOUT))
244 goto out;
245
246 for (i = 0; i < shared_count; ++i) {
247 struct dma_fence *fence = rcu_dereference(fobj->shared[i]);
248
249 if (!dma_fence_get_rcu(fence)) {
250 /*
251 * fence refcount dropped to zero, this means
252 * that fobj has been freed
253 *
254 * call dma_buf_poll_cb and force a recheck!
255 */
256 events &= ~POLLOUT;
257 dma_buf_poll_cb(NULL, &dcb->cb);
258 break;
259 }
260 if (!dma_fence_add_callback(fence, &dcb->cb,
261 dma_buf_poll_cb)) {
262 dma_fence_put(fence);
263 events &= ~POLLOUT;
264 break;
265 }
266 dma_fence_put(fence);
267 }
268
269 /* No callback queued, wake up any additional waiters. */
270 if (i == shared_count)
271 dma_buf_poll_cb(NULL, &dcb->cb);
272 }
273
274 out:
275 rcu_read_unlock();
276 return events;
277 }
278
279 static long dma_buf_ioctl(struct file *file,
280 unsigned int cmd, unsigned long arg)
281 {
282 struct dma_buf *dmabuf;
283 struct dma_buf_sync sync;
284 enum dma_data_direction direction;
285 int ret;
286
287 dmabuf = file->private_data;
288
289 switch (cmd) {
290 case DMA_BUF_IOCTL_SYNC:
291 if (copy_from_user(&sync, (void __user *) arg, sizeof(sync)))
292 return -EFAULT;
293
294 if (sync.flags & ~DMA_BUF_SYNC_VALID_FLAGS_MASK)
295 return -EINVAL;
296
297 switch (sync.flags & DMA_BUF_SYNC_RW) {
298 case DMA_BUF_SYNC_READ:
299 direction = DMA_FROM_DEVICE;
300 break;
301 case DMA_BUF_SYNC_WRITE:
302 direction = DMA_TO_DEVICE;
303 break;
304 case DMA_BUF_SYNC_RW:
305 direction = DMA_BIDIRECTIONAL;
306 break;
307 default:
308 return -EINVAL;
309 }
310
311 if (sync.flags & DMA_BUF_SYNC_END)
312 ret = dma_buf_end_cpu_access(dmabuf, direction);
313 else
314 ret = dma_buf_begin_cpu_access(dmabuf, direction);
315
316 return ret;
317 default:
318 return -ENOTTY;
319 }
320 }
321
322 static const struct file_operations dma_buf_fops = {
323 .release = dma_buf_release,
324 .mmap = dma_buf_mmap_internal,
325 .llseek = dma_buf_llseek,
326 .poll = dma_buf_poll,
327 .unlocked_ioctl = dma_buf_ioctl,
328 #ifdef CONFIG_COMPAT
329 .compat_ioctl = dma_buf_ioctl,
330 #endif
331 };
332
333 /*
334 * is_dma_buf_file - Check if struct file* is associated with dma_buf
335 */
336 static inline int is_dma_buf_file(struct file *file)
337 {
338 return file->f_op == &dma_buf_fops;
339 }
340
341 /**
342 * DOC: dma buf device access
343 *
344 * For device DMA access to a shared DMA buffer the usual sequence of operations
345 * is fairly simple:
346 *
347 * 1. The exporter defines his exporter instance using
348 * DEFINE_DMA_BUF_EXPORT_INFO() and calls dma_buf_export() to wrap a private
349 * buffer object into a &dma_buf. It then exports that &dma_buf to userspace
350 * as a file descriptor by calling dma_buf_fd().
351 *
352 * 2. Userspace passes this file-descriptors to all drivers it wants this buffer
353 * to share with: First the filedescriptor is converted to a &dma_buf using
354 * dma_buf_get(). The the buffer is attached to the device using
355 * dma_buf_attach().
356 *
357 * Up to this stage the exporter is still free to migrate or reallocate the
358 * backing storage.
359 *
360 * 3. Once the buffer is attached to all devices userspace can inniate DMA
361 * access to the shared buffer. In the kernel this is done by calling
362 * dma_buf_map_attachment() and dma_buf_unmap_attachment().
363 *
364 * 4. Once a driver is done with a shared buffer it needs to call
365 * dma_buf_detach() (after cleaning up any mappings) and then release the
366 * reference acquired with dma_buf_get by calling dma_buf_put().
367 *
368 * For the detailed semantics exporters are expected to implement see
369 * &dma_buf_ops.
370 */
371
372 /**
373 * dma_buf_export - Creates a new dma_buf, and associates an anon file
374 * with this buffer, so it can be exported.
375 * Also connect the allocator specific data and ops to the buffer.
376 * Additionally, provide a name string for exporter; useful in debugging.
377 *
378 * @exp_info: [in] holds all the export related information provided
379 * by the exporter. see &struct dma_buf_export_info
380 * for further details.
381 *
382 * Returns, on success, a newly created dma_buf object, which wraps the
383 * supplied private data and operations for dma_buf_ops. On either missing
384 * ops, or error in allocating struct dma_buf, will return negative error.
385 *
386 * For most cases the easiest way to create @exp_info is through the
387 * %DEFINE_DMA_BUF_EXPORT_INFO macro.
388 */
389 struct dma_buf *dma_buf_export(const struct dma_buf_export_info *exp_info)
390 {
391 struct dma_buf *dmabuf;
392 struct reservation_object *resv = exp_info->resv;
393 struct file *file;
394 size_t alloc_size = sizeof(struct dma_buf);
395 int ret;
396
397 if (!exp_info->resv)
398 alloc_size += sizeof(struct reservation_object);
399 else
400 /* prevent &dma_buf[1] == dma_buf->resv */
401 alloc_size += 1;
402
403 if (WARN_ON(!exp_info->priv
404 || !exp_info->ops
405 || !exp_info->ops->map_dma_buf
406 || !exp_info->ops->unmap_dma_buf
407 || !exp_info->ops->release
408 || !exp_info->ops->map_atomic
409 || !exp_info->ops->map
410 || !exp_info->ops->mmap)) {
411 return ERR_PTR(-EINVAL);
412 }
413
414 if (!try_module_get(exp_info->owner))
415 return ERR_PTR(-ENOENT);
416
417 dmabuf = kzalloc(alloc_size, GFP_KERNEL);
418 if (!dmabuf) {
419 ret = -ENOMEM;
420 goto err_module;
421 }
422
423 dmabuf->priv = exp_info->priv;
424 dmabuf->ops = exp_info->ops;
425 dmabuf->size = exp_info->size;
426 dmabuf->exp_name = exp_info->exp_name;
427 dmabuf->owner = exp_info->owner;
428 init_waitqueue_head(&dmabuf->poll);
429 dmabuf->cb_excl.poll = dmabuf->cb_shared.poll = &dmabuf->poll;
430 dmabuf->cb_excl.active = dmabuf->cb_shared.active = 0;
431
432 if (!resv) {
433 resv = (struct reservation_object *)&dmabuf[1];
434 reservation_object_init(resv);
435 }
436 dmabuf->resv = resv;
437
438 file = anon_inode_getfile("dmabuf", &dma_buf_fops, dmabuf,
439 exp_info->flags);
440 if (IS_ERR(file)) {
441 ret = PTR_ERR(file);
442 goto err_dmabuf;
443 }
444
445 file->f_mode |= FMODE_LSEEK;
446 dmabuf->file = file;
447
448 mutex_init(&dmabuf->lock);
449 INIT_LIST_HEAD(&dmabuf->attachments);
450
451 mutex_lock(&db_list.lock);
452 list_add(&dmabuf->list_node, &db_list.head);
453 mutex_unlock(&db_list.lock);
454
455 return dmabuf;
456
457 err_dmabuf:
458 kfree(dmabuf);
459 err_module:
460 module_put(exp_info->owner);
461 return ERR_PTR(ret);
462 }
463 EXPORT_SYMBOL_GPL(dma_buf_export);
464
465 /**
466 * dma_buf_fd - returns a file descriptor for the given dma_buf
467 * @dmabuf: [in] pointer to dma_buf for which fd is required.
468 * @flags: [in] flags to give to fd
469 *
470 * On success, returns an associated 'fd'. Else, returns error.
471 */
472 int dma_buf_fd(struct dma_buf *dmabuf, int flags)
473 {
474 int fd;
475
476 if (!dmabuf || !dmabuf->file)
477 return -EINVAL;
478
479 fd = get_unused_fd_flags(flags);
480 if (fd < 0)
481 return fd;
482
483 fd_install(fd, dmabuf->file);
484
485 return fd;
486 }
487 EXPORT_SYMBOL_GPL(dma_buf_fd);
488
489 /**
490 * dma_buf_get - returns the dma_buf structure related to an fd
491 * @fd: [in] fd associated with the dma_buf to be returned
492 *
493 * On success, returns the dma_buf structure associated with an fd; uses
494 * file's refcounting done by fget to increase refcount. returns ERR_PTR
495 * otherwise.
496 */
497 struct dma_buf *dma_buf_get(int fd)
498 {
499 struct file *file;
500
501 file = fget(fd);
502
503 if (!file)
504 return ERR_PTR(-EBADF);
505
506 if (!is_dma_buf_file(file)) {
507 fput(file);
508 return ERR_PTR(-EINVAL);
509 }
510
511 return file->private_data;
512 }
513 EXPORT_SYMBOL_GPL(dma_buf_get);
514
515 /**
516 * dma_buf_put - decreases refcount of the buffer
517 * @dmabuf: [in] buffer to reduce refcount of
518 *
519 * Uses file's refcounting done implicitly by fput().
520 *
521 * If, as a result of this call, the refcount becomes 0, the 'release' file
522 * operation related to this fd is called. It calls &dma_buf_ops.release vfunc
523 * in turn, and frees the memory allocated for dmabuf when exported.
524 */
525 void dma_buf_put(struct dma_buf *dmabuf)
526 {
527 if (WARN_ON(!dmabuf || !dmabuf->file))
528 return;
529
530 fput(dmabuf->file);
531 }
532 EXPORT_SYMBOL_GPL(dma_buf_put);
533
534 /**
535 * dma_buf_attach - Add the device to dma_buf's attachments list; optionally,
536 * calls attach() of dma_buf_ops to allow device-specific attach functionality
537 * @dmabuf: [in] buffer to attach device to.
538 * @dev: [in] device to be attached.
539 *
540 * Returns struct dma_buf_attachment pointer for this attachment. Attachments
541 * must be cleaned up by calling dma_buf_detach().
542 *
543 * Returns:
544 *
545 * A pointer to newly created &dma_buf_attachment on success, or a negative
546 * error code wrapped into a pointer on failure.
547 *
548 * Note that this can fail if the backing storage of @dmabuf is in a place not
549 * accessible to @dev, and cannot be moved to a more suitable place. This is
550 * indicated with the error code -EBUSY.
551 */
552 struct dma_buf_attachment *dma_buf_attach(struct dma_buf *dmabuf,
553 struct device *dev)
554 {
555 struct dma_buf_attachment *attach;
556 int ret;
557
558 if (WARN_ON(!dmabuf || !dev))
559 return ERR_PTR(-EINVAL);
560
561 attach = kzalloc(sizeof(*attach), GFP_KERNEL);
562 if (!attach)
563 return ERR_PTR(-ENOMEM);
564
565 attach->dev = dev;
566 attach->dmabuf = dmabuf;
567
568 mutex_lock(&dmabuf->lock);
569
570 if (dmabuf->ops->attach) {
571 ret = dmabuf->ops->attach(dmabuf, dev, attach);
572 if (ret)
573 goto err_attach;
574 }
575 list_add(&attach->node, &dmabuf->attachments);
576
577 mutex_unlock(&dmabuf->lock);
578 return attach;
579
580 err_attach:
581 kfree(attach);
582 mutex_unlock(&dmabuf->lock);
583 return ERR_PTR(ret);
584 }
585 EXPORT_SYMBOL_GPL(dma_buf_attach);
586
587 /**
588 * dma_buf_detach - Remove the given attachment from dmabuf's attachments list;
589 * optionally calls detach() of dma_buf_ops for device-specific detach
590 * @dmabuf: [in] buffer to detach from.
591 * @attach: [in] attachment to be detached; is free'd after this call.
592 *
593 * Clean up a device attachment obtained by calling dma_buf_attach().
594 */
595 void dma_buf_detach(struct dma_buf *dmabuf, struct dma_buf_attachment *attach)
596 {
597 if (WARN_ON(!dmabuf || !attach))
598 return;
599
600 mutex_lock(&dmabuf->lock);
601 list_del(&attach->node);
602 if (dmabuf->ops->detach)
603 dmabuf->ops->detach(dmabuf, attach);
604
605 mutex_unlock(&dmabuf->lock);
606 kfree(attach);
607 }
608 EXPORT_SYMBOL_GPL(dma_buf_detach);
609
610 /**
611 * dma_buf_map_attachment - Returns the scatterlist table of the attachment;
612 * mapped into _device_ address space. Is a wrapper for map_dma_buf() of the
613 * dma_buf_ops.
614 * @attach: [in] attachment whose scatterlist is to be returned
615 * @direction: [in] direction of DMA transfer
616 *
617 * Returns sg_table containing the scatterlist to be returned; returns ERR_PTR
618 * on error. May return -EINTR if it is interrupted by a signal.
619 *
620 * A mapping must be unmapped again using dma_buf_map_attachment(). Note that
621 * the underlying backing storage is pinned for as long as a mapping exists,
622 * therefore users/importers should not hold onto a mapping for undue amounts of
623 * time.
624 */
625 struct sg_table *dma_buf_map_attachment(struct dma_buf_attachment *attach,
626 enum dma_data_direction direction)
627 {
628 struct sg_table *sg_table;
629
630 might_sleep();
631
632 if (WARN_ON(!attach || !attach->dmabuf))
633 return ERR_PTR(-EINVAL);
634
635 sg_table = attach->dmabuf->ops->map_dma_buf(attach, direction);
636 if (!sg_table)
637 sg_table = ERR_PTR(-ENOMEM);
638
639 return sg_table;
640 }
641 EXPORT_SYMBOL_GPL(dma_buf_map_attachment);
642
643 /**
644 * dma_buf_unmap_attachment - unmaps and decreases usecount of the buffer;might
645 * deallocate the scatterlist associated. Is a wrapper for unmap_dma_buf() of
646 * dma_buf_ops.
647 * @attach: [in] attachment to unmap buffer from
648 * @sg_table: [in] scatterlist info of the buffer to unmap
649 * @direction: [in] direction of DMA transfer
650 *
651 * This unmaps a DMA mapping for @attached obtained by dma_buf_map_attachment().
652 */
653 void dma_buf_unmap_attachment(struct dma_buf_attachment *attach,
654 struct sg_table *sg_table,
655 enum dma_data_direction direction)
656 {
657 might_sleep();
658
659 if (WARN_ON(!attach || !attach->dmabuf || !sg_table))
660 return;
661
662 attach->dmabuf->ops->unmap_dma_buf(attach, sg_table,
663 direction);
664 }
665 EXPORT_SYMBOL_GPL(dma_buf_unmap_attachment);
666
667 /**
668 * DOC: cpu access
669 *
670 * There are mutliple reasons for supporting CPU access to a dma buffer object:
671 *
672 * - Fallback operations in the kernel, for example when a device is connected
673 * over USB and the kernel needs to shuffle the data around first before
674 * sending it away. Cache coherency is handled by braketing any transactions
675 * with calls to dma_buf_begin_cpu_access() and dma_buf_end_cpu_access()
676 * access.
677 *
678 * To support dma_buf objects residing in highmem cpu access is page-based
679 * using an api similar to kmap. Accessing a dma_buf is done in aligned chunks
680 * of PAGE_SIZE size. Before accessing a chunk it needs to be mapped, which
681 * returns a pointer in kernel virtual address space. Afterwards the chunk
682 * needs to be unmapped again. There is no limit on how often a given chunk
683 * can be mapped and unmapped, i.e. the importer does not need to call
684 * begin_cpu_access again before mapping the same chunk again.
685 *
686 * Interfaces::
687 * void \*dma_buf_kmap(struct dma_buf \*, unsigned long);
688 * void dma_buf_kunmap(struct dma_buf \*, unsigned long, void \*);
689 *
690 * There are also atomic variants of these interfaces. Like for kmap they
691 * facilitate non-blocking fast-paths. Neither the importer nor the exporter
692 * (in the callback) is allowed to block when using these.
693 *
694 * Interfaces::
695 * void \*dma_buf_kmap_atomic(struct dma_buf \*, unsigned long);
696 * void dma_buf_kunmap_atomic(struct dma_buf \*, unsigned long, void \*);
697 *
698 * For importers all the restrictions of using kmap apply, like the limited
699 * supply of kmap_atomic slots. Hence an importer shall only hold onto at
700 * max 2 atomic dma_buf kmaps at the same time (in any given process context).
701 *
702 * dma_buf kmap calls outside of the range specified in begin_cpu_access are
703 * undefined. If the range is not PAGE_SIZE aligned, kmap needs to succeed on
704 * the partial chunks at the beginning and end but may return stale or bogus
705 * data outside of the range (in these partial chunks).
706 *
707 * Note that these calls need to always succeed. The exporter needs to
708 * complete any preparations that might fail in begin_cpu_access.
709 *
710 * For some cases the overhead of kmap can be too high, a vmap interface
711 * is introduced. This interface should be used very carefully, as vmalloc
712 * space is a limited resources on many architectures.
713 *
714 * Interfaces::
715 * void \*dma_buf_vmap(struct dma_buf \*dmabuf)
716 * void dma_buf_vunmap(struct dma_buf \*dmabuf, void \*vaddr)
717 *
718 * The vmap call can fail if there is no vmap support in the exporter, or if
719 * it runs out of vmalloc space. Fallback to kmap should be implemented. Note
720 * that the dma-buf layer keeps a reference count for all vmap access and
721 * calls down into the exporter's vmap function only when no vmapping exists,
722 * and only unmaps it once. Protection against concurrent vmap/vunmap calls is
723 * provided by taking the dma_buf->lock mutex.
724 *
725 * - For full compatibility on the importer side with existing userspace
726 * interfaces, which might already support mmap'ing buffers. This is needed in
727 * many processing pipelines (e.g. feeding a software rendered image into a
728 * hardware pipeline, thumbnail creation, snapshots, ...). Also, Android's ION
729 * framework already supported this and for DMA buffer file descriptors to
730 * replace ION buffers mmap support was needed.
731 *
732 * There is no special interfaces, userspace simply calls mmap on the dma-buf
733 * fd. But like for CPU access there's a need to braket the actual access,
734 * which is handled by the ioctl (DMA_BUF_IOCTL_SYNC). Note that
735 * DMA_BUF_IOCTL_SYNC can fail with -EAGAIN or -EINTR, in which case it must
736 * be restarted.
737 *
738 * Some systems might need some sort of cache coherency management e.g. when
739 * CPU and GPU domains are being accessed through dma-buf at the same time.
740 * To circumvent this problem there are begin/end coherency markers, that
741 * forward directly to existing dma-buf device drivers vfunc hooks. Userspace
742 * can make use of those markers through the DMA_BUF_IOCTL_SYNC ioctl. The
743 * sequence would be used like following:
744 *
745 * - mmap dma-buf fd
746 * - for each drawing/upload cycle in CPU 1. SYNC_START ioctl, 2. read/write
747 * to mmap area 3. SYNC_END ioctl. This can be repeated as often as you
748 * want (with the new data being consumed by say the GPU or the scanout
749 * device)
750 * - munmap once you don't need the buffer any more
751 *
752 * For correctness and optimal performance, it is always required to use
753 * SYNC_START and SYNC_END before and after, respectively, when accessing the
754 * mapped address. Userspace cannot rely on coherent access, even when there
755 * are systems where it just works without calling these ioctls.
756 *
757 * - And as a CPU fallback in userspace processing pipelines.
758 *
759 * Similar to the motivation for kernel cpu access it is again important that
760 * the userspace code of a given importing subsystem can use the same
761 * interfaces with a imported dma-buf buffer object as with a native buffer
762 * object. This is especially important for drm where the userspace part of
763 * contemporary OpenGL, X, and other drivers is huge, and reworking them to
764 * use a different way to mmap a buffer rather invasive.
765 *
766 * The assumption in the current dma-buf interfaces is that redirecting the
767 * initial mmap is all that's needed. A survey of some of the existing
768 * subsystems shows that no driver seems to do any nefarious thing like
769 * syncing up with outstanding asynchronous processing on the device or
770 * allocating special resources at fault time. So hopefully this is good
771 * enough, since adding interfaces to intercept pagefaults and allow pte
772 * shootdowns would increase the complexity quite a bit.
773 *
774 * Interface::
775 * int dma_buf_mmap(struct dma_buf \*, struct vm_area_struct \*,
776 * unsigned long);
777 *
778 * If the importing subsystem simply provides a special-purpose mmap call to
779 * set up a mapping in userspace, calling do_mmap with dma_buf->file will
780 * equally achieve that for a dma-buf object.
781 */
782
783 static int __dma_buf_begin_cpu_access(struct dma_buf *dmabuf,
784 enum dma_data_direction direction)
785 {
786 bool write = (direction == DMA_BIDIRECTIONAL ||
787 direction == DMA_TO_DEVICE);
788 struct reservation_object *resv = dmabuf->resv;
789 long ret;
790
791 /* Wait on any implicit rendering fences */
792 ret = reservation_object_wait_timeout_rcu(resv, write, true,
793 MAX_SCHEDULE_TIMEOUT);
794 if (ret < 0)
795 return ret;
796
797 return 0;
798 }
799
800 /**
801 * dma_buf_begin_cpu_access - Must be called before accessing a dma_buf from the
802 * cpu in the kernel context. Calls begin_cpu_access to allow exporter-specific
803 * preparations. Coherency is only guaranteed in the specified range for the
804 * specified access direction.
805 * @dmabuf: [in] buffer to prepare cpu access for.
806 * @direction: [in] length of range for cpu access.
807 *
808 * After the cpu access is complete the caller should call
809 * dma_buf_end_cpu_access(). Only when cpu access is braketed by both calls is
810 * it guaranteed to be coherent with other DMA access.
811 *
812 * Can return negative error values, returns 0 on success.
813 */
814 int dma_buf_begin_cpu_access(struct dma_buf *dmabuf,
815 enum dma_data_direction direction)
816 {
817 int ret = 0;
818
819 if (WARN_ON(!dmabuf))
820 return -EINVAL;
821
822 if (dmabuf->ops->begin_cpu_access)
823 ret = dmabuf->ops->begin_cpu_access(dmabuf, direction);
824
825 /* Ensure that all fences are waited upon - but we first allow
826 * the native handler the chance to do so more efficiently if it
827 * chooses. A double invocation here will be reasonably cheap no-op.
828 */
829 if (ret == 0)
830 ret = __dma_buf_begin_cpu_access(dmabuf, direction);
831
832 return ret;
833 }
834 EXPORT_SYMBOL_GPL(dma_buf_begin_cpu_access);
835
836 /**
837 * dma_buf_end_cpu_access - Must be called after accessing a dma_buf from the
838 * cpu in the kernel context. Calls end_cpu_access to allow exporter-specific
839 * actions. Coherency is only guaranteed in the specified range for the
840 * specified access direction.
841 * @dmabuf: [in] buffer to complete cpu access for.
842 * @direction: [in] length of range for cpu access.
843 *
844 * This terminates CPU access started with dma_buf_begin_cpu_access().
845 *
846 * Can return negative error values, returns 0 on success.
847 */
848 int dma_buf_end_cpu_access(struct dma_buf *dmabuf,
849 enum dma_data_direction direction)
850 {
851 int ret = 0;
852
853 WARN_ON(!dmabuf);
854
855 if (dmabuf->ops->end_cpu_access)
856 ret = dmabuf->ops->end_cpu_access(dmabuf, direction);
857
858 return ret;
859 }
860 EXPORT_SYMBOL_GPL(dma_buf_end_cpu_access);
861
862 /**
863 * dma_buf_kmap_atomic - Map a page of the buffer object into kernel address
864 * space. The same restrictions as for kmap_atomic and friends apply.
865 * @dmabuf: [in] buffer to map page from.
866 * @page_num: [in] page in PAGE_SIZE units to map.
867 *
868 * This call must always succeed, any necessary preparations that might fail
869 * need to be done in begin_cpu_access.
870 */
871 void *dma_buf_kmap_atomic(struct dma_buf *dmabuf, unsigned long page_num)
872 {
873 WARN_ON(!dmabuf);
874
875 return dmabuf->ops->map_atomic(dmabuf, page_num);
876 }
877 EXPORT_SYMBOL_GPL(dma_buf_kmap_atomic);
878
879 /**
880 * dma_buf_kunmap_atomic - Unmap a page obtained by dma_buf_kmap_atomic.
881 * @dmabuf: [in] buffer to unmap page from.
882 * @page_num: [in] page in PAGE_SIZE units to unmap.
883 * @vaddr: [in] kernel space pointer obtained from dma_buf_kmap_atomic.
884 *
885 * This call must always succeed.
886 */
887 void dma_buf_kunmap_atomic(struct dma_buf *dmabuf, unsigned long page_num,
888 void *vaddr)
889 {
890 WARN_ON(!dmabuf);
891
892 if (dmabuf->ops->unmap_atomic)
893 dmabuf->ops->unmap_atomic(dmabuf, page_num, vaddr);
894 }
895 EXPORT_SYMBOL_GPL(dma_buf_kunmap_atomic);
896
897 /**
898 * dma_buf_kmap - Map a page of the buffer object into kernel address space. The
899 * same restrictions as for kmap and friends apply.
900 * @dmabuf: [in] buffer to map page from.
901 * @page_num: [in] page in PAGE_SIZE units to map.
902 *
903 * This call must always succeed, any necessary preparations that might fail
904 * need to be done in begin_cpu_access.
905 */
906 void *dma_buf_kmap(struct dma_buf *dmabuf, unsigned long page_num)
907 {
908 WARN_ON(!dmabuf);
909
910 return dmabuf->ops->map(dmabuf, page_num);
911 }
912 EXPORT_SYMBOL_GPL(dma_buf_kmap);
913
914 /**
915 * dma_buf_kunmap - Unmap a page obtained by dma_buf_kmap.
916 * @dmabuf: [in] buffer to unmap page from.
917 * @page_num: [in] page in PAGE_SIZE units to unmap.
918 * @vaddr: [in] kernel space pointer obtained from dma_buf_kmap.
919 *
920 * This call must always succeed.
921 */
922 void dma_buf_kunmap(struct dma_buf *dmabuf, unsigned long page_num,
923 void *vaddr)
924 {
925 WARN_ON(!dmabuf);
926
927 if (dmabuf->ops->unmap)
928 dmabuf->ops->unmap(dmabuf, page_num, vaddr);
929 }
930 EXPORT_SYMBOL_GPL(dma_buf_kunmap);
931
932
933 /**
934 * dma_buf_mmap - Setup up a userspace mmap with the given vma
935 * @dmabuf: [in] buffer that should back the vma
936 * @vma: [in] vma for the mmap
937 * @pgoff: [in] offset in pages where this mmap should start within the
938 * dma-buf buffer.
939 *
940 * This function adjusts the passed in vma so that it points at the file of the
941 * dma_buf operation. It also adjusts the starting pgoff and does bounds
942 * checking on the size of the vma. Then it calls the exporters mmap function to
943 * set up the mapping.
944 *
945 * Can return negative error values, returns 0 on success.
946 */
947 int dma_buf_mmap(struct dma_buf *dmabuf, struct vm_area_struct *vma,
948 unsigned long pgoff)
949 {
950 struct file *oldfile;
951 int ret;
952
953 if (WARN_ON(!dmabuf || !vma))
954 return -EINVAL;
955
956 /* check for offset overflow */
957 if (pgoff + vma_pages(vma) < pgoff)
958 return -EOVERFLOW;
959
960 /* check for overflowing the buffer's size */
961 if (pgoff + vma_pages(vma) >
962 dmabuf->size >> PAGE_SHIFT)
963 return -EINVAL;
964
965 /* readjust the vma */
966 get_file(dmabuf->file);
967 oldfile = vma->vm_file;
968 vma->vm_file = dmabuf->file;
969 vma->vm_pgoff = pgoff;
970
971 ret = dmabuf->ops->mmap(dmabuf, vma);
972 if (ret) {
973 /* restore old parameters on failure */
974 vma->vm_file = oldfile;
975 fput(dmabuf->file);
976 } else {
977 if (oldfile)
978 fput(oldfile);
979 }
980 return ret;
981
982 }
983 EXPORT_SYMBOL_GPL(dma_buf_mmap);
984
985 /**
986 * dma_buf_vmap - Create virtual mapping for the buffer object into kernel
987 * address space. Same restrictions as for vmap and friends apply.
988 * @dmabuf: [in] buffer to vmap
989 *
990 * This call may fail due to lack of virtual mapping address space.
991 * These calls are optional in drivers. The intended use for them
992 * is for mapping objects linear in kernel space for high use objects.
993 * Please attempt to use kmap/kunmap before thinking about these interfaces.
994 *
995 * Returns NULL on error.
996 */
997 void *dma_buf_vmap(struct dma_buf *dmabuf)
998 {
999 void *ptr;
1000
1001 if (WARN_ON(!dmabuf))
1002 return NULL;
1003
1004 if (!dmabuf->ops->vmap)
1005 return NULL;
1006
1007 mutex_lock(&dmabuf->lock);
1008 if (dmabuf->vmapping_counter) {
1009 dmabuf->vmapping_counter++;
1010 BUG_ON(!dmabuf->vmap_ptr);
1011 ptr = dmabuf->vmap_ptr;
1012 goto out_unlock;
1013 }
1014
1015 BUG_ON(dmabuf->vmap_ptr);
1016
1017 ptr = dmabuf->ops->vmap(dmabuf);
1018 if (WARN_ON_ONCE(IS_ERR(ptr)))
1019 ptr = NULL;
1020 if (!ptr)
1021 goto out_unlock;
1022
1023 dmabuf->vmap_ptr = ptr;
1024 dmabuf->vmapping_counter = 1;
1025
1026 out_unlock:
1027 mutex_unlock(&dmabuf->lock);
1028 return ptr;
1029 }
1030 EXPORT_SYMBOL_GPL(dma_buf_vmap);
1031
1032 /**
1033 * dma_buf_vunmap - Unmap a vmap obtained by dma_buf_vmap.
1034 * @dmabuf: [in] buffer to vunmap
1035 * @vaddr: [in] vmap to vunmap
1036 */
1037 void dma_buf_vunmap(struct dma_buf *dmabuf, void *vaddr)
1038 {
1039 if (WARN_ON(!dmabuf))
1040 return;
1041
1042 BUG_ON(!dmabuf->vmap_ptr);
1043 BUG_ON(dmabuf->vmapping_counter == 0);
1044 BUG_ON(dmabuf->vmap_ptr != vaddr);
1045
1046 mutex_lock(&dmabuf->lock);
1047 if (--dmabuf->vmapping_counter == 0) {
1048 if (dmabuf->ops->vunmap)
1049 dmabuf->ops->vunmap(dmabuf, vaddr);
1050 dmabuf->vmap_ptr = NULL;
1051 }
1052 mutex_unlock(&dmabuf->lock);
1053 }
1054 EXPORT_SYMBOL_GPL(dma_buf_vunmap);
1055
1056 #ifdef CONFIG_DEBUG_FS
1057 static int dma_buf_debug_show(struct seq_file *s, void *unused)
1058 {
1059 int ret;
1060 struct dma_buf *buf_obj;
1061 struct dma_buf_attachment *attach_obj;
1062 struct reservation_object *robj;
1063 struct reservation_object_list *fobj;
1064 struct dma_fence *fence;
1065 unsigned seq;
1066 int count = 0, attach_count, shared_count, i;
1067 size_t size = 0;
1068
1069 ret = mutex_lock_interruptible(&db_list.lock);
1070
1071 if (ret)
1072 return ret;
1073
1074 seq_puts(s, "\nDma-buf Objects:\n");
1075 seq_printf(s, "%-8s\t%-8s\t%-8s\t%-8s\texp_name\n",
1076 "size", "flags", "mode", "count");
1077
1078 list_for_each_entry(buf_obj, &db_list.head, list_node) {
1079 ret = mutex_lock_interruptible(&buf_obj->lock);
1080
1081 if (ret) {
1082 seq_puts(s,
1083 "\tERROR locking buffer object: skipping\n");
1084 continue;
1085 }
1086
1087 seq_printf(s, "%08zu\t%08x\t%08x\t%08ld\t%s\n",
1088 buf_obj->size,
1089 buf_obj->file->f_flags, buf_obj->file->f_mode,
1090 file_count(buf_obj->file),
1091 buf_obj->exp_name);
1092
1093 robj = buf_obj->resv;
1094 while (true) {
1095 seq = read_seqcount_begin(&robj->seq);
1096 rcu_read_lock();
1097 fobj = rcu_dereference(robj->fence);
1098 shared_count = fobj ? fobj->shared_count : 0;
1099 fence = rcu_dereference(robj->fence_excl);
1100 if (!read_seqcount_retry(&robj->seq, seq))
1101 break;
1102 rcu_read_unlock();
1103 }
1104
1105 if (fence)
1106 seq_printf(s, "\tExclusive fence: %s %s %ssignalled\n",
1107 fence->ops->get_driver_name(fence),
1108 fence->ops->get_timeline_name(fence),
1109 dma_fence_is_signaled(fence) ? "" : "un");
1110 for (i = 0; i < shared_count; i++) {
1111 fence = rcu_dereference(fobj->shared[i]);
1112 if (!dma_fence_get_rcu(fence))
1113 continue;
1114 seq_printf(s, "\tShared fence: %s %s %ssignalled\n",
1115 fence->ops->get_driver_name(fence),
1116 fence->ops->get_timeline_name(fence),
1117 dma_fence_is_signaled(fence) ? "" : "un");
1118 }
1119 rcu_read_unlock();
1120
1121 seq_puts(s, "\tAttached Devices:\n");
1122 attach_count = 0;
1123
1124 list_for_each_entry(attach_obj, &buf_obj->attachments, node) {
1125 seq_printf(s, "\t%s\n", dev_name(attach_obj->dev));
1126 attach_count++;
1127 }
1128
1129 seq_printf(s, "Total %d devices attached\n\n",
1130 attach_count);
1131
1132 count++;
1133 size += buf_obj->size;
1134 mutex_unlock(&buf_obj->lock);
1135 }
1136
1137 seq_printf(s, "\nTotal %d objects, %zu bytes\n", count, size);
1138
1139 mutex_unlock(&db_list.lock);
1140 return 0;
1141 }
1142
1143 static int dma_buf_debug_open(struct inode *inode, struct file *file)
1144 {
1145 return single_open(file, dma_buf_debug_show, NULL);
1146 }
1147
1148 static const struct file_operations dma_buf_debug_fops = {
1149 .open = dma_buf_debug_open,
1150 .read = seq_read,
1151 .llseek = seq_lseek,
1152 .release = single_release,
1153 };
1154
1155 static struct dentry *dma_buf_debugfs_dir;
1156
1157 static int dma_buf_init_debugfs(void)
1158 {
1159 struct dentry *d;
1160 int err = 0;
1161
1162 d = debugfs_create_dir("dma_buf", NULL);
1163 if (IS_ERR(d))
1164 return PTR_ERR(d);
1165
1166 dma_buf_debugfs_dir = d;
1167
1168 d = debugfs_create_file("bufinfo", S_IRUGO, dma_buf_debugfs_dir,
1169 NULL, &dma_buf_debug_fops);
1170 if (IS_ERR(d)) {
1171 pr_debug("dma_buf: debugfs: failed to create node bufinfo\n");
1172 debugfs_remove_recursive(dma_buf_debugfs_dir);
1173 dma_buf_debugfs_dir = NULL;
1174 err = PTR_ERR(d);
1175 }
1176
1177 return err;
1178 }
1179
1180 static void dma_buf_uninit_debugfs(void)
1181 {
1182 if (dma_buf_debugfs_dir)
1183 debugfs_remove_recursive(dma_buf_debugfs_dir);
1184 }
1185 #else
1186 static inline int dma_buf_init_debugfs(void)
1187 {
1188 return 0;
1189 }
1190 static inline void dma_buf_uninit_debugfs(void)
1191 {
1192 }
1193 #endif
1194
1195 static int __init dma_buf_init(void)
1196 {
1197 mutex_init(&db_list.lock);
1198 INIT_LIST_HEAD(&db_list.head);
1199 dma_buf_init_debugfs();
1200 return 0;
1201 }
1202 subsys_initcall(dma_buf_init);
1203
1204 static void __exit dma_buf_deinit(void)
1205 {
1206 dma_buf_uninit_debugfs();
1207 }
1208 __exitcall(dma_buf_deinit);