]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - drivers/edac/altera_edac.c
EDAC/aspeed: Fix handling of platform_get_irq() error
[mirror_ubuntu-focal-kernel.git] / drivers / edac / altera_edac.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2017-2018, Intel Corporation. All rights reserved
4 * Copyright Altera Corporation (C) 2014-2016. All rights reserved.
5 * Copyright 2011-2012 Calxeda, Inc.
6 */
7
8 #include <asm/cacheflush.h>
9 #include <linux/ctype.h>
10 #include <linux/delay.h>
11 #include <linux/edac.h>
12 #include <linux/firmware/intel/stratix10-smc.h>
13 #include <linux/genalloc.h>
14 #include <linux/interrupt.h>
15 #include <linux/irqchip/chained_irq.h>
16 #include <linux/kernel.h>
17 #include <linux/mfd/syscon.h>
18 #include <linux/notifier.h>
19 #include <linux/of_address.h>
20 #include <linux/of_irq.h>
21 #include <linux/of_platform.h>
22 #include <linux/platform_device.h>
23 #include <linux/regmap.h>
24 #include <linux/types.h>
25 #include <linux/uaccess.h>
26
27 #include "altera_edac.h"
28 #include "edac_module.h"
29
30 #define EDAC_MOD_STR "altera_edac"
31 #define EDAC_DEVICE "Altera"
32
33 #ifdef CONFIG_EDAC_ALTERA_SDRAM
34 static const struct altr_sdram_prv_data c5_data = {
35 .ecc_ctrl_offset = CV_CTLCFG_OFST,
36 .ecc_ctl_en_mask = CV_CTLCFG_ECC_AUTO_EN,
37 .ecc_stat_offset = CV_DRAMSTS_OFST,
38 .ecc_stat_ce_mask = CV_DRAMSTS_SBEERR,
39 .ecc_stat_ue_mask = CV_DRAMSTS_DBEERR,
40 .ecc_saddr_offset = CV_ERRADDR_OFST,
41 .ecc_daddr_offset = CV_ERRADDR_OFST,
42 .ecc_cecnt_offset = CV_SBECOUNT_OFST,
43 .ecc_uecnt_offset = CV_DBECOUNT_OFST,
44 .ecc_irq_en_offset = CV_DRAMINTR_OFST,
45 .ecc_irq_en_mask = CV_DRAMINTR_INTREN,
46 .ecc_irq_clr_offset = CV_DRAMINTR_OFST,
47 .ecc_irq_clr_mask = (CV_DRAMINTR_INTRCLR | CV_DRAMINTR_INTREN),
48 .ecc_cnt_rst_offset = CV_DRAMINTR_OFST,
49 .ecc_cnt_rst_mask = CV_DRAMINTR_INTRCLR,
50 .ce_ue_trgr_offset = CV_CTLCFG_OFST,
51 .ce_set_mask = CV_CTLCFG_GEN_SB_ERR,
52 .ue_set_mask = CV_CTLCFG_GEN_DB_ERR,
53 };
54
55 static const struct altr_sdram_prv_data a10_data = {
56 .ecc_ctrl_offset = A10_ECCCTRL1_OFST,
57 .ecc_ctl_en_mask = A10_ECCCTRL1_ECC_EN,
58 .ecc_stat_offset = A10_INTSTAT_OFST,
59 .ecc_stat_ce_mask = A10_INTSTAT_SBEERR,
60 .ecc_stat_ue_mask = A10_INTSTAT_DBEERR,
61 .ecc_saddr_offset = A10_SERRADDR_OFST,
62 .ecc_daddr_offset = A10_DERRADDR_OFST,
63 .ecc_irq_en_offset = A10_ERRINTEN_OFST,
64 .ecc_irq_en_mask = A10_ECC_IRQ_EN_MASK,
65 .ecc_irq_clr_offset = A10_INTSTAT_OFST,
66 .ecc_irq_clr_mask = (A10_INTSTAT_SBEERR | A10_INTSTAT_DBEERR),
67 .ecc_cnt_rst_offset = A10_ECCCTRL1_OFST,
68 .ecc_cnt_rst_mask = A10_ECC_CNT_RESET_MASK,
69 .ce_ue_trgr_offset = A10_DIAGINTTEST_OFST,
70 .ce_set_mask = A10_DIAGINT_TSERRA_MASK,
71 .ue_set_mask = A10_DIAGINT_TDERRA_MASK,
72 };
73
74 /*********************** EDAC Memory Controller Functions ****************/
75
76 /* The SDRAM controller uses the EDAC Memory Controller framework. */
77
78 static irqreturn_t altr_sdram_mc_err_handler(int irq, void *dev_id)
79 {
80 struct mem_ctl_info *mci = dev_id;
81 struct altr_sdram_mc_data *drvdata = mci->pvt_info;
82 const struct altr_sdram_prv_data *priv = drvdata->data;
83 u32 status, err_count = 1, err_addr;
84
85 regmap_read(drvdata->mc_vbase, priv->ecc_stat_offset, &status);
86
87 if (status & priv->ecc_stat_ue_mask) {
88 regmap_read(drvdata->mc_vbase, priv->ecc_daddr_offset,
89 &err_addr);
90 if (priv->ecc_uecnt_offset)
91 regmap_read(drvdata->mc_vbase, priv->ecc_uecnt_offset,
92 &err_count);
93 panic("\nEDAC: [%d Uncorrectable errors @ 0x%08X]\n",
94 err_count, err_addr);
95 }
96 if (status & priv->ecc_stat_ce_mask) {
97 regmap_read(drvdata->mc_vbase, priv->ecc_saddr_offset,
98 &err_addr);
99 if (priv->ecc_uecnt_offset)
100 regmap_read(drvdata->mc_vbase, priv->ecc_cecnt_offset,
101 &err_count);
102 edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, err_count,
103 err_addr >> PAGE_SHIFT,
104 err_addr & ~PAGE_MASK, 0,
105 0, 0, -1, mci->ctl_name, "");
106 /* Clear IRQ to resume */
107 regmap_write(drvdata->mc_vbase, priv->ecc_irq_clr_offset,
108 priv->ecc_irq_clr_mask);
109
110 return IRQ_HANDLED;
111 }
112 return IRQ_NONE;
113 }
114
115 static ssize_t altr_sdr_mc_err_inject_write(struct file *file,
116 const char __user *data,
117 size_t count, loff_t *ppos)
118 {
119 struct mem_ctl_info *mci = file->private_data;
120 struct altr_sdram_mc_data *drvdata = mci->pvt_info;
121 const struct altr_sdram_prv_data *priv = drvdata->data;
122 u32 *ptemp;
123 dma_addr_t dma_handle;
124 u32 reg, read_reg;
125
126 ptemp = dma_alloc_coherent(mci->pdev, 16, &dma_handle, GFP_KERNEL);
127 if (!ptemp) {
128 dma_free_coherent(mci->pdev, 16, ptemp, dma_handle);
129 edac_printk(KERN_ERR, EDAC_MC,
130 "Inject: Buffer Allocation error\n");
131 return -ENOMEM;
132 }
133
134 regmap_read(drvdata->mc_vbase, priv->ce_ue_trgr_offset,
135 &read_reg);
136 read_reg &= ~(priv->ce_set_mask | priv->ue_set_mask);
137
138 /* Error are injected by writing a word while the SBE or DBE
139 * bit in the CTLCFG register is set. Reading the word will
140 * trigger the SBE or DBE error and the corresponding IRQ.
141 */
142 if (count == 3) {
143 edac_printk(KERN_ALERT, EDAC_MC,
144 "Inject Double bit error\n");
145 local_irq_disable();
146 regmap_write(drvdata->mc_vbase, priv->ce_ue_trgr_offset,
147 (read_reg | priv->ue_set_mask));
148 local_irq_enable();
149 } else {
150 edac_printk(KERN_ALERT, EDAC_MC,
151 "Inject Single bit error\n");
152 local_irq_disable();
153 regmap_write(drvdata->mc_vbase, priv->ce_ue_trgr_offset,
154 (read_reg | priv->ce_set_mask));
155 local_irq_enable();
156 }
157
158 ptemp[0] = 0x5A5A5A5A;
159 ptemp[1] = 0xA5A5A5A5;
160
161 /* Clear the error injection bits */
162 regmap_write(drvdata->mc_vbase, priv->ce_ue_trgr_offset, read_reg);
163 /* Ensure it has been written out */
164 wmb();
165
166 /*
167 * To trigger the error, we need to read the data back
168 * (the data was written with errors above).
169 * The READ_ONCE macros and printk are used to prevent the
170 * the compiler optimizing these reads out.
171 */
172 reg = READ_ONCE(ptemp[0]);
173 read_reg = READ_ONCE(ptemp[1]);
174 /* Force Read */
175 rmb();
176
177 edac_printk(KERN_ALERT, EDAC_MC, "Read Data [0x%X, 0x%X]\n",
178 reg, read_reg);
179
180 dma_free_coherent(mci->pdev, 16, ptemp, dma_handle);
181
182 return count;
183 }
184
185 static const struct file_operations altr_sdr_mc_debug_inject_fops = {
186 .open = simple_open,
187 .write = altr_sdr_mc_err_inject_write,
188 .llseek = generic_file_llseek,
189 };
190
191 static void altr_sdr_mc_create_debugfs_nodes(struct mem_ctl_info *mci)
192 {
193 if (!IS_ENABLED(CONFIG_EDAC_DEBUG))
194 return;
195
196 if (!mci->debugfs)
197 return;
198
199 edac_debugfs_create_file("altr_trigger", S_IWUSR, mci->debugfs, mci,
200 &altr_sdr_mc_debug_inject_fops);
201 }
202
203 /* Get total memory size from Open Firmware DTB */
204 static unsigned long get_total_mem(void)
205 {
206 struct device_node *np = NULL;
207 struct resource res;
208 int ret;
209 unsigned long total_mem = 0;
210
211 for_each_node_by_type(np, "memory") {
212 ret = of_address_to_resource(np, 0, &res);
213 if (ret)
214 continue;
215
216 total_mem += resource_size(&res);
217 }
218 edac_dbg(0, "total_mem 0x%lx\n", total_mem);
219 return total_mem;
220 }
221
222 static const struct of_device_id altr_sdram_ctrl_of_match[] = {
223 { .compatible = "altr,sdram-edac", .data = &c5_data},
224 { .compatible = "altr,sdram-edac-a10", .data = &a10_data},
225 {},
226 };
227 MODULE_DEVICE_TABLE(of, altr_sdram_ctrl_of_match);
228
229 static int a10_init(struct regmap *mc_vbase)
230 {
231 if (regmap_update_bits(mc_vbase, A10_INTMODE_OFST,
232 A10_INTMODE_SB_INT, A10_INTMODE_SB_INT)) {
233 edac_printk(KERN_ERR, EDAC_MC,
234 "Error setting SB IRQ mode\n");
235 return -ENODEV;
236 }
237
238 if (regmap_write(mc_vbase, A10_SERRCNTREG_OFST, 1)) {
239 edac_printk(KERN_ERR, EDAC_MC,
240 "Error setting trigger count\n");
241 return -ENODEV;
242 }
243
244 return 0;
245 }
246
247 static int a10_unmask_irq(struct platform_device *pdev, u32 mask)
248 {
249 void __iomem *sm_base;
250 int ret = 0;
251
252 if (!request_mem_region(A10_SYMAN_INTMASK_CLR, sizeof(u32),
253 dev_name(&pdev->dev))) {
254 edac_printk(KERN_ERR, EDAC_MC,
255 "Unable to request mem region\n");
256 return -EBUSY;
257 }
258
259 sm_base = ioremap(A10_SYMAN_INTMASK_CLR, sizeof(u32));
260 if (!sm_base) {
261 edac_printk(KERN_ERR, EDAC_MC,
262 "Unable to ioremap device\n");
263
264 ret = -ENOMEM;
265 goto release;
266 }
267
268 iowrite32(mask, sm_base);
269
270 iounmap(sm_base);
271
272 release:
273 release_mem_region(A10_SYMAN_INTMASK_CLR, sizeof(u32));
274
275 return ret;
276 }
277
278 static int socfpga_is_a10(void);
279 static int altr_sdram_probe(struct platform_device *pdev)
280 {
281 const struct of_device_id *id;
282 struct edac_mc_layer layers[2];
283 struct mem_ctl_info *mci;
284 struct altr_sdram_mc_data *drvdata;
285 const struct altr_sdram_prv_data *priv;
286 struct regmap *mc_vbase;
287 struct dimm_info *dimm;
288 u32 read_reg;
289 int irq, irq2, res = 0;
290 unsigned long mem_size, irqflags = 0;
291
292 id = of_match_device(altr_sdram_ctrl_of_match, &pdev->dev);
293 if (!id)
294 return -ENODEV;
295
296 /* Grab the register range from the sdr controller in device tree */
297 mc_vbase = syscon_regmap_lookup_by_phandle(pdev->dev.of_node,
298 "altr,sdr-syscon");
299 if (IS_ERR(mc_vbase)) {
300 edac_printk(KERN_ERR, EDAC_MC,
301 "regmap for altr,sdr-syscon lookup failed.\n");
302 return -ENODEV;
303 }
304
305 /* Check specific dependencies for the module */
306 priv = of_match_node(altr_sdram_ctrl_of_match,
307 pdev->dev.of_node)->data;
308
309 /* Validate the SDRAM controller has ECC enabled */
310 if (regmap_read(mc_vbase, priv->ecc_ctrl_offset, &read_reg) ||
311 ((read_reg & priv->ecc_ctl_en_mask) != priv->ecc_ctl_en_mask)) {
312 edac_printk(KERN_ERR, EDAC_MC,
313 "No ECC/ECC disabled [0x%08X]\n", read_reg);
314 return -ENODEV;
315 }
316
317 /* Grab memory size from device tree. */
318 mem_size = get_total_mem();
319 if (!mem_size) {
320 edac_printk(KERN_ERR, EDAC_MC, "Unable to calculate memory size\n");
321 return -ENODEV;
322 }
323
324 /* Ensure the SDRAM Interrupt is disabled */
325 if (regmap_update_bits(mc_vbase, priv->ecc_irq_en_offset,
326 priv->ecc_irq_en_mask, 0)) {
327 edac_printk(KERN_ERR, EDAC_MC,
328 "Error disabling SDRAM ECC IRQ\n");
329 return -ENODEV;
330 }
331
332 /* Toggle to clear the SDRAM Error count */
333 if (regmap_update_bits(mc_vbase, priv->ecc_cnt_rst_offset,
334 priv->ecc_cnt_rst_mask,
335 priv->ecc_cnt_rst_mask)) {
336 edac_printk(KERN_ERR, EDAC_MC,
337 "Error clearing SDRAM ECC count\n");
338 return -ENODEV;
339 }
340
341 if (regmap_update_bits(mc_vbase, priv->ecc_cnt_rst_offset,
342 priv->ecc_cnt_rst_mask, 0)) {
343 edac_printk(KERN_ERR, EDAC_MC,
344 "Error clearing SDRAM ECC count\n");
345 return -ENODEV;
346 }
347
348 irq = platform_get_irq(pdev, 0);
349 if (irq < 0) {
350 edac_printk(KERN_ERR, EDAC_MC,
351 "No irq %d in DT\n", irq);
352 return -ENODEV;
353 }
354
355 /* Arria10 has a 2nd IRQ */
356 irq2 = platform_get_irq(pdev, 1);
357
358 layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
359 layers[0].size = 1;
360 layers[0].is_virt_csrow = true;
361 layers[1].type = EDAC_MC_LAYER_CHANNEL;
362 layers[1].size = 1;
363 layers[1].is_virt_csrow = false;
364 mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers,
365 sizeof(struct altr_sdram_mc_data));
366 if (!mci)
367 return -ENOMEM;
368
369 mci->pdev = &pdev->dev;
370 drvdata = mci->pvt_info;
371 drvdata->mc_vbase = mc_vbase;
372 drvdata->data = priv;
373 platform_set_drvdata(pdev, mci);
374
375 if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL)) {
376 edac_printk(KERN_ERR, EDAC_MC,
377 "Unable to get managed device resource\n");
378 res = -ENOMEM;
379 goto free;
380 }
381
382 mci->mtype_cap = MEM_FLAG_DDR3;
383 mci->edac_ctl_cap = EDAC_FLAG_NONE | EDAC_FLAG_SECDED;
384 mci->edac_cap = EDAC_FLAG_SECDED;
385 mci->mod_name = EDAC_MOD_STR;
386 mci->ctl_name = dev_name(&pdev->dev);
387 mci->scrub_mode = SCRUB_SW_SRC;
388 mci->dev_name = dev_name(&pdev->dev);
389
390 dimm = *mci->dimms;
391 dimm->nr_pages = ((mem_size - 1) >> PAGE_SHIFT) + 1;
392 dimm->grain = 8;
393 dimm->dtype = DEV_X8;
394 dimm->mtype = MEM_DDR3;
395 dimm->edac_mode = EDAC_SECDED;
396
397 res = edac_mc_add_mc(mci);
398 if (res < 0)
399 goto err;
400
401 /* Only the Arria10 has separate IRQs */
402 if (socfpga_is_a10()) {
403 /* Arria10 specific initialization */
404 res = a10_init(mc_vbase);
405 if (res < 0)
406 goto err2;
407
408 res = devm_request_irq(&pdev->dev, irq2,
409 altr_sdram_mc_err_handler,
410 IRQF_SHARED, dev_name(&pdev->dev), mci);
411 if (res < 0) {
412 edac_mc_printk(mci, KERN_ERR,
413 "Unable to request irq %d\n", irq2);
414 res = -ENODEV;
415 goto err2;
416 }
417
418 res = a10_unmask_irq(pdev, A10_DDR0_IRQ_MASK);
419 if (res < 0)
420 goto err2;
421
422 irqflags = IRQF_SHARED;
423 }
424
425 res = devm_request_irq(&pdev->dev, irq, altr_sdram_mc_err_handler,
426 irqflags, dev_name(&pdev->dev), mci);
427 if (res < 0) {
428 edac_mc_printk(mci, KERN_ERR,
429 "Unable to request irq %d\n", irq);
430 res = -ENODEV;
431 goto err2;
432 }
433
434 /* Infrastructure ready - enable the IRQ */
435 if (regmap_update_bits(drvdata->mc_vbase, priv->ecc_irq_en_offset,
436 priv->ecc_irq_en_mask, priv->ecc_irq_en_mask)) {
437 edac_mc_printk(mci, KERN_ERR,
438 "Error enabling SDRAM ECC IRQ\n");
439 res = -ENODEV;
440 goto err2;
441 }
442
443 altr_sdr_mc_create_debugfs_nodes(mci);
444
445 devres_close_group(&pdev->dev, NULL);
446
447 return 0;
448
449 err2:
450 edac_mc_del_mc(&pdev->dev);
451 err:
452 devres_release_group(&pdev->dev, NULL);
453 free:
454 edac_mc_free(mci);
455 edac_printk(KERN_ERR, EDAC_MC,
456 "EDAC Probe Failed; Error %d\n", res);
457
458 return res;
459 }
460
461 static int altr_sdram_remove(struct platform_device *pdev)
462 {
463 struct mem_ctl_info *mci = platform_get_drvdata(pdev);
464
465 edac_mc_del_mc(&pdev->dev);
466 edac_mc_free(mci);
467 platform_set_drvdata(pdev, NULL);
468
469 return 0;
470 }
471
472 /*
473 * If you want to suspend, need to disable EDAC by removing it
474 * from the device tree or defconfig.
475 */
476 #ifdef CONFIG_PM
477 static int altr_sdram_prepare(struct device *dev)
478 {
479 pr_err("Suspend not allowed when EDAC is enabled.\n");
480
481 return -EPERM;
482 }
483
484 static const struct dev_pm_ops altr_sdram_pm_ops = {
485 .prepare = altr_sdram_prepare,
486 };
487 #endif
488
489 static struct platform_driver altr_sdram_edac_driver = {
490 .probe = altr_sdram_probe,
491 .remove = altr_sdram_remove,
492 .driver = {
493 .name = "altr_sdram_edac",
494 #ifdef CONFIG_PM
495 .pm = &altr_sdram_pm_ops,
496 #endif
497 .of_match_table = altr_sdram_ctrl_of_match,
498 },
499 };
500
501 module_platform_driver(altr_sdram_edac_driver);
502
503 #endif /* CONFIG_EDAC_ALTERA_SDRAM */
504
505 /**************** Stratix 10 EDAC Memory Controller Functions ************/
506
507 /**
508 * s10_protected_reg_write
509 * Write to a protected SMC register.
510 * @context: Not used.
511 * @reg: Address of register
512 * @value: Value to write
513 * Return: INTEL_SIP_SMC_STATUS_OK (0) on success
514 * INTEL_SIP_SMC_REG_ERROR on error
515 * INTEL_SIP_SMC_RETURN_UNKNOWN_FUNCTION if not supported
516 */
517 static int s10_protected_reg_write(void *context, unsigned int reg,
518 unsigned int val)
519 {
520 struct arm_smccc_res result;
521 unsigned long offset = (unsigned long)context;
522
523 arm_smccc_smc(INTEL_SIP_SMC_REG_WRITE, offset + reg, val, 0, 0,
524 0, 0, 0, &result);
525
526 return (int)result.a0;
527 }
528
529 /**
530 * s10_protected_reg_read
531 * Read the status of a protected SMC register
532 * @context: Not used.
533 * @reg: Address of register
534 * @value: Value read.
535 * Return: INTEL_SIP_SMC_STATUS_OK (0) on success
536 * INTEL_SIP_SMC_REG_ERROR on error
537 * INTEL_SIP_SMC_RETURN_UNKNOWN_FUNCTION if not supported
538 */
539 static int s10_protected_reg_read(void *context, unsigned int reg,
540 unsigned int *val)
541 {
542 struct arm_smccc_res result;
543 unsigned long offset = (unsigned long)context;
544
545 arm_smccc_smc(INTEL_SIP_SMC_REG_READ, offset + reg, 0, 0, 0,
546 0, 0, 0, &result);
547
548 *val = (unsigned int)result.a1;
549
550 return (int)result.a0;
551 }
552
553 static const struct regmap_config s10_sdram_regmap_cfg = {
554 .name = "s10_ddr",
555 .reg_bits = 32,
556 .reg_stride = 4,
557 .val_bits = 32,
558 .max_register = 0xffd12228,
559 .reg_read = s10_protected_reg_read,
560 .reg_write = s10_protected_reg_write,
561 .use_single_read = true,
562 .use_single_write = true,
563 .fast_io = true,
564 };
565
566 /************** </Stratix10 EDAC Memory Controller Functions> ***********/
567
568 /************************* EDAC Parent Probe *************************/
569
570 static const struct of_device_id altr_edac_device_of_match[];
571
572 static const struct of_device_id altr_edac_of_match[] = {
573 { .compatible = "altr,socfpga-ecc-manager" },
574 {},
575 };
576 MODULE_DEVICE_TABLE(of, altr_edac_of_match);
577
578 static int altr_edac_probe(struct platform_device *pdev)
579 {
580 of_platform_populate(pdev->dev.of_node, altr_edac_device_of_match,
581 NULL, &pdev->dev);
582 return 0;
583 }
584
585 static struct platform_driver altr_edac_driver = {
586 .probe = altr_edac_probe,
587 .driver = {
588 .name = "socfpga_ecc_manager",
589 .of_match_table = altr_edac_of_match,
590 },
591 };
592 module_platform_driver(altr_edac_driver);
593
594 /************************* EDAC Device Functions *************************/
595
596 /*
597 * EDAC Device Functions (shared between various IPs).
598 * The discrete memories use the EDAC Device framework. The probe
599 * and error handling functions are very similar between memories
600 * so they are shared. The memory allocation and freeing for EDAC
601 * trigger testing are different for each memory.
602 */
603
604 static const struct edac_device_prv_data ocramecc_data;
605 static const struct edac_device_prv_data l2ecc_data;
606 static const struct edac_device_prv_data a10_ocramecc_data;
607 static const struct edac_device_prv_data a10_l2ecc_data;
608
609 static irqreturn_t altr_edac_device_handler(int irq, void *dev_id)
610 {
611 irqreturn_t ret_value = IRQ_NONE;
612 struct edac_device_ctl_info *dci = dev_id;
613 struct altr_edac_device_dev *drvdata = dci->pvt_info;
614 const struct edac_device_prv_data *priv = drvdata->data;
615
616 if (irq == drvdata->sb_irq) {
617 if (priv->ce_clear_mask)
618 writel(priv->ce_clear_mask, drvdata->base);
619 edac_device_handle_ce(dci, 0, 0, drvdata->edac_dev_name);
620 ret_value = IRQ_HANDLED;
621 } else if (irq == drvdata->db_irq) {
622 if (priv->ue_clear_mask)
623 writel(priv->ue_clear_mask, drvdata->base);
624 edac_device_handle_ue(dci, 0, 0, drvdata->edac_dev_name);
625 panic("\nEDAC:ECC_DEVICE[Uncorrectable errors]\n");
626 ret_value = IRQ_HANDLED;
627 } else {
628 WARN_ON(1);
629 }
630
631 return ret_value;
632 }
633
634 static ssize_t altr_edac_device_trig(struct file *file,
635 const char __user *user_buf,
636 size_t count, loff_t *ppos)
637
638 {
639 u32 *ptemp, i, error_mask;
640 int result = 0;
641 u8 trig_type;
642 unsigned long flags;
643 struct edac_device_ctl_info *edac_dci = file->private_data;
644 struct altr_edac_device_dev *drvdata = edac_dci->pvt_info;
645 const struct edac_device_prv_data *priv = drvdata->data;
646 void *generic_ptr = edac_dci->dev;
647
648 if (!user_buf || get_user(trig_type, user_buf))
649 return -EFAULT;
650
651 if (!priv->alloc_mem)
652 return -ENOMEM;
653
654 /*
655 * Note that generic_ptr is initialized to the device * but in
656 * some alloc_functions, this is overridden and returns data.
657 */
658 ptemp = priv->alloc_mem(priv->trig_alloc_sz, &generic_ptr);
659 if (!ptemp) {
660 edac_printk(KERN_ERR, EDAC_DEVICE,
661 "Inject: Buffer Allocation error\n");
662 return -ENOMEM;
663 }
664
665 if (trig_type == ALTR_UE_TRIGGER_CHAR)
666 error_mask = priv->ue_set_mask;
667 else
668 error_mask = priv->ce_set_mask;
669
670 edac_printk(KERN_ALERT, EDAC_DEVICE,
671 "Trigger Error Mask (0x%X)\n", error_mask);
672
673 local_irq_save(flags);
674 /* write ECC corrupted data out. */
675 for (i = 0; i < (priv->trig_alloc_sz / sizeof(*ptemp)); i++) {
676 /* Read data so we're in the correct state */
677 rmb();
678 if (READ_ONCE(ptemp[i]))
679 result = -1;
680 /* Toggle Error bit (it is latched), leave ECC enabled */
681 writel(error_mask, (drvdata->base + priv->set_err_ofst));
682 writel(priv->ecc_enable_mask, (drvdata->base +
683 priv->set_err_ofst));
684 ptemp[i] = i;
685 }
686 /* Ensure it has been written out */
687 wmb();
688 local_irq_restore(flags);
689
690 if (result)
691 edac_printk(KERN_ERR, EDAC_DEVICE, "Mem Not Cleared\n");
692
693 /* Read out written data. ECC error caused here */
694 for (i = 0; i < ALTR_TRIGGER_READ_WRD_CNT; i++)
695 if (READ_ONCE(ptemp[i]) != i)
696 edac_printk(KERN_ERR, EDAC_DEVICE,
697 "Read doesn't match written data\n");
698
699 if (priv->free_mem)
700 priv->free_mem(ptemp, priv->trig_alloc_sz, generic_ptr);
701
702 return count;
703 }
704
705 static const struct file_operations altr_edac_device_inject_fops = {
706 .open = simple_open,
707 .write = altr_edac_device_trig,
708 .llseek = generic_file_llseek,
709 };
710
711 static ssize_t altr_edac_a10_device_trig(struct file *file,
712 const char __user *user_buf,
713 size_t count, loff_t *ppos);
714
715 static const struct file_operations altr_edac_a10_device_inject_fops = {
716 .open = simple_open,
717 .write = altr_edac_a10_device_trig,
718 .llseek = generic_file_llseek,
719 };
720
721 static ssize_t altr_edac_a10_device_trig2(struct file *file,
722 const char __user *user_buf,
723 size_t count, loff_t *ppos);
724
725 static const struct file_operations altr_edac_a10_device_inject2_fops = {
726 .open = simple_open,
727 .write = altr_edac_a10_device_trig2,
728 .llseek = generic_file_llseek,
729 };
730
731 static void altr_create_edacdev_dbgfs(struct edac_device_ctl_info *edac_dci,
732 const struct edac_device_prv_data *priv)
733 {
734 struct altr_edac_device_dev *drvdata = edac_dci->pvt_info;
735
736 if (!IS_ENABLED(CONFIG_EDAC_DEBUG))
737 return;
738
739 drvdata->debugfs_dir = edac_debugfs_create_dir(drvdata->edac_dev_name);
740 if (!drvdata->debugfs_dir)
741 return;
742
743 if (!edac_debugfs_create_file("altr_trigger", S_IWUSR,
744 drvdata->debugfs_dir, edac_dci,
745 priv->inject_fops))
746 debugfs_remove_recursive(drvdata->debugfs_dir);
747 }
748
749 static const struct of_device_id altr_edac_device_of_match[] = {
750 #ifdef CONFIG_EDAC_ALTERA_L2C
751 { .compatible = "altr,socfpga-l2-ecc", .data = &l2ecc_data },
752 #endif
753 #ifdef CONFIG_EDAC_ALTERA_OCRAM
754 { .compatible = "altr,socfpga-ocram-ecc", .data = &ocramecc_data },
755 #endif
756 {},
757 };
758 MODULE_DEVICE_TABLE(of, altr_edac_device_of_match);
759
760 /*
761 * altr_edac_device_probe()
762 * This is a generic EDAC device driver that will support
763 * various Altera memory devices such as the L2 cache ECC and
764 * OCRAM ECC as well as the memories for other peripherals.
765 * Module specific initialization is done by passing the
766 * function index in the device tree.
767 */
768 static int altr_edac_device_probe(struct platform_device *pdev)
769 {
770 struct edac_device_ctl_info *dci;
771 struct altr_edac_device_dev *drvdata;
772 struct resource *r;
773 int res = 0;
774 struct device_node *np = pdev->dev.of_node;
775 char *ecc_name = (char *)np->name;
776 static int dev_instance;
777
778 if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL)) {
779 edac_printk(KERN_ERR, EDAC_DEVICE,
780 "Unable to open devm\n");
781 return -ENOMEM;
782 }
783
784 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
785 if (!r) {
786 edac_printk(KERN_ERR, EDAC_DEVICE,
787 "Unable to get mem resource\n");
788 res = -ENODEV;
789 goto fail;
790 }
791
792 if (!devm_request_mem_region(&pdev->dev, r->start, resource_size(r),
793 dev_name(&pdev->dev))) {
794 edac_printk(KERN_ERR, EDAC_DEVICE,
795 "%s:Error requesting mem region\n", ecc_name);
796 res = -EBUSY;
797 goto fail;
798 }
799
800 dci = edac_device_alloc_ctl_info(sizeof(*drvdata), ecc_name,
801 1, ecc_name, 1, 0, NULL, 0,
802 dev_instance++);
803
804 if (!dci) {
805 edac_printk(KERN_ERR, EDAC_DEVICE,
806 "%s: Unable to allocate EDAC device\n", ecc_name);
807 res = -ENOMEM;
808 goto fail;
809 }
810
811 drvdata = dci->pvt_info;
812 dci->dev = &pdev->dev;
813 platform_set_drvdata(pdev, dci);
814 drvdata->edac_dev_name = ecc_name;
815
816 drvdata->base = devm_ioremap(&pdev->dev, r->start, resource_size(r));
817 if (!drvdata->base) {
818 res = -ENOMEM;
819 goto fail1;
820 }
821
822 /* Get driver specific data for this EDAC device */
823 drvdata->data = of_match_node(altr_edac_device_of_match, np)->data;
824
825 /* Check specific dependencies for the module */
826 if (drvdata->data->setup) {
827 res = drvdata->data->setup(drvdata);
828 if (res)
829 goto fail1;
830 }
831
832 drvdata->sb_irq = platform_get_irq(pdev, 0);
833 res = devm_request_irq(&pdev->dev, drvdata->sb_irq,
834 altr_edac_device_handler,
835 0, dev_name(&pdev->dev), dci);
836 if (res)
837 goto fail1;
838
839 drvdata->db_irq = platform_get_irq(pdev, 1);
840 res = devm_request_irq(&pdev->dev, drvdata->db_irq,
841 altr_edac_device_handler,
842 0, dev_name(&pdev->dev), dci);
843 if (res)
844 goto fail1;
845
846 dci->mod_name = "Altera ECC Manager";
847 dci->dev_name = drvdata->edac_dev_name;
848
849 res = edac_device_add_device(dci);
850 if (res)
851 goto fail1;
852
853 altr_create_edacdev_dbgfs(dci, drvdata->data);
854
855 devres_close_group(&pdev->dev, NULL);
856
857 return 0;
858
859 fail1:
860 edac_device_free_ctl_info(dci);
861 fail:
862 devres_release_group(&pdev->dev, NULL);
863 edac_printk(KERN_ERR, EDAC_DEVICE,
864 "%s:Error setting up EDAC device: %d\n", ecc_name, res);
865
866 return res;
867 }
868
869 static int altr_edac_device_remove(struct platform_device *pdev)
870 {
871 struct edac_device_ctl_info *dci = platform_get_drvdata(pdev);
872 struct altr_edac_device_dev *drvdata = dci->pvt_info;
873
874 debugfs_remove_recursive(drvdata->debugfs_dir);
875 edac_device_del_device(&pdev->dev);
876 edac_device_free_ctl_info(dci);
877
878 return 0;
879 }
880
881 static struct platform_driver altr_edac_device_driver = {
882 .probe = altr_edac_device_probe,
883 .remove = altr_edac_device_remove,
884 .driver = {
885 .name = "altr_edac_device",
886 .of_match_table = altr_edac_device_of_match,
887 },
888 };
889 module_platform_driver(altr_edac_device_driver);
890
891 /******************* Arria10 Device ECC Shared Functions *****************/
892
893 /*
894 * Test for memory's ECC dependencies upon entry because platform specific
895 * startup should have initialized the memory and enabled the ECC.
896 * Can't turn on ECC here because accessing un-initialized memory will
897 * cause CE/UE errors possibly causing an ABORT.
898 */
899 static int __maybe_unused
900 altr_check_ecc_deps(struct altr_edac_device_dev *device)
901 {
902 void __iomem *base = device->base;
903 const struct edac_device_prv_data *prv = device->data;
904
905 if (readl(base + prv->ecc_en_ofst) & prv->ecc_enable_mask)
906 return 0;
907
908 edac_printk(KERN_ERR, EDAC_DEVICE,
909 "%s: No ECC present or ECC disabled.\n",
910 device->edac_dev_name);
911 return -ENODEV;
912 }
913
914 static irqreturn_t __maybe_unused altr_edac_a10_ecc_irq(int irq, void *dev_id)
915 {
916 struct altr_edac_device_dev *dci = dev_id;
917 void __iomem *base = dci->base;
918
919 if (irq == dci->sb_irq) {
920 writel(ALTR_A10_ECC_SERRPENA,
921 base + ALTR_A10_ECC_INTSTAT_OFST);
922 edac_device_handle_ce(dci->edac_dev, 0, 0, dci->edac_dev_name);
923
924 return IRQ_HANDLED;
925 } else if (irq == dci->db_irq) {
926 writel(ALTR_A10_ECC_DERRPENA,
927 base + ALTR_A10_ECC_INTSTAT_OFST);
928 edac_device_handle_ue(dci->edac_dev, 0, 0, dci->edac_dev_name);
929 if (dci->data->panic)
930 panic("\nEDAC:ECC_DEVICE[Uncorrectable errors]\n");
931
932 return IRQ_HANDLED;
933 }
934
935 WARN_ON(1);
936
937 return IRQ_NONE;
938 }
939
940 /******************* Arria10 Memory Buffer Functions *********************/
941
942 static inline int a10_get_irq_mask(struct device_node *np)
943 {
944 int irq;
945 const u32 *handle = of_get_property(np, "interrupts", NULL);
946
947 if (!handle)
948 return -ENODEV;
949 irq = be32_to_cpup(handle);
950 return irq;
951 }
952
953 static inline void ecc_set_bits(u32 bit_mask, void __iomem *ioaddr)
954 {
955 u32 value = readl(ioaddr);
956
957 value |= bit_mask;
958 writel(value, ioaddr);
959 }
960
961 static inline void ecc_clear_bits(u32 bit_mask, void __iomem *ioaddr)
962 {
963 u32 value = readl(ioaddr);
964
965 value &= ~bit_mask;
966 writel(value, ioaddr);
967 }
968
969 static inline int ecc_test_bits(u32 bit_mask, void __iomem *ioaddr)
970 {
971 u32 value = readl(ioaddr);
972
973 return (value & bit_mask) ? 1 : 0;
974 }
975
976 /*
977 * This function uses the memory initialization block in the Arria10 ECC
978 * controller to initialize/clear the entire memory data and ECC data.
979 */
980 static int __maybe_unused altr_init_memory_port(void __iomem *ioaddr, int port)
981 {
982 int limit = ALTR_A10_ECC_INIT_WATCHDOG_10US;
983 u32 init_mask, stat_mask, clear_mask;
984 int ret = 0;
985
986 if (port) {
987 init_mask = ALTR_A10_ECC_INITB;
988 stat_mask = ALTR_A10_ECC_INITCOMPLETEB;
989 clear_mask = ALTR_A10_ECC_ERRPENB_MASK;
990 } else {
991 init_mask = ALTR_A10_ECC_INITA;
992 stat_mask = ALTR_A10_ECC_INITCOMPLETEA;
993 clear_mask = ALTR_A10_ECC_ERRPENA_MASK;
994 }
995
996 ecc_set_bits(init_mask, (ioaddr + ALTR_A10_ECC_CTRL_OFST));
997 while (limit--) {
998 if (ecc_test_bits(stat_mask,
999 (ioaddr + ALTR_A10_ECC_INITSTAT_OFST)))
1000 break;
1001 udelay(1);
1002 }
1003 if (limit < 0)
1004 ret = -EBUSY;
1005
1006 /* Clear any pending ECC interrupts */
1007 writel(clear_mask, (ioaddr + ALTR_A10_ECC_INTSTAT_OFST));
1008
1009 return ret;
1010 }
1011
1012 static int socfpga_is_a10(void)
1013 {
1014 return of_machine_is_compatible("altr,socfpga-arria10");
1015 }
1016
1017 static int socfpga_is_s10(void)
1018 {
1019 return of_machine_is_compatible("altr,socfpga-stratix10");
1020 }
1021
1022 static __init int __maybe_unused
1023 altr_init_a10_ecc_block(struct device_node *np, u32 irq_mask,
1024 u32 ecc_ctrl_en_mask, bool dual_port)
1025 {
1026 int ret = 0;
1027 void __iomem *ecc_block_base;
1028 struct regmap *ecc_mgr_map;
1029 char *ecc_name;
1030 struct device_node *np_eccmgr;
1031
1032 ecc_name = (char *)np->name;
1033
1034 /* Get the ECC Manager - parent of the device EDACs */
1035 np_eccmgr = of_get_parent(np);
1036
1037 if (socfpga_is_a10()) {
1038 ecc_mgr_map = syscon_regmap_lookup_by_phandle(np_eccmgr,
1039 "altr,sysmgr-syscon");
1040 } else {
1041 struct device_node *sysmgr_np;
1042 struct resource res;
1043 uintptr_t base;
1044
1045 sysmgr_np = of_parse_phandle(np_eccmgr,
1046 "altr,sysmgr-syscon", 0);
1047 if (!sysmgr_np) {
1048 edac_printk(KERN_ERR, EDAC_DEVICE,
1049 "Unable to find altr,sysmgr-syscon\n");
1050 return -ENODEV;
1051 }
1052
1053 if (of_address_to_resource(sysmgr_np, 0, &res)) {
1054 of_node_put(sysmgr_np);
1055 return -ENOMEM;
1056 }
1057
1058 /* Need physical address for SMCC call */
1059 base = res.start;
1060
1061 ecc_mgr_map = regmap_init(NULL, NULL, (void *)base,
1062 &s10_sdram_regmap_cfg);
1063 of_node_put(sysmgr_np);
1064 }
1065 of_node_put(np_eccmgr);
1066 if (IS_ERR(ecc_mgr_map)) {
1067 edac_printk(KERN_ERR, EDAC_DEVICE,
1068 "Unable to get syscon altr,sysmgr-syscon\n");
1069 return -ENODEV;
1070 }
1071
1072 /* Map the ECC Block */
1073 ecc_block_base = of_iomap(np, 0);
1074 if (!ecc_block_base) {
1075 edac_printk(KERN_ERR, EDAC_DEVICE,
1076 "Unable to map %s ECC block\n", ecc_name);
1077 return -ENODEV;
1078 }
1079
1080 /* Disable ECC */
1081 regmap_write(ecc_mgr_map, A10_SYSMGR_ECC_INTMASK_SET_OFST, irq_mask);
1082 writel(ALTR_A10_ECC_SERRINTEN,
1083 (ecc_block_base + ALTR_A10_ECC_ERRINTENR_OFST));
1084 ecc_clear_bits(ecc_ctrl_en_mask,
1085 (ecc_block_base + ALTR_A10_ECC_CTRL_OFST));
1086 /* Ensure all writes complete */
1087 wmb();
1088 /* Use HW initialization block to initialize memory for ECC */
1089 ret = altr_init_memory_port(ecc_block_base, 0);
1090 if (ret) {
1091 edac_printk(KERN_ERR, EDAC_DEVICE,
1092 "ECC: cannot init %s PORTA memory\n", ecc_name);
1093 goto out;
1094 }
1095
1096 if (dual_port) {
1097 ret = altr_init_memory_port(ecc_block_base, 1);
1098 if (ret) {
1099 edac_printk(KERN_ERR, EDAC_DEVICE,
1100 "ECC: cannot init %s PORTB memory\n",
1101 ecc_name);
1102 goto out;
1103 }
1104 }
1105
1106 /* Interrupt mode set to every SBERR */
1107 regmap_write(ecc_mgr_map, ALTR_A10_ECC_INTMODE_OFST,
1108 ALTR_A10_ECC_INTMODE);
1109 /* Enable ECC */
1110 ecc_set_bits(ecc_ctrl_en_mask, (ecc_block_base +
1111 ALTR_A10_ECC_CTRL_OFST));
1112 writel(ALTR_A10_ECC_SERRINTEN,
1113 (ecc_block_base + ALTR_A10_ECC_ERRINTENS_OFST));
1114 regmap_write(ecc_mgr_map, A10_SYSMGR_ECC_INTMASK_CLR_OFST, irq_mask);
1115 /* Ensure all writes complete */
1116 wmb();
1117 out:
1118 iounmap(ecc_block_base);
1119 return ret;
1120 }
1121
1122 static int validate_parent_available(struct device_node *np);
1123 static const struct of_device_id altr_edac_a10_device_of_match[];
1124 static int __init __maybe_unused altr_init_a10_ecc_device_type(char *compat)
1125 {
1126 int irq;
1127 struct device_node *child, *np;
1128
1129 if (!socfpga_is_a10() && !socfpga_is_s10())
1130 return -ENODEV;
1131
1132 np = of_find_compatible_node(NULL, NULL,
1133 "altr,socfpga-a10-ecc-manager");
1134 if (!np) {
1135 edac_printk(KERN_ERR, EDAC_DEVICE, "ECC Manager not found\n");
1136 return -ENODEV;
1137 }
1138
1139 for_each_child_of_node(np, child) {
1140 const struct of_device_id *pdev_id;
1141 const struct edac_device_prv_data *prv;
1142
1143 if (!of_device_is_available(child))
1144 continue;
1145 if (!of_device_is_compatible(child, compat))
1146 continue;
1147
1148 if (validate_parent_available(child))
1149 continue;
1150
1151 irq = a10_get_irq_mask(child);
1152 if (irq < 0)
1153 continue;
1154
1155 /* Get matching node and check for valid result */
1156 pdev_id = of_match_node(altr_edac_a10_device_of_match, child);
1157 if (IS_ERR_OR_NULL(pdev_id))
1158 continue;
1159
1160 /* Validate private data pointer before dereferencing */
1161 prv = pdev_id->data;
1162 if (!prv)
1163 continue;
1164
1165 altr_init_a10_ecc_block(child, BIT(irq),
1166 prv->ecc_enable_mask, 0);
1167 }
1168
1169 of_node_put(np);
1170 return 0;
1171 }
1172
1173 /*********************** SDRAM EDAC Device Functions *********************/
1174
1175 #ifdef CONFIG_EDAC_ALTERA_SDRAM
1176
1177 static const struct edac_device_prv_data s10_sdramecc_data = {
1178 .setup = altr_check_ecc_deps,
1179 .ce_clear_mask = ALTR_S10_ECC_SERRPENA,
1180 .ue_clear_mask = ALTR_S10_ECC_DERRPENA,
1181 .ecc_enable_mask = ALTR_S10_ECC_EN,
1182 .ecc_en_ofst = ALTR_S10_ECC_CTRL_SDRAM_OFST,
1183 .ce_set_mask = ALTR_S10_ECC_TSERRA,
1184 .ue_set_mask = ALTR_S10_ECC_TDERRA,
1185 .set_err_ofst = ALTR_S10_ECC_INTTEST_OFST,
1186 .ecc_irq_handler = altr_edac_a10_ecc_irq,
1187 .inject_fops = &altr_edac_a10_device_inject_fops,
1188 };
1189 #endif /* CONFIG_EDAC_ALTERA_SDRAM */
1190
1191 /*********************** OCRAM EDAC Device Functions *********************/
1192
1193 #ifdef CONFIG_EDAC_ALTERA_OCRAM
1194
1195 static void *ocram_alloc_mem(size_t size, void **other)
1196 {
1197 struct device_node *np;
1198 struct gen_pool *gp;
1199 void *sram_addr;
1200
1201 np = of_find_compatible_node(NULL, NULL, "altr,socfpga-ocram-ecc");
1202 if (!np)
1203 return NULL;
1204
1205 gp = of_gen_pool_get(np, "iram", 0);
1206 of_node_put(np);
1207 if (!gp)
1208 return NULL;
1209
1210 sram_addr = (void *)gen_pool_alloc(gp, size);
1211 if (!sram_addr)
1212 return NULL;
1213
1214 memset(sram_addr, 0, size);
1215 /* Ensure data is written out */
1216 wmb();
1217
1218 /* Remember this handle for freeing later */
1219 *other = gp;
1220
1221 return sram_addr;
1222 }
1223
1224 static void ocram_free_mem(void *p, size_t size, void *other)
1225 {
1226 gen_pool_free((struct gen_pool *)other, (unsigned long)p, size);
1227 }
1228
1229 static const struct edac_device_prv_data ocramecc_data = {
1230 .setup = altr_check_ecc_deps,
1231 .ce_clear_mask = (ALTR_OCR_ECC_EN | ALTR_OCR_ECC_SERR),
1232 .ue_clear_mask = (ALTR_OCR_ECC_EN | ALTR_OCR_ECC_DERR),
1233 .alloc_mem = ocram_alloc_mem,
1234 .free_mem = ocram_free_mem,
1235 .ecc_enable_mask = ALTR_OCR_ECC_EN,
1236 .ecc_en_ofst = ALTR_OCR_ECC_REG_OFFSET,
1237 .ce_set_mask = (ALTR_OCR_ECC_EN | ALTR_OCR_ECC_INJS),
1238 .ue_set_mask = (ALTR_OCR_ECC_EN | ALTR_OCR_ECC_INJD),
1239 .set_err_ofst = ALTR_OCR_ECC_REG_OFFSET,
1240 .trig_alloc_sz = ALTR_TRIG_OCRAM_BYTE_SIZE,
1241 .inject_fops = &altr_edac_device_inject_fops,
1242 };
1243
1244 static int __maybe_unused
1245 altr_check_ocram_deps_init(struct altr_edac_device_dev *device)
1246 {
1247 void __iomem *base = device->base;
1248 int ret;
1249
1250 ret = altr_check_ecc_deps(device);
1251 if (ret)
1252 return ret;
1253
1254 /* Verify OCRAM has been initialized */
1255 if (!ecc_test_bits(ALTR_A10_ECC_INITCOMPLETEA,
1256 (base + ALTR_A10_ECC_INITSTAT_OFST)))
1257 return -ENODEV;
1258
1259 /* Enable IRQ on Single Bit Error */
1260 writel(ALTR_A10_ECC_SERRINTEN, (base + ALTR_A10_ECC_ERRINTENS_OFST));
1261 /* Ensure all writes complete */
1262 wmb();
1263
1264 return 0;
1265 }
1266
1267 static const struct edac_device_prv_data a10_ocramecc_data = {
1268 .setup = altr_check_ocram_deps_init,
1269 .ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1270 .ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1271 .irq_status_mask = A10_SYSMGR_ECC_INTSTAT_OCRAM,
1272 .ecc_enable_mask = ALTR_A10_OCRAM_ECC_EN_CTL,
1273 .ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1274 .ce_set_mask = ALTR_A10_ECC_TSERRA,
1275 .ue_set_mask = ALTR_A10_ECC_TDERRA,
1276 .set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1277 .ecc_irq_handler = altr_edac_a10_ecc_irq,
1278 .inject_fops = &altr_edac_a10_device_inject2_fops,
1279 /*
1280 * OCRAM panic on uncorrectable error because sleep/resume
1281 * functions and FPGA contents are stored in OCRAM. Prefer
1282 * a kernel panic over executing/loading corrupted data.
1283 */
1284 .panic = true,
1285 };
1286
1287 #endif /* CONFIG_EDAC_ALTERA_OCRAM */
1288
1289 /********************* L2 Cache EDAC Device Functions ********************/
1290
1291 #ifdef CONFIG_EDAC_ALTERA_L2C
1292
1293 static void *l2_alloc_mem(size_t size, void **other)
1294 {
1295 struct device *dev = *other;
1296 void *ptemp = devm_kzalloc(dev, size, GFP_KERNEL);
1297
1298 if (!ptemp)
1299 return NULL;
1300
1301 /* Make sure everything is written out */
1302 wmb();
1303
1304 /*
1305 * Clean all cache levels up to LoC (includes L2)
1306 * This ensures the corrupted data is written into
1307 * L2 cache for readback test (which causes ECC error).
1308 */
1309 flush_cache_all();
1310
1311 return ptemp;
1312 }
1313
1314 static void l2_free_mem(void *p, size_t size, void *other)
1315 {
1316 struct device *dev = other;
1317
1318 if (dev && p)
1319 devm_kfree(dev, p);
1320 }
1321
1322 /*
1323 * altr_l2_check_deps()
1324 * Test for L2 cache ECC dependencies upon entry because
1325 * platform specific startup should have initialized the L2
1326 * memory and enabled the ECC.
1327 * Bail if ECC is not enabled.
1328 * Note that L2 Cache Enable is forced at build time.
1329 */
1330 static int altr_l2_check_deps(struct altr_edac_device_dev *device)
1331 {
1332 void __iomem *base = device->base;
1333 const struct edac_device_prv_data *prv = device->data;
1334
1335 if ((readl(base) & prv->ecc_enable_mask) ==
1336 prv->ecc_enable_mask)
1337 return 0;
1338
1339 edac_printk(KERN_ERR, EDAC_DEVICE,
1340 "L2: No ECC present, or ECC disabled\n");
1341 return -ENODEV;
1342 }
1343
1344 static irqreturn_t altr_edac_a10_l2_irq(int irq, void *dev_id)
1345 {
1346 struct altr_edac_device_dev *dci = dev_id;
1347
1348 if (irq == dci->sb_irq) {
1349 regmap_write(dci->edac->ecc_mgr_map,
1350 A10_SYSGMR_MPU_CLEAR_L2_ECC_OFST,
1351 A10_SYSGMR_MPU_CLEAR_L2_ECC_SB);
1352 edac_device_handle_ce(dci->edac_dev, 0, 0, dci->edac_dev_name);
1353
1354 return IRQ_HANDLED;
1355 } else if (irq == dci->db_irq) {
1356 regmap_write(dci->edac->ecc_mgr_map,
1357 A10_SYSGMR_MPU_CLEAR_L2_ECC_OFST,
1358 A10_SYSGMR_MPU_CLEAR_L2_ECC_MB);
1359 edac_device_handle_ue(dci->edac_dev, 0, 0, dci->edac_dev_name);
1360 panic("\nEDAC:ECC_DEVICE[Uncorrectable errors]\n");
1361
1362 return IRQ_HANDLED;
1363 }
1364
1365 WARN_ON(1);
1366
1367 return IRQ_NONE;
1368 }
1369
1370 static const struct edac_device_prv_data l2ecc_data = {
1371 .setup = altr_l2_check_deps,
1372 .ce_clear_mask = 0,
1373 .ue_clear_mask = 0,
1374 .alloc_mem = l2_alloc_mem,
1375 .free_mem = l2_free_mem,
1376 .ecc_enable_mask = ALTR_L2_ECC_EN,
1377 .ce_set_mask = (ALTR_L2_ECC_EN | ALTR_L2_ECC_INJS),
1378 .ue_set_mask = (ALTR_L2_ECC_EN | ALTR_L2_ECC_INJD),
1379 .set_err_ofst = ALTR_L2_ECC_REG_OFFSET,
1380 .trig_alloc_sz = ALTR_TRIG_L2C_BYTE_SIZE,
1381 .inject_fops = &altr_edac_device_inject_fops,
1382 };
1383
1384 static const struct edac_device_prv_data a10_l2ecc_data = {
1385 .setup = altr_l2_check_deps,
1386 .ce_clear_mask = ALTR_A10_L2_ECC_SERR_CLR,
1387 .ue_clear_mask = ALTR_A10_L2_ECC_MERR_CLR,
1388 .irq_status_mask = A10_SYSMGR_ECC_INTSTAT_L2,
1389 .alloc_mem = l2_alloc_mem,
1390 .free_mem = l2_free_mem,
1391 .ecc_enable_mask = ALTR_A10_L2_ECC_EN_CTL,
1392 .ce_set_mask = ALTR_A10_L2_ECC_CE_INJ_MASK,
1393 .ue_set_mask = ALTR_A10_L2_ECC_UE_INJ_MASK,
1394 .set_err_ofst = ALTR_A10_L2_ECC_INJ_OFST,
1395 .ecc_irq_handler = altr_edac_a10_l2_irq,
1396 .trig_alloc_sz = ALTR_TRIG_L2C_BYTE_SIZE,
1397 .inject_fops = &altr_edac_device_inject_fops,
1398 };
1399
1400 #endif /* CONFIG_EDAC_ALTERA_L2C */
1401
1402 /********************* Ethernet Device Functions ********************/
1403
1404 #ifdef CONFIG_EDAC_ALTERA_ETHERNET
1405
1406 static int __init socfpga_init_ethernet_ecc(struct altr_edac_device_dev *dev)
1407 {
1408 int ret;
1409
1410 ret = altr_init_a10_ecc_device_type("altr,socfpga-eth-mac-ecc");
1411 if (ret)
1412 return ret;
1413
1414 return altr_check_ecc_deps(dev);
1415 }
1416
1417 static const struct edac_device_prv_data a10_enetecc_data = {
1418 .setup = socfpga_init_ethernet_ecc,
1419 .ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1420 .ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1421 .ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1422 .ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1423 .ce_set_mask = ALTR_A10_ECC_TSERRA,
1424 .ue_set_mask = ALTR_A10_ECC_TDERRA,
1425 .set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1426 .ecc_irq_handler = altr_edac_a10_ecc_irq,
1427 .inject_fops = &altr_edac_a10_device_inject2_fops,
1428 };
1429
1430 #endif /* CONFIG_EDAC_ALTERA_ETHERNET */
1431
1432 /********************** NAND Device Functions **********************/
1433
1434 #ifdef CONFIG_EDAC_ALTERA_NAND
1435
1436 static int __init socfpga_init_nand_ecc(struct altr_edac_device_dev *device)
1437 {
1438 int ret;
1439
1440 ret = altr_init_a10_ecc_device_type("altr,socfpga-nand-ecc");
1441 if (ret)
1442 return ret;
1443
1444 return altr_check_ecc_deps(device);
1445 }
1446
1447 static const struct edac_device_prv_data a10_nandecc_data = {
1448 .setup = socfpga_init_nand_ecc,
1449 .ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1450 .ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1451 .ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1452 .ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1453 .ce_set_mask = ALTR_A10_ECC_TSERRA,
1454 .ue_set_mask = ALTR_A10_ECC_TDERRA,
1455 .set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1456 .ecc_irq_handler = altr_edac_a10_ecc_irq,
1457 .inject_fops = &altr_edac_a10_device_inject_fops,
1458 };
1459
1460 #endif /* CONFIG_EDAC_ALTERA_NAND */
1461
1462 /********************** DMA Device Functions **********************/
1463
1464 #ifdef CONFIG_EDAC_ALTERA_DMA
1465
1466 static int __init socfpga_init_dma_ecc(struct altr_edac_device_dev *device)
1467 {
1468 int ret;
1469
1470 ret = altr_init_a10_ecc_device_type("altr,socfpga-dma-ecc");
1471 if (ret)
1472 return ret;
1473
1474 return altr_check_ecc_deps(device);
1475 }
1476
1477 static const struct edac_device_prv_data a10_dmaecc_data = {
1478 .setup = socfpga_init_dma_ecc,
1479 .ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1480 .ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1481 .ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1482 .ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1483 .ce_set_mask = ALTR_A10_ECC_TSERRA,
1484 .ue_set_mask = ALTR_A10_ECC_TDERRA,
1485 .set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1486 .ecc_irq_handler = altr_edac_a10_ecc_irq,
1487 .inject_fops = &altr_edac_a10_device_inject_fops,
1488 };
1489
1490 #endif /* CONFIG_EDAC_ALTERA_DMA */
1491
1492 /********************** USB Device Functions **********************/
1493
1494 #ifdef CONFIG_EDAC_ALTERA_USB
1495
1496 static int __init socfpga_init_usb_ecc(struct altr_edac_device_dev *device)
1497 {
1498 int ret;
1499
1500 ret = altr_init_a10_ecc_device_type("altr,socfpga-usb-ecc");
1501 if (ret)
1502 return ret;
1503
1504 return altr_check_ecc_deps(device);
1505 }
1506
1507 static const struct edac_device_prv_data a10_usbecc_data = {
1508 .setup = socfpga_init_usb_ecc,
1509 .ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1510 .ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1511 .ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1512 .ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1513 .ce_set_mask = ALTR_A10_ECC_TSERRA,
1514 .ue_set_mask = ALTR_A10_ECC_TDERRA,
1515 .set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1516 .ecc_irq_handler = altr_edac_a10_ecc_irq,
1517 .inject_fops = &altr_edac_a10_device_inject2_fops,
1518 };
1519
1520 #endif /* CONFIG_EDAC_ALTERA_USB */
1521
1522 /********************** QSPI Device Functions **********************/
1523
1524 #ifdef CONFIG_EDAC_ALTERA_QSPI
1525
1526 static int __init socfpga_init_qspi_ecc(struct altr_edac_device_dev *device)
1527 {
1528 int ret;
1529
1530 ret = altr_init_a10_ecc_device_type("altr,socfpga-qspi-ecc");
1531 if (ret)
1532 return ret;
1533
1534 return altr_check_ecc_deps(device);
1535 }
1536
1537 static const struct edac_device_prv_data a10_qspiecc_data = {
1538 .setup = socfpga_init_qspi_ecc,
1539 .ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1540 .ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1541 .ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1542 .ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1543 .ce_set_mask = ALTR_A10_ECC_TSERRA,
1544 .ue_set_mask = ALTR_A10_ECC_TDERRA,
1545 .set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1546 .ecc_irq_handler = altr_edac_a10_ecc_irq,
1547 .inject_fops = &altr_edac_a10_device_inject_fops,
1548 };
1549
1550 #endif /* CONFIG_EDAC_ALTERA_QSPI */
1551
1552 /********************* SDMMC Device Functions **********************/
1553
1554 #ifdef CONFIG_EDAC_ALTERA_SDMMC
1555
1556 static const struct edac_device_prv_data a10_sdmmceccb_data;
1557 static int altr_portb_setup(struct altr_edac_device_dev *device)
1558 {
1559 struct edac_device_ctl_info *dci;
1560 struct altr_edac_device_dev *altdev;
1561 char *ecc_name = "sdmmcb-ecc";
1562 int edac_idx, rc;
1563 struct device_node *np;
1564 const struct edac_device_prv_data *prv = &a10_sdmmceccb_data;
1565
1566 rc = altr_check_ecc_deps(device);
1567 if (rc)
1568 return rc;
1569
1570 np = of_find_compatible_node(NULL, NULL, "altr,socfpga-sdmmc-ecc");
1571 if (!np) {
1572 edac_printk(KERN_WARNING, EDAC_DEVICE, "SDMMC node not found\n");
1573 return -ENODEV;
1574 }
1575
1576 /* Create the PortB EDAC device */
1577 edac_idx = edac_device_alloc_index();
1578 dci = edac_device_alloc_ctl_info(sizeof(*altdev), ecc_name, 1,
1579 ecc_name, 1, 0, NULL, 0, edac_idx);
1580 if (!dci) {
1581 edac_printk(KERN_ERR, EDAC_DEVICE,
1582 "%s: Unable to allocate PortB EDAC device\n",
1583 ecc_name);
1584 return -ENOMEM;
1585 }
1586
1587 /* Initialize the PortB EDAC device structure from PortA structure */
1588 altdev = dci->pvt_info;
1589 *altdev = *device;
1590
1591 if (!devres_open_group(&altdev->ddev, altr_portb_setup, GFP_KERNEL))
1592 return -ENOMEM;
1593
1594 /* Update PortB specific values */
1595 altdev->edac_dev_name = ecc_name;
1596 altdev->edac_idx = edac_idx;
1597 altdev->edac_dev = dci;
1598 altdev->data = prv;
1599 dci->dev = &altdev->ddev;
1600 dci->ctl_name = "Altera ECC Manager";
1601 dci->mod_name = ecc_name;
1602 dci->dev_name = ecc_name;
1603
1604 /* Update the PortB IRQs - A10 has 4, S10 has 2, Index accordingly */
1605 #ifdef CONFIG_ARCH_STRATIX10
1606 altdev->sb_irq = irq_of_parse_and_map(np, 1);
1607 #else
1608 altdev->sb_irq = irq_of_parse_and_map(np, 2);
1609 #endif
1610 if (!altdev->sb_irq) {
1611 edac_printk(KERN_ERR, EDAC_DEVICE, "Error PortB SBIRQ alloc\n");
1612 rc = -ENODEV;
1613 goto err_release_group_1;
1614 }
1615 rc = devm_request_irq(&altdev->ddev, altdev->sb_irq,
1616 prv->ecc_irq_handler,
1617 IRQF_ONESHOT | IRQF_TRIGGER_HIGH,
1618 ecc_name, altdev);
1619 if (rc) {
1620 edac_printk(KERN_ERR, EDAC_DEVICE, "PortB SBERR IRQ error\n");
1621 goto err_release_group_1;
1622 }
1623
1624 #ifdef CONFIG_ARCH_STRATIX10
1625 /* Use IRQ to determine SError origin instead of assigning IRQ */
1626 rc = of_property_read_u32_index(np, "interrupts", 1, &altdev->db_irq);
1627 if (rc) {
1628 edac_printk(KERN_ERR, EDAC_DEVICE,
1629 "Error PortB DBIRQ alloc\n");
1630 goto err_release_group_1;
1631 }
1632 #else
1633 altdev->db_irq = irq_of_parse_and_map(np, 3);
1634 if (!altdev->db_irq) {
1635 edac_printk(KERN_ERR, EDAC_DEVICE, "Error PortB DBIRQ alloc\n");
1636 rc = -ENODEV;
1637 goto err_release_group_1;
1638 }
1639 rc = devm_request_irq(&altdev->ddev, altdev->db_irq,
1640 prv->ecc_irq_handler,
1641 IRQF_ONESHOT | IRQF_TRIGGER_HIGH,
1642 ecc_name, altdev);
1643 if (rc) {
1644 edac_printk(KERN_ERR, EDAC_DEVICE, "PortB DBERR IRQ error\n");
1645 goto err_release_group_1;
1646 }
1647 #endif
1648
1649 rc = edac_device_add_device(dci);
1650 if (rc) {
1651 edac_printk(KERN_ERR, EDAC_DEVICE,
1652 "edac_device_add_device portB failed\n");
1653 rc = -ENOMEM;
1654 goto err_release_group_1;
1655 }
1656 altr_create_edacdev_dbgfs(dci, prv);
1657
1658 list_add(&altdev->next, &altdev->edac->a10_ecc_devices);
1659
1660 devres_remove_group(&altdev->ddev, altr_portb_setup);
1661
1662 return 0;
1663
1664 err_release_group_1:
1665 edac_device_free_ctl_info(dci);
1666 devres_release_group(&altdev->ddev, altr_portb_setup);
1667 edac_printk(KERN_ERR, EDAC_DEVICE,
1668 "%s:Error setting up EDAC device: %d\n", ecc_name, rc);
1669 return rc;
1670 }
1671
1672 static int __init socfpga_init_sdmmc_ecc(struct altr_edac_device_dev *device)
1673 {
1674 int rc = -ENODEV;
1675 struct device_node *child;
1676
1677 child = of_find_compatible_node(NULL, NULL, "altr,socfpga-sdmmc-ecc");
1678 if (!child)
1679 return -ENODEV;
1680
1681 if (!of_device_is_available(child))
1682 goto exit;
1683
1684 if (validate_parent_available(child))
1685 goto exit;
1686
1687 /* Init portB */
1688 rc = altr_init_a10_ecc_block(child, ALTR_A10_SDMMC_IRQ_MASK,
1689 a10_sdmmceccb_data.ecc_enable_mask, 1);
1690 if (rc)
1691 goto exit;
1692
1693 /* Setup portB */
1694 return altr_portb_setup(device);
1695
1696 exit:
1697 of_node_put(child);
1698 return rc;
1699 }
1700
1701 static irqreturn_t altr_edac_a10_ecc_irq_portb(int irq, void *dev_id)
1702 {
1703 struct altr_edac_device_dev *ad = dev_id;
1704 void __iomem *base = ad->base;
1705 const struct edac_device_prv_data *priv = ad->data;
1706
1707 if (irq == ad->sb_irq) {
1708 writel(priv->ce_clear_mask,
1709 base + ALTR_A10_ECC_INTSTAT_OFST);
1710 edac_device_handle_ce(ad->edac_dev, 0, 0, ad->edac_dev_name);
1711 return IRQ_HANDLED;
1712 } else if (irq == ad->db_irq) {
1713 writel(priv->ue_clear_mask,
1714 base + ALTR_A10_ECC_INTSTAT_OFST);
1715 edac_device_handle_ue(ad->edac_dev, 0, 0, ad->edac_dev_name);
1716 return IRQ_HANDLED;
1717 }
1718
1719 WARN_ONCE(1, "Unhandled IRQ%d on Port B.", irq);
1720
1721 return IRQ_NONE;
1722 }
1723
1724 static const struct edac_device_prv_data a10_sdmmcecca_data = {
1725 .setup = socfpga_init_sdmmc_ecc,
1726 .ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1727 .ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1728 .ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1729 .ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1730 .ce_set_mask = ALTR_A10_ECC_SERRPENA,
1731 .ue_set_mask = ALTR_A10_ECC_DERRPENA,
1732 .set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1733 .ecc_irq_handler = altr_edac_a10_ecc_irq,
1734 .inject_fops = &altr_edac_a10_device_inject_fops,
1735 };
1736
1737 static const struct edac_device_prv_data a10_sdmmceccb_data = {
1738 .setup = socfpga_init_sdmmc_ecc,
1739 .ce_clear_mask = ALTR_A10_ECC_SERRPENB,
1740 .ue_clear_mask = ALTR_A10_ECC_DERRPENB,
1741 .ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1742 .ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1743 .ce_set_mask = ALTR_A10_ECC_TSERRB,
1744 .ue_set_mask = ALTR_A10_ECC_TDERRB,
1745 .set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1746 .ecc_irq_handler = altr_edac_a10_ecc_irq_portb,
1747 .inject_fops = &altr_edac_a10_device_inject_fops,
1748 };
1749
1750 #endif /* CONFIG_EDAC_ALTERA_SDMMC */
1751
1752 /********************* Arria10 EDAC Device Functions *************************/
1753 static const struct of_device_id altr_edac_a10_device_of_match[] = {
1754 #ifdef CONFIG_EDAC_ALTERA_L2C
1755 { .compatible = "altr,socfpga-a10-l2-ecc", .data = &a10_l2ecc_data },
1756 #endif
1757 #ifdef CONFIG_EDAC_ALTERA_OCRAM
1758 { .compatible = "altr,socfpga-a10-ocram-ecc",
1759 .data = &a10_ocramecc_data },
1760 #endif
1761 #ifdef CONFIG_EDAC_ALTERA_ETHERNET
1762 { .compatible = "altr,socfpga-eth-mac-ecc",
1763 .data = &a10_enetecc_data },
1764 #endif
1765 #ifdef CONFIG_EDAC_ALTERA_NAND
1766 { .compatible = "altr,socfpga-nand-ecc", .data = &a10_nandecc_data },
1767 #endif
1768 #ifdef CONFIG_EDAC_ALTERA_DMA
1769 { .compatible = "altr,socfpga-dma-ecc", .data = &a10_dmaecc_data },
1770 #endif
1771 #ifdef CONFIG_EDAC_ALTERA_USB
1772 { .compatible = "altr,socfpga-usb-ecc", .data = &a10_usbecc_data },
1773 #endif
1774 #ifdef CONFIG_EDAC_ALTERA_QSPI
1775 { .compatible = "altr,socfpga-qspi-ecc", .data = &a10_qspiecc_data },
1776 #endif
1777 #ifdef CONFIG_EDAC_ALTERA_SDMMC
1778 { .compatible = "altr,socfpga-sdmmc-ecc", .data = &a10_sdmmcecca_data },
1779 #endif
1780 #ifdef CONFIG_EDAC_ALTERA_SDRAM
1781 { .compatible = "altr,sdram-edac-s10", .data = &s10_sdramecc_data },
1782 #endif
1783 {},
1784 };
1785 MODULE_DEVICE_TABLE(of, altr_edac_a10_device_of_match);
1786
1787 /*
1788 * The Arria10 EDAC Device Functions differ from the Cyclone5/Arria5
1789 * because 2 IRQs are shared among the all ECC peripherals. The ECC
1790 * manager manages the IRQs and the children.
1791 * Based on xgene_edac.c peripheral code.
1792 */
1793
1794 static ssize_t altr_edac_a10_device_trig(struct file *file,
1795 const char __user *user_buf,
1796 size_t count, loff_t *ppos)
1797 {
1798 struct edac_device_ctl_info *edac_dci = file->private_data;
1799 struct altr_edac_device_dev *drvdata = edac_dci->pvt_info;
1800 const struct edac_device_prv_data *priv = drvdata->data;
1801 void __iomem *set_addr = (drvdata->base + priv->set_err_ofst);
1802 unsigned long flags;
1803 u8 trig_type;
1804
1805 if (!user_buf || get_user(trig_type, user_buf))
1806 return -EFAULT;
1807
1808 local_irq_save(flags);
1809 if (trig_type == ALTR_UE_TRIGGER_CHAR)
1810 writel(priv->ue_set_mask, set_addr);
1811 else
1812 writel(priv->ce_set_mask, set_addr);
1813
1814 /* Ensure the interrupt test bits are set */
1815 wmb();
1816 local_irq_restore(flags);
1817
1818 return count;
1819 }
1820
1821 /*
1822 * The Stratix10 EDAC Error Injection Functions differ from Arria10
1823 * slightly. A few Arria10 peripherals can use this injection function.
1824 * Inject the error into the memory and then readback to trigger the IRQ.
1825 */
1826 static ssize_t altr_edac_a10_device_trig2(struct file *file,
1827 const char __user *user_buf,
1828 size_t count, loff_t *ppos)
1829 {
1830 struct edac_device_ctl_info *edac_dci = file->private_data;
1831 struct altr_edac_device_dev *drvdata = edac_dci->pvt_info;
1832 const struct edac_device_prv_data *priv = drvdata->data;
1833 void __iomem *set_addr = (drvdata->base + priv->set_err_ofst);
1834 unsigned long flags;
1835 u8 trig_type;
1836
1837 if (!user_buf || get_user(trig_type, user_buf))
1838 return -EFAULT;
1839
1840 local_irq_save(flags);
1841 if (trig_type == ALTR_UE_TRIGGER_CHAR) {
1842 writel(priv->ue_set_mask, set_addr);
1843 } else {
1844 /* Setup read/write of 4 bytes */
1845 writel(ECC_WORD_WRITE, drvdata->base + ECC_BLK_DBYTECTRL_OFST);
1846 /* Setup Address to 0 */
1847 writel(0, drvdata->base + ECC_BLK_ADDRESS_OFST);
1848 /* Setup accctrl to read & ecc & data override */
1849 writel(ECC_READ_EDOVR, drvdata->base + ECC_BLK_ACCCTRL_OFST);
1850 /* Kick it. */
1851 writel(ECC_XACT_KICK, drvdata->base + ECC_BLK_STARTACC_OFST);
1852 /* Setup write for single bit change */
1853 writel(readl(drvdata->base + ECC_BLK_RDATA0_OFST) ^ 0x1,
1854 drvdata->base + ECC_BLK_WDATA0_OFST);
1855 writel(readl(drvdata->base + ECC_BLK_RDATA1_OFST),
1856 drvdata->base + ECC_BLK_WDATA1_OFST);
1857 writel(readl(drvdata->base + ECC_BLK_RDATA2_OFST),
1858 drvdata->base + ECC_BLK_WDATA2_OFST);
1859 writel(readl(drvdata->base + ECC_BLK_RDATA3_OFST),
1860 drvdata->base + ECC_BLK_WDATA3_OFST);
1861
1862 /* Copy Read ECC to Write ECC */
1863 writel(readl(drvdata->base + ECC_BLK_RECC0_OFST),
1864 drvdata->base + ECC_BLK_WECC0_OFST);
1865 writel(readl(drvdata->base + ECC_BLK_RECC1_OFST),
1866 drvdata->base + ECC_BLK_WECC1_OFST);
1867 /* Setup accctrl to write & ecc override & data override */
1868 writel(ECC_WRITE_EDOVR, drvdata->base + ECC_BLK_ACCCTRL_OFST);
1869 /* Kick it. */
1870 writel(ECC_XACT_KICK, drvdata->base + ECC_BLK_STARTACC_OFST);
1871 /* Setup accctrl to read & ecc overwrite & data overwrite */
1872 writel(ECC_READ_EDOVR, drvdata->base + ECC_BLK_ACCCTRL_OFST);
1873 /* Kick it. */
1874 writel(ECC_XACT_KICK, drvdata->base + ECC_BLK_STARTACC_OFST);
1875 }
1876
1877 /* Ensure the interrupt test bits are set */
1878 wmb();
1879 local_irq_restore(flags);
1880
1881 return count;
1882 }
1883
1884 static void altr_edac_a10_irq_handler(struct irq_desc *desc)
1885 {
1886 int dberr, bit, sm_offset, irq_status;
1887 struct altr_arria10_edac *edac = irq_desc_get_handler_data(desc);
1888 struct irq_chip *chip = irq_desc_get_chip(desc);
1889 int irq = irq_desc_get_irq(desc);
1890 unsigned long bits;
1891
1892 dberr = (irq == edac->db_irq) ? 1 : 0;
1893 sm_offset = dberr ? A10_SYSMGR_ECC_INTSTAT_DERR_OFST :
1894 A10_SYSMGR_ECC_INTSTAT_SERR_OFST;
1895
1896 chained_irq_enter(chip, desc);
1897
1898 regmap_read(edac->ecc_mgr_map, sm_offset, &irq_status);
1899
1900 bits = irq_status;
1901 for_each_set_bit(bit, &bits, 32) {
1902 irq = irq_linear_revmap(edac->domain, dberr * 32 + bit);
1903 if (irq)
1904 generic_handle_irq(irq);
1905 }
1906
1907 chained_irq_exit(chip, desc);
1908 }
1909
1910 static int validate_parent_available(struct device_node *np)
1911 {
1912 struct device_node *parent;
1913 int ret = 0;
1914
1915 /* SDRAM must be present for Linux (implied parent) */
1916 if (of_device_is_compatible(np, "altr,sdram-edac-s10"))
1917 return 0;
1918
1919 /* Ensure parent device is enabled if parent node exists */
1920 parent = of_parse_phandle(np, "altr,ecc-parent", 0);
1921 if (parent && !of_device_is_available(parent))
1922 ret = -ENODEV;
1923
1924 of_node_put(parent);
1925 return ret;
1926 }
1927
1928 static int get_s10_sdram_edac_resource(struct device_node *np,
1929 struct resource *res)
1930 {
1931 struct device_node *parent;
1932 int ret;
1933
1934 parent = of_parse_phandle(np, "altr,sdr-syscon", 0);
1935 if (!parent)
1936 return -ENODEV;
1937
1938 ret = of_address_to_resource(parent, 0, res);
1939 of_node_put(parent);
1940
1941 return ret;
1942 }
1943
1944 static int altr_edac_a10_device_add(struct altr_arria10_edac *edac,
1945 struct device_node *np)
1946 {
1947 struct edac_device_ctl_info *dci;
1948 struct altr_edac_device_dev *altdev;
1949 char *ecc_name = (char *)np->name;
1950 struct resource res;
1951 int edac_idx;
1952 int rc = 0;
1953 const struct edac_device_prv_data *prv;
1954 /* Get matching node and check for valid result */
1955 const struct of_device_id *pdev_id =
1956 of_match_node(altr_edac_a10_device_of_match, np);
1957 if (IS_ERR_OR_NULL(pdev_id))
1958 return -ENODEV;
1959
1960 /* Get driver specific data for this EDAC device */
1961 prv = pdev_id->data;
1962 if (IS_ERR_OR_NULL(prv))
1963 return -ENODEV;
1964
1965 if (validate_parent_available(np))
1966 return -ENODEV;
1967
1968 if (!devres_open_group(edac->dev, altr_edac_a10_device_add, GFP_KERNEL))
1969 return -ENOMEM;
1970
1971 if (of_device_is_compatible(np, "altr,sdram-edac-s10"))
1972 rc = get_s10_sdram_edac_resource(np, &res);
1973 else
1974 rc = of_address_to_resource(np, 0, &res);
1975
1976 if (rc < 0) {
1977 edac_printk(KERN_ERR, EDAC_DEVICE,
1978 "%s: no resource address\n", ecc_name);
1979 goto err_release_group;
1980 }
1981
1982 edac_idx = edac_device_alloc_index();
1983 dci = edac_device_alloc_ctl_info(sizeof(*altdev), ecc_name,
1984 1, ecc_name, 1, 0, NULL, 0,
1985 edac_idx);
1986
1987 if (!dci) {
1988 edac_printk(KERN_ERR, EDAC_DEVICE,
1989 "%s: Unable to allocate EDAC device\n", ecc_name);
1990 rc = -ENOMEM;
1991 goto err_release_group;
1992 }
1993
1994 altdev = dci->pvt_info;
1995 dci->dev = edac->dev;
1996 altdev->edac_dev_name = ecc_name;
1997 altdev->edac_idx = edac_idx;
1998 altdev->edac = edac;
1999 altdev->edac_dev = dci;
2000 altdev->data = prv;
2001 altdev->ddev = *edac->dev;
2002 dci->dev = &altdev->ddev;
2003 dci->ctl_name = "Altera ECC Manager";
2004 dci->mod_name = ecc_name;
2005 dci->dev_name = ecc_name;
2006
2007 altdev->base = devm_ioremap_resource(edac->dev, &res);
2008 if (IS_ERR(altdev->base)) {
2009 rc = PTR_ERR(altdev->base);
2010 goto err_release_group1;
2011 }
2012
2013 /* Check specific dependencies for the module */
2014 if (altdev->data->setup) {
2015 rc = altdev->data->setup(altdev);
2016 if (rc)
2017 goto err_release_group1;
2018 }
2019
2020 altdev->sb_irq = irq_of_parse_and_map(np, 0);
2021 if (!altdev->sb_irq) {
2022 edac_printk(KERN_ERR, EDAC_DEVICE, "Error allocating SBIRQ\n");
2023 rc = -ENODEV;
2024 goto err_release_group1;
2025 }
2026 rc = devm_request_irq(edac->dev, altdev->sb_irq, prv->ecc_irq_handler,
2027 IRQF_ONESHOT | IRQF_TRIGGER_HIGH,
2028 ecc_name, altdev);
2029 if (rc) {
2030 edac_printk(KERN_ERR, EDAC_DEVICE, "No SBERR IRQ resource\n");
2031 goto err_release_group1;
2032 }
2033
2034 #ifdef CONFIG_ARCH_STRATIX10
2035 /* Use IRQ to determine SError origin instead of assigning IRQ */
2036 rc = of_property_read_u32_index(np, "interrupts", 0, &altdev->db_irq);
2037 if (rc) {
2038 edac_printk(KERN_ERR, EDAC_DEVICE,
2039 "Unable to parse DB IRQ index\n");
2040 goto err_release_group1;
2041 }
2042 #else
2043 altdev->db_irq = irq_of_parse_and_map(np, 1);
2044 if (!altdev->db_irq) {
2045 edac_printk(KERN_ERR, EDAC_DEVICE, "Error allocating DBIRQ\n");
2046 rc = -ENODEV;
2047 goto err_release_group1;
2048 }
2049 rc = devm_request_irq(edac->dev, altdev->db_irq, prv->ecc_irq_handler,
2050 IRQF_ONESHOT | IRQF_TRIGGER_HIGH,
2051 ecc_name, altdev);
2052 if (rc) {
2053 edac_printk(KERN_ERR, EDAC_DEVICE, "No DBERR IRQ resource\n");
2054 goto err_release_group1;
2055 }
2056 #endif
2057
2058 rc = edac_device_add_device(dci);
2059 if (rc) {
2060 dev_err(edac->dev, "edac_device_add_device failed\n");
2061 rc = -ENOMEM;
2062 goto err_release_group1;
2063 }
2064
2065 altr_create_edacdev_dbgfs(dci, prv);
2066
2067 list_add(&altdev->next, &edac->a10_ecc_devices);
2068
2069 devres_remove_group(edac->dev, altr_edac_a10_device_add);
2070
2071 return 0;
2072
2073 err_release_group1:
2074 edac_device_free_ctl_info(dci);
2075 err_release_group:
2076 devres_release_group(edac->dev, NULL);
2077 edac_printk(KERN_ERR, EDAC_DEVICE,
2078 "%s:Error setting up EDAC device: %d\n", ecc_name, rc);
2079
2080 return rc;
2081 }
2082
2083 static void a10_eccmgr_irq_mask(struct irq_data *d)
2084 {
2085 struct altr_arria10_edac *edac = irq_data_get_irq_chip_data(d);
2086
2087 regmap_write(edac->ecc_mgr_map, A10_SYSMGR_ECC_INTMASK_SET_OFST,
2088 BIT(d->hwirq));
2089 }
2090
2091 static void a10_eccmgr_irq_unmask(struct irq_data *d)
2092 {
2093 struct altr_arria10_edac *edac = irq_data_get_irq_chip_data(d);
2094
2095 regmap_write(edac->ecc_mgr_map, A10_SYSMGR_ECC_INTMASK_CLR_OFST,
2096 BIT(d->hwirq));
2097 }
2098
2099 static int a10_eccmgr_irqdomain_map(struct irq_domain *d, unsigned int irq,
2100 irq_hw_number_t hwirq)
2101 {
2102 struct altr_arria10_edac *edac = d->host_data;
2103
2104 irq_set_chip_and_handler(irq, &edac->irq_chip, handle_simple_irq);
2105 irq_set_chip_data(irq, edac);
2106 irq_set_noprobe(irq);
2107
2108 return 0;
2109 }
2110
2111 static const struct irq_domain_ops a10_eccmgr_ic_ops = {
2112 .map = a10_eccmgr_irqdomain_map,
2113 .xlate = irq_domain_xlate_twocell,
2114 };
2115
2116 /************** Stratix 10 EDAC Double Bit Error Handler ************/
2117 #define to_a10edac(p, m) container_of(p, struct altr_arria10_edac, m)
2118
2119 #ifdef CONFIG_ARCH_STRATIX10
2120 /* panic routine issues reboot on non-zero panic_timeout */
2121 extern int panic_timeout;
2122
2123 /*
2124 * The double bit error is handled through SError which is fatal. This is
2125 * called as a panic notifier to printout ECC error info as part of the panic.
2126 */
2127 static int s10_edac_dberr_handler(struct notifier_block *this,
2128 unsigned long event, void *ptr)
2129 {
2130 struct altr_arria10_edac *edac = to_a10edac(this, panic_notifier);
2131 int err_addr, dberror;
2132
2133 regmap_read(edac->ecc_mgr_map, S10_SYSMGR_ECC_INTSTAT_DERR_OFST,
2134 &dberror);
2135 regmap_write(edac->ecc_mgr_map, S10_SYSMGR_UE_VAL_OFST, dberror);
2136 if (dberror & S10_DBE_IRQ_MASK) {
2137 struct list_head *position;
2138 struct altr_edac_device_dev *ed;
2139 struct arm_smccc_res result;
2140
2141 /* Find the matching DBE in the list of devices */
2142 list_for_each(position, &edac->a10_ecc_devices) {
2143 ed = list_entry(position, struct altr_edac_device_dev,
2144 next);
2145 if (!(BIT(ed->db_irq) & dberror))
2146 continue;
2147
2148 writel(ALTR_A10_ECC_DERRPENA,
2149 ed->base + ALTR_A10_ECC_INTSTAT_OFST);
2150 err_addr = readl(ed->base + ALTR_S10_DERR_ADDRA_OFST);
2151 regmap_write(edac->ecc_mgr_map,
2152 S10_SYSMGR_UE_ADDR_OFST, err_addr);
2153 edac_printk(KERN_ERR, EDAC_DEVICE,
2154 "EDAC: [Fatal DBE on %s @ 0x%08X]\n",
2155 ed->edac_dev_name, err_addr);
2156 break;
2157 }
2158 /* Notify the System through SMC. Reboot delay = 1 second */
2159 panic_timeout = 1;
2160 arm_smccc_smc(INTEL_SIP_SMC_ECC_DBE, dberror, 0, 0, 0, 0,
2161 0, 0, &result);
2162 }
2163
2164 return NOTIFY_DONE;
2165 }
2166 #endif
2167
2168 /****************** Arria 10 EDAC Probe Function *********************/
2169 static int altr_edac_a10_probe(struct platform_device *pdev)
2170 {
2171 struct altr_arria10_edac *edac;
2172 struct device_node *child;
2173
2174 edac = devm_kzalloc(&pdev->dev, sizeof(*edac), GFP_KERNEL);
2175 if (!edac)
2176 return -ENOMEM;
2177
2178 edac->dev = &pdev->dev;
2179 platform_set_drvdata(pdev, edac);
2180 INIT_LIST_HEAD(&edac->a10_ecc_devices);
2181
2182 if (socfpga_is_a10()) {
2183 edac->ecc_mgr_map =
2184 syscon_regmap_lookup_by_phandle(pdev->dev.of_node,
2185 "altr,sysmgr-syscon");
2186 } else {
2187 struct device_node *sysmgr_np;
2188 struct resource res;
2189 uintptr_t base;
2190
2191 sysmgr_np = of_parse_phandle(pdev->dev.of_node,
2192 "altr,sysmgr-syscon", 0);
2193 if (!sysmgr_np) {
2194 edac_printk(KERN_ERR, EDAC_DEVICE,
2195 "Unable to find altr,sysmgr-syscon\n");
2196 return -ENODEV;
2197 }
2198
2199 if (of_address_to_resource(sysmgr_np, 0, &res))
2200 return -ENOMEM;
2201
2202 /* Need physical address for SMCC call */
2203 base = res.start;
2204
2205 edac->ecc_mgr_map = devm_regmap_init(&pdev->dev, NULL,
2206 (void *)base,
2207 &s10_sdram_regmap_cfg);
2208 }
2209
2210 if (IS_ERR(edac->ecc_mgr_map)) {
2211 edac_printk(KERN_ERR, EDAC_DEVICE,
2212 "Unable to get syscon altr,sysmgr-syscon\n");
2213 return PTR_ERR(edac->ecc_mgr_map);
2214 }
2215
2216 edac->irq_chip.name = pdev->dev.of_node->name;
2217 edac->irq_chip.irq_mask = a10_eccmgr_irq_mask;
2218 edac->irq_chip.irq_unmask = a10_eccmgr_irq_unmask;
2219 edac->domain = irq_domain_add_linear(pdev->dev.of_node, 64,
2220 &a10_eccmgr_ic_ops, edac);
2221 if (!edac->domain) {
2222 dev_err(&pdev->dev, "Error adding IRQ domain\n");
2223 return -ENOMEM;
2224 }
2225
2226 edac->sb_irq = platform_get_irq(pdev, 0);
2227 if (edac->sb_irq < 0) {
2228 dev_err(&pdev->dev, "No SBERR IRQ resource\n");
2229 return edac->sb_irq;
2230 }
2231
2232 irq_set_chained_handler_and_data(edac->sb_irq,
2233 altr_edac_a10_irq_handler,
2234 edac);
2235
2236 #ifdef CONFIG_ARCH_STRATIX10
2237 {
2238 int dberror, err_addr;
2239
2240 edac->panic_notifier.notifier_call = s10_edac_dberr_handler;
2241 atomic_notifier_chain_register(&panic_notifier_list,
2242 &edac->panic_notifier);
2243
2244 /* Printout a message if uncorrectable error previously. */
2245 regmap_read(edac->ecc_mgr_map, S10_SYSMGR_UE_VAL_OFST,
2246 &dberror);
2247 if (dberror) {
2248 regmap_read(edac->ecc_mgr_map, S10_SYSMGR_UE_ADDR_OFST,
2249 &err_addr);
2250 edac_printk(KERN_ERR, EDAC_DEVICE,
2251 "Previous Boot UE detected[0x%X] @ 0x%X\n",
2252 dberror, err_addr);
2253 /* Reset the sticky registers */
2254 regmap_write(edac->ecc_mgr_map,
2255 S10_SYSMGR_UE_VAL_OFST, 0);
2256 regmap_write(edac->ecc_mgr_map,
2257 S10_SYSMGR_UE_ADDR_OFST, 0);
2258 }
2259 }
2260 #else
2261 edac->db_irq = platform_get_irq(pdev, 1);
2262 if (edac->db_irq < 0) {
2263 dev_err(&pdev->dev, "No DBERR IRQ resource\n");
2264 return edac->db_irq;
2265 }
2266 irq_set_chained_handler_and_data(edac->db_irq,
2267 altr_edac_a10_irq_handler, edac);
2268 #endif
2269
2270 for_each_child_of_node(pdev->dev.of_node, child) {
2271 if (!of_device_is_available(child))
2272 continue;
2273
2274 if (of_device_is_compatible(child, "altr,socfpga-a10-l2-ecc") ||
2275 of_device_is_compatible(child, "altr,socfpga-a10-ocram-ecc") ||
2276 of_device_is_compatible(child, "altr,socfpga-eth-mac-ecc") ||
2277 of_device_is_compatible(child, "altr,socfpga-nand-ecc") ||
2278 of_device_is_compatible(child, "altr,socfpga-dma-ecc") ||
2279 of_device_is_compatible(child, "altr,socfpga-usb-ecc") ||
2280 of_device_is_compatible(child, "altr,socfpga-qspi-ecc") ||
2281 #ifdef CONFIG_EDAC_ALTERA_SDRAM
2282 of_device_is_compatible(child, "altr,sdram-edac-s10") ||
2283 #endif
2284 of_device_is_compatible(child, "altr,socfpga-sdmmc-ecc"))
2285
2286 altr_edac_a10_device_add(edac, child);
2287
2288 #ifdef CONFIG_EDAC_ALTERA_SDRAM
2289 else if (of_device_is_compatible(child, "altr,sdram-edac-a10"))
2290 of_platform_populate(pdev->dev.of_node,
2291 altr_sdram_ctrl_of_match,
2292 NULL, &pdev->dev);
2293 #endif
2294 }
2295
2296 return 0;
2297 }
2298
2299 static const struct of_device_id altr_edac_a10_of_match[] = {
2300 { .compatible = "altr,socfpga-a10-ecc-manager" },
2301 { .compatible = "altr,socfpga-s10-ecc-manager" },
2302 {},
2303 };
2304 MODULE_DEVICE_TABLE(of, altr_edac_a10_of_match);
2305
2306 static struct platform_driver altr_edac_a10_driver = {
2307 .probe = altr_edac_a10_probe,
2308 .driver = {
2309 .name = "socfpga_a10_ecc_manager",
2310 .of_match_table = altr_edac_a10_of_match,
2311 },
2312 };
2313 module_platform_driver(altr_edac_a10_driver);
2314
2315 MODULE_LICENSE("GPL v2");
2316 MODULE_AUTHOR("Thor Thayer");
2317 MODULE_DESCRIPTION("EDAC Driver for Altera Memories");