]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - drivers/edac/altera_edac.c
Merge tag 'integrity-v5.16' of git://git.kernel.org/pub/scm/linux/kernel/git/zohar...
[mirror_ubuntu-kernels.git] / drivers / edac / altera_edac.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2017-2018, Intel Corporation. All rights reserved
4 * Copyright Altera Corporation (C) 2014-2016. All rights reserved.
5 * Copyright 2011-2012 Calxeda, Inc.
6 */
7
8 #include <asm/cacheflush.h>
9 #include <linux/ctype.h>
10 #include <linux/delay.h>
11 #include <linux/edac.h>
12 #include <linux/firmware/intel/stratix10-smc.h>
13 #include <linux/genalloc.h>
14 #include <linux/interrupt.h>
15 #include <linux/irqchip/chained_irq.h>
16 #include <linux/kernel.h>
17 #include <linux/mfd/altera-sysmgr.h>
18 #include <linux/mfd/syscon.h>
19 #include <linux/notifier.h>
20 #include <linux/of_address.h>
21 #include <linux/of_irq.h>
22 #include <linux/of_platform.h>
23 #include <linux/panic_notifier.h>
24 #include <linux/platform_device.h>
25 #include <linux/regmap.h>
26 #include <linux/types.h>
27 #include <linux/uaccess.h>
28
29 #include "altera_edac.h"
30 #include "edac_module.h"
31
32 #define EDAC_MOD_STR "altera_edac"
33 #define EDAC_DEVICE "Altera"
34
35 #ifdef CONFIG_EDAC_ALTERA_SDRAM
36 static const struct altr_sdram_prv_data c5_data = {
37 .ecc_ctrl_offset = CV_CTLCFG_OFST,
38 .ecc_ctl_en_mask = CV_CTLCFG_ECC_AUTO_EN,
39 .ecc_stat_offset = CV_DRAMSTS_OFST,
40 .ecc_stat_ce_mask = CV_DRAMSTS_SBEERR,
41 .ecc_stat_ue_mask = CV_DRAMSTS_DBEERR,
42 .ecc_saddr_offset = CV_ERRADDR_OFST,
43 .ecc_daddr_offset = CV_ERRADDR_OFST,
44 .ecc_cecnt_offset = CV_SBECOUNT_OFST,
45 .ecc_uecnt_offset = CV_DBECOUNT_OFST,
46 .ecc_irq_en_offset = CV_DRAMINTR_OFST,
47 .ecc_irq_en_mask = CV_DRAMINTR_INTREN,
48 .ecc_irq_clr_offset = CV_DRAMINTR_OFST,
49 .ecc_irq_clr_mask = (CV_DRAMINTR_INTRCLR | CV_DRAMINTR_INTREN),
50 .ecc_cnt_rst_offset = CV_DRAMINTR_OFST,
51 .ecc_cnt_rst_mask = CV_DRAMINTR_INTRCLR,
52 .ce_ue_trgr_offset = CV_CTLCFG_OFST,
53 .ce_set_mask = CV_CTLCFG_GEN_SB_ERR,
54 .ue_set_mask = CV_CTLCFG_GEN_DB_ERR,
55 };
56
57 static const struct altr_sdram_prv_data a10_data = {
58 .ecc_ctrl_offset = A10_ECCCTRL1_OFST,
59 .ecc_ctl_en_mask = A10_ECCCTRL1_ECC_EN,
60 .ecc_stat_offset = A10_INTSTAT_OFST,
61 .ecc_stat_ce_mask = A10_INTSTAT_SBEERR,
62 .ecc_stat_ue_mask = A10_INTSTAT_DBEERR,
63 .ecc_saddr_offset = A10_SERRADDR_OFST,
64 .ecc_daddr_offset = A10_DERRADDR_OFST,
65 .ecc_irq_en_offset = A10_ERRINTEN_OFST,
66 .ecc_irq_en_mask = A10_ECC_IRQ_EN_MASK,
67 .ecc_irq_clr_offset = A10_INTSTAT_OFST,
68 .ecc_irq_clr_mask = (A10_INTSTAT_SBEERR | A10_INTSTAT_DBEERR),
69 .ecc_cnt_rst_offset = A10_ECCCTRL1_OFST,
70 .ecc_cnt_rst_mask = A10_ECC_CNT_RESET_MASK,
71 .ce_ue_trgr_offset = A10_DIAGINTTEST_OFST,
72 .ce_set_mask = A10_DIAGINT_TSERRA_MASK,
73 .ue_set_mask = A10_DIAGINT_TDERRA_MASK,
74 };
75
76 /*********************** EDAC Memory Controller Functions ****************/
77
78 /* The SDRAM controller uses the EDAC Memory Controller framework. */
79
80 static irqreturn_t altr_sdram_mc_err_handler(int irq, void *dev_id)
81 {
82 struct mem_ctl_info *mci = dev_id;
83 struct altr_sdram_mc_data *drvdata = mci->pvt_info;
84 const struct altr_sdram_prv_data *priv = drvdata->data;
85 u32 status, err_count = 1, err_addr;
86
87 regmap_read(drvdata->mc_vbase, priv->ecc_stat_offset, &status);
88
89 if (status & priv->ecc_stat_ue_mask) {
90 regmap_read(drvdata->mc_vbase, priv->ecc_daddr_offset,
91 &err_addr);
92 if (priv->ecc_uecnt_offset)
93 regmap_read(drvdata->mc_vbase, priv->ecc_uecnt_offset,
94 &err_count);
95 panic("\nEDAC: [%d Uncorrectable errors @ 0x%08X]\n",
96 err_count, err_addr);
97 }
98 if (status & priv->ecc_stat_ce_mask) {
99 regmap_read(drvdata->mc_vbase, priv->ecc_saddr_offset,
100 &err_addr);
101 if (priv->ecc_uecnt_offset)
102 regmap_read(drvdata->mc_vbase, priv->ecc_cecnt_offset,
103 &err_count);
104 edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, err_count,
105 err_addr >> PAGE_SHIFT,
106 err_addr & ~PAGE_MASK, 0,
107 0, 0, -1, mci->ctl_name, "");
108 /* Clear IRQ to resume */
109 regmap_write(drvdata->mc_vbase, priv->ecc_irq_clr_offset,
110 priv->ecc_irq_clr_mask);
111
112 return IRQ_HANDLED;
113 }
114 return IRQ_NONE;
115 }
116
117 static ssize_t altr_sdr_mc_err_inject_write(struct file *file,
118 const char __user *data,
119 size_t count, loff_t *ppos)
120 {
121 struct mem_ctl_info *mci = file->private_data;
122 struct altr_sdram_mc_data *drvdata = mci->pvt_info;
123 const struct altr_sdram_prv_data *priv = drvdata->data;
124 u32 *ptemp;
125 dma_addr_t dma_handle;
126 u32 reg, read_reg;
127
128 ptemp = dma_alloc_coherent(mci->pdev, 16, &dma_handle, GFP_KERNEL);
129 if (!ptemp) {
130 dma_free_coherent(mci->pdev, 16, ptemp, dma_handle);
131 edac_printk(KERN_ERR, EDAC_MC,
132 "Inject: Buffer Allocation error\n");
133 return -ENOMEM;
134 }
135
136 regmap_read(drvdata->mc_vbase, priv->ce_ue_trgr_offset,
137 &read_reg);
138 read_reg &= ~(priv->ce_set_mask | priv->ue_set_mask);
139
140 /* Error are injected by writing a word while the SBE or DBE
141 * bit in the CTLCFG register is set. Reading the word will
142 * trigger the SBE or DBE error and the corresponding IRQ.
143 */
144 if (count == 3) {
145 edac_printk(KERN_ALERT, EDAC_MC,
146 "Inject Double bit error\n");
147 local_irq_disable();
148 regmap_write(drvdata->mc_vbase, priv->ce_ue_trgr_offset,
149 (read_reg | priv->ue_set_mask));
150 local_irq_enable();
151 } else {
152 edac_printk(KERN_ALERT, EDAC_MC,
153 "Inject Single bit error\n");
154 local_irq_disable();
155 regmap_write(drvdata->mc_vbase, priv->ce_ue_trgr_offset,
156 (read_reg | priv->ce_set_mask));
157 local_irq_enable();
158 }
159
160 ptemp[0] = 0x5A5A5A5A;
161 ptemp[1] = 0xA5A5A5A5;
162
163 /* Clear the error injection bits */
164 regmap_write(drvdata->mc_vbase, priv->ce_ue_trgr_offset, read_reg);
165 /* Ensure it has been written out */
166 wmb();
167
168 /*
169 * To trigger the error, we need to read the data back
170 * (the data was written with errors above).
171 * The READ_ONCE macros and printk are used to prevent the
172 * the compiler optimizing these reads out.
173 */
174 reg = READ_ONCE(ptemp[0]);
175 read_reg = READ_ONCE(ptemp[1]);
176 /* Force Read */
177 rmb();
178
179 edac_printk(KERN_ALERT, EDAC_MC, "Read Data [0x%X, 0x%X]\n",
180 reg, read_reg);
181
182 dma_free_coherent(mci->pdev, 16, ptemp, dma_handle);
183
184 return count;
185 }
186
187 static const struct file_operations altr_sdr_mc_debug_inject_fops = {
188 .open = simple_open,
189 .write = altr_sdr_mc_err_inject_write,
190 .llseek = generic_file_llseek,
191 };
192
193 static void altr_sdr_mc_create_debugfs_nodes(struct mem_ctl_info *mci)
194 {
195 if (!IS_ENABLED(CONFIG_EDAC_DEBUG))
196 return;
197
198 if (!mci->debugfs)
199 return;
200
201 edac_debugfs_create_file("altr_trigger", S_IWUSR, mci->debugfs, mci,
202 &altr_sdr_mc_debug_inject_fops);
203 }
204
205 /* Get total memory size from Open Firmware DTB */
206 static unsigned long get_total_mem(void)
207 {
208 struct device_node *np = NULL;
209 struct resource res;
210 int ret;
211 unsigned long total_mem = 0;
212
213 for_each_node_by_type(np, "memory") {
214 ret = of_address_to_resource(np, 0, &res);
215 if (ret)
216 continue;
217
218 total_mem += resource_size(&res);
219 }
220 edac_dbg(0, "total_mem 0x%lx\n", total_mem);
221 return total_mem;
222 }
223
224 static const struct of_device_id altr_sdram_ctrl_of_match[] = {
225 { .compatible = "altr,sdram-edac", .data = &c5_data},
226 { .compatible = "altr,sdram-edac-a10", .data = &a10_data},
227 {},
228 };
229 MODULE_DEVICE_TABLE(of, altr_sdram_ctrl_of_match);
230
231 static int a10_init(struct regmap *mc_vbase)
232 {
233 if (regmap_update_bits(mc_vbase, A10_INTMODE_OFST,
234 A10_INTMODE_SB_INT, A10_INTMODE_SB_INT)) {
235 edac_printk(KERN_ERR, EDAC_MC,
236 "Error setting SB IRQ mode\n");
237 return -ENODEV;
238 }
239
240 if (regmap_write(mc_vbase, A10_SERRCNTREG_OFST, 1)) {
241 edac_printk(KERN_ERR, EDAC_MC,
242 "Error setting trigger count\n");
243 return -ENODEV;
244 }
245
246 return 0;
247 }
248
249 static int a10_unmask_irq(struct platform_device *pdev, u32 mask)
250 {
251 void __iomem *sm_base;
252 int ret = 0;
253
254 if (!request_mem_region(A10_SYMAN_INTMASK_CLR, sizeof(u32),
255 dev_name(&pdev->dev))) {
256 edac_printk(KERN_ERR, EDAC_MC,
257 "Unable to request mem region\n");
258 return -EBUSY;
259 }
260
261 sm_base = ioremap(A10_SYMAN_INTMASK_CLR, sizeof(u32));
262 if (!sm_base) {
263 edac_printk(KERN_ERR, EDAC_MC,
264 "Unable to ioremap device\n");
265
266 ret = -ENOMEM;
267 goto release;
268 }
269
270 iowrite32(mask, sm_base);
271
272 iounmap(sm_base);
273
274 release:
275 release_mem_region(A10_SYMAN_INTMASK_CLR, sizeof(u32));
276
277 return ret;
278 }
279
280 static int altr_sdram_probe(struct platform_device *pdev)
281 {
282 const struct of_device_id *id;
283 struct edac_mc_layer layers[2];
284 struct mem_ctl_info *mci;
285 struct altr_sdram_mc_data *drvdata;
286 const struct altr_sdram_prv_data *priv;
287 struct regmap *mc_vbase;
288 struct dimm_info *dimm;
289 u32 read_reg;
290 int irq, irq2, res = 0;
291 unsigned long mem_size, irqflags = 0;
292
293 id = of_match_device(altr_sdram_ctrl_of_match, &pdev->dev);
294 if (!id)
295 return -ENODEV;
296
297 /* Grab the register range from the sdr controller in device tree */
298 mc_vbase = syscon_regmap_lookup_by_phandle(pdev->dev.of_node,
299 "altr,sdr-syscon");
300 if (IS_ERR(mc_vbase)) {
301 edac_printk(KERN_ERR, EDAC_MC,
302 "regmap for altr,sdr-syscon lookup failed.\n");
303 return -ENODEV;
304 }
305
306 /* Check specific dependencies for the module */
307 priv = of_match_node(altr_sdram_ctrl_of_match,
308 pdev->dev.of_node)->data;
309
310 /* Validate the SDRAM controller has ECC enabled */
311 if (regmap_read(mc_vbase, priv->ecc_ctrl_offset, &read_reg) ||
312 ((read_reg & priv->ecc_ctl_en_mask) != priv->ecc_ctl_en_mask)) {
313 edac_printk(KERN_ERR, EDAC_MC,
314 "No ECC/ECC disabled [0x%08X]\n", read_reg);
315 return -ENODEV;
316 }
317
318 /* Grab memory size from device tree. */
319 mem_size = get_total_mem();
320 if (!mem_size) {
321 edac_printk(KERN_ERR, EDAC_MC, "Unable to calculate memory size\n");
322 return -ENODEV;
323 }
324
325 /* Ensure the SDRAM Interrupt is disabled */
326 if (regmap_update_bits(mc_vbase, priv->ecc_irq_en_offset,
327 priv->ecc_irq_en_mask, 0)) {
328 edac_printk(KERN_ERR, EDAC_MC,
329 "Error disabling SDRAM ECC IRQ\n");
330 return -ENODEV;
331 }
332
333 /* Toggle to clear the SDRAM Error count */
334 if (regmap_update_bits(mc_vbase, priv->ecc_cnt_rst_offset,
335 priv->ecc_cnt_rst_mask,
336 priv->ecc_cnt_rst_mask)) {
337 edac_printk(KERN_ERR, EDAC_MC,
338 "Error clearing SDRAM ECC count\n");
339 return -ENODEV;
340 }
341
342 if (regmap_update_bits(mc_vbase, priv->ecc_cnt_rst_offset,
343 priv->ecc_cnt_rst_mask, 0)) {
344 edac_printk(KERN_ERR, EDAC_MC,
345 "Error clearing SDRAM ECC count\n");
346 return -ENODEV;
347 }
348
349 irq = platform_get_irq(pdev, 0);
350 if (irq < 0) {
351 edac_printk(KERN_ERR, EDAC_MC,
352 "No irq %d in DT\n", irq);
353 return -ENODEV;
354 }
355
356 /* Arria10 has a 2nd IRQ */
357 irq2 = platform_get_irq(pdev, 1);
358
359 layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
360 layers[0].size = 1;
361 layers[0].is_virt_csrow = true;
362 layers[1].type = EDAC_MC_LAYER_CHANNEL;
363 layers[1].size = 1;
364 layers[1].is_virt_csrow = false;
365 mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers,
366 sizeof(struct altr_sdram_mc_data));
367 if (!mci)
368 return -ENOMEM;
369
370 mci->pdev = &pdev->dev;
371 drvdata = mci->pvt_info;
372 drvdata->mc_vbase = mc_vbase;
373 drvdata->data = priv;
374 platform_set_drvdata(pdev, mci);
375
376 if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL)) {
377 edac_printk(KERN_ERR, EDAC_MC,
378 "Unable to get managed device resource\n");
379 res = -ENOMEM;
380 goto free;
381 }
382
383 mci->mtype_cap = MEM_FLAG_DDR3;
384 mci->edac_ctl_cap = EDAC_FLAG_NONE | EDAC_FLAG_SECDED;
385 mci->edac_cap = EDAC_FLAG_SECDED;
386 mci->mod_name = EDAC_MOD_STR;
387 mci->ctl_name = dev_name(&pdev->dev);
388 mci->scrub_mode = SCRUB_SW_SRC;
389 mci->dev_name = dev_name(&pdev->dev);
390
391 dimm = *mci->dimms;
392 dimm->nr_pages = ((mem_size - 1) >> PAGE_SHIFT) + 1;
393 dimm->grain = 8;
394 dimm->dtype = DEV_X8;
395 dimm->mtype = MEM_DDR3;
396 dimm->edac_mode = EDAC_SECDED;
397
398 res = edac_mc_add_mc(mci);
399 if (res < 0)
400 goto err;
401
402 /* Only the Arria10 has separate IRQs */
403 if (of_machine_is_compatible("altr,socfpga-arria10")) {
404 /* Arria10 specific initialization */
405 res = a10_init(mc_vbase);
406 if (res < 0)
407 goto err2;
408
409 res = devm_request_irq(&pdev->dev, irq2,
410 altr_sdram_mc_err_handler,
411 IRQF_SHARED, dev_name(&pdev->dev), mci);
412 if (res < 0) {
413 edac_mc_printk(mci, KERN_ERR,
414 "Unable to request irq %d\n", irq2);
415 res = -ENODEV;
416 goto err2;
417 }
418
419 res = a10_unmask_irq(pdev, A10_DDR0_IRQ_MASK);
420 if (res < 0)
421 goto err2;
422
423 irqflags = IRQF_SHARED;
424 }
425
426 res = devm_request_irq(&pdev->dev, irq, altr_sdram_mc_err_handler,
427 irqflags, dev_name(&pdev->dev), mci);
428 if (res < 0) {
429 edac_mc_printk(mci, KERN_ERR,
430 "Unable to request irq %d\n", irq);
431 res = -ENODEV;
432 goto err2;
433 }
434
435 /* Infrastructure ready - enable the IRQ */
436 if (regmap_update_bits(drvdata->mc_vbase, priv->ecc_irq_en_offset,
437 priv->ecc_irq_en_mask, priv->ecc_irq_en_mask)) {
438 edac_mc_printk(mci, KERN_ERR,
439 "Error enabling SDRAM ECC IRQ\n");
440 res = -ENODEV;
441 goto err2;
442 }
443
444 altr_sdr_mc_create_debugfs_nodes(mci);
445
446 devres_close_group(&pdev->dev, NULL);
447
448 return 0;
449
450 err2:
451 edac_mc_del_mc(&pdev->dev);
452 err:
453 devres_release_group(&pdev->dev, NULL);
454 free:
455 edac_mc_free(mci);
456 edac_printk(KERN_ERR, EDAC_MC,
457 "EDAC Probe Failed; Error %d\n", res);
458
459 return res;
460 }
461
462 static int altr_sdram_remove(struct platform_device *pdev)
463 {
464 struct mem_ctl_info *mci = platform_get_drvdata(pdev);
465
466 edac_mc_del_mc(&pdev->dev);
467 edac_mc_free(mci);
468 platform_set_drvdata(pdev, NULL);
469
470 return 0;
471 }
472
473 /*
474 * If you want to suspend, need to disable EDAC by removing it
475 * from the device tree or defconfig.
476 */
477 #ifdef CONFIG_PM
478 static int altr_sdram_prepare(struct device *dev)
479 {
480 pr_err("Suspend not allowed when EDAC is enabled.\n");
481
482 return -EPERM;
483 }
484
485 static const struct dev_pm_ops altr_sdram_pm_ops = {
486 .prepare = altr_sdram_prepare,
487 };
488 #endif
489
490 static struct platform_driver altr_sdram_edac_driver = {
491 .probe = altr_sdram_probe,
492 .remove = altr_sdram_remove,
493 .driver = {
494 .name = "altr_sdram_edac",
495 #ifdef CONFIG_PM
496 .pm = &altr_sdram_pm_ops,
497 #endif
498 .of_match_table = altr_sdram_ctrl_of_match,
499 },
500 };
501
502 module_platform_driver(altr_sdram_edac_driver);
503
504 #endif /* CONFIG_EDAC_ALTERA_SDRAM */
505
506 /************************* EDAC Parent Probe *************************/
507
508 static const struct of_device_id altr_edac_device_of_match[];
509
510 static const struct of_device_id altr_edac_of_match[] = {
511 { .compatible = "altr,socfpga-ecc-manager" },
512 {},
513 };
514 MODULE_DEVICE_TABLE(of, altr_edac_of_match);
515
516 static int altr_edac_probe(struct platform_device *pdev)
517 {
518 of_platform_populate(pdev->dev.of_node, altr_edac_device_of_match,
519 NULL, &pdev->dev);
520 return 0;
521 }
522
523 static struct platform_driver altr_edac_driver = {
524 .probe = altr_edac_probe,
525 .driver = {
526 .name = "socfpga_ecc_manager",
527 .of_match_table = altr_edac_of_match,
528 },
529 };
530 module_platform_driver(altr_edac_driver);
531
532 /************************* EDAC Device Functions *************************/
533
534 /*
535 * EDAC Device Functions (shared between various IPs).
536 * The discrete memories use the EDAC Device framework. The probe
537 * and error handling functions are very similar between memories
538 * so they are shared. The memory allocation and freeing for EDAC
539 * trigger testing are different for each memory.
540 */
541
542 #ifdef CONFIG_EDAC_ALTERA_OCRAM
543 static const struct edac_device_prv_data ocramecc_data;
544 #endif
545 #ifdef CONFIG_EDAC_ALTERA_L2C
546 static const struct edac_device_prv_data l2ecc_data;
547 #endif
548 #ifdef CONFIG_EDAC_ALTERA_OCRAM
549 static const struct edac_device_prv_data a10_ocramecc_data;
550 #endif
551 #ifdef CONFIG_EDAC_ALTERA_L2C
552 static const struct edac_device_prv_data a10_l2ecc_data;
553 #endif
554
555 static irqreturn_t altr_edac_device_handler(int irq, void *dev_id)
556 {
557 irqreturn_t ret_value = IRQ_NONE;
558 struct edac_device_ctl_info *dci = dev_id;
559 struct altr_edac_device_dev *drvdata = dci->pvt_info;
560 const struct edac_device_prv_data *priv = drvdata->data;
561
562 if (irq == drvdata->sb_irq) {
563 if (priv->ce_clear_mask)
564 writel(priv->ce_clear_mask, drvdata->base);
565 edac_device_handle_ce(dci, 0, 0, drvdata->edac_dev_name);
566 ret_value = IRQ_HANDLED;
567 } else if (irq == drvdata->db_irq) {
568 if (priv->ue_clear_mask)
569 writel(priv->ue_clear_mask, drvdata->base);
570 edac_device_handle_ue(dci, 0, 0, drvdata->edac_dev_name);
571 panic("\nEDAC:ECC_DEVICE[Uncorrectable errors]\n");
572 ret_value = IRQ_HANDLED;
573 } else {
574 WARN_ON(1);
575 }
576
577 return ret_value;
578 }
579
580 static ssize_t __maybe_unused
581 altr_edac_device_trig(struct file *file, const char __user *user_buf,
582 size_t count, loff_t *ppos)
583
584 {
585 u32 *ptemp, i, error_mask;
586 int result = 0;
587 u8 trig_type;
588 unsigned long flags;
589 struct edac_device_ctl_info *edac_dci = file->private_data;
590 struct altr_edac_device_dev *drvdata = edac_dci->pvt_info;
591 const struct edac_device_prv_data *priv = drvdata->data;
592 void *generic_ptr = edac_dci->dev;
593
594 if (!user_buf || get_user(trig_type, user_buf))
595 return -EFAULT;
596
597 if (!priv->alloc_mem)
598 return -ENOMEM;
599
600 /*
601 * Note that generic_ptr is initialized to the device * but in
602 * some alloc_functions, this is overridden and returns data.
603 */
604 ptemp = priv->alloc_mem(priv->trig_alloc_sz, &generic_ptr);
605 if (!ptemp) {
606 edac_printk(KERN_ERR, EDAC_DEVICE,
607 "Inject: Buffer Allocation error\n");
608 return -ENOMEM;
609 }
610
611 if (trig_type == ALTR_UE_TRIGGER_CHAR)
612 error_mask = priv->ue_set_mask;
613 else
614 error_mask = priv->ce_set_mask;
615
616 edac_printk(KERN_ALERT, EDAC_DEVICE,
617 "Trigger Error Mask (0x%X)\n", error_mask);
618
619 local_irq_save(flags);
620 /* write ECC corrupted data out. */
621 for (i = 0; i < (priv->trig_alloc_sz / sizeof(*ptemp)); i++) {
622 /* Read data so we're in the correct state */
623 rmb();
624 if (READ_ONCE(ptemp[i]))
625 result = -1;
626 /* Toggle Error bit (it is latched), leave ECC enabled */
627 writel(error_mask, (drvdata->base + priv->set_err_ofst));
628 writel(priv->ecc_enable_mask, (drvdata->base +
629 priv->set_err_ofst));
630 ptemp[i] = i;
631 }
632 /* Ensure it has been written out */
633 wmb();
634 local_irq_restore(flags);
635
636 if (result)
637 edac_printk(KERN_ERR, EDAC_DEVICE, "Mem Not Cleared\n");
638
639 /* Read out written data. ECC error caused here */
640 for (i = 0; i < ALTR_TRIGGER_READ_WRD_CNT; i++)
641 if (READ_ONCE(ptemp[i]) != i)
642 edac_printk(KERN_ERR, EDAC_DEVICE,
643 "Read doesn't match written data\n");
644
645 if (priv->free_mem)
646 priv->free_mem(ptemp, priv->trig_alloc_sz, generic_ptr);
647
648 return count;
649 }
650
651 static const struct file_operations altr_edac_device_inject_fops __maybe_unused = {
652 .open = simple_open,
653 .write = altr_edac_device_trig,
654 .llseek = generic_file_llseek,
655 };
656
657 static ssize_t __maybe_unused
658 altr_edac_a10_device_trig(struct file *file, const char __user *user_buf,
659 size_t count, loff_t *ppos);
660
661 static const struct file_operations altr_edac_a10_device_inject_fops __maybe_unused = {
662 .open = simple_open,
663 .write = altr_edac_a10_device_trig,
664 .llseek = generic_file_llseek,
665 };
666
667 static ssize_t __maybe_unused
668 altr_edac_a10_device_trig2(struct file *file, const char __user *user_buf,
669 size_t count, loff_t *ppos);
670
671 static const struct file_operations altr_edac_a10_device_inject2_fops __maybe_unused = {
672 .open = simple_open,
673 .write = altr_edac_a10_device_trig2,
674 .llseek = generic_file_llseek,
675 };
676
677 static void altr_create_edacdev_dbgfs(struct edac_device_ctl_info *edac_dci,
678 const struct edac_device_prv_data *priv)
679 {
680 struct altr_edac_device_dev *drvdata = edac_dci->pvt_info;
681
682 if (!IS_ENABLED(CONFIG_EDAC_DEBUG))
683 return;
684
685 drvdata->debugfs_dir = edac_debugfs_create_dir(drvdata->edac_dev_name);
686 if (!drvdata->debugfs_dir)
687 return;
688
689 if (!edac_debugfs_create_file("altr_trigger", S_IWUSR,
690 drvdata->debugfs_dir, edac_dci,
691 priv->inject_fops))
692 debugfs_remove_recursive(drvdata->debugfs_dir);
693 }
694
695 static const struct of_device_id altr_edac_device_of_match[] = {
696 #ifdef CONFIG_EDAC_ALTERA_L2C
697 { .compatible = "altr,socfpga-l2-ecc", .data = &l2ecc_data },
698 #endif
699 #ifdef CONFIG_EDAC_ALTERA_OCRAM
700 { .compatible = "altr,socfpga-ocram-ecc", .data = &ocramecc_data },
701 #endif
702 {},
703 };
704 MODULE_DEVICE_TABLE(of, altr_edac_device_of_match);
705
706 /*
707 * altr_edac_device_probe()
708 * This is a generic EDAC device driver that will support
709 * various Altera memory devices such as the L2 cache ECC and
710 * OCRAM ECC as well as the memories for other peripherals.
711 * Module specific initialization is done by passing the
712 * function index in the device tree.
713 */
714 static int altr_edac_device_probe(struct platform_device *pdev)
715 {
716 struct edac_device_ctl_info *dci;
717 struct altr_edac_device_dev *drvdata;
718 struct resource *r;
719 int res = 0;
720 struct device_node *np = pdev->dev.of_node;
721 char *ecc_name = (char *)np->name;
722 static int dev_instance;
723
724 if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL)) {
725 edac_printk(KERN_ERR, EDAC_DEVICE,
726 "Unable to open devm\n");
727 return -ENOMEM;
728 }
729
730 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
731 if (!r) {
732 edac_printk(KERN_ERR, EDAC_DEVICE,
733 "Unable to get mem resource\n");
734 res = -ENODEV;
735 goto fail;
736 }
737
738 if (!devm_request_mem_region(&pdev->dev, r->start, resource_size(r),
739 dev_name(&pdev->dev))) {
740 edac_printk(KERN_ERR, EDAC_DEVICE,
741 "%s:Error requesting mem region\n", ecc_name);
742 res = -EBUSY;
743 goto fail;
744 }
745
746 dci = edac_device_alloc_ctl_info(sizeof(*drvdata), ecc_name,
747 1, ecc_name, 1, 0, NULL, 0,
748 dev_instance++);
749
750 if (!dci) {
751 edac_printk(KERN_ERR, EDAC_DEVICE,
752 "%s: Unable to allocate EDAC device\n", ecc_name);
753 res = -ENOMEM;
754 goto fail;
755 }
756
757 drvdata = dci->pvt_info;
758 dci->dev = &pdev->dev;
759 platform_set_drvdata(pdev, dci);
760 drvdata->edac_dev_name = ecc_name;
761
762 drvdata->base = devm_ioremap(&pdev->dev, r->start, resource_size(r));
763 if (!drvdata->base) {
764 res = -ENOMEM;
765 goto fail1;
766 }
767
768 /* Get driver specific data for this EDAC device */
769 drvdata->data = of_match_node(altr_edac_device_of_match, np)->data;
770
771 /* Check specific dependencies for the module */
772 if (drvdata->data->setup) {
773 res = drvdata->data->setup(drvdata);
774 if (res)
775 goto fail1;
776 }
777
778 drvdata->sb_irq = platform_get_irq(pdev, 0);
779 res = devm_request_irq(&pdev->dev, drvdata->sb_irq,
780 altr_edac_device_handler,
781 0, dev_name(&pdev->dev), dci);
782 if (res)
783 goto fail1;
784
785 drvdata->db_irq = platform_get_irq(pdev, 1);
786 res = devm_request_irq(&pdev->dev, drvdata->db_irq,
787 altr_edac_device_handler,
788 0, dev_name(&pdev->dev), dci);
789 if (res)
790 goto fail1;
791
792 dci->mod_name = "Altera ECC Manager";
793 dci->dev_name = drvdata->edac_dev_name;
794
795 res = edac_device_add_device(dci);
796 if (res)
797 goto fail1;
798
799 altr_create_edacdev_dbgfs(dci, drvdata->data);
800
801 devres_close_group(&pdev->dev, NULL);
802
803 return 0;
804
805 fail1:
806 edac_device_free_ctl_info(dci);
807 fail:
808 devres_release_group(&pdev->dev, NULL);
809 edac_printk(KERN_ERR, EDAC_DEVICE,
810 "%s:Error setting up EDAC device: %d\n", ecc_name, res);
811
812 return res;
813 }
814
815 static int altr_edac_device_remove(struct platform_device *pdev)
816 {
817 struct edac_device_ctl_info *dci = platform_get_drvdata(pdev);
818 struct altr_edac_device_dev *drvdata = dci->pvt_info;
819
820 debugfs_remove_recursive(drvdata->debugfs_dir);
821 edac_device_del_device(&pdev->dev);
822 edac_device_free_ctl_info(dci);
823
824 return 0;
825 }
826
827 static struct platform_driver altr_edac_device_driver = {
828 .probe = altr_edac_device_probe,
829 .remove = altr_edac_device_remove,
830 .driver = {
831 .name = "altr_edac_device",
832 .of_match_table = altr_edac_device_of_match,
833 },
834 };
835 module_platform_driver(altr_edac_device_driver);
836
837 /******************* Arria10 Device ECC Shared Functions *****************/
838
839 /*
840 * Test for memory's ECC dependencies upon entry because platform specific
841 * startup should have initialized the memory and enabled the ECC.
842 * Can't turn on ECC here because accessing un-initialized memory will
843 * cause CE/UE errors possibly causing an ABORT.
844 */
845 static int __maybe_unused
846 altr_check_ecc_deps(struct altr_edac_device_dev *device)
847 {
848 void __iomem *base = device->base;
849 const struct edac_device_prv_data *prv = device->data;
850
851 if (readl(base + prv->ecc_en_ofst) & prv->ecc_enable_mask)
852 return 0;
853
854 edac_printk(KERN_ERR, EDAC_DEVICE,
855 "%s: No ECC present or ECC disabled.\n",
856 device->edac_dev_name);
857 return -ENODEV;
858 }
859
860 static irqreturn_t __maybe_unused altr_edac_a10_ecc_irq(int irq, void *dev_id)
861 {
862 struct altr_edac_device_dev *dci = dev_id;
863 void __iomem *base = dci->base;
864
865 if (irq == dci->sb_irq) {
866 writel(ALTR_A10_ECC_SERRPENA,
867 base + ALTR_A10_ECC_INTSTAT_OFST);
868 edac_device_handle_ce(dci->edac_dev, 0, 0, dci->edac_dev_name);
869
870 return IRQ_HANDLED;
871 } else if (irq == dci->db_irq) {
872 writel(ALTR_A10_ECC_DERRPENA,
873 base + ALTR_A10_ECC_INTSTAT_OFST);
874 edac_device_handle_ue(dci->edac_dev, 0, 0, dci->edac_dev_name);
875 if (dci->data->panic)
876 panic("\nEDAC:ECC_DEVICE[Uncorrectable errors]\n");
877
878 return IRQ_HANDLED;
879 }
880
881 WARN_ON(1);
882
883 return IRQ_NONE;
884 }
885
886 /******************* Arria10 Memory Buffer Functions *********************/
887
888 static inline int a10_get_irq_mask(struct device_node *np)
889 {
890 int irq;
891 const u32 *handle = of_get_property(np, "interrupts", NULL);
892
893 if (!handle)
894 return -ENODEV;
895 irq = be32_to_cpup(handle);
896 return irq;
897 }
898
899 static inline void ecc_set_bits(u32 bit_mask, void __iomem *ioaddr)
900 {
901 u32 value = readl(ioaddr);
902
903 value |= bit_mask;
904 writel(value, ioaddr);
905 }
906
907 static inline void ecc_clear_bits(u32 bit_mask, void __iomem *ioaddr)
908 {
909 u32 value = readl(ioaddr);
910
911 value &= ~bit_mask;
912 writel(value, ioaddr);
913 }
914
915 static inline int ecc_test_bits(u32 bit_mask, void __iomem *ioaddr)
916 {
917 u32 value = readl(ioaddr);
918
919 return (value & bit_mask) ? 1 : 0;
920 }
921
922 /*
923 * This function uses the memory initialization block in the Arria10 ECC
924 * controller to initialize/clear the entire memory data and ECC data.
925 */
926 static int __maybe_unused altr_init_memory_port(void __iomem *ioaddr, int port)
927 {
928 int limit = ALTR_A10_ECC_INIT_WATCHDOG_10US;
929 u32 init_mask, stat_mask, clear_mask;
930 int ret = 0;
931
932 if (port) {
933 init_mask = ALTR_A10_ECC_INITB;
934 stat_mask = ALTR_A10_ECC_INITCOMPLETEB;
935 clear_mask = ALTR_A10_ECC_ERRPENB_MASK;
936 } else {
937 init_mask = ALTR_A10_ECC_INITA;
938 stat_mask = ALTR_A10_ECC_INITCOMPLETEA;
939 clear_mask = ALTR_A10_ECC_ERRPENA_MASK;
940 }
941
942 ecc_set_bits(init_mask, (ioaddr + ALTR_A10_ECC_CTRL_OFST));
943 while (limit--) {
944 if (ecc_test_bits(stat_mask,
945 (ioaddr + ALTR_A10_ECC_INITSTAT_OFST)))
946 break;
947 udelay(1);
948 }
949 if (limit < 0)
950 ret = -EBUSY;
951
952 /* Clear any pending ECC interrupts */
953 writel(clear_mask, (ioaddr + ALTR_A10_ECC_INTSTAT_OFST));
954
955 return ret;
956 }
957
958 static __init int __maybe_unused
959 altr_init_a10_ecc_block(struct device_node *np, u32 irq_mask,
960 u32 ecc_ctrl_en_mask, bool dual_port)
961 {
962 int ret = 0;
963 void __iomem *ecc_block_base;
964 struct regmap *ecc_mgr_map;
965 char *ecc_name;
966 struct device_node *np_eccmgr;
967
968 ecc_name = (char *)np->name;
969
970 /* Get the ECC Manager - parent of the device EDACs */
971 np_eccmgr = of_get_parent(np);
972
973 ecc_mgr_map =
974 altr_sysmgr_regmap_lookup_by_phandle(np_eccmgr,
975 "altr,sysmgr-syscon");
976
977 of_node_put(np_eccmgr);
978 if (IS_ERR(ecc_mgr_map)) {
979 edac_printk(KERN_ERR, EDAC_DEVICE,
980 "Unable to get syscon altr,sysmgr-syscon\n");
981 return -ENODEV;
982 }
983
984 /* Map the ECC Block */
985 ecc_block_base = of_iomap(np, 0);
986 if (!ecc_block_base) {
987 edac_printk(KERN_ERR, EDAC_DEVICE,
988 "Unable to map %s ECC block\n", ecc_name);
989 return -ENODEV;
990 }
991
992 /* Disable ECC */
993 regmap_write(ecc_mgr_map, A10_SYSMGR_ECC_INTMASK_SET_OFST, irq_mask);
994 writel(ALTR_A10_ECC_SERRINTEN,
995 (ecc_block_base + ALTR_A10_ECC_ERRINTENR_OFST));
996 ecc_clear_bits(ecc_ctrl_en_mask,
997 (ecc_block_base + ALTR_A10_ECC_CTRL_OFST));
998 /* Ensure all writes complete */
999 wmb();
1000 /* Use HW initialization block to initialize memory for ECC */
1001 ret = altr_init_memory_port(ecc_block_base, 0);
1002 if (ret) {
1003 edac_printk(KERN_ERR, EDAC_DEVICE,
1004 "ECC: cannot init %s PORTA memory\n", ecc_name);
1005 goto out;
1006 }
1007
1008 if (dual_port) {
1009 ret = altr_init_memory_port(ecc_block_base, 1);
1010 if (ret) {
1011 edac_printk(KERN_ERR, EDAC_DEVICE,
1012 "ECC: cannot init %s PORTB memory\n",
1013 ecc_name);
1014 goto out;
1015 }
1016 }
1017
1018 /* Interrupt mode set to every SBERR */
1019 regmap_write(ecc_mgr_map, ALTR_A10_ECC_INTMODE_OFST,
1020 ALTR_A10_ECC_INTMODE);
1021 /* Enable ECC */
1022 ecc_set_bits(ecc_ctrl_en_mask, (ecc_block_base +
1023 ALTR_A10_ECC_CTRL_OFST));
1024 writel(ALTR_A10_ECC_SERRINTEN,
1025 (ecc_block_base + ALTR_A10_ECC_ERRINTENS_OFST));
1026 regmap_write(ecc_mgr_map, A10_SYSMGR_ECC_INTMASK_CLR_OFST, irq_mask);
1027 /* Ensure all writes complete */
1028 wmb();
1029 out:
1030 iounmap(ecc_block_base);
1031 return ret;
1032 }
1033
1034 static int validate_parent_available(struct device_node *np);
1035 static const struct of_device_id altr_edac_a10_device_of_match[];
1036 static int __init __maybe_unused altr_init_a10_ecc_device_type(char *compat)
1037 {
1038 int irq;
1039 struct device_node *child, *np;
1040
1041 np = of_find_compatible_node(NULL, NULL,
1042 "altr,socfpga-a10-ecc-manager");
1043 if (!np) {
1044 edac_printk(KERN_ERR, EDAC_DEVICE, "ECC Manager not found\n");
1045 return -ENODEV;
1046 }
1047
1048 for_each_child_of_node(np, child) {
1049 const struct of_device_id *pdev_id;
1050 const struct edac_device_prv_data *prv;
1051
1052 if (!of_device_is_available(child))
1053 continue;
1054 if (!of_device_is_compatible(child, compat))
1055 continue;
1056
1057 if (validate_parent_available(child))
1058 continue;
1059
1060 irq = a10_get_irq_mask(child);
1061 if (irq < 0)
1062 continue;
1063
1064 /* Get matching node and check for valid result */
1065 pdev_id = of_match_node(altr_edac_a10_device_of_match, child);
1066 if (IS_ERR_OR_NULL(pdev_id))
1067 continue;
1068
1069 /* Validate private data pointer before dereferencing */
1070 prv = pdev_id->data;
1071 if (!prv)
1072 continue;
1073
1074 altr_init_a10_ecc_block(child, BIT(irq),
1075 prv->ecc_enable_mask, 0);
1076 }
1077
1078 of_node_put(np);
1079 return 0;
1080 }
1081
1082 /*********************** SDRAM EDAC Device Functions *********************/
1083
1084 #ifdef CONFIG_EDAC_ALTERA_SDRAM
1085
1086 static const struct edac_device_prv_data s10_sdramecc_data = {
1087 .setup = altr_check_ecc_deps,
1088 .ce_clear_mask = ALTR_S10_ECC_SERRPENA,
1089 .ue_clear_mask = ALTR_S10_ECC_DERRPENA,
1090 .ecc_enable_mask = ALTR_S10_ECC_EN,
1091 .ecc_en_ofst = ALTR_S10_ECC_CTRL_SDRAM_OFST,
1092 .ce_set_mask = ALTR_S10_ECC_TSERRA,
1093 .ue_set_mask = ALTR_S10_ECC_TDERRA,
1094 .set_err_ofst = ALTR_S10_ECC_INTTEST_OFST,
1095 .ecc_irq_handler = altr_edac_a10_ecc_irq,
1096 .inject_fops = &altr_edac_a10_device_inject_fops,
1097 };
1098 #endif /* CONFIG_EDAC_ALTERA_SDRAM */
1099
1100 /*********************** OCRAM EDAC Device Functions *********************/
1101
1102 #ifdef CONFIG_EDAC_ALTERA_OCRAM
1103
1104 static void *ocram_alloc_mem(size_t size, void **other)
1105 {
1106 struct device_node *np;
1107 struct gen_pool *gp;
1108 void *sram_addr;
1109
1110 np = of_find_compatible_node(NULL, NULL, "altr,socfpga-ocram-ecc");
1111 if (!np)
1112 return NULL;
1113
1114 gp = of_gen_pool_get(np, "iram", 0);
1115 of_node_put(np);
1116 if (!gp)
1117 return NULL;
1118
1119 sram_addr = (void *)gen_pool_alloc(gp, size);
1120 if (!sram_addr)
1121 return NULL;
1122
1123 memset(sram_addr, 0, size);
1124 /* Ensure data is written out */
1125 wmb();
1126
1127 /* Remember this handle for freeing later */
1128 *other = gp;
1129
1130 return sram_addr;
1131 }
1132
1133 static void ocram_free_mem(void *p, size_t size, void *other)
1134 {
1135 gen_pool_free((struct gen_pool *)other, (unsigned long)p, size);
1136 }
1137
1138 static const struct edac_device_prv_data ocramecc_data = {
1139 .setup = altr_check_ecc_deps,
1140 .ce_clear_mask = (ALTR_OCR_ECC_EN | ALTR_OCR_ECC_SERR),
1141 .ue_clear_mask = (ALTR_OCR_ECC_EN | ALTR_OCR_ECC_DERR),
1142 .alloc_mem = ocram_alloc_mem,
1143 .free_mem = ocram_free_mem,
1144 .ecc_enable_mask = ALTR_OCR_ECC_EN,
1145 .ecc_en_ofst = ALTR_OCR_ECC_REG_OFFSET,
1146 .ce_set_mask = (ALTR_OCR_ECC_EN | ALTR_OCR_ECC_INJS),
1147 .ue_set_mask = (ALTR_OCR_ECC_EN | ALTR_OCR_ECC_INJD),
1148 .set_err_ofst = ALTR_OCR_ECC_REG_OFFSET,
1149 .trig_alloc_sz = ALTR_TRIG_OCRAM_BYTE_SIZE,
1150 .inject_fops = &altr_edac_device_inject_fops,
1151 };
1152
1153 static int __maybe_unused
1154 altr_check_ocram_deps_init(struct altr_edac_device_dev *device)
1155 {
1156 void __iomem *base = device->base;
1157 int ret;
1158
1159 ret = altr_check_ecc_deps(device);
1160 if (ret)
1161 return ret;
1162
1163 /* Verify OCRAM has been initialized */
1164 if (!ecc_test_bits(ALTR_A10_ECC_INITCOMPLETEA,
1165 (base + ALTR_A10_ECC_INITSTAT_OFST)))
1166 return -ENODEV;
1167
1168 /* Enable IRQ on Single Bit Error */
1169 writel(ALTR_A10_ECC_SERRINTEN, (base + ALTR_A10_ECC_ERRINTENS_OFST));
1170 /* Ensure all writes complete */
1171 wmb();
1172
1173 return 0;
1174 }
1175
1176 static const struct edac_device_prv_data a10_ocramecc_data = {
1177 .setup = altr_check_ocram_deps_init,
1178 .ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1179 .ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1180 .irq_status_mask = A10_SYSMGR_ECC_INTSTAT_OCRAM,
1181 .ecc_enable_mask = ALTR_A10_OCRAM_ECC_EN_CTL,
1182 .ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1183 .ce_set_mask = ALTR_A10_ECC_TSERRA,
1184 .ue_set_mask = ALTR_A10_ECC_TDERRA,
1185 .set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1186 .ecc_irq_handler = altr_edac_a10_ecc_irq,
1187 .inject_fops = &altr_edac_a10_device_inject2_fops,
1188 /*
1189 * OCRAM panic on uncorrectable error because sleep/resume
1190 * functions and FPGA contents are stored in OCRAM. Prefer
1191 * a kernel panic over executing/loading corrupted data.
1192 */
1193 .panic = true,
1194 };
1195
1196 #endif /* CONFIG_EDAC_ALTERA_OCRAM */
1197
1198 /********************* L2 Cache EDAC Device Functions ********************/
1199
1200 #ifdef CONFIG_EDAC_ALTERA_L2C
1201
1202 static void *l2_alloc_mem(size_t size, void **other)
1203 {
1204 struct device *dev = *other;
1205 void *ptemp = devm_kzalloc(dev, size, GFP_KERNEL);
1206
1207 if (!ptemp)
1208 return NULL;
1209
1210 /* Make sure everything is written out */
1211 wmb();
1212
1213 /*
1214 * Clean all cache levels up to LoC (includes L2)
1215 * This ensures the corrupted data is written into
1216 * L2 cache for readback test (which causes ECC error).
1217 */
1218 flush_cache_all();
1219
1220 return ptemp;
1221 }
1222
1223 static void l2_free_mem(void *p, size_t size, void *other)
1224 {
1225 struct device *dev = other;
1226
1227 if (dev && p)
1228 devm_kfree(dev, p);
1229 }
1230
1231 /*
1232 * altr_l2_check_deps()
1233 * Test for L2 cache ECC dependencies upon entry because
1234 * platform specific startup should have initialized the L2
1235 * memory and enabled the ECC.
1236 * Bail if ECC is not enabled.
1237 * Note that L2 Cache Enable is forced at build time.
1238 */
1239 static int altr_l2_check_deps(struct altr_edac_device_dev *device)
1240 {
1241 void __iomem *base = device->base;
1242 const struct edac_device_prv_data *prv = device->data;
1243
1244 if ((readl(base) & prv->ecc_enable_mask) ==
1245 prv->ecc_enable_mask)
1246 return 0;
1247
1248 edac_printk(KERN_ERR, EDAC_DEVICE,
1249 "L2: No ECC present, or ECC disabled\n");
1250 return -ENODEV;
1251 }
1252
1253 static irqreturn_t altr_edac_a10_l2_irq(int irq, void *dev_id)
1254 {
1255 struct altr_edac_device_dev *dci = dev_id;
1256
1257 if (irq == dci->sb_irq) {
1258 regmap_write(dci->edac->ecc_mgr_map,
1259 A10_SYSGMR_MPU_CLEAR_L2_ECC_OFST,
1260 A10_SYSGMR_MPU_CLEAR_L2_ECC_SB);
1261 edac_device_handle_ce(dci->edac_dev, 0, 0, dci->edac_dev_name);
1262
1263 return IRQ_HANDLED;
1264 } else if (irq == dci->db_irq) {
1265 regmap_write(dci->edac->ecc_mgr_map,
1266 A10_SYSGMR_MPU_CLEAR_L2_ECC_OFST,
1267 A10_SYSGMR_MPU_CLEAR_L2_ECC_MB);
1268 edac_device_handle_ue(dci->edac_dev, 0, 0, dci->edac_dev_name);
1269 panic("\nEDAC:ECC_DEVICE[Uncorrectable errors]\n");
1270
1271 return IRQ_HANDLED;
1272 }
1273
1274 WARN_ON(1);
1275
1276 return IRQ_NONE;
1277 }
1278
1279 static const struct edac_device_prv_data l2ecc_data = {
1280 .setup = altr_l2_check_deps,
1281 .ce_clear_mask = 0,
1282 .ue_clear_mask = 0,
1283 .alloc_mem = l2_alloc_mem,
1284 .free_mem = l2_free_mem,
1285 .ecc_enable_mask = ALTR_L2_ECC_EN,
1286 .ce_set_mask = (ALTR_L2_ECC_EN | ALTR_L2_ECC_INJS),
1287 .ue_set_mask = (ALTR_L2_ECC_EN | ALTR_L2_ECC_INJD),
1288 .set_err_ofst = ALTR_L2_ECC_REG_OFFSET,
1289 .trig_alloc_sz = ALTR_TRIG_L2C_BYTE_SIZE,
1290 .inject_fops = &altr_edac_device_inject_fops,
1291 };
1292
1293 static const struct edac_device_prv_data a10_l2ecc_data = {
1294 .setup = altr_l2_check_deps,
1295 .ce_clear_mask = ALTR_A10_L2_ECC_SERR_CLR,
1296 .ue_clear_mask = ALTR_A10_L2_ECC_MERR_CLR,
1297 .irq_status_mask = A10_SYSMGR_ECC_INTSTAT_L2,
1298 .alloc_mem = l2_alloc_mem,
1299 .free_mem = l2_free_mem,
1300 .ecc_enable_mask = ALTR_A10_L2_ECC_EN_CTL,
1301 .ce_set_mask = ALTR_A10_L2_ECC_CE_INJ_MASK,
1302 .ue_set_mask = ALTR_A10_L2_ECC_UE_INJ_MASK,
1303 .set_err_ofst = ALTR_A10_L2_ECC_INJ_OFST,
1304 .ecc_irq_handler = altr_edac_a10_l2_irq,
1305 .trig_alloc_sz = ALTR_TRIG_L2C_BYTE_SIZE,
1306 .inject_fops = &altr_edac_device_inject_fops,
1307 };
1308
1309 #endif /* CONFIG_EDAC_ALTERA_L2C */
1310
1311 /********************* Ethernet Device Functions ********************/
1312
1313 #ifdef CONFIG_EDAC_ALTERA_ETHERNET
1314
1315 static int __init socfpga_init_ethernet_ecc(struct altr_edac_device_dev *dev)
1316 {
1317 int ret;
1318
1319 ret = altr_init_a10_ecc_device_type("altr,socfpga-eth-mac-ecc");
1320 if (ret)
1321 return ret;
1322
1323 return altr_check_ecc_deps(dev);
1324 }
1325
1326 static const struct edac_device_prv_data a10_enetecc_data = {
1327 .setup = socfpga_init_ethernet_ecc,
1328 .ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1329 .ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1330 .ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1331 .ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1332 .ce_set_mask = ALTR_A10_ECC_TSERRA,
1333 .ue_set_mask = ALTR_A10_ECC_TDERRA,
1334 .set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1335 .ecc_irq_handler = altr_edac_a10_ecc_irq,
1336 .inject_fops = &altr_edac_a10_device_inject2_fops,
1337 };
1338
1339 #endif /* CONFIG_EDAC_ALTERA_ETHERNET */
1340
1341 /********************** NAND Device Functions **********************/
1342
1343 #ifdef CONFIG_EDAC_ALTERA_NAND
1344
1345 static int __init socfpga_init_nand_ecc(struct altr_edac_device_dev *device)
1346 {
1347 int ret;
1348
1349 ret = altr_init_a10_ecc_device_type("altr,socfpga-nand-ecc");
1350 if (ret)
1351 return ret;
1352
1353 return altr_check_ecc_deps(device);
1354 }
1355
1356 static const struct edac_device_prv_data a10_nandecc_data = {
1357 .setup = socfpga_init_nand_ecc,
1358 .ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1359 .ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1360 .ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1361 .ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1362 .ce_set_mask = ALTR_A10_ECC_TSERRA,
1363 .ue_set_mask = ALTR_A10_ECC_TDERRA,
1364 .set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1365 .ecc_irq_handler = altr_edac_a10_ecc_irq,
1366 .inject_fops = &altr_edac_a10_device_inject_fops,
1367 };
1368
1369 #endif /* CONFIG_EDAC_ALTERA_NAND */
1370
1371 /********************** DMA Device Functions **********************/
1372
1373 #ifdef CONFIG_EDAC_ALTERA_DMA
1374
1375 static int __init socfpga_init_dma_ecc(struct altr_edac_device_dev *device)
1376 {
1377 int ret;
1378
1379 ret = altr_init_a10_ecc_device_type("altr,socfpga-dma-ecc");
1380 if (ret)
1381 return ret;
1382
1383 return altr_check_ecc_deps(device);
1384 }
1385
1386 static const struct edac_device_prv_data a10_dmaecc_data = {
1387 .setup = socfpga_init_dma_ecc,
1388 .ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1389 .ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1390 .ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1391 .ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1392 .ce_set_mask = ALTR_A10_ECC_TSERRA,
1393 .ue_set_mask = ALTR_A10_ECC_TDERRA,
1394 .set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1395 .ecc_irq_handler = altr_edac_a10_ecc_irq,
1396 .inject_fops = &altr_edac_a10_device_inject_fops,
1397 };
1398
1399 #endif /* CONFIG_EDAC_ALTERA_DMA */
1400
1401 /********************** USB Device Functions **********************/
1402
1403 #ifdef CONFIG_EDAC_ALTERA_USB
1404
1405 static int __init socfpga_init_usb_ecc(struct altr_edac_device_dev *device)
1406 {
1407 int ret;
1408
1409 ret = altr_init_a10_ecc_device_type("altr,socfpga-usb-ecc");
1410 if (ret)
1411 return ret;
1412
1413 return altr_check_ecc_deps(device);
1414 }
1415
1416 static const struct edac_device_prv_data a10_usbecc_data = {
1417 .setup = socfpga_init_usb_ecc,
1418 .ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1419 .ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1420 .ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1421 .ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1422 .ce_set_mask = ALTR_A10_ECC_TSERRA,
1423 .ue_set_mask = ALTR_A10_ECC_TDERRA,
1424 .set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1425 .ecc_irq_handler = altr_edac_a10_ecc_irq,
1426 .inject_fops = &altr_edac_a10_device_inject2_fops,
1427 };
1428
1429 #endif /* CONFIG_EDAC_ALTERA_USB */
1430
1431 /********************** QSPI Device Functions **********************/
1432
1433 #ifdef CONFIG_EDAC_ALTERA_QSPI
1434
1435 static int __init socfpga_init_qspi_ecc(struct altr_edac_device_dev *device)
1436 {
1437 int ret;
1438
1439 ret = altr_init_a10_ecc_device_type("altr,socfpga-qspi-ecc");
1440 if (ret)
1441 return ret;
1442
1443 return altr_check_ecc_deps(device);
1444 }
1445
1446 static const struct edac_device_prv_data a10_qspiecc_data = {
1447 .setup = socfpga_init_qspi_ecc,
1448 .ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1449 .ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1450 .ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1451 .ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1452 .ce_set_mask = ALTR_A10_ECC_TSERRA,
1453 .ue_set_mask = ALTR_A10_ECC_TDERRA,
1454 .set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1455 .ecc_irq_handler = altr_edac_a10_ecc_irq,
1456 .inject_fops = &altr_edac_a10_device_inject_fops,
1457 };
1458
1459 #endif /* CONFIG_EDAC_ALTERA_QSPI */
1460
1461 /********************* SDMMC Device Functions **********************/
1462
1463 #ifdef CONFIG_EDAC_ALTERA_SDMMC
1464
1465 static const struct edac_device_prv_data a10_sdmmceccb_data;
1466 static int altr_portb_setup(struct altr_edac_device_dev *device)
1467 {
1468 struct edac_device_ctl_info *dci;
1469 struct altr_edac_device_dev *altdev;
1470 char *ecc_name = "sdmmcb-ecc";
1471 int edac_idx, rc;
1472 struct device_node *np;
1473 const struct edac_device_prv_data *prv = &a10_sdmmceccb_data;
1474
1475 rc = altr_check_ecc_deps(device);
1476 if (rc)
1477 return rc;
1478
1479 np = of_find_compatible_node(NULL, NULL, "altr,socfpga-sdmmc-ecc");
1480 if (!np) {
1481 edac_printk(KERN_WARNING, EDAC_DEVICE, "SDMMC node not found\n");
1482 return -ENODEV;
1483 }
1484
1485 /* Create the PortB EDAC device */
1486 edac_idx = edac_device_alloc_index();
1487 dci = edac_device_alloc_ctl_info(sizeof(*altdev), ecc_name, 1,
1488 ecc_name, 1, 0, NULL, 0, edac_idx);
1489 if (!dci) {
1490 edac_printk(KERN_ERR, EDAC_DEVICE,
1491 "%s: Unable to allocate PortB EDAC device\n",
1492 ecc_name);
1493 return -ENOMEM;
1494 }
1495
1496 /* Initialize the PortB EDAC device structure from PortA structure */
1497 altdev = dci->pvt_info;
1498 *altdev = *device;
1499
1500 if (!devres_open_group(&altdev->ddev, altr_portb_setup, GFP_KERNEL))
1501 return -ENOMEM;
1502
1503 /* Update PortB specific values */
1504 altdev->edac_dev_name = ecc_name;
1505 altdev->edac_idx = edac_idx;
1506 altdev->edac_dev = dci;
1507 altdev->data = prv;
1508 dci->dev = &altdev->ddev;
1509 dci->ctl_name = "Altera ECC Manager";
1510 dci->mod_name = ecc_name;
1511 dci->dev_name = ecc_name;
1512
1513 /*
1514 * Update the PortB IRQs - A10 has 4, S10 has 2, Index accordingly
1515 *
1516 * FIXME: Instead of ifdefs with different architectures the driver
1517 * should properly use compatibles.
1518 */
1519 #ifdef CONFIG_64BIT
1520 altdev->sb_irq = irq_of_parse_and_map(np, 1);
1521 #else
1522 altdev->sb_irq = irq_of_parse_and_map(np, 2);
1523 #endif
1524 if (!altdev->sb_irq) {
1525 edac_printk(KERN_ERR, EDAC_DEVICE, "Error PortB SBIRQ alloc\n");
1526 rc = -ENODEV;
1527 goto err_release_group_1;
1528 }
1529 rc = devm_request_irq(&altdev->ddev, altdev->sb_irq,
1530 prv->ecc_irq_handler,
1531 IRQF_ONESHOT | IRQF_TRIGGER_HIGH,
1532 ecc_name, altdev);
1533 if (rc) {
1534 edac_printk(KERN_ERR, EDAC_DEVICE, "PortB SBERR IRQ error\n");
1535 goto err_release_group_1;
1536 }
1537
1538 #ifdef CONFIG_64BIT
1539 /* Use IRQ to determine SError origin instead of assigning IRQ */
1540 rc = of_property_read_u32_index(np, "interrupts", 1, &altdev->db_irq);
1541 if (rc) {
1542 edac_printk(KERN_ERR, EDAC_DEVICE,
1543 "Error PortB DBIRQ alloc\n");
1544 goto err_release_group_1;
1545 }
1546 #else
1547 altdev->db_irq = irq_of_parse_and_map(np, 3);
1548 if (!altdev->db_irq) {
1549 edac_printk(KERN_ERR, EDAC_DEVICE, "Error PortB DBIRQ alloc\n");
1550 rc = -ENODEV;
1551 goto err_release_group_1;
1552 }
1553 rc = devm_request_irq(&altdev->ddev, altdev->db_irq,
1554 prv->ecc_irq_handler,
1555 IRQF_ONESHOT | IRQF_TRIGGER_HIGH,
1556 ecc_name, altdev);
1557 if (rc) {
1558 edac_printk(KERN_ERR, EDAC_DEVICE, "PortB DBERR IRQ error\n");
1559 goto err_release_group_1;
1560 }
1561 #endif
1562
1563 rc = edac_device_add_device(dci);
1564 if (rc) {
1565 edac_printk(KERN_ERR, EDAC_DEVICE,
1566 "edac_device_add_device portB failed\n");
1567 rc = -ENOMEM;
1568 goto err_release_group_1;
1569 }
1570 altr_create_edacdev_dbgfs(dci, prv);
1571
1572 list_add(&altdev->next, &altdev->edac->a10_ecc_devices);
1573
1574 devres_remove_group(&altdev->ddev, altr_portb_setup);
1575
1576 return 0;
1577
1578 err_release_group_1:
1579 edac_device_free_ctl_info(dci);
1580 devres_release_group(&altdev->ddev, altr_portb_setup);
1581 edac_printk(KERN_ERR, EDAC_DEVICE,
1582 "%s:Error setting up EDAC device: %d\n", ecc_name, rc);
1583 return rc;
1584 }
1585
1586 static int __init socfpga_init_sdmmc_ecc(struct altr_edac_device_dev *device)
1587 {
1588 int rc = -ENODEV;
1589 struct device_node *child;
1590
1591 child = of_find_compatible_node(NULL, NULL, "altr,socfpga-sdmmc-ecc");
1592 if (!child)
1593 return -ENODEV;
1594
1595 if (!of_device_is_available(child))
1596 goto exit;
1597
1598 if (validate_parent_available(child))
1599 goto exit;
1600
1601 /* Init portB */
1602 rc = altr_init_a10_ecc_block(child, ALTR_A10_SDMMC_IRQ_MASK,
1603 a10_sdmmceccb_data.ecc_enable_mask, 1);
1604 if (rc)
1605 goto exit;
1606
1607 /* Setup portB */
1608 return altr_portb_setup(device);
1609
1610 exit:
1611 of_node_put(child);
1612 return rc;
1613 }
1614
1615 static irqreturn_t altr_edac_a10_ecc_irq_portb(int irq, void *dev_id)
1616 {
1617 struct altr_edac_device_dev *ad = dev_id;
1618 void __iomem *base = ad->base;
1619 const struct edac_device_prv_data *priv = ad->data;
1620
1621 if (irq == ad->sb_irq) {
1622 writel(priv->ce_clear_mask,
1623 base + ALTR_A10_ECC_INTSTAT_OFST);
1624 edac_device_handle_ce(ad->edac_dev, 0, 0, ad->edac_dev_name);
1625 return IRQ_HANDLED;
1626 } else if (irq == ad->db_irq) {
1627 writel(priv->ue_clear_mask,
1628 base + ALTR_A10_ECC_INTSTAT_OFST);
1629 edac_device_handle_ue(ad->edac_dev, 0, 0, ad->edac_dev_name);
1630 return IRQ_HANDLED;
1631 }
1632
1633 WARN_ONCE(1, "Unhandled IRQ%d on Port B.", irq);
1634
1635 return IRQ_NONE;
1636 }
1637
1638 static const struct edac_device_prv_data a10_sdmmcecca_data = {
1639 .setup = socfpga_init_sdmmc_ecc,
1640 .ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1641 .ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1642 .ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1643 .ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1644 .ce_set_mask = ALTR_A10_ECC_SERRPENA,
1645 .ue_set_mask = ALTR_A10_ECC_DERRPENA,
1646 .set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1647 .ecc_irq_handler = altr_edac_a10_ecc_irq,
1648 .inject_fops = &altr_edac_a10_device_inject_fops,
1649 };
1650
1651 static const struct edac_device_prv_data a10_sdmmceccb_data = {
1652 .setup = socfpga_init_sdmmc_ecc,
1653 .ce_clear_mask = ALTR_A10_ECC_SERRPENB,
1654 .ue_clear_mask = ALTR_A10_ECC_DERRPENB,
1655 .ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1656 .ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1657 .ce_set_mask = ALTR_A10_ECC_TSERRB,
1658 .ue_set_mask = ALTR_A10_ECC_TDERRB,
1659 .set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1660 .ecc_irq_handler = altr_edac_a10_ecc_irq_portb,
1661 .inject_fops = &altr_edac_a10_device_inject_fops,
1662 };
1663
1664 #endif /* CONFIG_EDAC_ALTERA_SDMMC */
1665
1666 /********************* Arria10 EDAC Device Functions *************************/
1667 static const struct of_device_id altr_edac_a10_device_of_match[] = {
1668 #ifdef CONFIG_EDAC_ALTERA_L2C
1669 { .compatible = "altr,socfpga-a10-l2-ecc", .data = &a10_l2ecc_data },
1670 #endif
1671 #ifdef CONFIG_EDAC_ALTERA_OCRAM
1672 { .compatible = "altr,socfpga-a10-ocram-ecc",
1673 .data = &a10_ocramecc_data },
1674 #endif
1675 #ifdef CONFIG_EDAC_ALTERA_ETHERNET
1676 { .compatible = "altr,socfpga-eth-mac-ecc",
1677 .data = &a10_enetecc_data },
1678 #endif
1679 #ifdef CONFIG_EDAC_ALTERA_NAND
1680 { .compatible = "altr,socfpga-nand-ecc", .data = &a10_nandecc_data },
1681 #endif
1682 #ifdef CONFIG_EDAC_ALTERA_DMA
1683 { .compatible = "altr,socfpga-dma-ecc", .data = &a10_dmaecc_data },
1684 #endif
1685 #ifdef CONFIG_EDAC_ALTERA_USB
1686 { .compatible = "altr,socfpga-usb-ecc", .data = &a10_usbecc_data },
1687 #endif
1688 #ifdef CONFIG_EDAC_ALTERA_QSPI
1689 { .compatible = "altr,socfpga-qspi-ecc", .data = &a10_qspiecc_data },
1690 #endif
1691 #ifdef CONFIG_EDAC_ALTERA_SDMMC
1692 { .compatible = "altr,socfpga-sdmmc-ecc", .data = &a10_sdmmcecca_data },
1693 #endif
1694 #ifdef CONFIG_EDAC_ALTERA_SDRAM
1695 { .compatible = "altr,sdram-edac-s10", .data = &s10_sdramecc_data },
1696 #endif
1697 {},
1698 };
1699 MODULE_DEVICE_TABLE(of, altr_edac_a10_device_of_match);
1700
1701 /*
1702 * The Arria10 EDAC Device Functions differ from the Cyclone5/Arria5
1703 * because 2 IRQs are shared among the all ECC peripherals. The ECC
1704 * manager manages the IRQs and the children.
1705 * Based on xgene_edac.c peripheral code.
1706 */
1707
1708 static ssize_t __maybe_unused
1709 altr_edac_a10_device_trig(struct file *file, const char __user *user_buf,
1710 size_t count, loff_t *ppos)
1711 {
1712 struct edac_device_ctl_info *edac_dci = file->private_data;
1713 struct altr_edac_device_dev *drvdata = edac_dci->pvt_info;
1714 const struct edac_device_prv_data *priv = drvdata->data;
1715 void __iomem *set_addr = (drvdata->base + priv->set_err_ofst);
1716 unsigned long flags;
1717 u8 trig_type;
1718
1719 if (!user_buf || get_user(trig_type, user_buf))
1720 return -EFAULT;
1721
1722 local_irq_save(flags);
1723 if (trig_type == ALTR_UE_TRIGGER_CHAR)
1724 writel(priv->ue_set_mask, set_addr);
1725 else
1726 writel(priv->ce_set_mask, set_addr);
1727
1728 /* Ensure the interrupt test bits are set */
1729 wmb();
1730 local_irq_restore(flags);
1731
1732 return count;
1733 }
1734
1735 /*
1736 * The Stratix10 EDAC Error Injection Functions differ from Arria10
1737 * slightly. A few Arria10 peripherals can use this injection function.
1738 * Inject the error into the memory and then readback to trigger the IRQ.
1739 */
1740 static ssize_t __maybe_unused
1741 altr_edac_a10_device_trig2(struct file *file, const char __user *user_buf,
1742 size_t count, loff_t *ppos)
1743 {
1744 struct edac_device_ctl_info *edac_dci = file->private_data;
1745 struct altr_edac_device_dev *drvdata = edac_dci->pvt_info;
1746 const struct edac_device_prv_data *priv = drvdata->data;
1747 void __iomem *set_addr = (drvdata->base + priv->set_err_ofst);
1748 unsigned long flags;
1749 u8 trig_type;
1750
1751 if (!user_buf || get_user(trig_type, user_buf))
1752 return -EFAULT;
1753
1754 local_irq_save(flags);
1755 if (trig_type == ALTR_UE_TRIGGER_CHAR) {
1756 writel(priv->ue_set_mask, set_addr);
1757 } else {
1758 /* Setup read/write of 4 bytes */
1759 writel(ECC_WORD_WRITE, drvdata->base + ECC_BLK_DBYTECTRL_OFST);
1760 /* Setup Address to 0 */
1761 writel(0, drvdata->base + ECC_BLK_ADDRESS_OFST);
1762 /* Setup accctrl to read & ecc & data override */
1763 writel(ECC_READ_EDOVR, drvdata->base + ECC_BLK_ACCCTRL_OFST);
1764 /* Kick it. */
1765 writel(ECC_XACT_KICK, drvdata->base + ECC_BLK_STARTACC_OFST);
1766 /* Setup write for single bit change */
1767 writel(readl(drvdata->base + ECC_BLK_RDATA0_OFST) ^ 0x1,
1768 drvdata->base + ECC_BLK_WDATA0_OFST);
1769 writel(readl(drvdata->base + ECC_BLK_RDATA1_OFST),
1770 drvdata->base + ECC_BLK_WDATA1_OFST);
1771 writel(readl(drvdata->base + ECC_BLK_RDATA2_OFST),
1772 drvdata->base + ECC_BLK_WDATA2_OFST);
1773 writel(readl(drvdata->base + ECC_BLK_RDATA3_OFST),
1774 drvdata->base + ECC_BLK_WDATA3_OFST);
1775
1776 /* Copy Read ECC to Write ECC */
1777 writel(readl(drvdata->base + ECC_BLK_RECC0_OFST),
1778 drvdata->base + ECC_BLK_WECC0_OFST);
1779 writel(readl(drvdata->base + ECC_BLK_RECC1_OFST),
1780 drvdata->base + ECC_BLK_WECC1_OFST);
1781 /* Setup accctrl to write & ecc override & data override */
1782 writel(ECC_WRITE_EDOVR, drvdata->base + ECC_BLK_ACCCTRL_OFST);
1783 /* Kick it. */
1784 writel(ECC_XACT_KICK, drvdata->base + ECC_BLK_STARTACC_OFST);
1785 /* Setup accctrl to read & ecc overwrite & data overwrite */
1786 writel(ECC_READ_EDOVR, drvdata->base + ECC_BLK_ACCCTRL_OFST);
1787 /* Kick it. */
1788 writel(ECC_XACT_KICK, drvdata->base + ECC_BLK_STARTACC_OFST);
1789 }
1790
1791 /* Ensure the interrupt test bits are set */
1792 wmb();
1793 local_irq_restore(flags);
1794
1795 return count;
1796 }
1797
1798 static void altr_edac_a10_irq_handler(struct irq_desc *desc)
1799 {
1800 int dberr, bit, sm_offset, irq_status;
1801 struct altr_arria10_edac *edac = irq_desc_get_handler_data(desc);
1802 struct irq_chip *chip = irq_desc_get_chip(desc);
1803 int irq = irq_desc_get_irq(desc);
1804 unsigned long bits;
1805
1806 dberr = (irq == edac->db_irq) ? 1 : 0;
1807 sm_offset = dberr ? A10_SYSMGR_ECC_INTSTAT_DERR_OFST :
1808 A10_SYSMGR_ECC_INTSTAT_SERR_OFST;
1809
1810 chained_irq_enter(chip, desc);
1811
1812 regmap_read(edac->ecc_mgr_map, sm_offset, &irq_status);
1813
1814 bits = irq_status;
1815 for_each_set_bit(bit, &bits, 32)
1816 generic_handle_domain_irq(edac->domain, dberr * 32 + bit);
1817
1818 chained_irq_exit(chip, desc);
1819 }
1820
1821 static int validate_parent_available(struct device_node *np)
1822 {
1823 struct device_node *parent;
1824 int ret = 0;
1825
1826 /* SDRAM must be present for Linux (implied parent) */
1827 if (of_device_is_compatible(np, "altr,sdram-edac-s10"))
1828 return 0;
1829
1830 /* Ensure parent device is enabled if parent node exists */
1831 parent = of_parse_phandle(np, "altr,ecc-parent", 0);
1832 if (parent && !of_device_is_available(parent))
1833 ret = -ENODEV;
1834
1835 of_node_put(parent);
1836 return ret;
1837 }
1838
1839 static int get_s10_sdram_edac_resource(struct device_node *np,
1840 struct resource *res)
1841 {
1842 struct device_node *parent;
1843 int ret;
1844
1845 parent = of_parse_phandle(np, "altr,sdr-syscon", 0);
1846 if (!parent)
1847 return -ENODEV;
1848
1849 ret = of_address_to_resource(parent, 0, res);
1850 of_node_put(parent);
1851
1852 return ret;
1853 }
1854
1855 static int altr_edac_a10_device_add(struct altr_arria10_edac *edac,
1856 struct device_node *np)
1857 {
1858 struct edac_device_ctl_info *dci;
1859 struct altr_edac_device_dev *altdev;
1860 char *ecc_name = (char *)np->name;
1861 struct resource res;
1862 int edac_idx;
1863 int rc = 0;
1864 const struct edac_device_prv_data *prv;
1865 /* Get matching node and check for valid result */
1866 const struct of_device_id *pdev_id =
1867 of_match_node(altr_edac_a10_device_of_match, np);
1868 if (IS_ERR_OR_NULL(pdev_id))
1869 return -ENODEV;
1870
1871 /* Get driver specific data for this EDAC device */
1872 prv = pdev_id->data;
1873 if (IS_ERR_OR_NULL(prv))
1874 return -ENODEV;
1875
1876 if (validate_parent_available(np))
1877 return -ENODEV;
1878
1879 if (!devres_open_group(edac->dev, altr_edac_a10_device_add, GFP_KERNEL))
1880 return -ENOMEM;
1881
1882 if (of_device_is_compatible(np, "altr,sdram-edac-s10"))
1883 rc = get_s10_sdram_edac_resource(np, &res);
1884 else
1885 rc = of_address_to_resource(np, 0, &res);
1886
1887 if (rc < 0) {
1888 edac_printk(KERN_ERR, EDAC_DEVICE,
1889 "%s: no resource address\n", ecc_name);
1890 goto err_release_group;
1891 }
1892
1893 edac_idx = edac_device_alloc_index();
1894 dci = edac_device_alloc_ctl_info(sizeof(*altdev), ecc_name,
1895 1, ecc_name, 1, 0, NULL, 0,
1896 edac_idx);
1897
1898 if (!dci) {
1899 edac_printk(KERN_ERR, EDAC_DEVICE,
1900 "%s: Unable to allocate EDAC device\n", ecc_name);
1901 rc = -ENOMEM;
1902 goto err_release_group;
1903 }
1904
1905 altdev = dci->pvt_info;
1906 dci->dev = edac->dev;
1907 altdev->edac_dev_name = ecc_name;
1908 altdev->edac_idx = edac_idx;
1909 altdev->edac = edac;
1910 altdev->edac_dev = dci;
1911 altdev->data = prv;
1912 altdev->ddev = *edac->dev;
1913 dci->dev = &altdev->ddev;
1914 dci->ctl_name = "Altera ECC Manager";
1915 dci->mod_name = ecc_name;
1916 dci->dev_name = ecc_name;
1917
1918 altdev->base = devm_ioremap_resource(edac->dev, &res);
1919 if (IS_ERR(altdev->base)) {
1920 rc = PTR_ERR(altdev->base);
1921 goto err_release_group1;
1922 }
1923
1924 /* Check specific dependencies for the module */
1925 if (altdev->data->setup) {
1926 rc = altdev->data->setup(altdev);
1927 if (rc)
1928 goto err_release_group1;
1929 }
1930
1931 altdev->sb_irq = irq_of_parse_and_map(np, 0);
1932 if (!altdev->sb_irq) {
1933 edac_printk(KERN_ERR, EDAC_DEVICE, "Error allocating SBIRQ\n");
1934 rc = -ENODEV;
1935 goto err_release_group1;
1936 }
1937 rc = devm_request_irq(edac->dev, altdev->sb_irq, prv->ecc_irq_handler,
1938 IRQF_ONESHOT | IRQF_TRIGGER_HIGH,
1939 ecc_name, altdev);
1940 if (rc) {
1941 edac_printk(KERN_ERR, EDAC_DEVICE, "No SBERR IRQ resource\n");
1942 goto err_release_group1;
1943 }
1944
1945 #ifdef CONFIG_64BIT
1946 /* Use IRQ to determine SError origin instead of assigning IRQ */
1947 rc = of_property_read_u32_index(np, "interrupts", 0, &altdev->db_irq);
1948 if (rc) {
1949 edac_printk(KERN_ERR, EDAC_DEVICE,
1950 "Unable to parse DB IRQ index\n");
1951 goto err_release_group1;
1952 }
1953 #else
1954 altdev->db_irq = irq_of_parse_and_map(np, 1);
1955 if (!altdev->db_irq) {
1956 edac_printk(KERN_ERR, EDAC_DEVICE, "Error allocating DBIRQ\n");
1957 rc = -ENODEV;
1958 goto err_release_group1;
1959 }
1960 rc = devm_request_irq(edac->dev, altdev->db_irq, prv->ecc_irq_handler,
1961 IRQF_ONESHOT | IRQF_TRIGGER_HIGH,
1962 ecc_name, altdev);
1963 if (rc) {
1964 edac_printk(KERN_ERR, EDAC_DEVICE, "No DBERR IRQ resource\n");
1965 goto err_release_group1;
1966 }
1967 #endif
1968
1969 rc = edac_device_add_device(dci);
1970 if (rc) {
1971 dev_err(edac->dev, "edac_device_add_device failed\n");
1972 rc = -ENOMEM;
1973 goto err_release_group1;
1974 }
1975
1976 altr_create_edacdev_dbgfs(dci, prv);
1977
1978 list_add(&altdev->next, &edac->a10_ecc_devices);
1979
1980 devres_remove_group(edac->dev, altr_edac_a10_device_add);
1981
1982 return 0;
1983
1984 err_release_group1:
1985 edac_device_free_ctl_info(dci);
1986 err_release_group:
1987 devres_release_group(edac->dev, NULL);
1988 edac_printk(KERN_ERR, EDAC_DEVICE,
1989 "%s:Error setting up EDAC device: %d\n", ecc_name, rc);
1990
1991 return rc;
1992 }
1993
1994 static void a10_eccmgr_irq_mask(struct irq_data *d)
1995 {
1996 struct altr_arria10_edac *edac = irq_data_get_irq_chip_data(d);
1997
1998 regmap_write(edac->ecc_mgr_map, A10_SYSMGR_ECC_INTMASK_SET_OFST,
1999 BIT(d->hwirq));
2000 }
2001
2002 static void a10_eccmgr_irq_unmask(struct irq_data *d)
2003 {
2004 struct altr_arria10_edac *edac = irq_data_get_irq_chip_data(d);
2005
2006 regmap_write(edac->ecc_mgr_map, A10_SYSMGR_ECC_INTMASK_CLR_OFST,
2007 BIT(d->hwirq));
2008 }
2009
2010 static int a10_eccmgr_irqdomain_map(struct irq_domain *d, unsigned int irq,
2011 irq_hw_number_t hwirq)
2012 {
2013 struct altr_arria10_edac *edac = d->host_data;
2014
2015 irq_set_chip_and_handler(irq, &edac->irq_chip, handle_simple_irq);
2016 irq_set_chip_data(irq, edac);
2017 irq_set_noprobe(irq);
2018
2019 return 0;
2020 }
2021
2022 static const struct irq_domain_ops a10_eccmgr_ic_ops = {
2023 .map = a10_eccmgr_irqdomain_map,
2024 .xlate = irq_domain_xlate_twocell,
2025 };
2026
2027 /************** Stratix 10 EDAC Double Bit Error Handler ************/
2028 #define to_a10edac(p, m) container_of(p, struct altr_arria10_edac, m)
2029
2030 #ifdef CONFIG_64BIT
2031 /* panic routine issues reboot on non-zero panic_timeout */
2032 extern int panic_timeout;
2033
2034 /*
2035 * The double bit error is handled through SError which is fatal. This is
2036 * called as a panic notifier to printout ECC error info as part of the panic.
2037 */
2038 static int s10_edac_dberr_handler(struct notifier_block *this,
2039 unsigned long event, void *ptr)
2040 {
2041 struct altr_arria10_edac *edac = to_a10edac(this, panic_notifier);
2042 int err_addr, dberror;
2043
2044 regmap_read(edac->ecc_mgr_map, S10_SYSMGR_ECC_INTSTAT_DERR_OFST,
2045 &dberror);
2046 regmap_write(edac->ecc_mgr_map, S10_SYSMGR_UE_VAL_OFST, dberror);
2047 if (dberror & S10_DBE_IRQ_MASK) {
2048 struct list_head *position;
2049 struct altr_edac_device_dev *ed;
2050 struct arm_smccc_res result;
2051
2052 /* Find the matching DBE in the list of devices */
2053 list_for_each(position, &edac->a10_ecc_devices) {
2054 ed = list_entry(position, struct altr_edac_device_dev,
2055 next);
2056 if (!(BIT(ed->db_irq) & dberror))
2057 continue;
2058
2059 writel(ALTR_A10_ECC_DERRPENA,
2060 ed->base + ALTR_A10_ECC_INTSTAT_OFST);
2061 err_addr = readl(ed->base + ALTR_S10_DERR_ADDRA_OFST);
2062 regmap_write(edac->ecc_mgr_map,
2063 S10_SYSMGR_UE_ADDR_OFST, err_addr);
2064 edac_printk(KERN_ERR, EDAC_DEVICE,
2065 "EDAC: [Fatal DBE on %s @ 0x%08X]\n",
2066 ed->edac_dev_name, err_addr);
2067 break;
2068 }
2069 /* Notify the System through SMC. Reboot delay = 1 second */
2070 panic_timeout = 1;
2071 arm_smccc_smc(INTEL_SIP_SMC_ECC_DBE, dberror, 0, 0, 0, 0,
2072 0, 0, &result);
2073 }
2074
2075 return NOTIFY_DONE;
2076 }
2077 #endif
2078
2079 /****************** Arria 10 EDAC Probe Function *********************/
2080 static int altr_edac_a10_probe(struct platform_device *pdev)
2081 {
2082 struct altr_arria10_edac *edac;
2083 struct device_node *child;
2084
2085 edac = devm_kzalloc(&pdev->dev, sizeof(*edac), GFP_KERNEL);
2086 if (!edac)
2087 return -ENOMEM;
2088
2089 edac->dev = &pdev->dev;
2090 platform_set_drvdata(pdev, edac);
2091 INIT_LIST_HEAD(&edac->a10_ecc_devices);
2092
2093 edac->ecc_mgr_map =
2094 altr_sysmgr_regmap_lookup_by_phandle(pdev->dev.of_node,
2095 "altr,sysmgr-syscon");
2096
2097 if (IS_ERR(edac->ecc_mgr_map)) {
2098 edac_printk(KERN_ERR, EDAC_DEVICE,
2099 "Unable to get syscon altr,sysmgr-syscon\n");
2100 return PTR_ERR(edac->ecc_mgr_map);
2101 }
2102
2103 edac->irq_chip.name = pdev->dev.of_node->name;
2104 edac->irq_chip.irq_mask = a10_eccmgr_irq_mask;
2105 edac->irq_chip.irq_unmask = a10_eccmgr_irq_unmask;
2106 edac->domain = irq_domain_add_linear(pdev->dev.of_node, 64,
2107 &a10_eccmgr_ic_ops, edac);
2108 if (!edac->domain) {
2109 dev_err(&pdev->dev, "Error adding IRQ domain\n");
2110 return -ENOMEM;
2111 }
2112
2113 edac->sb_irq = platform_get_irq(pdev, 0);
2114 if (edac->sb_irq < 0) {
2115 dev_err(&pdev->dev, "No SBERR IRQ resource\n");
2116 return edac->sb_irq;
2117 }
2118
2119 irq_set_chained_handler_and_data(edac->sb_irq,
2120 altr_edac_a10_irq_handler,
2121 edac);
2122
2123 #ifdef CONFIG_64BIT
2124 {
2125 int dberror, err_addr;
2126
2127 edac->panic_notifier.notifier_call = s10_edac_dberr_handler;
2128 atomic_notifier_chain_register(&panic_notifier_list,
2129 &edac->panic_notifier);
2130
2131 /* Printout a message if uncorrectable error previously. */
2132 regmap_read(edac->ecc_mgr_map, S10_SYSMGR_UE_VAL_OFST,
2133 &dberror);
2134 if (dberror) {
2135 regmap_read(edac->ecc_mgr_map, S10_SYSMGR_UE_ADDR_OFST,
2136 &err_addr);
2137 edac_printk(KERN_ERR, EDAC_DEVICE,
2138 "Previous Boot UE detected[0x%X] @ 0x%X\n",
2139 dberror, err_addr);
2140 /* Reset the sticky registers */
2141 regmap_write(edac->ecc_mgr_map,
2142 S10_SYSMGR_UE_VAL_OFST, 0);
2143 regmap_write(edac->ecc_mgr_map,
2144 S10_SYSMGR_UE_ADDR_OFST, 0);
2145 }
2146 }
2147 #else
2148 edac->db_irq = platform_get_irq(pdev, 1);
2149 if (edac->db_irq < 0) {
2150 dev_err(&pdev->dev, "No DBERR IRQ resource\n");
2151 return edac->db_irq;
2152 }
2153 irq_set_chained_handler_and_data(edac->db_irq,
2154 altr_edac_a10_irq_handler, edac);
2155 #endif
2156
2157 for_each_child_of_node(pdev->dev.of_node, child) {
2158 if (!of_device_is_available(child))
2159 continue;
2160
2161 if (of_match_node(altr_edac_a10_device_of_match, child))
2162 altr_edac_a10_device_add(edac, child);
2163
2164 #ifdef CONFIG_EDAC_ALTERA_SDRAM
2165 else if (of_device_is_compatible(child, "altr,sdram-edac-a10"))
2166 of_platform_populate(pdev->dev.of_node,
2167 altr_sdram_ctrl_of_match,
2168 NULL, &pdev->dev);
2169 #endif
2170 }
2171
2172 return 0;
2173 }
2174
2175 static const struct of_device_id altr_edac_a10_of_match[] = {
2176 { .compatible = "altr,socfpga-a10-ecc-manager" },
2177 { .compatible = "altr,socfpga-s10-ecc-manager" },
2178 {},
2179 };
2180 MODULE_DEVICE_TABLE(of, altr_edac_a10_of_match);
2181
2182 static struct platform_driver altr_edac_a10_driver = {
2183 .probe = altr_edac_a10_probe,
2184 .driver = {
2185 .name = "socfpga_a10_ecc_manager",
2186 .of_match_table = altr_edac_a10_of_match,
2187 },
2188 };
2189 module_platform_driver(altr_edac_a10_driver);
2190
2191 MODULE_LICENSE("GPL v2");
2192 MODULE_AUTHOR("Thor Thayer");
2193 MODULE_DESCRIPTION("EDAC Driver for Altera Memories");