]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/edac/altera_edac.c
x86/msr: Add definitions for new speculation control MSRs
[mirror_ubuntu-artful-kernel.git] / drivers / edac / altera_edac.c
1 /*
2 * Copyright Altera Corporation (C) 2014-2016. All rights reserved.
3 * Copyright 2011-2012 Calxeda, Inc.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * You should have received a copy of the GNU General Public License along with
15 * this program. If not, see <http://www.gnu.org/licenses/>.
16 *
17 * Adapted from the highbank_mc_edac driver.
18 */
19
20 #include <asm/cacheflush.h>
21 #include <linux/ctype.h>
22 #include <linux/delay.h>
23 #include <linux/edac.h>
24 #include <linux/genalloc.h>
25 #include <linux/interrupt.h>
26 #include <linux/irqchip/chained_irq.h>
27 #include <linux/kernel.h>
28 #include <linux/mfd/syscon.h>
29 #include <linux/of_address.h>
30 #include <linux/of_irq.h>
31 #include <linux/of_platform.h>
32 #include <linux/platform_device.h>
33 #include <linux/regmap.h>
34 #include <linux/types.h>
35 #include <linux/uaccess.h>
36
37 #include "altera_edac.h"
38 #include "edac_module.h"
39
40 #define EDAC_MOD_STR "altera_edac"
41 #define EDAC_VERSION "1"
42 #define EDAC_DEVICE "Altera"
43
44 static const struct altr_sdram_prv_data c5_data = {
45 .ecc_ctrl_offset = CV_CTLCFG_OFST,
46 .ecc_ctl_en_mask = CV_CTLCFG_ECC_AUTO_EN,
47 .ecc_stat_offset = CV_DRAMSTS_OFST,
48 .ecc_stat_ce_mask = CV_DRAMSTS_SBEERR,
49 .ecc_stat_ue_mask = CV_DRAMSTS_DBEERR,
50 .ecc_saddr_offset = CV_ERRADDR_OFST,
51 .ecc_daddr_offset = CV_ERRADDR_OFST,
52 .ecc_cecnt_offset = CV_SBECOUNT_OFST,
53 .ecc_uecnt_offset = CV_DBECOUNT_OFST,
54 .ecc_irq_en_offset = CV_DRAMINTR_OFST,
55 .ecc_irq_en_mask = CV_DRAMINTR_INTREN,
56 .ecc_irq_clr_offset = CV_DRAMINTR_OFST,
57 .ecc_irq_clr_mask = (CV_DRAMINTR_INTRCLR | CV_DRAMINTR_INTREN),
58 .ecc_cnt_rst_offset = CV_DRAMINTR_OFST,
59 .ecc_cnt_rst_mask = CV_DRAMINTR_INTRCLR,
60 .ce_ue_trgr_offset = CV_CTLCFG_OFST,
61 .ce_set_mask = CV_CTLCFG_GEN_SB_ERR,
62 .ue_set_mask = CV_CTLCFG_GEN_DB_ERR,
63 };
64
65 static const struct altr_sdram_prv_data a10_data = {
66 .ecc_ctrl_offset = A10_ECCCTRL1_OFST,
67 .ecc_ctl_en_mask = A10_ECCCTRL1_ECC_EN,
68 .ecc_stat_offset = A10_INTSTAT_OFST,
69 .ecc_stat_ce_mask = A10_INTSTAT_SBEERR,
70 .ecc_stat_ue_mask = A10_INTSTAT_DBEERR,
71 .ecc_saddr_offset = A10_SERRADDR_OFST,
72 .ecc_daddr_offset = A10_DERRADDR_OFST,
73 .ecc_irq_en_offset = A10_ERRINTEN_OFST,
74 .ecc_irq_en_mask = A10_ECC_IRQ_EN_MASK,
75 .ecc_irq_clr_offset = A10_INTSTAT_OFST,
76 .ecc_irq_clr_mask = (A10_INTSTAT_SBEERR | A10_INTSTAT_DBEERR),
77 .ecc_cnt_rst_offset = A10_ECCCTRL1_OFST,
78 .ecc_cnt_rst_mask = A10_ECC_CNT_RESET_MASK,
79 .ce_ue_trgr_offset = A10_DIAGINTTEST_OFST,
80 .ce_set_mask = A10_DIAGINT_TSERRA_MASK,
81 .ue_set_mask = A10_DIAGINT_TDERRA_MASK,
82 };
83
84 /*********************** EDAC Memory Controller Functions ****************/
85
86 /* The SDRAM controller uses the EDAC Memory Controller framework. */
87
88 static irqreturn_t altr_sdram_mc_err_handler(int irq, void *dev_id)
89 {
90 struct mem_ctl_info *mci = dev_id;
91 struct altr_sdram_mc_data *drvdata = mci->pvt_info;
92 const struct altr_sdram_prv_data *priv = drvdata->data;
93 u32 status, err_count = 1, err_addr;
94
95 regmap_read(drvdata->mc_vbase, priv->ecc_stat_offset, &status);
96
97 if (status & priv->ecc_stat_ue_mask) {
98 regmap_read(drvdata->mc_vbase, priv->ecc_daddr_offset,
99 &err_addr);
100 if (priv->ecc_uecnt_offset)
101 regmap_read(drvdata->mc_vbase, priv->ecc_uecnt_offset,
102 &err_count);
103 panic("\nEDAC: [%d Uncorrectable errors @ 0x%08X]\n",
104 err_count, err_addr);
105 }
106 if (status & priv->ecc_stat_ce_mask) {
107 regmap_read(drvdata->mc_vbase, priv->ecc_saddr_offset,
108 &err_addr);
109 if (priv->ecc_uecnt_offset)
110 regmap_read(drvdata->mc_vbase, priv->ecc_cecnt_offset,
111 &err_count);
112 edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, err_count,
113 err_addr >> PAGE_SHIFT,
114 err_addr & ~PAGE_MASK, 0,
115 0, 0, -1, mci->ctl_name, "");
116 /* Clear IRQ to resume */
117 regmap_write(drvdata->mc_vbase, priv->ecc_irq_clr_offset,
118 priv->ecc_irq_clr_mask);
119
120 return IRQ_HANDLED;
121 }
122 return IRQ_NONE;
123 }
124
125 static ssize_t altr_sdr_mc_err_inject_write(struct file *file,
126 const char __user *data,
127 size_t count, loff_t *ppos)
128 {
129 struct mem_ctl_info *mci = file->private_data;
130 struct altr_sdram_mc_data *drvdata = mci->pvt_info;
131 const struct altr_sdram_prv_data *priv = drvdata->data;
132 u32 *ptemp;
133 dma_addr_t dma_handle;
134 u32 reg, read_reg;
135
136 ptemp = dma_alloc_coherent(mci->pdev, 16, &dma_handle, GFP_KERNEL);
137 if (!ptemp) {
138 dma_free_coherent(mci->pdev, 16, ptemp, dma_handle);
139 edac_printk(KERN_ERR, EDAC_MC,
140 "Inject: Buffer Allocation error\n");
141 return -ENOMEM;
142 }
143
144 regmap_read(drvdata->mc_vbase, priv->ce_ue_trgr_offset,
145 &read_reg);
146 read_reg &= ~(priv->ce_set_mask | priv->ue_set_mask);
147
148 /* Error are injected by writing a word while the SBE or DBE
149 * bit in the CTLCFG register is set. Reading the word will
150 * trigger the SBE or DBE error and the corresponding IRQ.
151 */
152 if (count == 3) {
153 edac_printk(KERN_ALERT, EDAC_MC,
154 "Inject Double bit error\n");
155 local_irq_disable();
156 regmap_write(drvdata->mc_vbase, priv->ce_ue_trgr_offset,
157 (read_reg | priv->ue_set_mask));
158 local_irq_enable();
159 } else {
160 edac_printk(KERN_ALERT, EDAC_MC,
161 "Inject Single bit error\n");
162 local_irq_disable();
163 regmap_write(drvdata->mc_vbase, priv->ce_ue_trgr_offset,
164 (read_reg | priv->ce_set_mask));
165 local_irq_enable();
166 }
167
168 ptemp[0] = 0x5A5A5A5A;
169 ptemp[1] = 0xA5A5A5A5;
170
171 /* Clear the error injection bits */
172 regmap_write(drvdata->mc_vbase, priv->ce_ue_trgr_offset, read_reg);
173 /* Ensure it has been written out */
174 wmb();
175
176 /*
177 * To trigger the error, we need to read the data back
178 * (the data was written with errors above).
179 * The ACCESS_ONCE macros and printk are used to prevent the
180 * the compiler optimizing these reads out.
181 */
182 reg = ACCESS_ONCE(ptemp[0]);
183 read_reg = ACCESS_ONCE(ptemp[1]);
184 /* Force Read */
185 rmb();
186
187 edac_printk(KERN_ALERT, EDAC_MC, "Read Data [0x%X, 0x%X]\n",
188 reg, read_reg);
189
190 dma_free_coherent(mci->pdev, 16, ptemp, dma_handle);
191
192 return count;
193 }
194
195 static const struct file_operations altr_sdr_mc_debug_inject_fops = {
196 .open = simple_open,
197 .write = altr_sdr_mc_err_inject_write,
198 .llseek = generic_file_llseek,
199 };
200
201 static void altr_sdr_mc_create_debugfs_nodes(struct mem_ctl_info *mci)
202 {
203 if (!IS_ENABLED(CONFIG_EDAC_DEBUG))
204 return;
205
206 if (!mci->debugfs)
207 return;
208
209 edac_debugfs_create_file("altr_trigger", S_IWUSR, mci->debugfs, mci,
210 &altr_sdr_mc_debug_inject_fops);
211 }
212
213 /* Get total memory size from Open Firmware DTB */
214 static unsigned long get_total_mem(void)
215 {
216 struct device_node *np = NULL;
217 struct resource res;
218 int ret;
219 unsigned long total_mem = 0;
220
221 for_each_node_by_type(np, "memory") {
222 ret = of_address_to_resource(np, 0, &res);
223 if (ret)
224 continue;
225
226 total_mem += resource_size(&res);
227 }
228 edac_dbg(0, "total_mem 0x%lx\n", total_mem);
229 return total_mem;
230 }
231
232 static const struct of_device_id altr_sdram_ctrl_of_match[] = {
233 { .compatible = "altr,sdram-edac", .data = &c5_data},
234 { .compatible = "altr,sdram-edac-a10", .data = &a10_data},
235 {},
236 };
237 MODULE_DEVICE_TABLE(of, altr_sdram_ctrl_of_match);
238
239 static int a10_init(struct regmap *mc_vbase)
240 {
241 if (regmap_update_bits(mc_vbase, A10_INTMODE_OFST,
242 A10_INTMODE_SB_INT, A10_INTMODE_SB_INT)) {
243 edac_printk(KERN_ERR, EDAC_MC,
244 "Error setting SB IRQ mode\n");
245 return -ENODEV;
246 }
247
248 if (regmap_write(mc_vbase, A10_SERRCNTREG_OFST, 1)) {
249 edac_printk(KERN_ERR, EDAC_MC,
250 "Error setting trigger count\n");
251 return -ENODEV;
252 }
253
254 return 0;
255 }
256
257 static int a10_unmask_irq(struct platform_device *pdev, u32 mask)
258 {
259 void __iomem *sm_base;
260 int ret = 0;
261
262 if (!request_mem_region(A10_SYMAN_INTMASK_CLR, sizeof(u32),
263 dev_name(&pdev->dev))) {
264 edac_printk(KERN_ERR, EDAC_MC,
265 "Unable to request mem region\n");
266 return -EBUSY;
267 }
268
269 sm_base = ioremap(A10_SYMAN_INTMASK_CLR, sizeof(u32));
270 if (!sm_base) {
271 edac_printk(KERN_ERR, EDAC_MC,
272 "Unable to ioremap device\n");
273
274 ret = -ENOMEM;
275 goto release;
276 }
277
278 iowrite32(mask, sm_base);
279
280 iounmap(sm_base);
281
282 release:
283 release_mem_region(A10_SYMAN_INTMASK_CLR, sizeof(u32));
284
285 return ret;
286 }
287
288 static int altr_sdram_probe(struct platform_device *pdev)
289 {
290 const struct of_device_id *id;
291 struct edac_mc_layer layers[2];
292 struct mem_ctl_info *mci;
293 struct altr_sdram_mc_data *drvdata;
294 const struct altr_sdram_prv_data *priv;
295 struct regmap *mc_vbase;
296 struct dimm_info *dimm;
297 u32 read_reg;
298 int irq, irq2, res = 0;
299 unsigned long mem_size, irqflags = 0;
300
301 id = of_match_device(altr_sdram_ctrl_of_match, &pdev->dev);
302 if (!id)
303 return -ENODEV;
304
305 /* Grab the register range from the sdr controller in device tree */
306 mc_vbase = syscon_regmap_lookup_by_phandle(pdev->dev.of_node,
307 "altr,sdr-syscon");
308 if (IS_ERR(mc_vbase)) {
309 edac_printk(KERN_ERR, EDAC_MC,
310 "regmap for altr,sdr-syscon lookup failed.\n");
311 return -ENODEV;
312 }
313
314 /* Check specific dependencies for the module */
315 priv = of_match_node(altr_sdram_ctrl_of_match,
316 pdev->dev.of_node)->data;
317
318 /* Validate the SDRAM controller has ECC enabled */
319 if (regmap_read(mc_vbase, priv->ecc_ctrl_offset, &read_reg) ||
320 ((read_reg & priv->ecc_ctl_en_mask) != priv->ecc_ctl_en_mask)) {
321 edac_printk(KERN_ERR, EDAC_MC,
322 "No ECC/ECC disabled [0x%08X]\n", read_reg);
323 return -ENODEV;
324 }
325
326 /* Grab memory size from device tree. */
327 mem_size = get_total_mem();
328 if (!mem_size) {
329 edac_printk(KERN_ERR, EDAC_MC, "Unable to calculate memory size\n");
330 return -ENODEV;
331 }
332
333 /* Ensure the SDRAM Interrupt is disabled */
334 if (regmap_update_bits(mc_vbase, priv->ecc_irq_en_offset,
335 priv->ecc_irq_en_mask, 0)) {
336 edac_printk(KERN_ERR, EDAC_MC,
337 "Error disabling SDRAM ECC IRQ\n");
338 return -ENODEV;
339 }
340
341 /* Toggle to clear the SDRAM Error count */
342 if (regmap_update_bits(mc_vbase, priv->ecc_cnt_rst_offset,
343 priv->ecc_cnt_rst_mask,
344 priv->ecc_cnt_rst_mask)) {
345 edac_printk(KERN_ERR, EDAC_MC,
346 "Error clearing SDRAM ECC count\n");
347 return -ENODEV;
348 }
349
350 if (regmap_update_bits(mc_vbase, priv->ecc_cnt_rst_offset,
351 priv->ecc_cnt_rst_mask, 0)) {
352 edac_printk(KERN_ERR, EDAC_MC,
353 "Error clearing SDRAM ECC count\n");
354 return -ENODEV;
355 }
356
357 irq = platform_get_irq(pdev, 0);
358 if (irq < 0) {
359 edac_printk(KERN_ERR, EDAC_MC,
360 "No irq %d in DT\n", irq);
361 return -ENODEV;
362 }
363
364 /* Arria10 has a 2nd IRQ */
365 irq2 = platform_get_irq(pdev, 1);
366
367 layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
368 layers[0].size = 1;
369 layers[0].is_virt_csrow = true;
370 layers[1].type = EDAC_MC_LAYER_CHANNEL;
371 layers[1].size = 1;
372 layers[1].is_virt_csrow = false;
373 mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers,
374 sizeof(struct altr_sdram_mc_data));
375 if (!mci)
376 return -ENOMEM;
377
378 mci->pdev = &pdev->dev;
379 drvdata = mci->pvt_info;
380 drvdata->mc_vbase = mc_vbase;
381 drvdata->data = priv;
382 platform_set_drvdata(pdev, mci);
383
384 if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL)) {
385 edac_printk(KERN_ERR, EDAC_MC,
386 "Unable to get managed device resource\n");
387 res = -ENOMEM;
388 goto free;
389 }
390
391 mci->mtype_cap = MEM_FLAG_DDR3;
392 mci->edac_ctl_cap = EDAC_FLAG_NONE | EDAC_FLAG_SECDED;
393 mci->edac_cap = EDAC_FLAG_SECDED;
394 mci->mod_name = EDAC_MOD_STR;
395 mci->mod_ver = EDAC_VERSION;
396 mci->ctl_name = dev_name(&pdev->dev);
397 mci->scrub_mode = SCRUB_SW_SRC;
398 mci->dev_name = dev_name(&pdev->dev);
399
400 dimm = *mci->dimms;
401 dimm->nr_pages = ((mem_size - 1) >> PAGE_SHIFT) + 1;
402 dimm->grain = 8;
403 dimm->dtype = DEV_X8;
404 dimm->mtype = MEM_DDR3;
405 dimm->edac_mode = EDAC_SECDED;
406
407 res = edac_mc_add_mc(mci);
408 if (res < 0)
409 goto err;
410
411 /* Only the Arria10 has separate IRQs */
412 if (irq2 > 0) {
413 /* Arria10 specific initialization */
414 res = a10_init(mc_vbase);
415 if (res < 0)
416 goto err2;
417
418 res = devm_request_irq(&pdev->dev, irq2,
419 altr_sdram_mc_err_handler,
420 IRQF_SHARED, dev_name(&pdev->dev), mci);
421 if (res < 0) {
422 edac_mc_printk(mci, KERN_ERR,
423 "Unable to request irq %d\n", irq2);
424 res = -ENODEV;
425 goto err2;
426 }
427
428 res = a10_unmask_irq(pdev, A10_DDR0_IRQ_MASK);
429 if (res < 0)
430 goto err2;
431
432 irqflags = IRQF_SHARED;
433 }
434
435 res = devm_request_irq(&pdev->dev, irq, altr_sdram_mc_err_handler,
436 irqflags, dev_name(&pdev->dev), mci);
437 if (res < 0) {
438 edac_mc_printk(mci, KERN_ERR,
439 "Unable to request irq %d\n", irq);
440 res = -ENODEV;
441 goto err2;
442 }
443
444 /* Infrastructure ready - enable the IRQ */
445 if (regmap_update_bits(drvdata->mc_vbase, priv->ecc_irq_en_offset,
446 priv->ecc_irq_en_mask, priv->ecc_irq_en_mask)) {
447 edac_mc_printk(mci, KERN_ERR,
448 "Error enabling SDRAM ECC IRQ\n");
449 res = -ENODEV;
450 goto err2;
451 }
452
453 altr_sdr_mc_create_debugfs_nodes(mci);
454
455 devres_close_group(&pdev->dev, NULL);
456
457 return 0;
458
459 err2:
460 edac_mc_del_mc(&pdev->dev);
461 err:
462 devres_release_group(&pdev->dev, NULL);
463 free:
464 edac_mc_free(mci);
465 edac_printk(KERN_ERR, EDAC_MC,
466 "EDAC Probe Failed; Error %d\n", res);
467
468 return res;
469 }
470
471 static int altr_sdram_remove(struct platform_device *pdev)
472 {
473 struct mem_ctl_info *mci = platform_get_drvdata(pdev);
474
475 edac_mc_del_mc(&pdev->dev);
476 edac_mc_free(mci);
477 platform_set_drvdata(pdev, NULL);
478
479 return 0;
480 }
481
482 /*
483 * If you want to suspend, need to disable EDAC by removing it
484 * from the device tree or defconfig.
485 */
486 #ifdef CONFIG_PM
487 static int altr_sdram_prepare(struct device *dev)
488 {
489 pr_err("Suspend not allowed when EDAC is enabled.\n");
490
491 return -EPERM;
492 }
493
494 static const struct dev_pm_ops altr_sdram_pm_ops = {
495 .prepare = altr_sdram_prepare,
496 };
497 #endif
498
499 static struct platform_driver altr_sdram_edac_driver = {
500 .probe = altr_sdram_probe,
501 .remove = altr_sdram_remove,
502 .driver = {
503 .name = "altr_sdram_edac",
504 #ifdef CONFIG_PM
505 .pm = &altr_sdram_pm_ops,
506 #endif
507 .of_match_table = altr_sdram_ctrl_of_match,
508 },
509 };
510
511 module_platform_driver(altr_sdram_edac_driver);
512
513 /************************* EDAC Parent Probe *************************/
514
515 static const struct of_device_id altr_edac_device_of_match[];
516
517 static const struct of_device_id altr_edac_of_match[] = {
518 { .compatible = "altr,socfpga-ecc-manager" },
519 {},
520 };
521 MODULE_DEVICE_TABLE(of, altr_edac_of_match);
522
523 static int altr_edac_probe(struct platform_device *pdev)
524 {
525 of_platform_populate(pdev->dev.of_node, altr_edac_device_of_match,
526 NULL, &pdev->dev);
527 return 0;
528 }
529
530 static struct platform_driver altr_edac_driver = {
531 .probe = altr_edac_probe,
532 .driver = {
533 .name = "socfpga_ecc_manager",
534 .of_match_table = altr_edac_of_match,
535 },
536 };
537 module_platform_driver(altr_edac_driver);
538
539 /************************* EDAC Device Functions *************************/
540
541 /*
542 * EDAC Device Functions (shared between various IPs).
543 * The discrete memories use the EDAC Device framework. The probe
544 * and error handling functions are very similar between memories
545 * so they are shared. The memory allocation and freeing for EDAC
546 * trigger testing are different for each memory.
547 */
548
549 static const struct edac_device_prv_data ocramecc_data;
550 static const struct edac_device_prv_data l2ecc_data;
551 static const struct edac_device_prv_data a10_ocramecc_data;
552 static const struct edac_device_prv_data a10_l2ecc_data;
553
554 static irqreturn_t altr_edac_device_handler(int irq, void *dev_id)
555 {
556 irqreturn_t ret_value = IRQ_NONE;
557 struct edac_device_ctl_info *dci = dev_id;
558 struct altr_edac_device_dev *drvdata = dci->pvt_info;
559 const struct edac_device_prv_data *priv = drvdata->data;
560
561 if (irq == drvdata->sb_irq) {
562 if (priv->ce_clear_mask)
563 writel(priv->ce_clear_mask, drvdata->base);
564 edac_device_handle_ce(dci, 0, 0, drvdata->edac_dev_name);
565 ret_value = IRQ_HANDLED;
566 } else if (irq == drvdata->db_irq) {
567 if (priv->ue_clear_mask)
568 writel(priv->ue_clear_mask, drvdata->base);
569 edac_device_handle_ue(dci, 0, 0, drvdata->edac_dev_name);
570 panic("\nEDAC:ECC_DEVICE[Uncorrectable errors]\n");
571 ret_value = IRQ_HANDLED;
572 } else {
573 WARN_ON(1);
574 }
575
576 return ret_value;
577 }
578
579 static ssize_t altr_edac_device_trig(struct file *file,
580 const char __user *user_buf,
581 size_t count, loff_t *ppos)
582
583 {
584 u32 *ptemp, i, error_mask;
585 int result = 0;
586 u8 trig_type;
587 unsigned long flags;
588 struct edac_device_ctl_info *edac_dci = file->private_data;
589 struct altr_edac_device_dev *drvdata = edac_dci->pvt_info;
590 const struct edac_device_prv_data *priv = drvdata->data;
591 void *generic_ptr = edac_dci->dev;
592
593 if (!user_buf || get_user(trig_type, user_buf))
594 return -EFAULT;
595
596 if (!priv->alloc_mem)
597 return -ENOMEM;
598
599 /*
600 * Note that generic_ptr is initialized to the device * but in
601 * some alloc_functions, this is overridden and returns data.
602 */
603 ptemp = priv->alloc_mem(priv->trig_alloc_sz, &generic_ptr);
604 if (!ptemp) {
605 edac_printk(KERN_ERR, EDAC_DEVICE,
606 "Inject: Buffer Allocation error\n");
607 return -ENOMEM;
608 }
609
610 if (trig_type == ALTR_UE_TRIGGER_CHAR)
611 error_mask = priv->ue_set_mask;
612 else
613 error_mask = priv->ce_set_mask;
614
615 edac_printk(KERN_ALERT, EDAC_DEVICE,
616 "Trigger Error Mask (0x%X)\n", error_mask);
617
618 local_irq_save(flags);
619 /* write ECC corrupted data out. */
620 for (i = 0; i < (priv->trig_alloc_sz / sizeof(*ptemp)); i++) {
621 /* Read data so we're in the correct state */
622 rmb();
623 if (ACCESS_ONCE(ptemp[i]))
624 result = -1;
625 /* Toggle Error bit (it is latched), leave ECC enabled */
626 writel(error_mask, (drvdata->base + priv->set_err_ofst));
627 writel(priv->ecc_enable_mask, (drvdata->base +
628 priv->set_err_ofst));
629 ptemp[i] = i;
630 }
631 /* Ensure it has been written out */
632 wmb();
633 local_irq_restore(flags);
634
635 if (result)
636 edac_printk(KERN_ERR, EDAC_DEVICE, "Mem Not Cleared\n");
637
638 /* Read out written data. ECC error caused here */
639 for (i = 0; i < ALTR_TRIGGER_READ_WRD_CNT; i++)
640 if (ACCESS_ONCE(ptemp[i]) != i)
641 edac_printk(KERN_ERR, EDAC_DEVICE,
642 "Read doesn't match written data\n");
643
644 if (priv->free_mem)
645 priv->free_mem(ptemp, priv->trig_alloc_sz, generic_ptr);
646
647 return count;
648 }
649
650 static const struct file_operations altr_edac_device_inject_fops = {
651 .open = simple_open,
652 .write = altr_edac_device_trig,
653 .llseek = generic_file_llseek,
654 };
655
656 static ssize_t altr_edac_a10_device_trig(struct file *file,
657 const char __user *user_buf,
658 size_t count, loff_t *ppos);
659
660 static const struct file_operations altr_edac_a10_device_inject_fops = {
661 .open = simple_open,
662 .write = altr_edac_a10_device_trig,
663 .llseek = generic_file_llseek,
664 };
665
666 static void altr_create_edacdev_dbgfs(struct edac_device_ctl_info *edac_dci,
667 const struct edac_device_prv_data *priv)
668 {
669 struct altr_edac_device_dev *drvdata = edac_dci->pvt_info;
670
671 if (!IS_ENABLED(CONFIG_EDAC_DEBUG))
672 return;
673
674 drvdata->debugfs_dir = edac_debugfs_create_dir(drvdata->edac_dev_name);
675 if (!drvdata->debugfs_dir)
676 return;
677
678 if (!edac_debugfs_create_file("altr_trigger", S_IWUSR,
679 drvdata->debugfs_dir, edac_dci,
680 priv->inject_fops))
681 debugfs_remove_recursive(drvdata->debugfs_dir);
682 }
683
684 static const struct of_device_id altr_edac_device_of_match[] = {
685 #ifdef CONFIG_EDAC_ALTERA_L2C
686 { .compatible = "altr,socfpga-l2-ecc", .data = &l2ecc_data },
687 #endif
688 #ifdef CONFIG_EDAC_ALTERA_OCRAM
689 { .compatible = "altr,socfpga-ocram-ecc", .data = &ocramecc_data },
690 #endif
691 {},
692 };
693 MODULE_DEVICE_TABLE(of, altr_edac_device_of_match);
694
695 /*
696 * altr_edac_device_probe()
697 * This is a generic EDAC device driver that will support
698 * various Altera memory devices such as the L2 cache ECC and
699 * OCRAM ECC as well as the memories for other peripherals.
700 * Module specific initialization is done by passing the
701 * function index in the device tree.
702 */
703 static int altr_edac_device_probe(struct platform_device *pdev)
704 {
705 struct edac_device_ctl_info *dci;
706 struct altr_edac_device_dev *drvdata;
707 struct resource *r;
708 int res = 0;
709 struct device_node *np = pdev->dev.of_node;
710 char *ecc_name = (char *)np->name;
711 static int dev_instance;
712
713 if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL)) {
714 edac_printk(KERN_ERR, EDAC_DEVICE,
715 "Unable to open devm\n");
716 return -ENOMEM;
717 }
718
719 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
720 if (!r) {
721 edac_printk(KERN_ERR, EDAC_DEVICE,
722 "Unable to get mem resource\n");
723 res = -ENODEV;
724 goto fail;
725 }
726
727 if (!devm_request_mem_region(&pdev->dev, r->start, resource_size(r),
728 dev_name(&pdev->dev))) {
729 edac_printk(KERN_ERR, EDAC_DEVICE,
730 "%s:Error requesting mem region\n", ecc_name);
731 res = -EBUSY;
732 goto fail;
733 }
734
735 dci = edac_device_alloc_ctl_info(sizeof(*drvdata), ecc_name,
736 1, ecc_name, 1, 0, NULL, 0,
737 dev_instance++);
738
739 if (!dci) {
740 edac_printk(KERN_ERR, EDAC_DEVICE,
741 "%s: Unable to allocate EDAC device\n", ecc_name);
742 res = -ENOMEM;
743 goto fail;
744 }
745
746 drvdata = dci->pvt_info;
747 dci->dev = &pdev->dev;
748 platform_set_drvdata(pdev, dci);
749 drvdata->edac_dev_name = ecc_name;
750
751 drvdata->base = devm_ioremap(&pdev->dev, r->start, resource_size(r));
752 if (!drvdata->base)
753 goto fail1;
754
755 /* Get driver specific data for this EDAC device */
756 drvdata->data = of_match_node(altr_edac_device_of_match, np)->data;
757
758 /* Check specific dependencies for the module */
759 if (drvdata->data->setup) {
760 res = drvdata->data->setup(drvdata);
761 if (res)
762 goto fail1;
763 }
764
765 drvdata->sb_irq = platform_get_irq(pdev, 0);
766 res = devm_request_irq(&pdev->dev, drvdata->sb_irq,
767 altr_edac_device_handler,
768 0, dev_name(&pdev->dev), dci);
769 if (res)
770 goto fail1;
771
772 drvdata->db_irq = platform_get_irq(pdev, 1);
773 res = devm_request_irq(&pdev->dev, drvdata->db_irq,
774 altr_edac_device_handler,
775 0, dev_name(&pdev->dev), dci);
776 if (res)
777 goto fail1;
778
779 dci->mod_name = "Altera ECC Manager";
780 dci->dev_name = drvdata->edac_dev_name;
781
782 res = edac_device_add_device(dci);
783 if (res)
784 goto fail1;
785
786 altr_create_edacdev_dbgfs(dci, drvdata->data);
787
788 devres_close_group(&pdev->dev, NULL);
789
790 return 0;
791
792 fail1:
793 edac_device_free_ctl_info(dci);
794 fail:
795 devres_release_group(&pdev->dev, NULL);
796 edac_printk(KERN_ERR, EDAC_DEVICE,
797 "%s:Error setting up EDAC device: %d\n", ecc_name, res);
798
799 return res;
800 }
801
802 static int altr_edac_device_remove(struct platform_device *pdev)
803 {
804 struct edac_device_ctl_info *dci = platform_get_drvdata(pdev);
805 struct altr_edac_device_dev *drvdata = dci->pvt_info;
806
807 debugfs_remove_recursive(drvdata->debugfs_dir);
808 edac_device_del_device(&pdev->dev);
809 edac_device_free_ctl_info(dci);
810
811 return 0;
812 }
813
814 static struct platform_driver altr_edac_device_driver = {
815 .probe = altr_edac_device_probe,
816 .remove = altr_edac_device_remove,
817 .driver = {
818 .name = "altr_edac_device",
819 .of_match_table = altr_edac_device_of_match,
820 },
821 };
822 module_platform_driver(altr_edac_device_driver);
823
824 /******************* Arria10 Device ECC Shared Functions *****************/
825
826 /*
827 * Test for memory's ECC dependencies upon entry because platform specific
828 * startup should have initialized the memory and enabled the ECC.
829 * Can't turn on ECC here because accessing un-initialized memory will
830 * cause CE/UE errors possibly causing an ABORT.
831 */
832 static int __maybe_unused
833 altr_check_ecc_deps(struct altr_edac_device_dev *device)
834 {
835 void __iomem *base = device->base;
836 const struct edac_device_prv_data *prv = device->data;
837
838 if (readl(base + prv->ecc_en_ofst) & prv->ecc_enable_mask)
839 return 0;
840
841 edac_printk(KERN_ERR, EDAC_DEVICE,
842 "%s: No ECC present or ECC disabled.\n",
843 device->edac_dev_name);
844 return -ENODEV;
845 }
846
847 static irqreturn_t __maybe_unused altr_edac_a10_ecc_irq(int irq, void *dev_id)
848 {
849 struct altr_edac_device_dev *dci = dev_id;
850 void __iomem *base = dci->base;
851
852 if (irq == dci->sb_irq) {
853 writel(ALTR_A10_ECC_SERRPENA,
854 base + ALTR_A10_ECC_INTSTAT_OFST);
855 edac_device_handle_ce(dci->edac_dev, 0, 0, dci->edac_dev_name);
856
857 return IRQ_HANDLED;
858 } else if (irq == dci->db_irq) {
859 writel(ALTR_A10_ECC_DERRPENA,
860 base + ALTR_A10_ECC_INTSTAT_OFST);
861 edac_device_handle_ue(dci->edac_dev, 0, 0, dci->edac_dev_name);
862 if (dci->data->panic)
863 panic("\nEDAC:ECC_DEVICE[Uncorrectable errors]\n");
864
865 return IRQ_HANDLED;
866 }
867
868 WARN_ON(1);
869
870 return IRQ_NONE;
871 }
872
873 /******************* Arria10 Memory Buffer Functions *********************/
874
875 static inline int a10_get_irq_mask(struct device_node *np)
876 {
877 int irq;
878 const u32 *handle = of_get_property(np, "interrupts", NULL);
879
880 if (!handle)
881 return -ENODEV;
882 irq = be32_to_cpup(handle);
883 return irq;
884 }
885
886 static inline void ecc_set_bits(u32 bit_mask, void __iomem *ioaddr)
887 {
888 u32 value = readl(ioaddr);
889
890 value |= bit_mask;
891 writel(value, ioaddr);
892 }
893
894 static inline void ecc_clear_bits(u32 bit_mask, void __iomem *ioaddr)
895 {
896 u32 value = readl(ioaddr);
897
898 value &= ~bit_mask;
899 writel(value, ioaddr);
900 }
901
902 static inline int ecc_test_bits(u32 bit_mask, void __iomem *ioaddr)
903 {
904 u32 value = readl(ioaddr);
905
906 return (value & bit_mask) ? 1 : 0;
907 }
908
909 /*
910 * This function uses the memory initialization block in the Arria10 ECC
911 * controller to initialize/clear the entire memory data and ECC data.
912 */
913 static int __maybe_unused altr_init_memory_port(void __iomem *ioaddr, int port)
914 {
915 int limit = ALTR_A10_ECC_INIT_WATCHDOG_10US;
916 u32 init_mask, stat_mask, clear_mask;
917 int ret = 0;
918
919 if (port) {
920 init_mask = ALTR_A10_ECC_INITB;
921 stat_mask = ALTR_A10_ECC_INITCOMPLETEB;
922 clear_mask = ALTR_A10_ECC_ERRPENB_MASK;
923 } else {
924 init_mask = ALTR_A10_ECC_INITA;
925 stat_mask = ALTR_A10_ECC_INITCOMPLETEA;
926 clear_mask = ALTR_A10_ECC_ERRPENA_MASK;
927 }
928
929 ecc_set_bits(init_mask, (ioaddr + ALTR_A10_ECC_CTRL_OFST));
930 while (limit--) {
931 if (ecc_test_bits(stat_mask,
932 (ioaddr + ALTR_A10_ECC_INITSTAT_OFST)))
933 break;
934 udelay(1);
935 }
936 if (limit < 0)
937 ret = -EBUSY;
938
939 /* Clear any pending ECC interrupts */
940 writel(clear_mask, (ioaddr + ALTR_A10_ECC_INTSTAT_OFST));
941
942 return ret;
943 }
944
945 static __init int __maybe_unused
946 altr_init_a10_ecc_block(struct device_node *np, u32 irq_mask,
947 u32 ecc_ctrl_en_mask, bool dual_port)
948 {
949 int ret = 0;
950 void __iomem *ecc_block_base;
951 struct regmap *ecc_mgr_map;
952 char *ecc_name;
953 struct device_node *np_eccmgr;
954
955 ecc_name = (char *)np->name;
956
957 /* Get the ECC Manager - parent of the device EDACs */
958 np_eccmgr = of_get_parent(np);
959 ecc_mgr_map = syscon_regmap_lookup_by_phandle(np_eccmgr,
960 "altr,sysmgr-syscon");
961 of_node_put(np_eccmgr);
962 if (IS_ERR(ecc_mgr_map)) {
963 edac_printk(KERN_ERR, EDAC_DEVICE,
964 "Unable to get syscon altr,sysmgr-syscon\n");
965 return -ENODEV;
966 }
967
968 /* Map the ECC Block */
969 ecc_block_base = of_iomap(np, 0);
970 if (!ecc_block_base) {
971 edac_printk(KERN_ERR, EDAC_DEVICE,
972 "Unable to map %s ECC block\n", ecc_name);
973 return -ENODEV;
974 }
975
976 /* Disable ECC */
977 regmap_write(ecc_mgr_map, A10_SYSMGR_ECC_INTMASK_SET_OFST, irq_mask);
978 writel(ALTR_A10_ECC_SERRINTEN,
979 (ecc_block_base + ALTR_A10_ECC_ERRINTENR_OFST));
980 ecc_clear_bits(ecc_ctrl_en_mask,
981 (ecc_block_base + ALTR_A10_ECC_CTRL_OFST));
982 /* Ensure all writes complete */
983 wmb();
984 /* Use HW initialization block to initialize memory for ECC */
985 ret = altr_init_memory_port(ecc_block_base, 0);
986 if (ret) {
987 edac_printk(KERN_ERR, EDAC_DEVICE,
988 "ECC: cannot init %s PORTA memory\n", ecc_name);
989 goto out;
990 }
991
992 if (dual_port) {
993 ret = altr_init_memory_port(ecc_block_base, 1);
994 if (ret) {
995 edac_printk(KERN_ERR, EDAC_DEVICE,
996 "ECC: cannot init %s PORTB memory\n",
997 ecc_name);
998 goto out;
999 }
1000 }
1001
1002 /* Interrupt mode set to every SBERR */
1003 regmap_write(ecc_mgr_map, ALTR_A10_ECC_INTMODE_OFST,
1004 ALTR_A10_ECC_INTMODE);
1005 /* Enable ECC */
1006 ecc_set_bits(ecc_ctrl_en_mask, (ecc_block_base +
1007 ALTR_A10_ECC_CTRL_OFST));
1008 writel(ALTR_A10_ECC_SERRINTEN,
1009 (ecc_block_base + ALTR_A10_ECC_ERRINTENS_OFST));
1010 regmap_write(ecc_mgr_map, A10_SYSMGR_ECC_INTMASK_CLR_OFST, irq_mask);
1011 /* Ensure all writes complete */
1012 wmb();
1013 out:
1014 iounmap(ecc_block_base);
1015 return ret;
1016 }
1017
1018 static int socfpga_is_a10(void)
1019 {
1020 return of_machine_is_compatible("altr,socfpga-arria10");
1021 }
1022
1023 static int validate_parent_available(struct device_node *np);
1024 static const struct of_device_id altr_edac_a10_device_of_match[];
1025 static int __init __maybe_unused altr_init_a10_ecc_device_type(char *compat)
1026 {
1027 int irq;
1028 struct device_node *child, *np;
1029
1030 if (!socfpga_is_a10())
1031 return -ENODEV;
1032
1033 np = of_find_compatible_node(NULL, NULL,
1034 "altr,socfpga-a10-ecc-manager");
1035 if (!np) {
1036 edac_printk(KERN_ERR, EDAC_DEVICE, "ECC Manager not found\n");
1037 return -ENODEV;
1038 }
1039
1040 for_each_child_of_node(np, child) {
1041 const struct of_device_id *pdev_id;
1042 const struct edac_device_prv_data *prv;
1043
1044 if (!of_device_is_available(child))
1045 continue;
1046 if (!of_device_is_compatible(child, compat))
1047 continue;
1048
1049 if (validate_parent_available(child))
1050 continue;
1051
1052 irq = a10_get_irq_mask(child);
1053 if (irq < 0)
1054 continue;
1055
1056 /* Get matching node and check for valid result */
1057 pdev_id = of_match_node(altr_edac_a10_device_of_match, child);
1058 if (IS_ERR_OR_NULL(pdev_id))
1059 continue;
1060
1061 /* Validate private data pointer before dereferencing */
1062 prv = pdev_id->data;
1063 if (!prv)
1064 continue;
1065
1066 altr_init_a10_ecc_block(child, BIT(irq),
1067 prv->ecc_enable_mask, 0);
1068 }
1069
1070 of_node_put(np);
1071 return 0;
1072 }
1073
1074 /*********************** OCRAM EDAC Device Functions *********************/
1075
1076 #ifdef CONFIG_EDAC_ALTERA_OCRAM
1077
1078 static void *ocram_alloc_mem(size_t size, void **other)
1079 {
1080 struct device_node *np;
1081 struct gen_pool *gp;
1082 void *sram_addr;
1083
1084 np = of_find_compatible_node(NULL, NULL, "altr,socfpga-ocram-ecc");
1085 if (!np)
1086 return NULL;
1087
1088 gp = of_gen_pool_get(np, "iram", 0);
1089 of_node_put(np);
1090 if (!gp)
1091 return NULL;
1092
1093 sram_addr = (void *)gen_pool_alloc(gp, size);
1094 if (!sram_addr)
1095 return NULL;
1096
1097 memset(sram_addr, 0, size);
1098 /* Ensure data is written out */
1099 wmb();
1100
1101 /* Remember this handle for freeing later */
1102 *other = gp;
1103
1104 return sram_addr;
1105 }
1106
1107 static void ocram_free_mem(void *p, size_t size, void *other)
1108 {
1109 gen_pool_free((struct gen_pool *)other, (u32)p, size);
1110 }
1111
1112 static const struct edac_device_prv_data ocramecc_data = {
1113 .setup = altr_check_ecc_deps,
1114 .ce_clear_mask = (ALTR_OCR_ECC_EN | ALTR_OCR_ECC_SERR),
1115 .ue_clear_mask = (ALTR_OCR_ECC_EN | ALTR_OCR_ECC_DERR),
1116 .alloc_mem = ocram_alloc_mem,
1117 .free_mem = ocram_free_mem,
1118 .ecc_enable_mask = ALTR_OCR_ECC_EN,
1119 .ecc_en_ofst = ALTR_OCR_ECC_REG_OFFSET,
1120 .ce_set_mask = (ALTR_OCR_ECC_EN | ALTR_OCR_ECC_INJS),
1121 .ue_set_mask = (ALTR_OCR_ECC_EN | ALTR_OCR_ECC_INJD),
1122 .set_err_ofst = ALTR_OCR_ECC_REG_OFFSET,
1123 .trig_alloc_sz = ALTR_TRIG_OCRAM_BYTE_SIZE,
1124 .inject_fops = &altr_edac_device_inject_fops,
1125 };
1126
1127 static const struct edac_device_prv_data a10_ocramecc_data = {
1128 .setup = altr_check_ecc_deps,
1129 .ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1130 .ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1131 .irq_status_mask = A10_SYSMGR_ECC_INTSTAT_OCRAM,
1132 .ecc_enable_mask = ALTR_A10_OCRAM_ECC_EN_CTL,
1133 .ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1134 .ce_set_mask = ALTR_A10_ECC_TSERRA,
1135 .ue_set_mask = ALTR_A10_ECC_TDERRA,
1136 .set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1137 .ecc_irq_handler = altr_edac_a10_ecc_irq,
1138 .inject_fops = &altr_edac_a10_device_inject_fops,
1139 /*
1140 * OCRAM panic on uncorrectable error because sleep/resume
1141 * functions and FPGA contents are stored in OCRAM. Prefer
1142 * a kernel panic over executing/loading corrupted data.
1143 */
1144 .panic = true,
1145 };
1146
1147 #endif /* CONFIG_EDAC_ALTERA_OCRAM */
1148
1149 /********************* L2 Cache EDAC Device Functions ********************/
1150
1151 #ifdef CONFIG_EDAC_ALTERA_L2C
1152
1153 static void *l2_alloc_mem(size_t size, void **other)
1154 {
1155 struct device *dev = *other;
1156 void *ptemp = devm_kzalloc(dev, size, GFP_KERNEL);
1157
1158 if (!ptemp)
1159 return NULL;
1160
1161 /* Make sure everything is written out */
1162 wmb();
1163
1164 /*
1165 * Clean all cache levels up to LoC (includes L2)
1166 * This ensures the corrupted data is written into
1167 * L2 cache for readback test (which causes ECC error).
1168 */
1169 flush_cache_all();
1170
1171 return ptemp;
1172 }
1173
1174 static void l2_free_mem(void *p, size_t size, void *other)
1175 {
1176 struct device *dev = other;
1177
1178 if (dev && p)
1179 devm_kfree(dev, p);
1180 }
1181
1182 /*
1183 * altr_l2_check_deps()
1184 * Test for L2 cache ECC dependencies upon entry because
1185 * platform specific startup should have initialized the L2
1186 * memory and enabled the ECC.
1187 * Bail if ECC is not enabled.
1188 * Note that L2 Cache Enable is forced at build time.
1189 */
1190 static int altr_l2_check_deps(struct altr_edac_device_dev *device)
1191 {
1192 void __iomem *base = device->base;
1193 const struct edac_device_prv_data *prv = device->data;
1194
1195 if ((readl(base) & prv->ecc_enable_mask) ==
1196 prv->ecc_enable_mask)
1197 return 0;
1198
1199 edac_printk(KERN_ERR, EDAC_DEVICE,
1200 "L2: No ECC present, or ECC disabled\n");
1201 return -ENODEV;
1202 }
1203
1204 static irqreturn_t altr_edac_a10_l2_irq(int irq, void *dev_id)
1205 {
1206 struct altr_edac_device_dev *dci = dev_id;
1207
1208 if (irq == dci->sb_irq) {
1209 regmap_write(dci->edac->ecc_mgr_map,
1210 A10_SYSGMR_MPU_CLEAR_L2_ECC_OFST,
1211 A10_SYSGMR_MPU_CLEAR_L2_ECC_SB);
1212 edac_device_handle_ce(dci->edac_dev, 0, 0, dci->edac_dev_name);
1213
1214 return IRQ_HANDLED;
1215 } else if (irq == dci->db_irq) {
1216 regmap_write(dci->edac->ecc_mgr_map,
1217 A10_SYSGMR_MPU_CLEAR_L2_ECC_OFST,
1218 A10_SYSGMR_MPU_CLEAR_L2_ECC_MB);
1219 edac_device_handle_ue(dci->edac_dev, 0, 0, dci->edac_dev_name);
1220 panic("\nEDAC:ECC_DEVICE[Uncorrectable errors]\n");
1221
1222 return IRQ_HANDLED;
1223 }
1224
1225 WARN_ON(1);
1226
1227 return IRQ_NONE;
1228 }
1229
1230 static const struct edac_device_prv_data l2ecc_data = {
1231 .setup = altr_l2_check_deps,
1232 .ce_clear_mask = 0,
1233 .ue_clear_mask = 0,
1234 .alloc_mem = l2_alloc_mem,
1235 .free_mem = l2_free_mem,
1236 .ecc_enable_mask = ALTR_L2_ECC_EN,
1237 .ce_set_mask = (ALTR_L2_ECC_EN | ALTR_L2_ECC_INJS),
1238 .ue_set_mask = (ALTR_L2_ECC_EN | ALTR_L2_ECC_INJD),
1239 .set_err_ofst = ALTR_L2_ECC_REG_OFFSET,
1240 .trig_alloc_sz = ALTR_TRIG_L2C_BYTE_SIZE,
1241 .inject_fops = &altr_edac_device_inject_fops,
1242 };
1243
1244 static const struct edac_device_prv_data a10_l2ecc_data = {
1245 .setup = altr_l2_check_deps,
1246 .ce_clear_mask = ALTR_A10_L2_ECC_SERR_CLR,
1247 .ue_clear_mask = ALTR_A10_L2_ECC_MERR_CLR,
1248 .irq_status_mask = A10_SYSMGR_ECC_INTSTAT_L2,
1249 .alloc_mem = l2_alloc_mem,
1250 .free_mem = l2_free_mem,
1251 .ecc_enable_mask = ALTR_A10_L2_ECC_EN_CTL,
1252 .ce_set_mask = ALTR_A10_L2_ECC_CE_INJ_MASK,
1253 .ue_set_mask = ALTR_A10_L2_ECC_UE_INJ_MASK,
1254 .set_err_ofst = ALTR_A10_L2_ECC_INJ_OFST,
1255 .ecc_irq_handler = altr_edac_a10_l2_irq,
1256 .trig_alloc_sz = ALTR_TRIG_L2C_BYTE_SIZE,
1257 .inject_fops = &altr_edac_device_inject_fops,
1258 };
1259
1260 #endif /* CONFIG_EDAC_ALTERA_L2C */
1261
1262 /********************* Ethernet Device Functions ********************/
1263
1264 #ifdef CONFIG_EDAC_ALTERA_ETHERNET
1265
1266 static const struct edac_device_prv_data a10_enetecc_data = {
1267 .setup = altr_check_ecc_deps,
1268 .ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1269 .ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1270 .ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1271 .ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1272 .ce_set_mask = ALTR_A10_ECC_TSERRA,
1273 .ue_set_mask = ALTR_A10_ECC_TDERRA,
1274 .set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1275 .ecc_irq_handler = altr_edac_a10_ecc_irq,
1276 .inject_fops = &altr_edac_a10_device_inject_fops,
1277 };
1278
1279 static int __init socfpga_init_ethernet_ecc(void)
1280 {
1281 return altr_init_a10_ecc_device_type("altr,socfpga-eth-mac-ecc");
1282 }
1283
1284 early_initcall(socfpga_init_ethernet_ecc);
1285
1286 #endif /* CONFIG_EDAC_ALTERA_ETHERNET */
1287
1288 /********************** NAND Device Functions **********************/
1289
1290 #ifdef CONFIG_EDAC_ALTERA_NAND
1291
1292 static const struct edac_device_prv_data a10_nandecc_data = {
1293 .setup = altr_check_ecc_deps,
1294 .ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1295 .ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1296 .ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1297 .ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1298 .ce_set_mask = ALTR_A10_ECC_TSERRA,
1299 .ue_set_mask = ALTR_A10_ECC_TDERRA,
1300 .set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1301 .ecc_irq_handler = altr_edac_a10_ecc_irq,
1302 .inject_fops = &altr_edac_a10_device_inject_fops,
1303 };
1304
1305 static int __init socfpga_init_nand_ecc(void)
1306 {
1307 return altr_init_a10_ecc_device_type("altr,socfpga-nand-ecc");
1308 }
1309
1310 early_initcall(socfpga_init_nand_ecc);
1311
1312 #endif /* CONFIG_EDAC_ALTERA_NAND */
1313
1314 /********************** DMA Device Functions **********************/
1315
1316 #ifdef CONFIG_EDAC_ALTERA_DMA
1317
1318 static const struct edac_device_prv_data a10_dmaecc_data = {
1319 .setup = altr_check_ecc_deps,
1320 .ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1321 .ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1322 .ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1323 .ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1324 .ce_set_mask = ALTR_A10_ECC_TSERRA,
1325 .ue_set_mask = ALTR_A10_ECC_TDERRA,
1326 .set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1327 .ecc_irq_handler = altr_edac_a10_ecc_irq,
1328 .inject_fops = &altr_edac_a10_device_inject_fops,
1329 };
1330
1331 static int __init socfpga_init_dma_ecc(void)
1332 {
1333 return altr_init_a10_ecc_device_type("altr,socfpga-dma-ecc");
1334 }
1335
1336 early_initcall(socfpga_init_dma_ecc);
1337
1338 #endif /* CONFIG_EDAC_ALTERA_DMA */
1339
1340 /********************** USB Device Functions **********************/
1341
1342 #ifdef CONFIG_EDAC_ALTERA_USB
1343
1344 static const struct edac_device_prv_data a10_usbecc_data = {
1345 .setup = altr_check_ecc_deps,
1346 .ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1347 .ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1348 .ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1349 .ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1350 .ce_set_mask = ALTR_A10_ECC_TSERRA,
1351 .ue_set_mask = ALTR_A10_ECC_TDERRA,
1352 .set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1353 .ecc_irq_handler = altr_edac_a10_ecc_irq,
1354 .inject_fops = &altr_edac_a10_device_inject_fops,
1355 };
1356
1357 static int __init socfpga_init_usb_ecc(void)
1358 {
1359 return altr_init_a10_ecc_device_type("altr,socfpga-usb-ecc");
1360 }
1361
1362 early_initcall(socfpga_init_usb_ecc);
1363
1364 #endif /* CONFIG_EDAC_ALTERA_USB */
1365
1366 /********************** QSPI Device Functions **********************/
1367
1368 #ifdef CONFIG_EDAC_ALTERA_QSPI
1369
1370 static const struct edac_device_prv_data a10_qspiecc_data = {
1371 .setup = altr_check_ecc_deps,
1372 .ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1373 .ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1374 .ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1375 .ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1376 .ce_set_mask = ALTR_A10_ECC_TSERRA,
1377 .ue_set_mask = ALTR_A10_ECC_TDERRA,
1378 .set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1379 .ecc_irq_handler = altr_edac_a10_ecc_irq,
1380 .inject_fops = &altr_edac_a10_device_inject_fops,
1381 };
1382
1383 static int __init socfpga_init_qspi_ecc(void)
1384 {
1385 return altr_init_a10_ecc_device_type("altr,socfpga-qspi-ecc");
1386 }
1387
1388 early_initcall(socfpga_init_qspi_ecc);
1389
1390 #endif /* CONFIG_EDAC_ALTERA_QSPI */
1391
1392 /********************* SDMMC Device Functions **********************/
1393
1394 #ifdef CONFIG_EDAC_ALTERA_SDMMC
1395
1396 static const struct edac_device_prv_data a10_sdmmceccb_data;
1397 static int altr_portb_setup(struct altr_edac_device_dev *device)
1398 {
1399 struct edac_device_ctl_info *dci;
1400 struct altr_edac_device_dev *altdev;
1401 char *ecc_name = "sdmmcb-ecc";
1402 int edac_idx, rc;
1403 struct device_node *np;
1404 const struct edac_device_prv_data *prv = &a10_sdmmceccb_data;
1405
1406 rc = altr_check_ecc_deps(device);
1407 if (rc)
1408 return rc;
1409
1410 np = of_find_compatible_node(NULL, NULL, "altr,socfpga-sdmmc-ecc");
1411 if (!np) {
1412 edac_printk(KERN_WARNING, EDAC_DEVICE, "SDMMC node not found\n");
1413 return -ENODEV;
1414 }
1415
1416 /* Create the PortB EDAC device */
1417 edac_idx = edac_device_alloc_index();
1418 dci = edac_device_alloc_ctl_info(sizeof(*altdev), ecc_name, 1,
1419 ecc_name, 1, 0, NULL, 0, edac_idx);
1420 if (!dci) {
1421 edac_printk(KERN_ERR, EDAC_DEVICE,
1422 "%s: Unable to allocate PortB EDAC device\n",
1423 ecc_name);
1424 return -ENOMEM;
1425 }
1426
1427 /* Initialize the PortB EDAC device structure from PortA structure */
1428 altdev = dci->pvt_info;
1429 *altdev = *device;
1430
1431 if (!devres_open_group(&altdev->ddev, altr_portb_setup, GFP_KERNEL))
1432 return -ENOMEM;
1433
1434 /* Update PortB specific values */
1435 altdev->edac_dev_name = ecc_name;
1436 altdev->edac_idx = edac_idx;
1437 altdev->edac_dev = dci;
1438 altdev->data = prv;
1439 dci->dev = &altdev->ddev;
1440 dci->ctl_name = "Altera ECC Manager";
1441 dci->mod_name = ecc_name;
1442 dci->dev_name = ecc_name;
1443
1444 /* Update the IRQs for PortB */
1445 altdev->sb_irq = irq_of_parse_and_map(np, 2);
1446 if (!altdev->sb_irq) {
1447 edac_printk(KERN_ERR, EDAC_DEVICE, "Error PortB SBIRQ alloc\n");
1448 rc = -ENODEV;
1449 goto err_release_group_1;
1450 }
1451 rc = devm_request_irq(&altdev->ddev, altdev->sb_irq,
1452 prv->ecc_irq_handler,
1453 IRQF_ONESHOT | IRQF_TRIGGER_HIGH,
1454 ecc_name, altdev);
1455 if (rc) {
1456 edac_printk(KERN_ERR, EDAC_DEVICE, "PortB SBERR IRQ error\n");
1457 goto err_release_group_1;
1458 }
1459
1460 altdev->db_irq = irq_of_parse_and_map(np, 3);
1461 if (!altdev->db_irq) {
1462 edac_printk(KERN_ERR, EDAC_DEVICE, "Error PortB DBIRQ alloc\n");
1463 rc = -ENODEV;
1464 goto err_release_group_1;
1465 }
1466 rc = devm_request_irq(&altdev->ddev, altdev->db_irq,
1467 prv->ecc_irq_handler,
1468 IRQF_ONESHOT | IRQF_TRIGGER_HIGH,
1469 ecc_name, altdev);
1470 if (rc) {
1471 edac_printk(KERN_ERR, EDAC_DEVICE, "PortB DBERR IRQ error\n");
1472 goto err_release_group_1;
1473 }
1474
1475 rc = edac_device_add_device(dci);
1476 if (rc) {
1477 edac_printk(KERN_ERR, EDAC_DEVICE,
1478 "edac_device_add_device portB failed\n");
1479 rc = -ENOMEM;
1480 goto err_release_group_1;
1481 }
1482 altr_create_edacdev_dbgfs(dci, prv);
1483
1484 list_add(&altdev->next, &altdev->edac->a10_ecc_devices);
1485
1486 devres_remove_group(&altdev->ddev, altr_portb_setup);
1487
1488 return 0;
1489
1490 err_release_group_1:
1491 edac_device_free_ctl_info(dci);
1492 devres_release_group(&altdev->ddev, altr_portb_setup);
1493 edac_printk(KERN_ERR, EDAC_DEVICE,
1494 "%s:Error setting up EDAC device: %d\n", ecc_name, rc);
1495 return rc;
1496 }
1497
1498 static irqreturn_t altr_edac_a10_ecc_irq_portb(int irq, void *dev_id)
1499 {
1500 struct altr_edac_device_dev *ad = dev_id;
1501 void __iomem *base = ad->base;
1502 const struct edac_device_prv_data *priv = ad->data;
1503
1504 if (irq == ad->sb_irq) {
1505 writel(priv->ce_clear_mask,
1506 base + ALTR_A10_ECC_INTSTAT_OFST);
1507 edac_device_handle_ce(ad->edac_dev, 0, 0, ad->edac_dev_name);
1508 return IRQ_HANDLED;
1509 } else if (irq == ad->db_irq) {
1510 writel(priv->ue_clear_mask,
1511 base + ALTR_A10_ECC_INTSTAT_OFST);
1512 edac_device_handle_ue(ad->edac_dev, 0, 0, ad->edac_dev_name);
1513 return IRQ_HANDLED;
1514 }
1515
1516 WARN_ONCE(1, "Unhandled IRQ%d on Port B.", irq);
1517
1518 return IRQ_NONE;
1519 }
1520
1521 static const struct edac_device_prv_data a10_sdmmcecca_data = {
1522 .setup = altr_portb_setup,
1523 .ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1524 .ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1525 .ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1526 .ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1527 .ce_set_mask = ALTR_A10_ECC_SERRPENA,
1528 .ue_set_mask = ALTR_A10_ECC_DERRPENA,
1529 .set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1530 .ecc_irq_handler = altr_edac_a10_ecc_irq,
1531 .inject_fops = &altr_edac_a10_device_inject_fops,
1532 };
1533
1534 static const struct edac_device_prv_data a10_sdmmceccb_data = {
1535 .setup = altr_portb_setup,
1536 .ce_clear_mask = ALTR_A10_ECC_SERRPENB,
1537 .ue_clear_mask = ALTR_A10_ECC_DERRPENB,
1538 .ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1539 .ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1540 .ce_set_mask = ALTR_A10_ECC_TSERRB,
1541 .ue_set_mask = ALTR_A10_ECC_TDERRB,
1542 .set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1543 .ecc_irq_handler = altr_edac_a10_ecc_irq_portb,
1544 .inject_fops = &altr_edac_a10_device_inject_fops,
1545 };
1546
1547 static int __init socfpga_init_sdmmc_ecc(void)
1548 {
1549 int rc = -ENODEV;
1550 struct device_node *child;
1551
1552 if (!socfpga_is_a10())
1553 return -ENODEV;
1554
1555 child = of_find_compatible_node(NULL, NULL, "altr,socfpga-sdmmc-ecc");
1556 if (!child) {
1557 edac_printk(KERN_WARNING, EDAC_DEVICE, "SDMMC node not found\n");
1558 return -ENODEV;
1559 }
1560
1561 if (!of_device_is_available(child))
1562 goto exit;
1563
1564 if (validate_parent_available(child))
1565 goto exit;
1566
1567 rc = altr_init_a10_ecc_block(child, ALTR_A10_SDMMC_IRQ_MASK,
1568 a10_sdmmcecca_data.ecc_enable_mask, 1);
1569 exit:
1570 of_node_put(child);
1571 return rc;
1572 }
1573
1574 early_initcall(socfpga_init_sdmmc_ecc);
1575
1576 #endif /* CONFIG_EDAC_ALTERA_SDMMC */
1577
1578 /********************* Arria10 EDAC Device Functions *************************/
1579 static const struct of_device_id altr_edac_a10_device_of_match[] = {
1580 #ifdef CONFIG_EDAC_ALTERA_L2C
1581 { .compatible = "altr,socfpga-a10-l2-ecc", .data = &a10_l2ecc_data },
1582 #endif
1583 #ifdef CONFIG_EDAC_ALTERA_OCRAM
1584 { .compatible = "altr,socfpga-a10-ocram-ecc",
1585 .data = &a10_ocramecc_data },
1586 #endif
1587 #ifdef CONFIG_EDAC_ALTERA_ETHERNET
1588 { .compatible = "altr,socfpga-eth-mac-ecc",
1589 .data = &a10_enetecc_data },
1590 #endif
1591 #ifdef CONFIG_EDAC_ALTERA_NAND
1592 { .compatible = "altr,socfpga-nand-ecc", .data = &a10_nandecc_data },
1593 #endif
1594 #ifdef CONFIG_EDAC_ALTERA_DMA
1595 { .compatible = "altr,socfpga-dma-ecc", .data = &a10_dmaecc_data },
1596 #endif
1597 #ifdef CONFIG_EDAC_ALTERA_USB
1598 { .compatible = "altr,socfpga-usb-ecc", .data = &a10_usbecc_data },
1599 #endif
1600 #ifdef CONFIG_EDAC_ALTERA_QSPI
1601 { .compatible = "altr,socfpga-qspi-ecc", .data = &a10_qspiecc_data },
1602 #endif
1603 #ifdef CONFIG_EDAC_ALTERA_SDMMC
1604 { .compatible = "altr,socfpga-sdmmc-ecc", .data = &a10_sdmmcecca_data },
1605 #endif
1606 {},
1607 };
1608 MODULE_DEVICE_TABLE(of, altr_edac_a10_device_of_match);
1609
1610 /*
1611 * The Arria10 EDAC Device Functions differ from the Cyclone5/Arria5
1612 * because 2 IRQs are shared among the all ECC peripherals. The ECC
1613 * manager manages the IRQs and the children.
1614 * Based on xgene_edac.c peripheral code.
1615 */
1616
1617 static ssize_t altr_edac_a10_device_trig(struct file *file,
1618 const char __user *user_buf,
1619 size_t count, loff_t *ppos)
1620 {
1621 struct edac_device_ctl_info *edac_dci = file->private_data;
1622 struct altr_edac_device_dev *drvdata = edac_dci->pvt_info;
1623 const struct edac_device_prv_data *priv = drvdata->data;
1624 void __iomem *set_addr = (drvdata->base + priv->set_err_ofst);
1625 unsigned long flags;
1626 u8 trig_type;
1627
1628 if (!user_buf || get_user(trig_type, user_buf))
1629 return -EFAULT;
1630
1631 local_irq_save(flags);
1632 if (trig_type == ALTR_UE_TRIGGER_CHAR)
1633 writel(priv->ue_set_mask, set_addr);
1634 else
1635 writel(priv->ce_set_mask, set_addr);
1636 /* Ensure the interrupt test bits are set */
1637 wmb();
1638 local_irq_restore(flags);
1639
1640 return count;
1641 }
1642
1643 static void altr_edac_a10_irq_handler(struct irq_desc *desc)
1644 {
1645 int dberr, bit, sm_offset, irq_status;
1646 struct altr_arria10_edac *edac = irq_desc_get_handler_data(desc);
1647 struct irq_chip *chip = irq_desc_get_chip(desc);
1648 int irq = irq_desc_get_irq(desc);
1649
1650 dberr = (irq == edac->db_irq) ? 1 : 0;
1651 sm_offset = dberr ? A10_SYSMGR_ECC_INTSTAT_DERR_OFST :
1652 A10_SYSMGR_ECC_INTSTAT_SERR_OFST;
1653
1654 chained_irq_enter(chip, desc);
1655
1656 regmap_read(edac->ecc_mgr_map, sm_offset, &irq_status);
1657
1658 for_each_set_bit(bit, (unsigned long *)&irq_status, 32) {
1659 irq = irq_linear_revmap(edac->domain, dberr * 32 + bit);
1660 if (irq)
1661 generic_handle_irq(irq);
1662 }
1663
1664 chained_irq_exit(chip, desc);
1665 }
1666
1667 static int validate_parent_available(struct device_node *np)
1668 {
1669 struct device_node *parent;
1670 int ret = 0;
1671
1672 /* Ensure parent device is enabled if parent node exists */
1673 parent = of_parse_phandle(np, "altr,ecc-parent", 0);
1674 if (parent && !of_device_is_available(parent))
1675 ret = -ENODEV;
1676
1677 of_node_put(parent);
1678 return ret;
1679 }
1680
1681 static int altr_edac_a10_device_add(struct altr_arria10_edac *edac,
1682 struct device_node *np)
1683 {
1684 struct edac_device_ctl_info *dci;
1685 struct altr_edac_device_dev *altdev;
1686 char *ecc_name = (char *)np->name;
1687 struct resource res;
1688 int edac_idx;
1689 int rc = 0;
1690 const struct edac_device_prv_data *prv;
1691 /* Get matching node and check for valid result */
1692 const struct of_device_id *pdev_id =
1693 of_match_node(altr_edac_a10_device_of_match, np);
1694 if (IS_ERR_OR_NULL(pdev_id))
1695 return -ENODEV;
1696
1697 /* Get driver specific data for this EDAC device */
1698 prv = pdev_id->data;
1699 if (IS_ERR_OR_NULL(prv))
1700 return -ENODEV;
1701
1702 if (validate_parent_available(np))
1703 return -ENODEV;
1704
1705 if (!devres_open_group(edac->dev, altr_edac_a10_device_add, GFP_KERNEL))
1706 return -ENOMEM;
1707
1708 rc = of_address_to_resource(np, 0, &res);
1709 if (rc < 0) {
1710 edac_printk(KERN_ERR, EDAC_DEVICE,
1711 "%s: no resource address\n", ecc_name);
1712 goto err_release_group;
1713 }
1714
1715 edac_idx = edac_device_alloc_index();
1716 dci = edac_device_alloc_ctl_info(sizeof(*altdev), ecc_name,
1717 1, ecc_name, 1, 0, NULL, 0,
1718 edac_idx);
1719
1720 if (!dci) {
1721 edac_printk(KERN_ERR, EDAC_DEVICE,
1722 "%s: Unable to allocate EDAC device\n", ecc_name);
1723 rc = -ENOMEM;
1724 goto err_release_group;
1725 }
1726
1727 altdev = dci->pvt_info;
1728 dci->dev = edac->dev;
1729 altdev->edac_dev_name = ecc_name;
1730 altdev->edac_idx = edac_idx;
1731 altdev->edac = edac;
1732 altdev->edac_dev = dci;
1733 altdev->data = prv;
1734 altdev->ddev = *edac->dev;
1735 dci->dev = &altdev->ddev;
1736 dci->ctl_name = "Altera ECC Manager";
1737 dci->mod_name = ecc_name;
1738 dci->dev_name = ecc_name;
1739
1740 altdev->base = devm_ioremap_resource(edac->dev, &res);
1741 if (IS_ERR(altdev->base)) {
1742 rc = PTR_ERR(altdev->base);
1743 goto err_release_group1;
1744 }
1745
1746 /* Check specific dependencies for the module */
1747 if (altdev->data->setup) {
1748 rc = altdev->data->setup(altdev);
1749 if (rc)
1750 goto err_release_group1;
1751 }
1752
1753 altdev->sb_irq = irq_of_parse_and_map(np, 0);
1754 if (!altdev->sb_irq) {
1755 edac_printk(KERN_ERR, EDAC_DEVICE, "Error allocating SBIRQ\n");
1756 rc = -ENODEV;
1757 goto err_release_group1;
1758 }
1759 rc = devm_request_irq(edac->dev, altdev->sb_irq, prv->ecc_irq_handler,
1760 IRQF_ONESHOT | IRQF_TRIGGER_HIGH,
1761 ecc_name, altdev);
1762 if (rc) {
1763 edac_printk(KERN_ERR, EDAC_DEVICE, "No SBERR IRQ resource\n");
1764 goto err_release_group1;
1765 }
1766
1767 altdev->db_irq = irq_of_parse_and_map(np, 1);
1768 if (!altdev->db_irq) {
1769 edac_printk(KERN_ERR, EDAC_DEVICE, "Error allocating DBIRQ\n");
1770 rc = -ENODEV;
1771 goto err_release_group1;
1772 }
1773 rc = devm_request_irq(edac->dev, altdev->db_irq, prv->ecc_irq_handler,
1774 IRQF_ONESHOT | IRQF_TRIGGER_HIGH,
1775 ecc_name, altdev);
1776 if (rc) {
1777 edac_printk(KERN_ERR, EDAC_DEVICE, "No DBERR IRQ resource\n");
1778 goto err_release_group1;
1779 }
1780
1781 rc = edac_device_add_device(dci);
1782 if (rc) {
1783 dev_err(edac->dev, "edac_device_add_device failed\n");
1784 rc = -ENOMEM;
1785 goto err_release_group1;
1786 }
1787
1788 altr_create_edacdev_dbgfs(dci, prv);
1789
1790 list_add(&altdev->next, &edac->a10_ecc_devices);
1791
1792 devres_remove_group(edac->dev, altr_edac_a10_device_add);
1793
1794 return 0;
1795
1796 err_release_group1:
1797 edac_device_free_ctl_info(dci);
1798 err_release_group:
1799 devres_release_group(edac->dev, NULL);
1800 edac_printk(KERN_ERR, EDAC_DEVICE,
1801 "%s:Error setting up EDAC device: %d\n", ecc_name, rc);
1802
1803 return rc;
1804 }
1805
1806 static void a10_eccmgr_irq_mask(struct irq_data *d)
1807 {
1808 struct altr_arria10_edac *edac = irq_data_get_irq_chip_data(d);
1809
1810 regmap_write(edac->ecc_mgr_map, A10_SYSMGR_ECC_INTMASK_SET_OFST,
1811 BIT(d->hwirq));
1812 }
1813
1814 static void a10_eccmgr_irq_unmask(struct irq_data *d)
1815 {
1816 struct altr_arria10_edac *edac = irq_data_get_irq_chip_data(d);
1817
1818 regmap_write(edac->ecc_mgr_map, A10_SYSMGR_ECC_INTMASK_CLR_OFST,
1819 BIT(d->hwirq));
1820 }
1821
1822 static int a10_eccmgr_irqdomain_map(struct irq_domain *d, unsigned int irq,
1823 irq_hw_number_t hwirq)
1824 {
1825 struct altr_arria10_edac *edac = d->host_data;
1826
1827 irq_set_chip_and_handler(irq, &edac->irq_chip, handle_simple_irq);
1828 irq_set_chip_data(irq, edac);
1829 irq_set_noprobe(irq);
1830
1831 return 0;
1832 }
1833
1834 static const struct irq_domain_ops a10_eccmgr_ic_ops = {
1835 .map = a10_eccmgr_irqdomain_map,
1836 .xlate = irq_domain_xlate_twocell,
1837 };
1838
1839 static int altr_edac_a10_probe(struct platform_device *pdev)
1840 {
1841 struct altr_arria10_edac *edac;
1842 struct device_node *child;
1843
1844 edac = devm_kzalloc(&pdev->dev, sizeof(*edac), GFP_KERNEL);
1845 if (!edac)
1846 return -ENOMEM;
1847
1848 edac->dev = &pdev->dev;
1849 platform_set_drvdata(pdev, edac);
1850 INIT_LIST_HEAD(&edac->a10_ecc_devices);
1851
1852 edac->ecc_mgr_map = syscon_regmap_lookup_by_phandle(pdev->dev.of_node,
1853 "altr,sysmgr-syscon");
1854 if (IS_ERR(edac->ecc_mgr_map)) {
1855 edac_printk(KERN_ERR, EDAC_DEVICE,
1856 "Unable to get syscon altr,sysmgr-syscon\n");
1857 return PTR_ERR(edac->ecc_mgr_map);
1858 }
1859
1860 edac->irq_chip.name = pdev->dev.of_node->name;
1861 edac->irq_chip.irq_mask = a10_eccmgr_irq_mask;
1862 edac->irq_chip.irq_unmask = a10_eccmgr_irq_unmask;
1863 edac->domain = irq_domain_add_linear(pdev->dev.of_node, 64,
1864 &a10_eccmgr_ic_ops, edac);
1865 if (!edac->domain) {
1866 dev_err(&pdev->dev, "Error adding IRQ domain\n");
1867 return -ENOMEM;
1868 }
1869
1870 edac->sb_irq = platform_get_irq(pdev, 0);
1871 if (edac->sb_irq < 0) {
1872 dev_err(&pdev->dev, "No SBERR IRQ resource\n");
1873 return edac->sb_irq;
1874 }
1875
1876 irq_set_chained_handler_and_data(edac->sb_irq,
1877 altr_edac_a10_irq_handler,
1878 edac);
1879
1880 edac->db_irq = platform_get_irq(pdev, 1);
1881 if (edac->db_irq < 0) {
1882 dev_err(&pdev->dev, "No DBERR IRQ resource\n");
1883 return edac->db_irq;
1884 }
1885 irq_set_chained_handler_and_data(edac->db_irq,
1886 altr_edac_a10_irq_handler,
1887 edac);
1888
1889 for_each_child_of_node(pdev->dev.of_node, child) {
1890 if (!of_device_is_available(child))
1891 continue;
1892
1893 if (of_device_is_compatible(child, "altr,socfpga-a10-l2-ecc") ||
1894 of_device_is_compatible(child, "altr,socfpga-a10-ocram-ecc") ||
1895 of_device_is_compatible(child, "altr,socfpga-eth-mac-ecc") ||
1896 of_device_is_compatible(child, "altr,socfpga-nand-ecc") ||
1897 of_device_is_compatible(child, "altr,socfpga-dma-ecc") ||
1898 of_device_is_compatible(child, "altr,socfpga-usb-ecc") ||
1899 of_device_is_compatible(child, "altr,socfpga-qspi-ecc") ||
1900 of_device_is_compatible(child, "altr,socfpga-sdmmc-ecc"))
1901
1902 altr_edac_a10_device_add(edac, child);
1903
1904 else if (of_device_is_compatible(child, "altr,sdram-edac-a10"))
1905 of_platform_populate(pdev->dev.of_node,
1906 altr_sdram_ctrl_of_match,
1907 NULL, &pdev->dev);
1908 }
1909
1910 return 0;
1911 }
1912
1913 static const struct of_device_id altr_edac_a10_of_match[] = {
1914 { .compatible = "altr,socfpga-a10-ecc-manager" },
1915 {},
1916 };
1917 MODULE_DEVICE_TABLE(of, altr_edac_a10_of_match);
1918
1919 static struct platform_driver altr_edac_a10_driver = {
1920 .probe = altr_edac_a10_probe,
1921 .driver = {
1922 .name = "socfpga_a10_ecc_manager",
1923 .of_match_table = altr_edac_a10_of_match,
1924 },
1925 };
1926 module_platform_driver(altr_edac_a10_driver);
1927
1928 MODULE_LICENSE("GPL v2");
1929 MODULE_AUTHOR("Thor Thayer");
1930 MODULE_DESCRIPTION("EDAC Driver for Altera Memories");