]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - drivers/edac/altera_edac.c
Merge tag 'for-5.3-rc8-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave...
[mirror_ubuntu-eoan-kernel.git] / drivers / edac / altera_edac.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2017-2018, Intel Corporation. All rights reserved
4 * Copyright Altera Corporation (C) 2014-2016. All rights reserved.
5 * Copyright 2011-2012 Calxeda, Inc.
6 */
7
8 #include <asm/cacheflush.h>
9 #include <linux/ctype.h>
10 #include <linux/delay.h>
11 #include <linux/edac.h>
12 #include <linux/firmware/intel/stratix10-smc.h>
13 #include <linux/genalloc.h>
14 #include <linux/interrupt.h>
15 #include <linux/irqchip/chained_irq.h>
16 #include <linux/kernel.h>
17 #include <linux/mfd/syscon.h>
18 #include <linux/notifier.h>
19 #include <linux/of_address.h>
20 #include <linux/of_irq.h>
21 #include <linux/of_platform.h>
22 #include <linux/platform_device.h>
23 #include <linux/regmap.h>
24 #include <linux/types.h>
25 #include <linux/uaccess.h>
26
27 #include "altera_edac.h"
28 #include "edac_module.h"
29
30 #define EDAC_MOD_STR "altera_edac"
31 #define EDAC_DEVICE "Altera"
32
33 #ifdef CONFIG_EDAC_ALTERA_SDRAM
34 static const struct altr_sdram_prv_data c5_data = {
35 .ecc_ctrl_offset = CV_CTLCFG_OFST,
36 .ecc_ctl_en_mask = CV_CTLCFG_ECC_AUTO_EN,
37 .ecc_stat_offset = CV_DRAMSTS_OFST,
38 .ecc_stat_ce_mask = CV_DRAMSTS_SBEERR,
39 .ecc_stat_ue_mask = CV_DRAMSTS_DBEERR,
40 .ecc_saddr_offset = CV_ERRADDR_OFST,
41 .ecc_daddr_offset = CV_ERRADDR_OFST,
42 .ecc_cecnt_offset = CV_SBECOUNT_OFST,
43 .ecc_uecnt_offset = CV_DBECOUNT_OFST,
44 .ecc_irq_en_offset = CV_DRAMINTR_OFST,
45 .ecc_irq_en_mask = CV_DRAMINTR_INTREN,
46 .ecc_irq_clr_offset = CV_DRAMINTR_OFST,
47 .ecc_irq_clr_mask = (CV_DRAMINTR_INTRCLR | CV_DRAMINTR_INTREN),
48 .ecc_cnt_rst_offset = CV_DRAMINTR_OFST,
49 .ecc_cnt_rst_mask = CV_DRAMINTR_INTRCLR,
50 .ce_ue_trgr_offset = CV_CTLCFG_OFST,
51 .ce_set_mask = CV_CTLCFG_GEN_SB_ERR,
52 .ue_set_mask = CV_CTLCFG_GEN_DB_ERR,
53 };
54
55 static const struct altr_sdram_prv_data a10_data = {
56 .ecc_ctrl_offset = A10_ECCCTRL1_OFST,
57 .ecc_ctl_en_mask = A10_ECCCTRL1_ECC_EN,
58 .ecc_stat_offset = A10_INTSTAT_OFST,
59 .ecc_stat_ce_mask = A10_INTSTAT_SBEERR,
60 .ecc_stat_ue_mask = A10_INTSTAT_DBEERR,
61 .ecc_saddr_offset = A10_SERRADDR_OFST,
62 .ecc_daddr_offset = A10_DERRADDR_OFST,
63 .ecc_irq_en_offset = A10_ERRINTEN_OFST,
64 .ecc_irq_en_mask = A10_ECC_IRQ_EN_MASK,
65 .ecc_irq_clr_offset = A10_INTSTAT_OFST,
66 .ecc_irq_clr_mask = (A10_INTSTAT_SBEERR | A10_INTSTAT_DBEERR),
67 .ecc_cnt_rst_offset = A10_ECCCTRL1_OFST,
68 .ecc_cnt_rst_mask = A10_ECC_CNT_RESET_MASK,
69 .ce_ue_trgr_offset = A10_DIAGINTTEST_OFST,
70 .ce_set_mask = A10_DIAGINT_TSERRA_MASK,
71 .ue_set_mask = A10_DIAGINT_TDERRA_MASK,
72 };
73
74 /*********************** EDAC Memory Controller Functions ****************/
75
76 /* The SDRAM controller uses the EDAC Memory Controller framework. */
77
78 static irqreturn_t altr_sdram_mc_err_handler(int irq, void *dev_id)
79 {
80 struct mem_ctl_info *mci = dev_id;
81 struct altr_sdram_mc_data *drvdata = mci->pvt_info;
82 const struct altr_sdram_prv_data *priv = drvdata->data;
83 u32 status, err_count = 1, err_addr;
84
85 regmap_read(drvdata->mc_vbase, priv->ecc_stat_offset, &status);
86
87 if (status & priv->ecc_stat_ue_mask) {
88 regmap_read(drvdata->mc_vbase, priv->ecc_daddr_offset,
89 &err_addr);
90 if (priv->ecc_uecnt_offset)
91 regmap_read(drvdata->mc_vbase, priv->ecc_uecnt_offset,
92 &err_count);
93 panic("\nEDAC: [%d Uncorrectable errors @ 0x%08X]\n",
94 err_count, err_addr);
95 }
96 if (status & priv->ecc_stat_ce_mask) {
97 regmap_read(drvdata->mc_vbase, priv->ecc_saddr_offset,
98 &err_addr);
99 if (priv->ecc_uecnt_offset)
100 regmap_read(drvdata->mc_vbase, priv->ecc_cecnt_offset,
101 &err_count);
102 edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, err_count,
103 err_addr >> PAGE_SHIFT,
104 err_addr & ~PAGE_MASK, 0,
105 0, 0, -1, mci->ctl_name, "");
106 /* Clear IRQ to resume */
107 regmap_write(drvdata->mc_vbase, priv->ecc_irq_clr_offset,
108 priv->ecc_irq_clr_mask);
109
110 return IRQ_HANDLED;
111 }
112 return IRQ_NONE;
113 }
114
115 static ssize_t altr_sdr_mc_err_inject_write(struct file *file,
116 const char __user *data,
117 size_t count, loff_t *ppos)
118 {
119 struct mem_ctl_info *mci = file->private_data;
120 struct altr_sdram_mc_data *drvdata = mci->pvt_info;
121 const struct altr_sdram_prv_data *priv = drvdata->data;
122 u32 *ptemp;
123 dma_addr_t dma_handle;
124 u32 reg, read_reg;
125
126 ptemp = dma_alloc_coherent(mci->pdev, 16, &dma_handle, GFP_KERNEL);
127 if (!ptemp) {
128 dma_free_coherent(mci->pdev, 16, ptemp, dma_handle);
129 edac_printk(KERN_ERR, EDAC_MC,
130 "Inject: Buffer Allocation error\n");
131 return -ENOMEM;
132 }
133
134 regmap_read(drvdata->mc_vbase, priv->ce_ue_trgr_offset,
135 &read_reg);
136 read_reg &= ~(priv->ce_set_mask | priv->ue_set_mask);
137
138 /* Error are injected by writing a word while the SBE or DBE
139 * bit in the CTLCFG register is set. Reading the word will
140 * trigger the SBE or DBE error and the corresponding IRQ.
141 */
142 if (count == 3) {
143 edac_printk(KERN_ALERT, EDAC_MC,
144 "Inject Double bit error\n");
145 local_irq_disable();
146 regmap_write(drvdata->mc_vbase, priv->ce_ue_trgr_offset,
147 (read_reg | priv->ue_set_mask));
148 local_irq_enable();
149 } else {
150 edac_printk(KERN_ALERT, EDAC_MC,
151 "Inject Single bit error\n");
152 local_irq_disable();
153 regmap_write(drvdata->mc_vbase, priv->ce_ue_trgr_offset,
154 (read_reg | priv->ce_set_mask));
155 local_irq_enable();
156 }
157
158 ptemp[0] = 0x5A5A5A5A;
159 ptemp[1] = 0xA5A5A5A5;
160
161 /* Clear the error injection bits */
162 regmap_write(drvdata->mc_vbase, priv->ce_ue_trgr_offset, read_reg);
163 /* Ensure it has been written out */
164 wmb();
165
166 /*
167 * To trigger the error, we need to read the data back
168 * (the data was written with errors above).
169 * The READ_ONCE macros and printk are used to prevent the
170 * the compiler optimizing these reads out.
171 */
172 reg = READ_ONCE(ptemp[0]);
173 read_reg = READ_ONCE(ptemp[1]);
174 /* Force Read */
175 rmb();
176
177 edac_printk(KERN_ALERT, EDAC_MC, "Read Data [0x%X, 0x%X]\n",
178 reg, read_reg);
179
180 dma_free_coherent(mci->pdev, 16, ptemp, dma_handle);
181
182 return count;
183 }
184
185 static const struct file_operations altr_sdr_mc_debug_inject_fops = {
186 .open = simple_open,
187 .write = altr_sdr_mc_err_inject_write,
188 .llseek = generic_file_llseek,
189 };
190
191 static void altr_sdr_mc_create_debugfs_nodes(struct mem_ctl_info *mci)
192 {
193 if (!IS_ENABLED(CONFIG_EDAC_DEBUG))
194 return;
195
196 if (!mci->debugfs)
197 return;
198
199 edac_debugfs_create_file("altr_trigger", S_IWUSR, mci->debugfs, mci,
200 &altr_sdr_mc_debug_inject_fops);
201 }
202
203 /* Get total memory size from Open Firmware DTB */
204 static unsigned long get_total_mem(void)
205 {
206 struct device_node *np = NULL;
207 struct resource res;
208 int ret;
209 unsigned long total_mem = 0;
210
211 for_each_node_by_type(np, "memory") {
212 ret = of_address_to_resource(np, 0, &res);
213 if (ret)
214 continue;
215
216 total_mem += resource_size(&res);
217 }
218 edac_dbg(0, "total_mem 0x%lx\n", total_mem);
219 return total_mem;
220 }
221
222 static const struct of_device_id altr_sdram_ctrl_of_match[] = {
223 { .compatible = "altr,sdram-edac", .data = &c5_data},
224 { .compatible = "altr,sdram-edac-a10", .data = &a10_data},
225 { .compatible = "altr,sdram-edac-s10", .data = &a10_data},
226 {},
227 };
228 MODULE_DEVICE_TABLE(of, altr_sdram_ctrl_of_match);
229
230 static int a10_init(struct regmap *mc_vbase)
231 {
232 if (regmap_update_bits(mc_vbase, A10_INTMODE_OFST,
233 A10_INTMODE_SB_INT, A10_INTMODE_SB_INT)) {
234 edac_printk(KERN_ERR, EDAC_MC,
235 "Error setting SB IRQ mode\n");
236 return -ENODEV;
237 }
238
239 if (regmap_write(mc_vbase, A10_SERRCNTREG_OFST, 1)) {
240 edac_printk(KERN_ERR, EDAC_MC,
241 "Error setting trigger count\n");
242 return -ENODEV;
243 }
244
245 return 0;
246 }
247
248 static int a10_unmask_irq(struct platform_device *pdev, u32 mask)
249 {
250 void __iomem *sm_base;
251 int ret = 0;
252
253 if (!request_mem_region(A10_SYMAN_INTMASK_CLR, sizeof(u32),
254 dev_name(&pdev->dev))) {
255 edac_printk(KERN_ERR, EDAC_MC,
256 "Unable to request mem region\n");
257 return -EBUSY;
258 }
259
260 sm_base = ioremap(A10_SYMAN_INTMASK_CLR, sizeof(u32));
261 if (!sm_base) {
262 edac_printk(KERN_ERR, EDAC_MC,
263 "Unable to ioremap device\n");
264
265 ret = -ENOMEM;
266 goto release;
267 }
268
269 iowrite32(mask, sm_base);
270
271 iounmap(sm_base);
272
273 release:
274 release_mem_region(A10_SYMAN_INTMASK_CLR, sizeof(u32));
275
276 return ret;
277 }
278
279 static int socfpga_is_a10(void);
280 static int altr_sdram_probe(struct platform_device *pdev)
281 {
282 const struct of_device_id *id;
283 struct edac_mc_layer layers[2];
284 struct mem_ctl_info *mci;
285 struct altr_sdram_mc_data *drvdata;
286 const struct altr_sdram_prv_data *priv;
287 struct regmap *mc_vbase;
288 struct dimm_info *dimm;
289 u32 read_reg;
290 int irq, irq2, res = 0;
291 unsigned long mem_size, irqflags = 0;
292
293 id = of_match_device(altr_sdram_ctrl_of_match, &pdev->dev);
294 if (!id)
295 return -ENODEV;
296
297 /* Grab the register range from the sdr controller in device tree */
298 mc_vbase = syscon_regmap_lookup_by_phandle(pdev->dev.of_node,
299 "altr,sdr-syscon");
300 if (IS_ERR(mc_vbase)) {
301 edac_printk(KERN_ERR, EDAC_MC,
302 "regmap for altr,sdr-syscon lookup failed.\n");
303 return -ENODEV;
304 }
305
306 /* Check specific dependencies for the module */
307 priv = of_match_node(altr_sdram_ctrl_of_match,
308 pdev->dev.of_node)->data;
309
310 /* Validate the SDRAM controller has ECC enabled */
311 if (regmap_read(mc_vbase, priv->ecc_ctrl_offset, &read_reg) ||
312 ((read_reg & priv->ecc_ctl_en_mask) != priv->ecc_ctl_en_mask)) {
313 edac_printk(KERN_ERR, EDAC_MC,
314 "No ECC/ECC disabled [0x%08X]\n", read_reg);
315 return -ENODEV;
316 }
317
318 /* Grab memory size from device tree. */
319 mem_size = get_total_mem();
320 if (!mem_size) {
321 edac_printk(KERN_ERR, EDAC_MC, "Unable to calculate memory size\n");
322 return -ENODEV;
323 }
324
325 /* Ensure the SDRAM Interrupt is disabled */
326 if (regmap_update_bits(mc_vbase, priv->ecc_irq_en_offset,
327 priv->ecc_irq_en_mask, 0)) {
328 edac_printk(KERN_ERR, EDAC_MC,
329 "Error disabling SDRAM ECC IRQ\n");
330 return -ENODEV;
331 }
332
333 /* Toggle to clear the SDRAM Error count */
334 if (regmap_update_bits(mc_vbase, priv->ecc_cnt_rst_offset,
335 priv->ecc_cnt_rst_mask,
336 priv->ecc_cnt_rst_mask)) {
337 edac_printk(KERN_ERR, EDAC_MC,
338 "Error clearing SDRAM ECC count\n");
339 return -ENODEV;
340 }
341
342 if (regmap_update_bits(mc_vbase, priv->ecc_cnt_rst_offset,
343 priv->ecc_cnt_rst_mask, 0)) {
344 edac_printk(KERN_ERR, EDAC_MC,
345 "Error clearing SDRAM ECC count\n");
346 return -ENODEV;
347 }
348
349 irq = platform_get_irq(pdev, 0);
350 if (irq < 0) {
351 edac_printk(KERN_ERR, EDAC_MC,
352 "No irq %d in DT\n", irq);
353 return -ENODEV;
354 }
355
356 /* Arria10 has a 2nd IRQ */
357 irq2 = platform_get_irq(pdev, 1);
358
359 layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
360 layers[0].size = 1;
361 layers[0].is_virt_csrow = true;
362 layers[1].type = EDAC_MC_LAYER_CHANNEL;
363 layers[1].size = 1;
364 layers[1].is_virt_csrow = false;
365 mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers,
366 sizeof(struct altr_sdram_mc_data));
367 if (!mci)
368 return -ENOMEM;
369
370 mci->pdev = &pdev->dev;
371 drvdata = mci->pvt_info;
372 drvdata->mc_vbase = mc_vbase;
373 drvdata->data = priv;
374 platform_set_drvdata(pdev, mci);
375
376 if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL)) {
377 edac_printk(KERN_ERR, EDAC_MC,
378 "Unable to get managed device resource\n");
379 res = -ENOMEM;
380 goto free;
381 }
382
383 mci->mtype_cap = MEM_FLAG_DDR3;
384 mci->edac_ctl_cap = EDAC_FLAG_NONE | EDAC_FLAG_SECDED;
385 mci->edac_cap = EDAC_FLAG_SECDED;
386 mci->mod_name = EDAC_MOD_STR;
387 mci->ctl_name = dev_name(&pdev->dev);
388 mci->scrub_mode = SCRUB_SW_SRC;
389 mci->dev_name = dev_name(&pdev->dev);
390
391 dimm = *mci->dimms;
392 dimm->nr_pages = ((mem_size - 1) >> PAGE_SHIFT) + 1;
393 dimm->grain = 8;
394 dimm->dtype = DEV_X8;
395 dimm->mtype = MEM_DDR3;
396 dimm->edac_mode = EDAC_SECDED;
397
398 res = edac_mc_add_mc(mci);
399 if (res < 0)
400 goto err;
401
402 /* Only the Arria10 has separate IRQs */
403 if (socfpga_is_a10()) {
404 /* Arria10 specific initialization */
405 res = a10_init(mc_vbase);
406 if (res < 0)
407 goto err2;
408
409 res = devm_request_irq(&pdev->dev, irq2,
410 altr_sdram_mc_err_handler,
411 IRQF_SHARED, dev_name(&pdev->dev), mci);
412 if (res < 0) {
413 edac_mc_printk(mci, KERN_ERR,
414 "Unable to request irq %d\n", irq2);
415 res = -ENODEV;
416 goto err2;
417 }
418
419 res = a10_unmask_irq(pdev, A10_DDR0_IRQ_MASK);
420 if (res < 0)
421 goto err2;
422
423 irqflags = IRQF_SHARED;
424 }
425
426 res = devm_request_irq(&pdev->dev, irq, altr_sdram_mc_err_handler,
427 irqflags, dev_name(&pdev->dev), mci);
428 if (res < 0) {
429 edac_mc_printk(mci, KERN_ERR,
430 "Unable to request irq %d\n", irq);
431 res = -ENODEV;
432 goto err2;
433 }
434
435 /* Infrastructure ready - enable the IRQ */
436 if (regmap_update_bits(drvdata->mc_vbase, priv->ecc_irq_en_offset,
437 priv->ecc_irq_en_mask, priv->ecc_irq_en_mask)) {
438 edac_mc_printk(mci, KERN_ERR,
439 "Error enabling SDRAM ECC IRQ\n");
440 res = -ENODEV;
441 goto err2;
442 }
443
444 altr_sdr_mc_create_debugfs_nodes(mci);
445
446 devres_close_group(&pdev->dev, NULL);
447
448 return 0;
449
450 err2:
451 edac_mc_del_mc(&pdev->dev);
452 err:
453 devres_release_group(&pdev->dev, NULL);
454 free:
455 edac_mc_free(mci);
456 edac_printk(KERN_ERR, EDAC_MC,
457 "EDAC Probe Failed; Error %d\n", res);
458
459 return res;
460 }
461
462 static int altr_sdram_remove(struct platform_device *pdev)
463 {
464 struct mem_ctl_info *mci = platform_get_drvdata(pdev);
465
466 edac_mc_del_mc(&pdev->dev);
467 edac_mc_free(mci);
468 platform_set_drvdata(pdev, NULL);
469
470 return 0;
471 }
472
473 /*
474 * If you want to suspend, need to disable EDAC by removing it
475 * from the device tree or defconfig.
476 */
477 #ifdef CONFIG_PM
478 static int altr_sdram_prepare(struct device *dev)
479 {
480 pr_err("Suspend not allowed when EDAC is enabled.\n");
481
482 return -EPERM;
483 }
484
485 static const struct dev_pm_ops altr_sdram_pm_ops = {
486 .prepare = altr_sdram_prepare,
487 };
488 #endif
489
490 static struct platform_driver altr_sdram_edac_driver = {
491 .probe = altr_sdram_probe,
492 .remove = altr_sdram_remove,
493 .driver = {
494 .name = "altr_sdram_edac",
495 #ifdef CONFIG_PM
496 .pm = &altr_sdram_pm_ops,
497 #endif
498 .of_match_table = altr_sdram_ctrl_of_match,
499 },
500 };
501
502 module_platform_driver(altr_sdram_edac_driver);
503
504 #endif /* CONFIG_EDAC_ALTERA_SDRAM */
505
506 /**************** Stratix 10 EDAC Memory Controller Functions ************/
507
508 /**
509 * s10_protected_reg_write
510 * Write to a protected SMC register.
511 * @context: Not used.
512 * @reg: Address of register
513 * @value: Value to write
514 * Return: INTEL_SIP_SMC_STATUS_OK (0) on success
515 * INTEL_SIP_SMC_REG_ERROR on error
516 * INTEL_SIP_SMC_RETURN_UNKNOWN_FUNCTION if not supported
517 */
518 static int s10_protected_reg_write(void *context, unsigned int reg,
519 unsigned int val)
520 {
521 struct arm_smccc_res result;
522 unsigned long offset = (unsigned long)context;
523
524 arm_smccc_smc(INTEL_SIP_SMC_REG_WRITE, offset + reg, val, 0, 0,
525 0, 0, 0, &result);
526
527 return (int)result.a0;
528 }
529
530 /**
531 * s10_protected_reg_read
532 * Read the status of a protected SMC register
533 * @context: Not used.
534 * @reg: Address of register
535 * @value: Value read.
536 * Return: INTEL_SIP_SMC_STATUS_OK (0) on success
537 * INTEL_SIP_SMC_REG_ERROR on error
538 * INTEL_SIP_SMC_RETURN_UNKNOWN_FUNCTION if not supported
539 */
540 static int s10_protected_reg_read(void *context, unsigned int reg,
541 unsigned int *val)
542 {
543 struct arm_smccc_res result;
544 unsigned long offset = (unsigned long)context;
545
546 arm_smccc_smc(INTEL_SIP_SMC_REG_READ, offset + reg, 0, 0, 0,
547 0, 0, 0, &result);
548
549 *val = (unsigned int)result.a1;
550
551 return (int)result.a0;
552 }
553
554 static const struct regmap_config s10_sdram_regmap_cfg = {
555 .name = "s10_ddr",
556 .reg_bits = 32,
557 .reg_stride = 4,
558 .val_bits = 32,
559 .max_register = 0xffd12228,
560 .reg_read = s10_protected_reg_read,
561 .reg_write = s10_protected_reg_write,
562 .use_single_read = true,
563 .use_single_write = true,
564 };
565
566 /************** </Stratix10 EDAC Memory Controller Functions> ***********/
567
568 /************************* EDAC Parent Probe *************************/
569
570 static const struct of_device_id altr_edac_device_of_match[];
571
572 static const struct of_device_id altr_edac_of_match[] = {
573 { .compatible = "altr,socfpga-ecc-manager" },
574 {},
575 };
576 MODULE_DEVICE_TABLE(of, altr_edac_of_match);
577
578 static int altr_edac_probe(struct platform_device *pdev)
579 {
580 of_platform_populate(pdev->dev.of_node, altr_edac_device_of_match,
581 NULL, &pdev->dev);
582 return 0;
583 }
584
585 static struct platform_driver altr_edac_driver = {
586 .probe = altr_edac_probe,
587 .driver = {
588 .name = "socfpga_ecc_manager",
589 .of_match_table = altr_edac_of_match,
590 },
591 };
592 module_platform_driver(altr_edac_driver);
593
594 /************************* EDAC Device Functions *************************/
595
596 /*
597 * EDAC Device Functions (shared between various IPs).
598 * The discrete memories use the EDAC Device framework. The probe
599 * and error handling functions are very similar between memories
600 * so they are shared. The memory allocation and freeing for EDAC
601 * trigger testing are different for each memory.
602 */
603
604 static const struct edac_device_prv_data ocramecc_data;
605 static const struct edac_device_prv_data l2ecc_data;
606 static const struct edac_device_prv_data a10_ocramecc_data;
607 static const struct edac_device_prv_data a10_l2ecc_data;
608
609 static irqreturn_t altr_edac_device_handler(int irq, void *dev_id)
610 {
611 irqreturn_t ret_value = IRQ_NONE;
612 struct edac_device_ctl_info *dci = dev_id;
613 struct altr_edac_device_dev *drvdata = dci->pvt_info;
614 const struct edac_device_prv_data *priv = drvdata->data;
615
616 if (irq == drvdata->sb_irq) {
617 if (priv->ce_clear_mask)
618 writel(priv->ce_clear_mask, drvdata->base);
619 edac_device_handle_ce(dci, 0, 0, drvdata->edac_dev_name);
620 ret_value = IRQ_HANDLED;
621 } else if (irq == drvdata->db_irq) {
622 if (priv->ue_clear_mask)
623 writel(priv->ue_clear_mask, drvdata->base);
624 edac_device_handle_ue(dci, 0, 0, drvdata->edac_dev_name);
625 panic("\nEDAC:ECC_DEVICE[Uncorrectable errors]\n");
626 ret_value = IRQ_HANDLED;
627 } else {
628 WARN_ON(1);
629 }
630
631 return ret_value;
632 }
633
634 static ssize_t altr_edac_device_trig(struct file *file,
635 const char __user *user_buf,
636 size_t count, loff_t *ppos)
637
638 {
639 u32 *ptemp, i, error_mask;
640 int result = 0;
641 u8 trig_type;
642 unsigned long flags;
643 struct edac_device_ctl_info *edac_dci = file->private_data;
644 struct altr_edac_device_dev *drvdata = edac_dci->pvt_info;
645 const struct edac_device_prv_data *priv = drvdata->data;
646 void *generic_ptr = edac_dci->dev;
647
648 if (!user_buf || get_user(trig_type, user_buf))
649 return -EFAULT;
650
651 if (!priv->alloc_mem)
652 return -ENOMEM;
653
654 /*
655 * Note that generic_ptr is initialized to the device * but in
656 * some alloc_functions, this is overridden and returns data.
657 */
658 ptemp = priv->alloc_mem(priv->trig_alloc_sz, &generic_ptr);
659 if (!ptemp) {
660 edac_printk(KERN_ERR, EDAC_DEVICE,
661 "Inject: Buffer Allocation error\n");
662 return -ENOMEM;
663 }
664
665 if (trig_type == ALTR_UE_TRIGGER_CHAR)
666 error_mask = priv->ue_set_mask;
667 else
668 error_mask = priv->ce_set_mask;
669
670 edac_printk(KERN_ALERT, EDAC_DEVICE,
671 "Trigger Error Mask (0x%X)\n", error_mask);
672
673 local_irq_save(flags);
674 /* write ECC corrupted data out. */
675 for (i = 0; i < (priv->trig_alloc_sz / sizeof(*ptemp)); i++) {
676 /* Read data so we're in the correct state */
677 rmb();
678 if (READ_ONCE(ptemp[i]))
679 result = -1;
680 /* Toggle Error bit (it is latched), leave ECC enabled */
681 writel(error_mask, (drvdata->base + priv->set_err_ofst));
682 writel(priv->ecc_enable_mask, (drvdata->base +
683 priv->set_err_ofst));
684 ptemp[i] = i;
685 }
686 /* Ensure it has been written out */
687 wmb();
688 local_irq_restore(flags);
689
690 if (result)
691 edac_printk(KERN_ERR, EDAC_DEVICE, "Mem Not Cleared\n");
692
693 /* Read out written data. ECC error caused here */
694 for (i = 0; i < ALTR_TRIGGER_READ_WRD_CNT; i++)
695 if (READ_ONCE(ptemp[i]) != i)
696 edac_printk(KERN_ERR, EDAC_DEVICE,
697 "Read doesn't match written data\n");
698
699 if (priv->free_mem)
700 priv->free_mem(ptemp, priv->trig_alloc_sz, generic_ptr);
701
702 return count;
703 }
704
705 static const struct file_operations altr_edac_device_inject_fops = {
706 .open = simple_open,
707 .write = altr_edac_device_trig,
708 .llseek = generic_file_llseek,
709 };
710
711 static ssize_t altr_edac_a10_device_trig(struct file *file,
712 const char __user *user_buf,
713 size_t count, loff_t *ppos);
714
715 static const struct file_operations altr_edac_a10_device_inject_fops = {
716 .open = simple_open,
717 .write = altr_edac_a10_device_trig,
718 .llseek = generic_file_llseek,
719 };
720
721 static ssize_t altr_edac_a10_device_trig2(struct file *file,
722 const char __user *user_buf,
723 size_t count, loff_t *ppos);
724
725 static const struct file_operations altr_edac_a10_device_inject2_fops = {
726 .open = simple_open,
727 .write = altr_edac_a10_device_trig2,
728 .llseek = generic_file_llseek,
729 };
730
731 static void altr_create_edacdev_dbgfs(struct edac_device_ctl_info *edac_dci,
732 const struct edac_device_prv_data *priv)
733 {
734 struct altr_edac_device_dev *drvdata = edac_dci->pvt_info;
735
736 if (!IS_ENABLED(CONFIG_EDAC_DEBUG))
737 return;
738
739 drvdata->debugfs_dir = edac_debugfs_create_dir(drvdata->edac_dev_name);
740 if (!drvdata->debugfs_dir)
741 return;
742
743 if (!edac_debugfs_create_file("altr_trigger", S_IWUSR,
744 drvdata->debugfs_dir, edac_dci,
745 priv->inject_fops))
746 debugfs_remove_recursive(drvdata->debugfs_dir);
747 }
748
749 static const struct of_device_id altr_edac_device_of_match[] = {
750 #ifdef CONFIG_EDAC_ALTERA_L2C
751 { .compatible = "altr,socfpga-l2-ecc", .data = &l2ecc_data },
752 #endif
753 #ifdef CONFIG_EDAC_ALTERA_OCRAM
754 { .compatible = "altr,socfpga-ocram-ecc", .data = &ocramecc_data },
755 #endif
756 {},
757 };
758 MODULE_DEVICE_TABLE(of, altr_edac_device_of_match);
759
760 /*
761 * altr_edac_device_probe()
762 * This is a generic EDAC device driver that will support
763 * various Altera memory devices such as the L2 cache ECC and
764 * OCRAM ECC as well as the memories for other peripherals.
765 * Module specific initialization is done by passing the
766 * function index in the device tree.
767 */
768 static int altr_edac_device_probe(struct platform_device *pdev)
769 {
770 struct edac_device_ctl_info *dci;
771 struct altr_edac_device_dev *drvdata;
772 struct resource *r;
773 int res = 0;
774 struct device_node *np = pdev->dev.of_node;
775 char *ecc_name = (char *)np->name;
776 static int dev_instance;
777
778 if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL)) {
779 edac_printk(KERN_ERR, EDAC_DEVICE,
780 "Unable to open devm\n");
781 return -ENOMEM;
782 }
783
784 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
785 if (!r) {
786 edac_printk(KERN_ERR, EDAC_DEVICE,
787 "Unable to get mem resource\n");
788 res = -ENODEV;
789 goto fail;
790 }
791
792 if (!devm_request_mem_region(&pdev->dev, r->start, resource_size(r),
793 dev_name(&pdev->dev))) {
794 edac_printk(KERN_ERR, EDAC_DEVICE,
795 "%s:Error requesting mem region\n", ecc_name);
796 res = -EBUSY;
797 goto fail;
798 }
799
800 dci = edac_device_alloc_ctl_info(sizeof(*drvdata), ecc_name,
801 1, ecc_name, 1, 0, NULL, 0,
802 dev_instance++);
803
804 if (!dci) {
805 edac_printk(KERN_ERR, EDAC_DEVICE,
806 "%s: Unable to allocate EDAC device\n", ecc_name);
807 res = -ENOMEM;
808 goto fail;
809 }
810
811 drvdata = dci->pvt_info;
812 dci->dev = &pdev->dev;
813 platform_set_drvdata(pdev, dci);
814 drvdata->edac_dev_name = ecc_name;
815
816 drvdata->base = devm_ioremap(&pdev->dev, r->start, resource_size(r));
817 if (!drvdata->base) {
818 res = -ENOMEM;
819 goto fail1;
820 }
821
822 /* Get driver specific data for this EDAC device */
823 drvdata->data = of_match_node(altr_edac_device_of_match, np)->data;
824
825 /* Check specific dependencies for the module */
826 if (drvdata->data->setup) {
827 res = drvdata->data->setup(drvdata);
828 if (res)
829 goto fail1;
830 }
831
832 drvdata->sb_irq = platform_get_irq(pdev, 0);
833 res = devm_request_irq(&pdev->dev, drvdata->sb_irq,
834 altr_edac_device_handler,
835 0, dev_name(&pdev->dev), dci);
836 if (res)
837 goto fail1;
838
839 drvdata->db_irq = platform_get_irq(pdev, 1);
840 res = devm_request_irq(&pdev->dev, drvdata->db_irq,
841 altr_edac_device_handler,
842 0, dev_name(&pdev->dev), dci);
843 if (res)
844 goto fail1;
845
846 dci->mod_name = "Altera ECC Manager";
847 dci->dev_name = drvdata->edac_dev_name;
848
849 res = edac_device_add_device(dci);
850 if (res)
851 goto fail1;
852
853 altr_create_edacdev_dbgfs(dci, drvdata->data);
854
855 devres_close_group(&pdev->dev, NULL);
856
857 return 0;
858
859 fail1:
860 edac_device_free_ctl_info(dci);
861 fail:
862 devres_release_group(&pdev->dev, NULL);
863 edac_printk(KERN_ERR, EDAC_DEVICE,
864 "%s:Error setting up EDAC device: %d\n", ecc_name, res);
865
866 return res;
867 }
868
869 static int altr_edac_device_remove(struct platform_device *pdev)
870 {
871 struct edac_device_ctl_info *dci = platform_get_drvdata(pdev);
872 struct altr_edac_device_dev *drvdata = dci->pvt_info;
873
874 debugfs_remove_recursive(drvdata->debugfs_dir);
875 edac_device_del_device(&pdev->dev);
876 edac_device_free_ctl_info(dci);
877
878 return 0;
879 }
880
881 static struct platform_driver altr_edac_device_driver = {
882 .probe = altr_edac_device_probe,
883 .remove = altr_edac_device_remove,
884 .driver = {
885 .name = "altr_edac_device",
886 .of_match_table = altr_edac_device_of_match,
887 },
888 };
889 module_platform_driver(altr_edac_device_driver);
890
891 /******************* Arria10 Device ECC Shared Functions *****************/
892
893 /*
894 * Test for memory's ECC dependencies upon entry because platform specific
895 * startup should have initialized the memory and enabled the ECC.
896 * Can't turn on ECC here because accessing un-initialized memory will
897 * cause CE/UE errors possibly causing an ABORT.
898 */
899 static int __maybe_unused
900 altr_check_ecc_deps(struct altr_edac_device_dev *device)
901 {
902 void __iomem *base = device->base;
903 const struct edac_device_prv_data *prv = device->data;
904
905 if (readl(base + prv->ecc_en_ofst) & prv->ecc_enable_mask)
906 return 0;
907
908 edac_printk(KERN_ERR, EDAC_DEVICE,
909 "%s: No ECC present or ECC disabled.\n",
910 device->edac_dev_name);
911 return -ENODEV;
912 }
913
914 static irqreturn_t __maybe_unused altr_edac_a10_ecc_irq(int irq, void *dev_id)
915 {
916 struct altr_edac_device_dev *dci = dev_id;
917 void __iomem *base = dci->base;
918
919 if (irq == dci->sb_irq) {
920 writel(ALTR_A10_ECC_SERRPENA,
921 base + ALTR_A10_ECC_INTSTAT_OFST);
922 edac_device_handle_ce(dci->edac_dev, 0, 0, dci->edac_dev_name);
923
924 return IRQ_HANDLED;
925 } else if (irq == dci->db_irq) {
926 writel(ALTR_A10_ECC_DERRPENA,
927 base + ALTR_A10_ECC_INTSTAT_OFST);
928 edac_device_handle_ue(dci->edac_dev, 0, 0, dci->edac_dev_name);
929 if (dci->data->panic)
930 panic("\nEDAC:ECC_DEVICE[Uncorrectable errors]\n");
931
932 return IRQ_HANDLED;
933 }
934
935 WARN_ON(1);
936
937 return IRQ_NONE;
938 }
939
940 /******************* Arria10 Memory Buffer Functions *********************/
941
942 static inline int a10_get_irq_mask(struct device_node *np)
943 {
944 int irq;
945 const u32 *handle = of_get_property(np, "interrupts", NULL);
946
947 if (!handle)
948 return -ENODEV;
949 irq = be32_to_cpup(handle);
950 return irq;
951 }
952
953 static inline void ecc_set_bits(u32 bit_mask, void __iomem *ioaddr)
954 {
955 u32 value = readl(ioaddr);
956
957 value |= bit_mask;
958 writel(value, ioaddr);
959 }
960
961 static inline void ecc_clear_bits(u32 bit_mask, void __iomem *ioaddr)
962 {
963 u32 value = readl(ioaddr);
964
965 value &= ~bit_mask;
966 writel(value, ioaddr);
967 }
968
969 static inline int ecc_test_bits(u32 bit_mask, void __iomem *ioaddr)
970 {
971 u32 value = readl(ioaddr);
972
973 return (value & bit_mask) ? 1 : 0;
974 }
975
976 /*
977 * This function uses the memory initialization block in the Arria10 ECC
978 * controller to initialize/clear the entire memory data and ECC data.
979 */
980 static int __maybe_unused altr_init_memory_port(void __iomem *ioaddr, int port)
981 {
982 int limit = ALTR_A10_ECC_INIT_WATCHDOG_10US;
983 u32 init_mask, stat_mask, clear_mask;
984 int ret = 0;
985
986 if (port) {
987 init_mask = ALTR_A10_ECC_INITB;
988 stat_mask = ALTR_A10_ECC_INITCOMPLETEB;
989 clear_mask = ALTR_A10_ECC_ERRPENB_MASK;
990 } else {
991 init_mask = ALTR_A10_ECC_INITA;
992 stat_mask = ALTR_A10_ECC_INITCOMPLETEA;
993 clear_mask = ALTR_A10_ECC_ERRPENA_MASK;
994 }
995
996 ecc_set_bits(init_mask, (ioaddr + ALTR_A10_ECC_CTRL_OFST));
997 while (limit--) {
998 if (ecc_test_bits(stat_mask,
999 (ioaddr + ALTR_A10_ECC_INITSTAT_OFST)))
1000 break;
1001 udelay(1);
1002 }
1003 if (limit < 0)
1004 ret = -EBUSY;
1005
1006 /* Clear any pending ECC interrupts */
1007 writel(clear_mask, (ioaddr + ALTR_A10_ECC_INTSTAT_OFST));
1008
1009 return ret;
1010 }
1011
1012 static int socfpga_is_a10(void)
1013 {
1014 return of_machine_is_compatible("altr,socfpga-arria10");
1015 }
1016
1017 static int socfpga_is_s10(void)
1018 {
1019 return of_machine_is_compatible("altr,socfpga-stratix10");
1020 }
1021
1022 static __init int __maybe_unused
1023 altr_init_a10_ecc_block(struct device_node *np, u32 irq_mask,
1024 u32 ecc_ctrl_en_mask, bool dual_port)
1025 {
1026 int ret = 0;
1027 void __iomem *ecc_block_base;
1028 struct regmap *ecc_mgr_map;
1029 char *ecc_name;
1030 struct device_node *np_eccmgr;
1031
1032 ecc_name = (char *)np->name;
1033
1034 /* Get the ECC Manager - parent of the device EDACs */
1035 np_eccmgr = of_get_parent(np);
1036
1037 if (socfpga_is_a10()) {
1038 ecc_mgr_map = syscon_regmap_lookup_by_phandle(np_eccmgr,
1039 "altr,sysmgr-syscon");
1040 } else {
1041 struct device_node *sysmgr_np;
1042 struct resource res;
1043 uintptr_t base;
1044
1045 sysmgr_np = of_parse_phandle(np_eccmgr,
1046 "altr,sysmgr-syscon", 0);
1047 if (!sysmgr_np) {
1048 edac_printk(KERN_ERR, EDAC_DEVICE,
1049 "Unable to find altr,sysmgr-syscon\n");
1050 return -ENODEV;
1051 }
1052
1053 if (of_address_to_resource(sysmgr_np, 0, &res)) {
1054 of_node_put(sysmgr_np);
1055 return -ENOMEM;
1056 }
1057
1058 /* Need physical address for SMCC call */
1059 base = res.start;
1060
1061 ecc_mgr_map = regmap_init(NULL, NULL, (void *)base,
1062 &s10_sdram_regmap_cfg);
1063 of_node_put(sysmgr_np);
1064 }
1065 of_node_put(np_eccmgr);
1066 if (IS_ERR(ecc_mgr_map)) {
1067 edac_printk(KERN_ERR, EDAC_DEVICE,
1068 "Unable to get syscon altr,sysmgr-syscon\n");
1069 return -ENODEV;
1070 }
1071
1072 /* Map the ECC Block */
1073 ecc_block_base = of_iomap(np, 0);
1074 if (!ecc_block_base) {
1075 edac_printk(KERN_ERR, EDAC_DEVICE,
1076 "Unable to map %s ECC block\n", ecc_name);
1077 return -ENODEV;
1078 }
1079
1080 /* Disable ECC */
1081 regmap_write(ecc_mgr_map, A10_SYSMGR_ECC_INTMASK_SET_OFST, irq_mask);
1082 writel(ALTR_A10_ECC_SERRINTEN,
1083 (ecc_block_base + ALTR_A10_ECC_ERRINTENR_OFST));
1084 ecc_clear_bits(ecc_ctrl_en_mask,
1085 (ecc_block_base + ALTR_A10_ECC_CTRL_OFST));
1086 /* Ensure all writes complete */
1087 wmb();
1088 /* Use HW initialization block to initialize memory for ECC */
1089 ret = altr_init_memory_port(ecc_block_base, 0);
1090 if (ret) {
1091 edac_printk(KERN_ERR, EDAC_DEVICE,
1092 "ECC: cannot init %s PORTA memory\n", ecc_name);
1093 goto out;
1094 }
1095
1096 if (dual_port) {
1097 ret = altr_init_memory_port(ecc_block_base, 1);
1098 if (ret) {
1099 edac_printk(KERN_ERR, EDAC_DEVICE,
1100 "ECC: cannot init %s PORTB memory\n",
1101 ecc_name);
1102 goto out;
1103 }
1104 }
1105
1106 /* Interrupt mode set to every SBERR */
1107 regmap_write(ecc_mgr_map, ALTR_A10_ECC_INTMODE_OFST,
1108 ALTR_A10_ECC_INTMODE);
1109 /* Enable ECC */
1110 ecc_set_bits(ecc_ctrl_en_mask, (ecc_block_base +
1111 ALTR_A10_ECC_CTRL_OFST));
1112 writel(ALTR_A10_ECC_SERRINTEN,
1113 (ecc_block_base + ALTR_A10_ECC_ERRINTENS_OFST));
1114 regmap_write(ecc_mgr_map, A10_SYSMGR_ECC_INTMASK_CLR_OFST, irq_mask);
1115 /* Ensure all writes complete */
1116 wmb();
1117 out:
1118 iounmap(ecc_block_base);
1119 return ret;
1120 }
1121
1122 static int validate_parent_available(struct device_node *np);
1123 static const struct of_device_id altr_edac_a10_device_of_match[];
1124 static int __init __maybe_unused altr_init_a10_ecc_device_type(char *compat)
1125 {
1126 int irq;
1127 struct device_node *child, *np;
1128
1129 if (!socfpga_is_a10() && !socfpga_is_s10())
1130 return -ENODEV;
1131
1132 np = of_find_compatible_node(NULL, NULL,
1133 "altr,socfpga-a10-ecc-manager");
1134 if (!np) {
1135 edac_printk(KERN_ERR, EDAC_DEVICE, "ECC Manager not found\n");
1136 return -ENODEV;
1137 }
1138
1139 for_each_child_of_node(np, child) {
1140 const struct of_device_id *pdev_id;
1141 const struct edac_device_prv_data *prv;
1142
1143 if (!of_device_is_available(child))
1144 continue;
1145 if (!of_device_is_compatible(child, compat))
1146 continue;
1147
1148 if (validate_parent_available(child))
1149 continue;
1150
1151 irq = a10_get_irq_mask(child);
1152 if (irq < 0)
1153 continue;
1154
1155 /* Get matching node and check for valid result */
1156 pdev_id = of_match_node(altr_edac_a10_device_of_match, child);
1157 if (IS_ERR_OR_NULL(pdev_id))
1158 continue;
1159
1160 /* Validate private data pointer before dereferencing */
1161 prv = pdev_id->data;
1162 if (!prv)
1163 continue;
1164
1165 altr_init_a10_ecc_block(child, BIT(irq),
1166 prv->ecc_enable_mask, 0);
1167 }
1168
1169 of_node_put(np);
1170 return 0;
1171 }
1172
1173 /*********************** OCRAM EDAC Device Functions *********************/
1174
1175 #ifdef CONFIG_EDAC_ALTERA_OCRAM
1176
1177 static void *ocram_alloc_mem(size_t size, void **other)
1178 {
1179 struct device_node *np;
1180 struct gen_pool *gp;
1181 void *sram_addr;
1182
1183 np = of_find_compatible_node(NULL, NULL, "altr,socfpga-ocram-ecc");
1184 if (!np)
1185 return NULL;
1186
1187 gp = of_gen_pool_get(np, "iram", 0);
1188 of_node_put(np);
1189 if (!gp)
1190 return NULL;
1191
1192 sram_addr = (void *)gen_pool_alloc(gp, size);
1193 if (!sram_addr)
1194 return NULL;
1195
1196 memset(sram_addr, 0, size);
1197 /* Ensure data is written out */
1198 wmb();
1199
1200 /* Remember this handle for freeing later */
1201 *other = gp;
1202
1203 return sram_addr;
1204 }
1205
1206 static void ocram_free_mem(void *p, size_t size, void *other)
1207 {
1208 gen_pool_free((struct gen_pool *)other, (unsigned long)p, size);
1209 }
1210
1211 static const struct edac_device_prv_data ocramecc_data = {
1212 .setup = altr_check_ecc_deps,
1213 .ce_clear_mask = (ALTR_OCR_ECC_EN | ALTR_OCR_ECC_SERR),
1214 .ue_clear_mask = (ALTR_OCR_ECC_EN | ALTR_OCR_ECC_DERR),
1215 .alloc_mem = ocram_alloc_mem,
1216 .free_mem = ocram_free_mem,
1217 .ecc_enable_mask = ALTR_OCR_ECC_EN,
1218 .ecc_en_ofst = ALTR_OCR_ECC_REG_OFFSET,
1219 .ce_set_mask = (ALTR_OCR_ECC_EN | ALTR_OCR_ECC_INJS),
1220 .ue_set_mask = (ALTR_OCR_ECC_EN | ALTR_OCR_ECC_INJD),
1221 .set_err_ofst = ALTR_OCR_ECC_REG_OFFSET,
1222 .trig_alloc_sz = ALTR_TRIG_OCRAM_BYTE_SIZE,
1223 .inject_fops = &altr_edac_device_inject_fops,
1224 };
1225
1226 static int __maybe_unused
1227 altr_check_ocram_deps_init(struct altr_edac_device_dev *device)
1228 {
1229 void __iomem *base = device->base;
1230 int ret;
1231
1232 ret = altr_check_ecc_deps(device);
1233 if (ret)
1234 return ret;
1235
1236 /* Verify OCRAM has been initialized */
1237 if (!ecc_test_bits(ALTR_A10_ECC_INITCOMPLETEA,
1238 (base + ALTR_A10_ECC_INITSTAT_OFST)))
1239 return -ENODEV;
1240
1241 /* Enable IRQ on Single Bit Error */
1242 writel(ALTR_A10_ECC_SERRINTEN, (base + ALTR_A10_ECC_ERRINTENS_OFST));
1243 /* Ensure all writes complete */
1244 wmb();
1245
1246 return 0;
1247 }
1248
1249 static const struct edac_device_prv_data a10_ocramecc_data = {
1250 .setup = altr_check_ocram_deps_init,
1251 .ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1252 .ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1253 .irq_status_mask = A10_SYSMGR_ECC_INTSTAT_OCRAM,
1254 .ecc_enable_mask = ALTR_A10_OCRAM_ECC_EN_CTL,
1255 .ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1256 .ce_set_mask = ALTR_A10_ECC_TSERRA,
1257 .ue_set_mask = ALTR_A10_ECC_TDERRA,
1258 .set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1259 .ecc_irq_handler = altr_edac_a10_ecc_irq,
1260 .inject_fops = &altr_edac_a10_device_inject2_fops,
1261 /*
1262 * OCRAM panic on uncorrectable error because sleep/resume
1263 * functions and FPGA contents are stored in OCRAM. Prefer
1264 * a kernel panic over executing/loading corrupted data.
1265 */
1266 .panic = true,
1267 };
1268
1269 #endif /* CONFIG_EDAC_ALTERA_OCRAM */
1270
1271 /********************* L2 Cache EDAC Device Functions ********************/
1272
1273 #ifdef CONFIG_EDAC_ALTERA_L2C
1274
1275 static void *l2_alloc_mem(size_t size, void **other)
1276 {
1277 struct device *dev = *other;
1278 void *ptemp = devm_kzalloc(dev, size, GFP_KERNEL);
1279
1280 if (!ptemp)
1281 return NULL;
1282
1283 /* Make sure everything is written out */
1284 wmb();
1285
1286 /*
1287 * Clean all cache levels up to LoC (includes L2)
1288 * This ensures the corrupted data is written into
1289 * L2 cache for readback test (which causes ECC error).
1290 */
1291 flush_cache_all();
1292
1293 return ptemp;
1294 }
1295
1296 static void l2_free_mem(void *p, size_t size, void *other)
1297 {
1298 struct device *dev = other;
1299
1300 if (dev && p)
1301 devm_kfree(dev, p);
1302 }
1303
1304 /*
1305 * altr_l2_check_deps()
1306 * Test for L2 cache ECC dependencies upon entry because
1307 * platform specific startup should have initialized the L2
1308 * memory and enabled the ECC.
1309 * Bail if ECC is not enabled.
1310 * Note that L2 Cache Enable is forced at build time.
1311 */
1312 static int altr_l2_check_deps(struct altr_edac_device_dev *device)
1313 {
1314 void __iomem *base = device->base;
1315 const struct edac_device_prv_data *prv = device->data;
1316
1317 if ((readl(base) & prv->ecc_enable_mask) ==
1318 prv->ecc_enable_mask)
1319 return 0;
1320
1321 edac_printk(KERN_ERR, EDAC_DEVICE,
1322 "L2: No ECC present, or ECC disabled\n");
1323 return -ENODEV;
1324 }
1325
1326 static irqreturn_t altr_edac_a10_l2_irq(int irq, void *dev_id)
1327 {
1328 struct altr_edac_device_dev *dci = dev_id;
1329
1330 if (irq == dci->sb_irq) {
1331 regmap_write(dci->edac->ecc_mgr_map,
1332 A10_SYSGMR_MPU_CLEAR_L2_ECC_OFST,
1333 A10_SYSGMR_MPU_CLEAR_L2_ECC_SB);
1334 edac_device_handle_ce(dci->edac_dev, 0, 0, dci->edac_dev_name);
1335
1336 return IRQ_HANDLED;
1337 } else if (irq == dci->db_irq) {
1338 regmap_write(dci->edac->ecc_mgr_map,
1339 A10_SYSGMR_MPU_CLEAR_L2_ECC_OFST,
1340 A10_SYSGMR_MPU_CLEAR_L2_ECC_MB);
1341 edac_device_handle_ue(dci->edac_dev, 0, 0, dci->edac_dev_name);
1342 panic("\nEDAC:ECC_DEVICE[Uncorrectable errors]\n");
1343
1344 return IRQ_HANDLED;
1345 }
1346
1347 WARN_ON(1);
1348
1349 return IRQ_NONE;
1350 }
1351
1352 static const struct edac_device_prv_data l2ecc_data = {
1353 .setup = altr_l2_check_deps,
1354 .ce_clear_mask = 0,
1355 .ue_clear_mask = 0,
1356 .alloc_mem = l2_alloc_mem,
1357 .free_mem = l2_free_mem,
1358 .ecc_enable_mask = ALTR_L2_ECC_EN,
1359 .ce_set_mask = (ALTR_L2_ECC_EN | ALTR_L2_ECC_INJS),
1360 .ue_set_mask = (ALTR_L2_ECC_EN | ALTR_L2_ECC_INJD),
1361 .set_err_ofst = ALTR_L2_ECC_REG_OFFSET,
1362 .trig_alloc_sz = ALTR_TRIG_L2C_BYTE_SIZE,
1363 .inject_fops = &altr_edac_device_inject_fops,
1364 };
1365
1366 static const struct edac_device_prv_data a10_l2ecc_data = {
1367 .setup = altr_l2_check_deps,
1368 .ce_clear_mask = ALTR_A10_L2_ECC_SERR_CLR,
1369 .ue_clear_mask = ALTR_A10_L2_ECC_MERR_CLR,
1370 .irq_status_mask = A10_SYSMGR_ECC_INTSTAT_L2,
1371 .alloc_mem = l2_alloc_mem,
1372 .free_mem = l2_free_mem,
1373 .ecc_enable_mask = ALTR_A10_L2_ECC_EN_CTL,
1374 .ce_set_mask = ALTR_A10_L2_ECC_CE_INJ_MASK,
1375 .ue_set_mask = ALTR_A10_L2_ECC_UE_INJ_MASK,
1376 .set_err_ofst = ALTR_A10_L2_ECC_INJ_OFST,
1377 .ecc_irq_handler = altr_edac_a10_l2_irq,
1378 .trig_alloc_sz = ALTR_TRIG_L2C_BYTE_SIZE,
1379 .inject_fops = &altr_edac_device_inject_fops,
1380 };
1381
1382 #endif /* CONFIG_EDAC_ALTERA_L2C */
1383
1384 /********************* Ethernet Device Functions ********************/
1385
1386 #ifdef CONFIG_EDAC_ALTERA_ETHERNET
1387
1388 static int __init socfpga_init_ethernet_ecc(struct altr_edac_device_dev *dev)
1389 {
1390 int ret;
1391
1392 ret = altr_init_a10_ecc_device_type("altr,socfpga-eth-mac-ecc");
1393 if (ret)
1394 return ret;
1395
1396 return altr_check_ecc_deps(dev);
1397 }
1398
1399 static const struct edac_device_prv_data a10_enetecc_data = {
1400 .setup = socfpga_init_ethernet_ecc,
1401 .ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1402 .ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1403 .ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1404 .ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1405 .ce_set_mask = ALTR_A10_ECC_TSERRA,
1406 .ue_set_mask = ALTR_A10_ECC_TDERRA,
1407 .set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1408 .ecc_irq_handler = altr_edac_a10_ecc_irq,
1409 .inject_fops = &altr_edac_a10_device_inject2_fops,
1410 };
1411
1412 #endif /* CONFIG_EDAC_ALTERA_ETHERNET */
1413
1414 /********************** NAND Device Functions **********************/
1415
1416 #ifdef CONFIG_EDAC_ALTERA_NAND
1417
1418 static int __init socfpga_init_nand_ecc(struct altr_edac_device_dev *device)
1419 {
1420 int ret;
1421
1422 ret = altr_init_a10_ecc_device_type("altr,socfpga-nand-ecc");
1423 if (ret)
1424 return ret;
1425
1426 return altr_check_ecc_deps(device);
1427 }
1428
1429 static const struct edac_device_prv_data a10_nandecc_data = {
1430 .setup = socfpga_init_nand_ecc,
1431 .ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1432 .ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1433 .ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1434 .ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1435 .ce_set_mask = ALTR_A10_ECC_TSERRA,
1436 .ue_set_mask = ALTR_A10_ECC_TDERRA,
1437 .set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1438 .ecc_irq_handler = altr_edac_a10_ecc_irq,
1439 .inject_fops = &altr_edac_a10_device_inject_fops,
1440 };
1441
1442 #endif /* CONFIG_EDAC_ALTERA_NAND */
1443
1444 /********************** DMA Device Functions **********************/
1445
1446 #ifdef CONFIG_EDAC_ALTERA_DMA
1447
1448 static int __init socfpga_init_dma_ecc(struct altr_edac_device_dev *device)
1449 {
1450 int ret;
1451
1452 ret = altr_init_a10_ecc_device_type("altr,socfpga-dma-ecc");
1453 if (ret)
1454 return ret;
1455
1456 return altr_check_ecc_deps(device);
1457 }
1458
1459 static const struct edac_device_prv_data a10_dmaecc_data = {
1460 .setup = socfpga_init_dma_ecc,
1461 .ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1462 .ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1463 .ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1464 .ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1465 .ce_set_mask = ALTR_A10_ECC_TSERRA,
1466 .ue_set_mask = ALTR_A10_ECC_TDERRA,
1467 .set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1468 .ecc_irq_handler = altr_edac_a10_ecc_irq,
1469 .inject_fops = &altr_edac_a10_device_inject_fops,
1470 };
1471
1472 #endif /* CONFIG_EDAC_ALTERA_DMA */
1473
1474 /********************** USB Device Functions **********************/
1475
1476 #ifdef CONFIG_EDAC_ALTERA_USB
1477
1478 static int __init socfpga_init_usb_ecc(struct altr_edac_device_dev *device)
1479 {
1480 int ret;
1481
1482 ret = altr_init_a10_ecc_device_type("altr,socfpga-usb-ecc");
1483 if (ret)
1484 return ret;
1485
1486 return altr_check_ecc_deps(device);
1487 }
1488
1489 static const struct edac_device_prv_data a10_usbecc_data = {
1490 .setup = socfpga_init_usb_ecc,
1491 .ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1492 .ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1493 .ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1494 .ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1495 .ce_set_mask = ALTR_A10_ECC_TSERRA,
1496 .ue_set_mask = ALTR_A10_ECC_TDERRA,
1497 .set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1498 .ecc_irq_handler = altr_edac_a10_ecc_irq,
1499 .inject_fops = &altr_edac_a10_device_inject2_fops,
1500 };
1501
1502 #endif /* CONFIG_EDAC_ALTERA_USB */
1503
1504 /********************** QSPI Device Functions **********************/
1505
1506 #ifdef CONFIG_EDAC_ALTERA_QSPI
1507
1508 static int __init socfpga_init_qspi_ecc(struct altr_edac_device_dev *device)
1509 {
1510 int ret;
1511
1512 ret = altr_init_a10_ecc_device_type("altr,socfpga-qspi-ecc");
1513 if (ret)
1514 return ret;
1515
1516 return altr_check_ecc_deps(device);
1517 }
1518
1519 static const struct edac_device_prv_data a10_qspiecc_data = {
1520 .setup = socfpga_init_qspi_ecc,
1521 .ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1522 .ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1523 .ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1524 .ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1525 .ce_set_mask = ALTR_A10_ECC_TSERRA,
1526 .ue_set_mask = ALTR_A10_ECC_TDERRA,
1527 .set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1528 .ecc_irq_handler = altr_edac_a10_ecc_irq,
1529 .inject_fops = &altr_edac_a10_device_inject_fops,
1530 };
1531
1532 #endif /* CONFIG_EDAC_ALTERA_QSPI */
1533
1534 /********************* SDMMC Device Functions **********************/
1535
1536 #ifdef CONFIG_EDAC_ALTERA_SDMMC
1537
1538 static const struct edac_device_prv_data a10_sdmmceccb_data;
1539 static int altr_portb_setup(struct altr_edac_device_dev *device)
1540 {
1541 struct edac_device_ctl_info *dci;
1542 struct altr_edac_device_dev *altdev;
1543 char *ecc_name = "sdmmcb-ecc";
1544 int edac_idx, rc;
1545 struct device_node *np;
1546 const struct edac_device_prv_data *prv = &a10_sdmmceccb_data;
1547
1548 rc = altr_check_ecc_deps(device);
1549 if (rc)
1550 return rc;
1551
1552 np = of_find_compatible_node(NULL, NULL, "altr,socfpga-sdmmc-ecc");
1553 if (!np) {
1554 edac_printk(KERN_WARNING, EDAC_DEVICE, "SDMMC node not found\n");
1555 return -ENODEV;
1556 }
1557
1558 /* Create the PortB EDAC device */
1559 edac_idx = edac_device_alloc_index();
1560 dci = edac_device_alloc_ctl_info(sizeof(*altdev), ecc_name, 1,
1561 ecc_name, 1, 0, NULL, 0, edac_idx);
1562 if (!dci) {
1563 edac_printk(KERN_ERR, EDAC_DEVICE,
1564 "%s: Unable to allocate PortB EDAC device\n",
1565 ecc_name);
1566 return -ENOMEM;
1567 }
1568
1569 /* Initialize the PortB EDAC device structure from PortA structure */
1570 altdev = dci->pvt_info;
1571 *altdev = *device;
1572
1573 if (!devres_open_group(&altdev->ddev, altr_portb_setup, GFP_KERNEL))
1574 return -ENOMEM;
1575
1576 /* Update PortB specific values */
1577 altdev->edac_dev_name = ecc_name;
1578 altdev->edac_idx = edac_idx;
1579 altdev->edac_dev = dci;
1580 altdev->data = prv;
1581 dci->dev = &altdev->ddev;
1582 dci->ctl_name = "Altera ECC Manager";
1583 dci->mod_name = ecc_name;
1584 dci->dev_name = ecc_name;
1585
1586 /* Update the PortB IRQs - A10 has 4, S10 has 2, Index accordingly */
1587 #ifdef CONFIG_ARCH_STRATIX10
1588 altdev->sb_irq = irq_of_parse_and_map(np, 1);
1589 #else
1590 altdev->sb_irq = irq_of_parse_and_map(np, 2);
1591 #endif
1592 if (!altdev->sb_irq) {
1593 edac_printk(KERN_ERR, EDAC_DEVICE, "Error PortB SBIRQ alloc\n");
1594 rc = -ENODEV;
1595 goto err_release_group_1;
1596 }
1597 rc = devm_request_irq(&altdev->ddev, altdev->sb_irq,
1598 prv->ecc_irq_handler,
1599 IRQF_ONESHOT | IRQF_TRIGGER_HIGH,
1600 ecc_name, altdev);
1601 if (rc) {
1602 edac_printk(KERN_ERR, EDAC_DEVICE, "PortB SBERR IRQ error\n");
1603 goto err_release_group_1;
1604 }
1605
1606 #ifdef CONFIG_ARCH_STRATIX10
1607 /* Use IRQ to determine SError origin instead of assigning IRQ */
1608 rc = of_property_read_u32_index(np, "interrupts", 1, &altdev->db_irq);
1609 if (rc) {
1610 edac_printk(KERN_ERR, EDAC_DEVICE,
1611 "Error PortB DBIRQ alloc\n");
1612 goto err_release_group_1;
1613 }
1614 #else
1615 altdev->db_irq = irq_of_parse_and_map(np, 3);
1616 if (!altdev->db_irq) {
1617 edac_printk(KERN_ERR, EDAC_DEVICE, "Error PortB DBIRQ alloc\n");
1618 rc = -ENODEV;
1619 goto err_release_group_1;
1620 }
1621 rc = devm_request_irq(&altdev->ddev, altdev->db_irq,
1622 prv->ecc_irq_handler,
1623 IRQF_ONESHOT | IRQF_TRIGGER_HIGH,
1624 ecc_name, altdev);
1625 if (rc) {
1626 edac_printk(KERN_ERR, EDAC_DEVICE, "PortB DBERR IRQ error\n");
1627 goto err_release_group_1;
1628 }
1629 #endif
1630
1631 rc = edac_device_add_device(dci);
1632 if (rc) {
1633 edac_printk(KERN_ERR, EDAC_DEVICE,
1634 "edac_device_add_device portB failed\n");
1635 rc = -ENOMEM;
1636 goto err_release_group_1;
1637 }
1638 altr_create_edacdev_dbgfs(dci, prv);
1639
1640 list_add(&altdev->next, &altdev->edac->a10_ecc_devices);
1641
1642 devres_remove_group(&altdev->ddev, altr_portb_setup);
1643
1644 return 0;
1645
1646 err_release_group_1:
1647 edac_device_free_ctl_info(dci);
1648 devres_release_group(&altdev->ddev, altr_portb_setup);
1649 edac_printk(KERN_ERR, EDAC_DEVICE,
1650 "%s:Error setting up EDAC device: %d\n", ecc_name, rc);
1651 return rc;
1652 }
1653
1654 static int __init socfpga_init_sdmmc_ecc(struct altr_edac_device_dev *device)
1655 {
1656 int rc = -ENODEV;
1657 struct device_node *child;
1658
1659 child = of_find_compatible_node(NULL, NULL, "altr,socfpga-sdmmc-ecc");
1660 if (!child)
1661 return -ENODEV;
1662
1663 if (!of_device_is_available(child))
1664 goto exit;
1665
1666 if (validate_parent_available(child))
1667 goto exit;
1668
1669 /* Init portB */
1670 rc = altr_init_a10_ecc_block(child, ALTR_A10_SDMMC_IRQ_MASK,
1671 a10_sdmmceccb_data.ecc_enable_mask, 1);
1672 if (rc)
1673 goto exit;
1674
1675 /* Setup portB */
1676 return altr_portb_setup(device);
1677
1678 exit:
1679 of_node_put(child);
1680 return rc;
1681 }
1682
1683 static irqreturn_t altr_edac_a10_ecc_irq_portb(int irq, void *dev_id)
1684 {
1685 struct altr_edac_device_dev *ad = dev_id;
1686 void __iomem *base = ad->base;
1687 const struct edac_device_prv_data *priv = ad->data;
1688
1689 if (irq == ad->sb_irq) {
1690 writel(priv->ce_clear_mask,
1691 base + ALTR_A10_ECC_INTSTAT_OFST);
1692 edac_device_handle_ce(ad->edac_dev, 0, 0, ad->edac_dev_name);
1693 return IRQ_HANDLED;
1694 } else if (irq == ad->db_irq) {
1695 writel(priv->ue_clear_mask,
1696 base + ALTR_A10_ECC_INTSTAT_OFST);
1697 edac_device_handle_ue(ad->edac_dev, 0, 0, ad->edac_dev_name);
1698 return IRQ_HANDLED;
1699 }
1700
1701 WARN_ONCE(1, "Unhandled IRQ%d on Port B.", irq);
1702
1703 return IRQ_NONE;
1704 }
1705
1706 static const struct edac_device_prv_data a10_sdmmcecca_data = {
1707 .setup = socfpga_init_sdmmc_ecc,
1708 .ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1709 .ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1710 .ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1711 .ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1712 .ce_set_mask = ALTR_A10_ECC_SERRPENA,
1713 .ue_set_mask = ALTR_A10_ECC_DERRPENA,
1714 .set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1715 .ecc_irq_handler = altr_edac_a10_ecc_irq,
1716 .inject_fops = &altr_edac_a10_device_inject_fops,
1717 };
1718
1719 static const struct edac_device_prv_data a10_sdmmceccb_data = {
1720 .setup = socfpga_init_sdmmc_ecc,
1721 .ce_clear_mask = ALTR_A10_ECC_SERRPENB,
1722 .ue_clear_mask = ALTR_A10_ECC_DERRPENB,
1723 .ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1724 .ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1725 .ce_set_mask = ALTR_A10_ECC_TSERRB,
1726 .ue_set_mask = ALTR_A10_ECC_TDERRB,
1727 .set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1728 .ecc_irq_handler = altr_edac_a10_ecc_irq_portb,
1729 .inject_fops = &altr_edac_a10_device_inject_fops,
1730 };
1731
1732 #endif /* CONFIG_EDAC_ALTERA_SDMMC */
1733
1734 /********************* Arria10 EDAC Device Functions *************************/
1735 static const struct of_device_id altr_edac_a10_device_of_match[] = {
1736 #ifdef CONFIG_EDAC_ALTERA_L2C
1737 { .compatible = "altr,socfpga-a10-l2-ecc", .data = &a10_l2ecc_data },
1738 #endif
1739 #ifdef CONFIG_EDAC_ALTERA_OCRAM
1740 { .compatible = "altr,socfpga-a10-ocram-ecc",
1741 .data = &a10_ocramecc_data },
1742 #endif
1743 #ifdef CONFIG_EDAC_ALTERA_ETHERNET
1744 { .compatible = "altr,socfpga-eth-mac-ecc",
1745 .data = &a10_enetecc_data },
1746 #endif
1747 #ifdef CONFIG_EDAC_ALTERA_NAND
1748 { .compatible = "altr,socfpga-nand-ecc", .data = &a10_nandecc_data },
1749 #endif
1750 #ifdef CONFIG_EDAC_ALTERA_DMA
1751 { .compatible = "altr,socfpga-dma-ecc", .data = &a10_dmaecc_data },
1752 #endif
1753 #ifdef CONFIG_EDAC_ALTERA_USB
1754 { .compatible = "altr,socfpga-usb-ecc", .data = &a10_usbecc_data },
1755 #endif
1756 #ifdef CONFIG_EDAC_ALTERA_QSPI
1757 { .compatible = "altr,socfpga-qspi-ecc", .data = &a10_qspiecc_data },
1758 #endif
1759 #ifdef CONFIG_EDAC_ALTERA_SDMMC
1760 { .compatible = "altr,socfpga-sdmmc-ecc", .data = &a10_sdmmcecca_data },
1761 #endif
1762 {},
1763 };
1764 MODULE_DEVICE_TABLE(of, altr_edac_a10_device_of_match);
1765
1766 /*
1767 * The Arria10 EDAC Device Functions differ from the Cyclone5/Arria5
1768 * because 2 IRQs are shared among the all ECC peripherals. The ECC
1769 * manager manages the IRQs and the children.
1770 * Based on xgene_edac.c peripheral code.
1771 */
1772
1773 static ssize_t altr_edac_a10_device_trig(struct file *file,
1774 const char __user *user_buf,
1775 size_t count, loff_t *ppos)
1776 {
1777 struct edac_device_ctl_info *edac_dci = file->private_data;
1778 struct altr_edac_device_dev *drvdata = edac_dci->pvt_info;
1779 const struct edac_device_prv_data *priv = drvdata->data;
1780 void __iomem *set_addr = (drvdata->base + priv->set_err_ofst);
1781 unsigned long flags;
1782 u8 trig_type;
1783
1784 if (!user_buf || get_user(trig_type, user_buf))
1785 return -EFAULT;
1786
1787 local_irq_save(flags);
1788 if (trig_type == ALTR_UE_TRIGGER_CHAR)
1789 writel(priv->ue_set_mask, set_addr);
1790 else
1791 writel(priv->ce_set_mask, set_addr);
1792
1793 /* Ensure the interrupt test bits are set */
1794 wmb();
1795 local_irq_restore(flags);
1796
1797 return count;
1798 }
1799
1800 /*
1801 * The Stratix10 EDAC Error Injection Functions differ from Arria10
1802 * slightly. A few Arria10 peripherals can use this injection function.
1803 * Inject the error into the memory and then readback to trigger the IRQ.
1804 */
1805 static ssize_t altr_edac_a10_device_trig2(struct file *file,
1806 const char __user *user_buf,
1807 size_t count, loff_t *ppos)
1808 {
1809 struct edac_device_ctl_info *edac_dci = file->private_data;
1810 struct altr_edac_device_dev *drvdata = edac_dci->pvt_info;
1811 const struct edac_device_prv_data *priv = drvdata->data;
1812 void __iomem *set_addr = (drvdata->base + priv->set_err_ofst);
1813 unsigned long flags;
1814 u8 trig_type;
1815
1816 if (!user_buf || get_user(trig_type, user_buf))
1817 return -EFAULT;
1818
1819 local_irq_save(flags);
1820 if (trig_type == ALTR_UE_TRIGGER_CHAR) {
1821 writel(priv->ue_set_mask, set_addr);
1822 } else {
1823 /* Setup read/write of 4 bytes */
1824 writel(ECC_WORD_WRITE, drvdata->base + ECC_BLK_DBYTECTRL_OFST);
1825 /* Setup Address to 0 */
1826 writel(0, drvdata->base + ECC_BLK_ADDRESS_OFST);
1827 /* Setup accctrl to read & ecc & data override */
1828 writel(ECC_READ_EDOVR, drvdata->base + ECC_BLK_ACCCTRL_OFST);
1829 /* Kick it. */
1830 writel(ECC_XACT_KICK, drvdata->base + ECC_BLK_STARTACC_OFST);
1831 /* Setup write for single bit change */
1832 writel(readl(drvdata->base + ECC_BLK_RDATA0_OFST) ^ 0x1,
1833 drvdata->base + ECC_BLK_WDATA0_OFST);
1834 writel(readl(drvdata->base + ECC_BLK_RDATA1_OFST),
1835 drvdata->base + ECC_BLK_WDATA1_OFST);
1836 writel(readl(drvdata->base + ECC_BLK_RDATA2_OFST),
1837 drvdata->base + ECC_BLK_WDATA2_OFST);
1838 writel(readl(drvdata->base + ECC_BLK_RDATA3_OFST),
1839 drvdata->base + ECC_BLK_WDATA3_OFST);
1840
1841 /* Copy Read ECC to Write ECC */
1842 writel(readl(drvdata->base + ECC_BLK_RECC0_OFST),
1843 drvdata->base + ECC_BLK_WECC0_OFST);
1844 writel(readl(drvdata->base + ECC_BLK_RECC1_OFST),
1845 drvdata->base + ECC_BLK_WECC1_OFST);
1846 /* Setup accctrl to write & ecc override & data override */
1847 writel(ECC_WRITE_EDOVR, drvdata->base + ECC_BLK_ACCCTRL_OFST);
1848 /* Kick it. */
1849 writel(ECC_XACT_KICK, drvdata->base + ECC_BLK_STARTACC_OFST);
1850 /* Setup accctrl to read & ecc overwrite & data overwrite */
1851 writel(ECC_READ_EDOVR, drvdata->base + ECC_BLK_ACCCTRL_OFST);
1852 /* Kick it. */
1853 writel(ECC_XACT_KICK, drvdata->base + ECC_BLK_STARTACC_OFST);
1854 }
1855
1856 /* Ensure the interrupt test bits are set */
1857 wmb();
1858 local_irq_restore(flags);
1859
1860 return count;
1861 }
1862
1863 static void altr_edac_a10_irq_handler(struct irq_desc *desc)
1864 {
1865 int dberr, bit, sm_offset, irq_status;
1866 struct altr_arria10_edac *edac = irq_desc_get_handler_data(desc);
1867 struct irq_chip *chip = irq_desc_get_chip(desc);
1868 int irq = irq_desc_get_irq(desc);
1869
1870 dberr = (irq == edac->db_irq) ? 1 : 0;
1871 sm_offset = dberr ? A10_SYSMGR_ECC_INTSTAT_DERR_OFST :
1872 A10_SYSMGR_ECC_INTSTAT_SERR_OFST;
1873
1874 chained_irq_enter(chip, desc);
1875
1876 regmap_read(edac->ecc_mgr_map, sm_offset, &irq_status);
1877
1878 for_each_set_bit(bit, (unsigned long *)&irq_status, 32) {
1879 irq = irq_linear_revmap(edac->domain, dberr * 32 + bit);
1880 if (irq)
1881 generic_handle_irq(irq);
1882 }
1883
1884 chained_irq_exit(chip, desc);
1885 }
1886
1887 static int validate_parent_available(struct device_node *np)
1888 {
1889 struct device_node *parent;
1890 int ret = 0;
1891
1892 /* Ensure parent device is enabled if parent node exists */
1893 parent = of_parse_phandle(np, "altr,ecc-parent", 0);
1894 if (parent && !of_device_is_available(parent))
1895 ret = -ENODEV;
1896
1897 of_node_put(parent);
1898 return ret;
1899 }
1900
1901 static int altr_edac_a10_device_add(struct altr_arria10_edac *edac,
1902 struct device_node *np)
1903 {
1904 struct edac_device_ctl_info *dci;
1905 struct altr_edac_device_dev *altdev;
1906 char *ecc_name = (char *)np->name;
1907 struct resource res;
1908 int edac_idx;
1909 int rc = 0;
1910 const struct edac_device_prv_data *prv;
1911 /* Get matching node and check for valid result */
1912 const struct of_device_id *pdev_id =
1913 of_match_node(altr_edac_a10_device_of_match, np);
1914 if (IS_ERR_OR_NULL(pdev_id))
1915 return -ENODEV;
1916
1917 /* Get driver specific data for this EDAC device */
1918 prv = pdev_id->data;
1919 if (IS_ERR_OR_NULL(prv))
1920 return -ENODEV;
1921
1922 if (validate_parent_available(np))
1923 return -ENODEV;
1924
1925 if (!devres_open_group(edac->dev, altr_edac_a10_device_add, GFP_KERNEL))
1926 return -ENOMEM;
1927
1928 rc = of_address_to_resource(np, 0, &res);
1929 if (rc < 0) {
1930 edac_printk(KERN_ERR, EDAC_DEVICE,
1931 "%s: no resource address\n", ecc_name);
1932 goto err_release_group;
1933 }
1934
1935 edac_idx = edac_device_alloc_index();
1936 dci = edac_device_alloc_ctl_info(sizeof(*altdev), ecc_name,
1937 1, ecc_name, 1, 0, NULL, 0,
1938 edac_idx);
1939
1940 if (!dci) {
1941 edac_printk(KERN_ERR, EDAC_DEVICE,
1942 "%s: Unable to allocate EDAC device\n", ecc_name);
1943 rc = -ENOMEM;
1944 goto err_release_group;
1945 }
1946
1947 altdev = dci->pvt_info;
1948 dci->dev = edac->dev;
1949 altdev->edac_dev_name = ecc_name;
1950 altdev->edac_idx = edac_idx;
1951 altdev->edac = edac;
1952 altdev->edac_dev = dci;
1953 altdev->data = prv;
1954 altdev->ddev = *edac->dev;
1955 dci->dev = &altdev->ddev;
1956 dci->ctl_name = "Altera ECC Manager";
1957 dci->mod_name = ecc_name;
1958 dci->dev_name = ecc_name;
1959
1960 altdev->base = devm_ioremap_resource(edac->dev, &res);
1961 if (IS_ERR(altdev->base)) {
1962 rc = PTR_ERR(altdev->base);
1963 goto err_release_group1;
1964 }
1965
1966 /* Check specific dependencies for the module */
1967 if (altdev->data->setup) {
1968 rc = altdev->data->setup(altdev);
1969 if (rc)
1970 goto err_release_group1;
1971 }
1972
1973 altdev->sb_irq = irq_of_parse_and_map(np, 0);
1974 if (!altdev->sb_irq) {
1975 edac_printk(KERN_ERR, EDAC_DEVICE, "Error allocating SBIRQ\n");
1976 rc = -ENODEV;
1977 goto err_release_group1;
1978 }
1979 rc = devm_request_irq(edac->dev, altdev->sb_irq, prv->ecc_irq_handler,
1980 IRQF_ONESHOT | IRQF_TRIGGER_HIGH,
1981 ecc_name, altdev);
1982 if (rc) {
1983 edac_printk(KERN_ERR, EDAC_DEVICE, "No SBERR IRQ resource\n");
1984 goto err_release_group1;
1985 }
1986
1987 #ifdef CONFIG_ARCH_STRATIX10
1988 /* Use IRQ to determine SError origin instead of assigning IRQ */
1989 rc = of_property_read_u32_index(np, "interrupts", 0, &altdev->db_irq);
1990 if (rc) {
1991 edac_printk(KERN_ERR, EDAC_DEVICE,
1992 "Unable to parse DB IRQ index\n");
1993 goto err_release_group1;
1994 }
1995 #else
1996 altdev->db_irq = irq_of_parse_and_map(np, 1);
1997 if (!altdev->db_irq) {
1998 edac_printk(KERN_ERR, EDAC_DEVICE, "Error allocating DBIRQ\n");
1999 rc = -ENODEV;
2000 goto err_release_group1;
2001 }
2002 rc = devm_request_irq(edac->dev, altdev->db_irq, prv->ecc_irq_handler,
2003 IRQF_ONESHOT | IRQF_TRIGGER_HIGH,
2004 ecc_name, altdev);
2005 if (rc) {
2006 edac_printk(KERN_ERR, EDAC_DEVICE, "No DBERR IRQ resource\n");
2007 goto err_release_group1;
2008 }
2009 #endif
2010
2011 rc = edac_device_add_device(dci);
2012 if (rc) {
2013 dev_err(edac->dev, "edac_device_add_device failed\n");
2014 rc = -ENOMEM;
2015 goto err_release_group1;
2016 }
2017
2018 altr_create_edacdev_dbgfs(dci, prv);
2019
2020 list_add(&altdev->next, &edac->a10_ecc_devices);
2021
2022 devres_remove_group(edac->dev, altr_edac_a10_device_add);
2023
2024 return 0;
2025
2026 err_release_group1:
2027 edac_device_free_ctl_info(dci);
2028 err_release_group:
2029 devres_release_group(edac->dev, NULL);
2030 edac_printk(KERN_ERR, EDAC_DEVICE,
2031 "%s:Error setting up EDAC device: %d\n", ecc_name, rc);
2032
2033 return rc;
2034 }
2035
2036 static void a10_eccmgr_irq_mask(struct irq_data *d)
2037 {
2038 struct altr_arria10_edac *edac = irq_data_get_irq_chip_data(d);
2039
2040 regmap_write(edac->ecc_mgr_map, A10_SYSMGR_ECC_INTMASK_SET_OFST,
2041 BIT(d->hwirq));
2042 }
2043
2044 static void a10_eccmgr_irq_unmask(struct irq_data *d)
2045 {
2046 struct altr_arria10_edac *edac = irq_data_get_irq_chip_data(d);
2047
2048 regmap_write(edac->ecc_mgr_map, A10_SYSMGR_ECC_INTMASK_CLR_OFST,
2049 BIT(d->hwirq));
2050 }
2051
2052 static int a10_eccmgr_irqdomain_map(struct irq_domain *d, unsigned int irq,
2053 irq_hw_number_t hwirq)
2054 {
2055 struct altr_arria10_edac *edac = d->host_data;
2056
2057 irq_set_chip_and_handler(irq, &edac->irq_chip, handle_simple_irq);
2058 irq_set_chip_data(irq, edac);
2059 irq_set_noprobe(irq);
2060
2061 return 0;
2062 }
2063
2064 static const struct irq_domain_ops a10_eccmgr_ic_ops = {
2065 .map = a10_eccmgr_irqdomain_map,
2066 .xlate = irq_domain_xlate_twocell,
2067 };
2068
2069 /************** Stratix 10 EDAC Double Bit Error Handler ************/
2070 #define to_a10edac(p, m) container_of(p, struct altr_arria10_edac, m)
2071
2072 #ifdef CONFIG_ARCH_STRATIX10
2073 /* panic routine issues reboot on non-zero panic_timeout */
2074 extern int panic_timeout;
2075
2076 /*
2077 * The double bit error is handled through SError which is fatal. This is
2078 * called as a panic notifier to printout ECC error info as part of the panic.
2079 */
2080 static int s10_edac_dberr_handler(struct notifier_block *this,
2081 unsigned long event, void *ptr)
2082 {
2083 struct altr_arria10_edac *edac = to_a10edac(this, panic_notifier);
2084 int err_addr, dberror;
2085
2086 regmap_read(edac->ecc_mgr_map, S10_SYSMGR_ECC_INTSTAT_DERR_OFST,
2087 &dberror);
2088 regmap_write(edac->ecc_mgr_map, S10_SYSMGR_UE_VAL_OFST, dberror);
2089 if (dberror & S10_DBE_IRQ_MASK) {
2090 struct list_head *position;
2091 struct altr_edac_device_dev *ed;
2092 struct arm_smccc_res result;
2093
2094 /* Find the matching DBE in the list of devices */
2095 list_for_each(position, &edac->a10_ecc_devices) {
2096 ed = list_entry(position, struct altr_edac_device_dev,
2097 next);
2098 if (!(BIT(ed->db_irq) & dberror))
2099 continue;
2100
2101 writel(ALTR_A10_ECC_DERRPENA,
2102 ed->base + ALTR_A10_ECC_INTSTAT_OFST);
2103 err_addr = readl(ed->base + ALTR_S10_DERR_ADDRA_OFST);
2104 regmap_write(edac->ecc_mgr_map,
2105 S10_SYSMGR_UE_ADDR_OFST, err_addr);
2106 edac_printk(KERN_ERR, EDAC_DEVICE,
2107 "EDAC: [Fatal DBE on %s @ 0x%08X]\n",
2108 ed->edac_dev_name, err_addr);
2109 break;
2110 }
2111 /* Notify the System through SMC. Reboot delay = 1 second */
2112 panic_timeout = 1;
2113 arm_smccc_smc(INTEL_SIP_SMC_ECC_DBE, dberror, 0, 0, 0, 0,
2114 0, 0, &result);
2115 }
2116
2117 return NOTIFY_DONE;
2118 }
2119 #endif
2120
2121 /****************** Arria 10 EDAC Probe Function *********************/
2122 static int altr_edac_a10_probe(struct platform_device *pdev)
2123 {
2124 struct altr_arria10_edac *edac;
2125 struct device_node *child;
2126
2127 edac = devm_kzalloc(&pdev->dev, sizeof(*edac), GFP_KERNEL);
2128 if (!edac)
2129 return -ENOMEM;
2130
2131 edac->dev = &pdev->dev;
2132 platform_set_drvdata(pdev, edac);
2133 INIT_LIST_HEAD(&edac->a10_ecc_devices);
2134
2135 if (socfpga_is_a10()) {
2136 edac->ecc_mgr_map =
2137 syscon_regmap_lookup_by_phandle(pdev->dev.of_node,
2138 "altr,sysmgr-syscon");
2139 } else {
2140 struct device_node *sysmgr_np;
2141 struct resource res;
2142 uintptr_t base;
2143
2144 sysmgr_np = of_parse_phandle(pdev->dev.of_node,
2145 "altr,sysmgr-syscon", 0);
2146 if (!sysmgr_np) {
2147 edac_printk(KERN_ERR, EDAC_DEVICE,
2148 "Unable to find altr,sysmgr-syscon\n");
2149 return -ENODEV;
2150 }
2151
2152 if (of_address_to_resource(sysmgr_np, 0, &res))
2153 return -ENOMEM;
2154
2155 /* Need physical address for SMCC call */
2156 base = res.start;
2157
2158 edac->ecc_mgr_map = devm_regmap_init(&pdev->dev, NULL,
2159 (void *)base,
2160 &s10_sdram_regmap_cfg);
2161 }
2162
2163 if (IS_ERR(edac->ecc_mgr_map)) {
2164 edac_printk(KERN_ERR, EDAC_DEVICE,
2165 "Unable to get syscon altr,sysmgr-syscon\n");
2166 return PTR_ERR(edac->ecc_mgr_map);
2167 }
2168
2169 edac->irq_chip.name = pdev->dev.of_node->name;
2170 edac->irq_chip.irq_mask = a10_eccmgr_irq_mask;
2171 edac->irq_chip.irq_unmask = a10_eccmgr_irq_unmask;
2172 edac->domain = irq_domain_add_linear(pdev->dev.of_node, 64,
2173 &a10_eccmgr_ic_ops, edac);
2174 if (!edac->domain) {
2175 dev_err(&pdev->dev, "Error adding IRQ domain\n");
2176 return -ENOMEM;
2177 }
2178
2179 edac->sb_irq = platform_get_irq(pdev, 0);
2180 if (edac->sb_irq < 0) {
2181 dev_err(&pdev->dev, "No SBERR IRQ resource\n");
2182 return edac->sb_irq;
2183 }
2184
2185 irq_set_chained_handler_and_data(edac->sb_irq,
2186 altr_edac_a10_irq_handler,
2187 edac);
2188
2189 #ifdef CONFIG_ARCH_STRATIX10
2190 {
2191 int dberror, err_addr;
2192
2193 edac->panic_notifier.notifier_call = s10_edac_dberr_handler;
2194 atomic_notifier_chain_register(&panic_notifier_list,
2195 &edac->panic_notifier);
2196
2197 /* Printout a message if uncorrectable error previously. */
2198 regmap_read(edac->ecc_mgr_map, S10_SYSMGR_UE_VAL_OFST,
2199 &dberror);
2200 if (dberror) {
2201 regmap_read(edac->ecc_mgr_map, S10_SYSMGR_UE_ADDR_OFST,
2202 &err_addr);
2203 edac_printk(KERN_ERR, EDAC_DEVICE,
2204 "Previous Boot UE detected[0x%X] @ 0x%X\n",
2205 dberror, err_addr);
2206 /* Reset the sticky registers */
2207 regmap_write(edac->ecc_mgr_map,
2208 S10_SYSMGR_UE_VAL_OFST, 0);
2209 regmap_write(edac->ecc_mgr_map,
2210 S10_SYSMGR_UE_ADDR_OFST, 0);
2211 }
2212 }
2213 #else
2214 edac->db_irq = platform_get_irq(pdev, 1);
2215 if (edac->db_irq < 0) {
2216 dev_err(&pdev->dev, "No DBERR IRQ resource\n");
2217 return edac->db_irq;
2218 }
2219 irq_set_chained_handler_and_data(edac->db_irq,
2220 altr_edac_a10_irq_handler, edac);
2221 #endif
2222
2223 for_each_child_of_node(pdev->dev.of_node, child) {
2224 if (!of_device_is_available(child))
2225 continue;
2226
2227 if (of_device_is_compatible(child, "altr,socfpga-a10-l2-ecc") ||
2228 of_device_is_compatible(child, "altr,socfpga-a10-ocram-ecc") ||
2229 of_device_is_compatible(child, "altr,socfpga-eth-mac-ecc") ||
2230 of_device_is_compatible(child, "altr,socfpga-nand-ecc") ||
2231 of_device_is_compatible(child, "altr,socfpga-dma-ecc") ||
2232 of_device_is_compatible(child, "altr,socfpga-usb-ecc") ||
2233 of_device_is_compatible(child, "altr,socfpga-qspi-ecc") ||
2234 of_device_is_compatible(child, "altr,socfpga-sdmmc-ecc"))
2235
2236 altr_edac_a10_device_add(edac, child);
2237
2238 #ifdef CONFIG_EDAC_ALTERA_SDRAM
2239 else if ((of_device_is_compatible(child, "altr,sdram-edac-a10")) ||
2240 (of_device_is_compatible(child, "altr,sdram-edac-s10")))
2241 of_platform_populate(pdev->dev.of_node,
2242 altr_sdram_ctrl_of_match,
2243 NULL, &pdev->dev);
2244 #endif
2245 }
2246
2247 return 0;
2248 }
2249
2250 static const struct of_device_id altr_edac_a10_of_match[] = {
2251 { .compatible = "altr,socfpga-a10-ecc-manager" },
2252 { .compatible = "altr,socfpga-s10-ecc-manager" },
2253 {},
2254 };
2255 MODULE_DEVICE_TABLE(of, altr_edac_a10_of_match);
2256
2257 static struct platform_driver altr_edac_a10_driver = {
2258 .probe = altr_edac_a10_probe,
2259 .driver = {
2260 .name = "socfpga_a10_ecc_manager",
2261 .of_match_table = altr_edac_a10_of_match,
2262 },
2263 };
2264 module_platform_driver(altr_edac_a10_driver);
2265
2266 MODULE_LICENSE("GPL v2");
2267 MODULE_AUTHOR("Thor Thayer");
2268 MODULE_DESCRIPTION("EDAC Driver for Altera Memories");