]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/edac/amd64_edac.c
Merge branch 'drm-next' of git://people.freedesktop.org/~airlied/linux
[mirror_ubuntu-bionic-kernel.git] / drivers / edac / amd64_edac.c
1 #include "amd64_edac.h"
2 #include <asm/amd_nb.h>
3
4 static struct edac_pci_ctl_info *amd64_ctl_pci;
5
6 static int report_gart_errors;
7 module_param(report_gart_errors, int, 0644);
8
9 /*
10 * Set by command line parameter. If BIOS has enabled the ECC, this override is
11 * cleared to prevent re-enabling the hardware by this driver.
12 */
13 static int ecc_enable_override;
14 module_param(ecc_enable_override, int, 0644);
15
16 static struct msr __percpu *msrs;
17
18 /*
19 * count successfully initialized driver instances for setup_pci_device()
20 */
21 static atomic_t drv_instances = ATOMIC_INIT(0);
22
23 /* Per-node driver instances */
24 static struct mem_ctl_info **mcis;
25 static struct ecc_settings **ecc_stngs;
26
27 /*
28 * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
29 * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
30 * or higher value'.
31 *
32 *FIXME: Produce a better mapping/linearisation.
33 */
34 static const struct scrubrate {
35 u32 scrubval; /* bit pattern for scrub rate */
36 u32 bandwidth; /* bandwidth consumed (bytes/sec) */
37 } scrubrates[] = {
38 { 0x01, 1600000000UL},
39 { 0x02, 800000000UL},
40 { 0x03, 400000000UL},
41 { 0x04, 200000000UL},
42 { 0x05, 100000000UL},
43 { 0x06, 50000000UL},
44 { 0x07, 25000000UL},
45 { 0x08, 12284069UL},
46 { 0x09, 6274509UL},
47 { 0x0A, 3121951UL},
48 { 0x0B, 1560975UL},
49 { 0x0C, 781440UL},
50 { 0x0D, 390720UL},
51 { 0x0E, 195300UL},
52 { 0x0F, 97650UL},
53 { 0x10, 48854UL},
54 { 0x11, 24427UL},
55 { 0x12, 12213UL},
56 { 0x13, 6101UL},
57 { 0x14, 3051UL},
58 { 0x15, 1523UL},
59 { 0x16, 761UL},
60 { 0x00, 0UL}, /* scrubbing off */
61 };
62
63 int __amd64_read_pci_cfg_dword(struct pci_dev *pdev, int offset,
64 u32 *val, const char *func)
65 {
66 int err = 0;
67
68 err = pci_read_config_dword(pdev, offset, val);
69 if (err)
70 amd64_warn("%s: error reading F%dx%03x.\n",
71 func, PCI_FUNC(pdev->devfn), offset);
72
73 return err;
74 }
75
76 int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset,
77 u32 val, const char *func)
78 {
79 int err = 0;
80
81 err = pci_write_config_dword(pdev, offset, val);
82 if (err)
83 amd64_warn("%s: error writing to F%dx%03x.\n",
84 func, PCI_FUNC(pdev->devfn), offset);
85
86 return err;
87 }
88
89 /*
90 *
91 * Depending on the family, F2 DCT reads need special handling:
92 *
93 * K8: has a single DCT only
94 *
95 * F10h: each DCT has its own set of regs
96 * DCT0 -> F2x040..
97 * DCT1 -> F2x140..
98 *
99 * F15h: we select which DCT we access using F1x10C[DctCfgSel]
100 *
101 * F16h: has only 1 DCT
102 */
103 static int k8_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
104 const char *func)
105 {
106 if (addr >= 0x100)
107 return -EINVAL;
108
109 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
110 }
111
112 static int f10_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
113 const char *func)
114 {
115 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
116 }
117
118 /*
119 * Select DCT to which PCI cfg accesses are routed
120 */
121 static void f15h_select_dct(struct amd64_pvt *pvt, u8 dct)
122 {
123 u32 reg = 0;
124
125 amd64_read_pci_cfg(pvt->F1, DCT_CFG_SEL, &reg);
126 reg &= 0xfffffffe;
127 reg |= dct;
128 amd64_write_pci_cfg(pvt->F1, DCT_CFG_SEL, reg);
129 }
130
131 static int f15_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
132 const char *func)
133 {
134 u8 dct = 0;
135
136 if (addr >= 0x140 && addr <= 0x1a0) {
137 dct = 1;
138 addr -= 0x100;
139 }
140
141 f15h_select_dct(pvt, dct);
142
143 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
144 }
145
146 /*
147 * Memory scrubber control interface. For K8, memory scrubbing is handled by
148 * hardware and can involve L2 cache, dcache as well as the main memory. With
149 * F10, this is extended to L3 cache scrubbing on CPU models sporting that
150 * functionality.
151 *
152 * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
153 * (dram) over to cache lines. This is nasty, so we will use bandwidth in
154 * bytes/sec for the setting.
155 *
156 * Currently, we only do dram scrubbing. If the scrubbing is done in software on
157 * other archs, we might not have access to the caches directly.
158 */
159
160 /*
161 * scan the scrub rate mapping table for a close or matching bandwidth value to
162 * issue. If requested is too big, then use last maximum value found.
163 */
164 static int __amd64_set_scrub_rate(struct pci_dev *ctl, u32 new_bw, u32 min_rate)
165 {
166 u32 scrubval;
167 int i;
168
169 /*
170 * map the configured rate (new_bw) to a value specific to the AMD64
171 * memory controller and apply to register. Search for the first
172 * bandwidth entry that is greater or equal than the setting requested
173 * and program that. If at last entry, turn off DRAM scrubbing.
174 *
175 * If no suitable bandwidth is found, turn off DRAM scrubbing entirely
176 * by falling back to the last element in scrubrates[].
177 */
178 for (i = 0; i < ARRAY_SIZE(scrubrates) - 1; i++) {
179 /*
180 * skip scrub rates which aren't recommended
181 * (see F10 BKDG, F3x58)
182 */
183 if (scrubrates[i].scrubval < min_rate)
184 continue;
185
186 if (scrubrates[i].bandwidth <= new_bw)
187 break;
188 }
189
190 scrubval = scrubrates[i].scrubval;
191
192 pci_write_bits32(ctl, SCRCTRL, scrubval, 0x001F);
193
194 if (scrubval)
195 return scrubrates[i].bandwidth;
196
197 return 0;
198 }
199
200 static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 bw)
201 {
202 struct amd64_pvt *pvt = mci->pvt_info;
203 u32 min_scrubrate = 0x5;
204
205 if (boot_cpu_data.x86 == 0xf)
206 min_scrubrate = 0x0;
207
208 /* F15h Erratum #505 */
209 if (boot_cpu_data.x86 == 0x15)
210 f15h_select_dct(pvt, 0);
211
212 return __amd64_set_scrub_rate(pvt->F3, bw, min_scrubrate);
213 }
214
215 static int amd64_get_scrub_rate(struct mem_ctl_info *mci)
216 {
217 struct amd64_pvt *pvt = mci->pvt_info;
218 u32 scrubval = 0;
219 int i, retval = -EINVAL;
220
221 /* F15h Erratum #505 */
222 if (boot_cpu_data.x86 == 0x15)
223 f15h_select_dct(pvt, 0);
224
225 amd64_read_pci_cfg(pvt->F3, SCRCTRL, &scrubval);
226
227 scrubval = scrubval & 0x001F;
228
229 for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
230 if (scrubrates[i].scrubval == scrubval) {
231 retval = scrubrates[i].bandwidth;
232 break;
233 }
234 }
235 return retval;
236 }
237
238 /*
239 * returns true if the SysAddr given by sys_addr matches the
240 * DRAM base/limit associated with node_id
241 */
242 static bool amd64_base_limit_match(struct amd64_pvt *pvt, u64 sys_addr,
243 u8 nid)
244 {
245 u64 addr;
246
247 /* The K8 treats this as a 40-bit value. However, bits 63-40 will be
248 * all ones if the most significant implemented address bit is 1.
249 * Here we discard bits 63-40. See section 3.4.2 of AMD publication
250 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
251 * Application Programming.
252 */
253 addr = sys_addr & 0x000000ffffffffffull;
254
255 return ((addr >= get_dram_base(pvt, nid)) &&
256 (addr <= get_dram_limit(pvt, nid)));
257 }
258
259 /*
260 * Attempt to map a SysAddr to a node. On success, return a pointer to the
261 * mem_ctl_info structure for the node that the SysAddr maps to.
262 *
263 * On failure, return NULL.
264 */
265 static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
266 u64 sys_addr)
267 {
268 struct amd64_pvt *pvt;
269 u8 node_id;
270 u32 intlv_en, bits;
271
272 /*
273 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
274 * 3.4.4.2) registers to map the SysAddr to a node ID.
275 */
276 pvt = mci->pvt_info;
277
278 /*
279 * The value of this field should be the same for all DRAM Base
280 * registers. Therefore we arbitrarily choose to read it from the
281 * register for node 0.
282 */
283 intlv_en = dram_intlv_en(pvt, 0);
284
285 if (intlv_en == 0) {
286 for (node_id = 0; node_id < DRAM_RANGES; node_id++) {
287 if (amd64_base_limit_match(pvt, sys_addr, node_id))
288 goto found;
289 }
290 goto err_no_match;
291 }
292
293 if (unlikely((intlv_en != 0x01) &&
294 (intlv_en != 0x03) &&
295 (intlv_en != 0x07))) {
296 amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en);
297 return NULL;
298 }
299
300 bits = (((u32) sys_addr) >> 12) & intlv_en;
301
302 for (node_id = 0; ; ) {
303 if ((dram_intlv_sel(pvt, node_id) & intlv_en) == bits)
304 break; /* intlv_sel field matches */
305
306 if (++node_id >= DRAM_RANGES)
307 goto err_no_match;
308 }
309
310 /* sanity test for sys_addr */
311 if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) {
312 amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address"
313 "range for node %d with node interleaving enabled.\n",
314 __func__, sys_addr, node_id);
315 return NULL;
316 }
317
318 found:
319 return edac_mc_find((int)node_id);
320
321 err_no_match:
322 edac_dbg(2, "sys_addr 0x%lx doesn't match any node\n",
323 (unsigned long)sys_addr);
324
325 return NULL;
326 }
327
328 /*
329 * compute the CS base address of the @csrow on the DRAM controller @dct.
330 * For details see F2x[5C:40] in the processor's BKDG
331 */
332 static void get_cs_base_and_mask(struct amd64_pvt *pvt, int csrow, u8 dct,
333 u64 *base, u64 *mask)
334 {
335 u64 csbase, csmask, base_bits, mask_bits;
336 u8 addr_shift;
337
338 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
339 csbase = pvt->csels[dct].csbases[csrow];
340 csmask = pvt->csels[dct].csmasks[csrow];
341 base_bits = GENMASK(21, 31) | GENMASK(9, 15);
342 mask_bits = GENMASK(21, 29) | GENMASK(9, 15);
343 addr_shift = 4;
344
345 /*
346 * F16h needs two addr_shift values: 8 for high and 6 for low
347 * (cf. F16h BKDG).
348 */
349 } else if (boot_cpu_data.x86 == 0x16) {
350 csbase = pvt->csels[dct].csbases[csrow];
351 csmask = pvt->csels[dct].csmasks[csrow >> 1];
352
353 *base = (csbase & GENMASK(5, 15)) << 6;
354 *base |= (csbase & GENMASK(19, 30)) << 8;
355
356 *mask = ~0ULL;
357 /* poke holes for the csmask */
358 *mask &= ~((GENMASK(5, 15) << 6) |
359 (GENMASK(19, 30) << 8));
360
361 *mask |= (csmask & GENMASK(5, 15)) << 6;
362 *mask |= (csmask & GENMASK(19, 30)) << 8;
363
364 return;
365 } else {
366 csbase = pvt->csels[dct].csbases[csrow];
367 csmask = pvt->csels[dct].csmasks[csrow >> 1];
368 addr_shift = 8;
369
370 if (boot_cpu_data.x86 == 0x15)
371 base_bits = mask_bits = GENMASK(19,30) | GENMASK(5,13);
372 else
373 base_bits = mask_bits = GENMASK(19,28) | GENMASK(5,13);
374 }
375
376 *base = (csbase & base_bits) << addr_shift;
377
378 *mask = ~0ULL;
379 /* poke holes for the csmask */
380 *mask &= ~(mask_bits << addr_shift);
381 /* OR them in */
382 *mask |= (csmask & mask_bits) << addr_shift;
383 }
384
385 #define for_each_chip_select(i, dct, pvt) \
386 for (i = 0; i < pvt->csels[dct].b_cnt; i++)
387
388 #define chip_select_base(i, dct, pvt) \
389 pvt->csels[dct].csbases[i]
390
391 #define for_each_chip_select_mask(i, dct, pvt) \
392 for (i = 0; i < pvt->csels[dct].m_cnt; i++)
393
394 /*
395 * @input_addr is an InputAddr associated with the node given by mci. Return the
396 * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
397 */
398 static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
399 {
400 struct amd64_pvt *pvt;
401 int csrow;
402 u64 base, mask;
403
404 pvt = mci->pvt_info;
405
406 for_each_chip_select(csrow, 0, pvt) {
407 if (!csrow_enabled(csrow, 0, pvt))
408 continue;
409
410 get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);
411
412 mask = ~mask;
413
414 if ((input_addr & mask) == (base & mask)) {
415 edac_dbg(2, "InputAddr 0x%lx matches csrow %d (node %d)\n",
416 (unsigned long)input_addr, csrow,
417 pvt->mc_node_id);
418
419 return csrow;
420 }
421 }
422 edac_dbg(2, "no matching csrow for InputAddr 0x%lx (MC node %d)\n",
423 (unsigned long)input_addr, pvt->mc_node_id);
424
425 return -1;
426 }
427
428 /*
429 * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
430 * for the node represented by mci. Info is passed back in *hole_base,
431 * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if
432 * info is invalid. Info may be invalid for either of the following reasons:
433 *
434 * - The revision of the node is not E or greater. In this case, the DRAM Hole
435 * Address Register does not exist.
436 *
437 * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
438 * indicating that its contents are not valid.
439 *
440 * The values passed back in *hole_base, *hole_offset, and *hole_size are
441 * complete 32-bit values despite the fact that the bitfields in the DHAR
442 * only represent bits 31-24 of the base and offset values.
443 */
444 int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
445 u64 *hole_offset, u64 *hole_size)
446 {
447 struct amd64_pvt *pvt = mci->pvt_info;
448
449 /* only revE and later have the DRAM Hole Address Register */
450 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_E) {
451 edac_dbg(1, " revision %d for node %d does not support DHAR\n",
452 pvt->ext_model, pvt->mc_node_id);
453 return 1;
454 }
455
456 /* valid for Fam10h and above */
457 if (boot_cpu_data.x86 >= 0x10 && !dhar_mem_hoist_valid(pvt)) {
458 edac_dbg(1, " Dram Memory Hoisting is DISABLED on this system\n");
459 return 1;
460 }
461
462 if (!dhar_valid(pvt)) {
463 edac_dbg(1, " Dram Memory Hoisting is DISABLED on this node %d\n",
464 pvt->mc_node_id);
465 return 1;
466 }
467
468 /* This node has Memory Hoisting */
469
470 /* +------------------+--------------------+--------------------+-----
471 * | memory | DRAM hole | relocated |
472 * | [0, (x - 1)] | [x, 0xffffffff] | addresses from |
473 * | | | DRAM hole |
474 * | | | [0x100000000, |
475 * | | | (0x100000000+ |
476 * | | | (0xffffffff-x))] |
477 * +------------------+--------------------+--------------------+-----
478 *
479 * Above is a diagram of physical memory showing the DRAM hole and the
480 * relocated addresses from the DRAM hole. As shown, the DRAM hole
481 * starts at address x (the base address) and extends through address
482 * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the
483 * addresses in the hole so that they start at 0x100000000.
484 */
485
486 *hole_base = dhar_base(pvt);
487 *hole_size = (1ULL << 32) - *hole_base;
488
489 if (boot_cpu_data.x86 > 0xf)
490 *hole_offset = f10_dhar_offset(pvt);
491 else
492 *hole_offset = k8_dhar_offset(pvt);
493
494 edac_dbg(1, " DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
495 pvt->mc_node_id, (unsigned long)*hole_base,
496 (unsigned long)*hole_offset, (unsigned long)*hole_size);
497
498 return 0;
499 }
500 EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
501
502 /*
503 * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is
504 * assumed that sys_addr maps to the node given by mci.
505 *
506 * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
507 * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
508 * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
509 * then it is also involved in translating a SysAddr to a DramAddr. Sections
510 * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
511 * These parts of the documentation are unclear. I interpret them as follows:
512 *
513 * When node n receives a SysAddr, it processes the SysAddr as follows:
514 *
515 * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
516 * Limit registers for node n. If the SysAddr is not within the range
517 * specified by the base and limit values, then node n ignores the Sysaddr
518 * (since it does not map to node n). Otherwise continue to step 2 below.
519 *
520 * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
521 * disabled so skip to step 3 below. Otherwise see if the SysAddr is within
522 * the range of relocated addresses (starting at 0x100000000) from the DRAM
523 * hole. If not, skip to step 3 below. Else get the value of the
524 * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
525 * offset defined by this value from the SysAddr.
526 *
527 * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
528 * Base register for node n. To obtain the DramAddr, subtract the base
529 * address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
530 */
531 static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
532 {
533 struct amd64_pvt *pvt = mci->pvt_info;
534 u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
535 int ret;
536
537 dram_base = get_dram_base(pvt, pvt->mc_node_id);
538
539 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
540 &hole_size);
541 if (!ret) {
542 if ((sys_addr >= (1ULL << 32)) &&
543 (sys_addr < ((1ULL << 32) + hole_size))) {
544 /* use DHAR to translate SysAddr to DramAddr */
545 dram_addr = sys_addr - hole_offset;
546
547 edac_dbg(2, "using DHAR to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
548 (unsigned long)sys_addr,
549 (unsigned long)dram_addr);
550
551 return dram_addr;
552 }
553 }
554
555 /*
556 * Translate the SysAddr to a DramAddr as shown near the start of
557 * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8
558 * only deals with 40-bit values. Therefore we discard bits 63-40 of
559 * sys_addr below. If bit 39 of sys_addr is 1 then the bits we
560 * discard are all 1s. Otherwise the bits we discard are all 0s. See
561 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
562 * Programmer's Manual Volume 1 Application Programming.
563 */
564 dram_addr = (sys_addr & GENMASK(0, 39)) - dram_base;
565
566 edac_dbg(2, "using DRAM Base register to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
567 (unsigned long)sys_addr, (unsigned long)dram_addr);
568 return dram_addr;
569 }
570
571 /*
572 * @intlv_en is the value of the IntlvEn field from a DRAM Base register
573 * (section 3.4.4.1). Return the number of bits from a SysAddr that are used
574 * for node interleaving.
575 */
576 static int num_node_interleave_bits(unsigned intlv_en)
577 {
578 static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
579 int n;
580
581 BUG_ON(intlv_en > 7);
582 n = intlv_shift_table[intlv_en];
583 return n;
584 }
585
586 /* Translate the DramAddr given by @dram_addr to an InputAddr. */
587 static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
588 {
589 struct amd64_pvt *pvt;
590 int intlv_shift;
591 u64 input_addr;
592
593 pvt = mci->pvt_info;
594
595 /*
596 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
597 * concerning translating a DramAddr to an InputAddr.
598 */
599 intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
600 input_addr = ((dram_addr >> intlv_shift) & GENMASK(12, 35)) +
601 (dram_addr & 0xfff);
602
603 edac_dbg(2, " Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
604 intlv_shift, (unsigned long)dram_addr,
605 (unsigned long)input_addr);
606
607 return input_addr;
608 }
609
610 /*
611 * Translate the SysAddr represented by @sys_addr to an InputAddr. It is
612 * assumed that @sys_addr maps to the node given by mci.
613 */
614 static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
615 {
616 u64 input_addr;
617
618 input_addr =
619 dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
620
621 edac_dbg(2, "SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
622 (unsigned long)sys_addr, (unsigned long)input_addr);
623
624 return input_addr;
625 }
626
627 /* Map the Error address to a PAGE and PAGE OFFSET. */
628 static inline void error_address_to_page_and_offset(u64 error_address,
629 struct err_info *err)
630 {
631 err->page = (u32) (error_address >> PAGE_SHIFT);
632 err->offset = ((u32) error_address) & ~PAGE_MASK;
633 }
634
635 /*
636 * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
637 * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
638 * of a node that detected an ECC memory error. mci represents the node that
639 * the error address maps to (possibly different from the node that detected
640 * the error). Return the number of the csrow that sys_addr maps to, or -1 on
641 * error.
642 */
643 static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
644 {
645 int csrow;
646
647 csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
648
649 if (csrow == -1)
650 amd64_mc_err(mci, "Failed to translate InputAddr to csrow for "
651 "address 0x%lx\n", (unsigned long)sys_addr);
652 return csrow;
653 }
654
655 static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
656
657 /*
658 * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
659 * are ECC capable.
660 */
661 static unsigned long amd64_determine_edac_cap(struct amd64_pvt *pvt)
662 {
663 u8 bit;
664 unsigned long edac_cap = EDAC_FLAG_NONE;
665
666 bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= K8_REV_F)
667 ? 19
668 : 17;
669
670 if (pvt->dclr0 & BIT(bit))
671 edac_cap = EDAC_FLAG_SECDED;
672
673 return edac_cap;
674 }
675
676 static void amd64_debug_display_dimm_sizes(struct amd64_pvt *, u8);
677
678 static void amd64_dump_dramcfg_low(u32 dclr, int chan)
679 {
680 edac_dbg(1, "F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);
681
682 edac_dbg(1, " DIMM type: %sbuffered; all DIMMs support ECC: %s\n",
683 (dclr & BIT(16)) ? "un" : "",
684 (dclr & BIT(19)) ? "yes" : "no");
685
686 edac_dbg(1, " PAR/ERR parity: %s\n",
687 (dclr & BIT(8)) ? "enabled" : "disabled");
688
689 if (boot_cpu_data.x86 == 0x10)
690 edac_dbg(1, " DCT 128bit mode width: %s\n",
691 (dclr & BIT(11)) ? "128b" : "64b");
692
693 edac_dbg(1, " x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
694 (dclr & BIT(12)) ? "yes" : "no",
695 (dclr & BIT(13)) ? "yes" : "no",
696 (dclr & BIT(14)) ? "yes" : "no",
697 (dclr & BIT(15)) ? "yes" : "no");
698 }
699
700 /* Display and decode various NB registers for debug purposes. */
701 static void dump_misc_regs(struct amd64_pvt *pvt)
702 {
703 edac_dbg(1, "F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);
704
705 edac_dbg(1, " NB two channel DRAM capable: %s\n",
706 (pvt->nbcap & NBCAP_DCT_DUAL) ? "yes" : "no");
707
708 edac_dbg(1, " ECC capable: %s, ChipKill ECC capable: %s\n",
709 (pvt->nbcap & NBCAP_SECDED) ? "yes" : "no",
710 (pvt->nbcap & NBCAP_CHIPKILL) ? "yes" : "no");
711
712 amd64_dump_dramcfg_low(pvt->dclr0, 0);
713
714 edac_dbg(1, "F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
715
716 edac_dbg(1, "F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, offset: 0x%08x\n",
717 pvt->dhar, dhar_base(pvt),
718 (boot_cpu_data.x86 == 0xf) ? k8_dhar_offset(pvt)
719 : f10_dhar_offset(pvt));
720
721 edac_dbg(1, " DramHoleValid: %s\n", dhar_valid(pvt) ? "yes" : "no");
722
723 amd64_debug_display_dimm_sizes(pvt, 0);
724
725 /* everything below this point is Fam10h and above */
726 if (boot_cpu_data.x86 == 0xf)
727 return;
728
729 amd64_debug_display_dimm_sizes(pvt, 1);
730
731 amd64_info("using %s syndromes.\n", ((pvt->ecc_sym_sz == 8) ? "x8" : "x4"));
732
733 /* Only if NOT ganged does dclr1 have valid info */
734 if (!dct_ganging_enabled(pvt))
735 amd64_dump_dramcfg_low(pvt->dclr1, 1);
736 }
737
738 /*
739 * see BKDG, F2x[1,0][5C:40], F2[1,0][6C:60]
740 */
741 static void prep_chip_selects(struct amd64_pvt *pvt)
742 {
743 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
744 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
745 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 8;
746 } else {
747 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
748 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 4;
749 }
750 }
751
752 /*
753 * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask registers
754 */
755 static void read_dct_base_mask(struct amd64_pvt *pvt)
756 {
757 int cs;
758
759 prep_chip_selects(pvt);
760
761 for_each_chip_select(cs, 0, pvt) {
762 int reg0 = DCSB0 + (cs * 4);
763 int reg1 = DCSB1 + (cs * 4);
764 u32 *base0 = &pvt->csels[0].csbases[cs];
765 u32 *base1 = &pvt->csels[1].csbases[cs];
766
767 if (!amd64_read_dct_pci_cfg(pvt, reg0, base0))
768 edac_dbg(0, " DCSB0[%d]=0x%08x reg: F2x%x\n",
769 cs, *base0, reg0);
770
771 if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt))
772 continue;
773
774 if (!amd64_read_dct_pci_cfg(pvt, reg1, base1))
775 edac_dbg(0, " DCSB1[%d]=0x%08x reg: F2x%x\n",
776 cs, *base1, reg1);
777 }
778
779 for_each_chip_select_mask(cs, 0, pvt) {
780 int reg0 = DCSM0 + (cs * 4);
781 int reg1 = DCSM1 + (cs * 4);
782 u32 *mask0 = &pvt->csels[0].csmasks[cs];
783 u32 *mask1 = &pvt->csels[1].csmasks[cs];
784
785 if (!amd64_read_dct_pci_cfg(pvt, reg0, mask0))
786 edac_dbg(0, " DCSM0[%d]=0x%08x reg: F2x%x\n",
787 cs, *mask0, reg0);
788
789 if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt))
790 continue;
791
792 if (!amd64_read_dct_pci_cfg(pvt, reg1, mask1))
793 edac_dbg(0, " DCSM1[%d]=0x%08x reg: F2x%x\n",
794 cs, *mask1, reg1);
795 }
796 }
797
798 static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt, int cs)
799 {
800 enum mem_type type;
801
802 /* F15h supports only DDR3 */
803 if (boot_cpu_data.x86 >= 0x15)
804 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
805 else if (boot_cpu_data.x86 == 0x10 || pvt->ext_model >= K8_REV_F) {
806 if (pvt->dchr0 & DDR3_MODE)
807 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
808 else
809 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
810 } else {
811 type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
812 }
813
814 amd64_info("CS%d: %s\n", cs, edac_mem_types[type]);
815
816 return type;
817 }
818
819 /* Get the number of DCT channels the memory controller is using. */
820 static int k8_early_channel_count(struct amd64_pvt *pvt)
821 {
822 int flag;
823
824 if (pvt->ext_model >= K8_REV_F)
825 /* RevF (NPT) and later */
826 flag = pvt->dclr0 & WIDTH_128;
827 else
828 /* RevE and earlier */
829 flag = pvt->dclr0 & REVE_WIDTH_128;
830
831 /* not used */
832 pvt->dclr1 = 0;
833
834 return (flag) ? 2 : 1;
835 }
836
837 /* On F10h and later ErrAddr is MC4_ADDR[47:1] */
838 static u64 get_error_address(struct mce *m)
839 {
840 struct cpuinfo_x86 *c = &boot_cpu_data;
841 u64 addr;
842 u8 start_bit = 1;
843 u8 end_bit = 47;
844
845 if (c->x86 == 0xf) {
846 start_bit = 3;
847 end_bit = 39;
848 }
849
850 addr = m->addr & GENMASK(start_bit, end_bit);
851
852 /*
853 * Erratum 637 workaround
854 */
855 if (c->x86 == 0x15) {
856 struct amd64_pvt *pvt;
857 u64 cc6_base, tmp_addr;
858 u32 tmp;
859 u16 mce_nid;
860 u8 intlv_en;
861
862 if ((addr & GENMASK(24, 47)) >> 24 != 0x00fdf7)
863 return addr;
864
865 mce_nid = amd_get_nb_id(m->extcpu);
866 pvt = mcis[mce_nid]->pvt_info;
867
868 amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_LIM, &tmp);
869 intlv_en = tmp >> 21 & 0x7;
870
871 /* add [47:27] + 3 trailing bits */
872 cc6_base = (tmp & GENMASK(0, 20)) << 3;
873
874 /* reverse and add DramIntlvEn */
875 cc6_base |= intlv_en ^ 0x7;
876
877 /* pin at [47:24] */
878 cc6_base <<= 24;
879
880 if (!intlv_en)
881 return cc6_base | (addr & GENMASK(0, 23));
882
883 amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_BASE, &tmp);
884
885 /* faster log2 */
886 tmp_addr = (addr & GENMASK(12, 23)) << __fls(intlv_en + 1);
887
888 /* OR DramIntlvSel into bits [14:12] */
889 tmp_addr |= (tmp & GENMASK(21, 23)) >> 9;
890
891 /* add remaining [11:0] bits from original MC4_ADDR */
892 tmp_addr |= addr & GENMASK(0, 11);
893
894 return cc6_base | tmp_addr;
895 }
896
897 return addr;
898 }
899
900 static struct pci_dev *pci_get_related_function(unsigned int vendor,
901 unsigned int device,
902 struct pci_dev *related)
903 {
904 struct pci_dev *dev = NULL;
905
906 while ((dev = pci_get_device(vendor, device, dev))) {
907 if (pci_domain_nr(dev->bus) == pci_domain_nr(related->bus) &&
908 (dev->bus->number == related->bus->number) &&
909 (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
910 break;
911 }
912
913 return dev;
914 }
915
916 static void read_dram_base_limit_regs(struct amd64_pvt *pvt, unsigned range)
917 {
918 struct amd_northbridge *nb;
919 struct pci_dev *misc, *f1 = NULL;
920 struct cpuinfo_x86 *c = &boot_cpu_data;
921 int off = range << 3;
922 u32 llim;
923
924 amd64_read_pci_cfg(pvt->F1, DRAM_BASE_LO + off, &pvt->ranges[range].base.lo);
925 amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_LO + off, &pvt->ranges[range].lim.lo);
926
927 if (c->x86 == 0xf)
928 return;
929
930 if (!dram_rw(pvt, range))
931 return;
932
933 amd64_read_pci_cfg(pvt->F1, DRAM_BASE_HI + off, &pvt->ranges[range].base.hi);
934 amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_HI + off, &pvt->ranges[range].lim.hi);
935
936 /* F15h: factor in CC6 save area by reading dst node's limit reg */
937 if (c->x86 != 0x15)
938 return;
939
940 nb = node_to_amd_nb(dram_dst_node(pvt, range));
941 if (WARN_ON(!nb))
942 return;
943
944 misc = nb->misc;
945 f1 = pci_get_related_function(misc->vendor, PCI_DEVICE_ID_AMD_15H_NB_F1, misc);
946 if (WARN_ON(!f1))
947 return;
948
949 amd64_read_pci_cfg(f1, DRAM_LOCAL_NODE_LIM, &llim);
950
951 pvt->ranges[range].lim.lo &= GENMASK(0, 15);
952
953 /* {[39:27],111b} */
954 pvt->ranges[range].lim.lo |= ((llim & 0x1fff) << 3 | 0x7) << 16;
955
956 pvt->ranges[range].lim.hi &= GENMASK(0, 7);
957
958 /* [47:40] */
959 pvt->ranges[range].lim.hi |= llim >> 13;
960
961 pci_dev_put(f1);
962 }
963
964 static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
965 struct err_info *err)
966 {
967 struct amd64_pvt *pvt = mci->pvt_info;
968
969 error_address_to_page_and_offset(sys_addr, err);
970
971 /*
972 * Find out which node the error address belongs to. This may be
973 * different from the node that detected the error.
974 */
975 err->src_mci = find_mc_by_sys_addr(mci, sys_addr);
976 if (!err->src_mci) {
977 amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n",
978 (unsigned long)sys_addr);
979 err->err_code = ERR_NODE;
980 return;
981 }
982
983 /* Now map the sys_addr to a CSROW */
984 err->csrow = sys_addr_to_csrow(err->src_mci, sys_addr);
985 if (err->csrow < 0) {
986 err->err_code = ERR_CSROW;
987 return;
988 }
989
990 /* CHIPKILL enabled */
991 if (pvt->nbcfg & NBCFG_CHIPKILL) {
992 err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome);
993 if (err->channel < 0) {
994 /*
995 * Syndrome didn't map, so we don't know which of the
996 * 2 DIMMs is in error. So we need to ID 'both' of them
997 * as suspect.
998 */
999 amd64_mc_warn(err->src_mci, "unknown syndrome 0x%04x - "
1000 "possible error reporting race\n",
1001 err->syndrome);
1002 err->err_code = ERR_CHANNEL;
1003 return;
1004 }
1005 } else {
1006 /*
1007 * non-chipkill ecc mode
1008 *
1009 * The k8 documentation is unclear about how to determine the
1010 * channel number when using non-chipkill memory. This method
1011 * was obtained from email communication with someone at AMD.
1012 * (Wish the email was placed in this comment - norsk)
1013 */
1014 err->channel = ((sys_addr & BIT(3)) != 0);
1015 }
1016 }
1017
1018 static int ddr2_cs_size(unsigned i, bool dct_width)
1019 {
1020 unsigned shift = 0;
1021
1022 if (i <= 2)
1023 shift = i;
1024 else if (!(i & 0x1))
1025 shift = i >> 1;
1026 else
1027 shift = (i + 1) >> 1;
1028
1029 return 128 << (shift + !!dct_width);
1030 }
1031
1032 static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1033 unsigned cs_mode)
1034 {
1035 u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
1036
1037 if (pvt->ext_model >= K8_REV_F) {
1038 WARN_ON(cs_mode > 11);
1039 return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
1040 }
1041 else if (pvt->ext_model >= K8_REV_D) {
1042 unsigned diff;
1043 WARN_ON(cs_mode > 10);
1044
1045 /*
1046 * the below calculation, besides trying to win an obfuscated C
1047 * contest, maps cs_mode values to DIMM chip select sizes. The
1048 * mappings are:
1049 *
1050 * cs_mode CS size (mb)
1051 * ======= ============
1052 * 0 32
1053 * 1 64
1054 * 2 128
1055 * 3 128
1056 * 4 256
1057 * 5 512
1058 * 6 256
1059 * 7 512
1060 * 8 1024
1061 * 9 1024
1062 * 10 2048
1063 *
1064 * Basically, it calculates a value with which to shift the
1065 * smallest CS size of 32MB.
1066 *
1067 * ddr[23]_cs_size have a similar purpose.
1068 */
1069 diff = cs_mode/3 + (unsigned)(cs_mode > 5);
1070
1071 return 32 << (cs_mode - diff);
1072 }
1073 else {
1074 WARN_ON(cs_mode > 6);
1075 return 32 << cs_mode;
1076 }
1077 }
1078
1079 /*
1080 * Get the number of DCT channels in use.
1081 *
1082 * Return:
1083 * number of Memory Channels in operation
1084 * Pass back:
1085 * contents of the DCL0_LOW register
1086 */
1087 static int f1x_early_channel_count(struct amd64_pvt *pvt)
1088 {
1089 int i, j, channels = 0;
1090
1091 /* On F10h, if we are in 128 bit mode, then we are using 2 channels */
1092 if (boot_cpu_data.x86 == 0x10 && (pvt->dclr0 & WIDTH_128))
1093 return 2;
1094
1095 /*
1096 * Need to check if in unganged mode: In such, there are 2 channels,
1097 * but they are not in 128 bit mode and thus the above 'dclr0' status
1098 * bit will be OFF.
1099 *
1100 * Need to check DCT0[0] and DCT1[0] to see if only one of them has
1101 * their CSEnable bit on. If so, then SINGLE DIMM case.
1102 */
1103 edac_dbg(0, "Data width is not 128 bits - need more decoding\n");
1104
1105 /*
1106 * Check DRAM Bank Address Mapping values for each DIMM to see if there
1107 * is more than just one DIMM present in unganged mode. Need to check
1108 * both controllers since DIMMs can be placed in either one.
1109 */
1110 for (i = 0; i < 2; i++) {
1111 u32 dbam = (i ? pvt->dbam1 : pvt->dbam0);
1112
1113 for (j = 0; j < 4; j++) {
1114 if (DBAM_DIMM(j, dbam) > 0) {
1115 channels++;
1116 break;
1117 }
1118 }
1119 }
1120
1121 if (channels > 2)
1122 channels = 2;
1123
1124 amd64_info("MCT channel count: %d\n", channels);
1125
1126 return channels;
1127 }
1128
1129 static int ddr3_cs_size(unsigned i, bool dct_width)
1130 {
1131 unsigned shift = 0;
1132 int cs_size = 0;
1133
1134 if (i == 0 || i == 3 || i == 4)
1135 cs_size = -1;
1136 else if (i <= 2)
1137 shift = i;
1138 else if (i == 12)
1139 shift = 7;
1140 else if (!(i & 0x1))
1141 shift = i >> 1;
1142 else
1143 shift = (i + 1) >> 1;
1144
1145 if (cs_size != -1)
1146 cs_size = (128 * (1 << !!dct_width)) << shift;
1147
1148 return cs_size;
1149 }
1150
1151 static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1152 unsigned cs_mode)
1153 {
1154 u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
1155
1156 WARN_ON(cs_mode > 11);
1157
1158 if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
1159 return ddr3_cs_size(cs_mode, dclr & WIDTH_128);
1160 else
1161 return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
1162 }
1163
1164 /*
1165 * F15h supports only 64bit DCT interfaces
1166 */
1167 static int f15_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1168 unsigned cs_mode)
1169 {
1170 WARN_ON(cs_mode > 12);
1171
1172 return ddr3_cs_size(cs_mode, false);
1173 }
1174
1175 /*
1176 * F16h has only limited cs_modes
1177 */
1178 static int f16_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1179 unsigned cs_mode)
1180 {
1181 WARN_ON(cs_mode > 12);
1182
1183 if (cs_mode == 6 || cs_mode == 8 ||
1184 cs_mode == 9 || cs_mode == 12)
1185 return -1;
1186 else
1187 return ddr3_cs_size(cs_mode, false);
1188 }
1189
1190 static void read_dram_ctl_register(struct amd64_pvt *pvt)
1191 {
1192
1193 if (boot_cpu_data.x86 == 0xf)
1194 return;
1195
1196 if (!amd64_read_dct_pci_cfg(pvt, DCT_SEL_LO, &pvt->dct_sel_lo)) {
1197 edac_dbg(0, "F2x110 (DCTSelLow): 0x%08x, High range addrs at: 0x%x\n",
1198 pvt->dct_sel_lo, dct_sel_baseaddr(pvt));
1199
1200 edac_dbg(0, " DCTs operate in %s mode\n",
1201 (dct_ganging_enabled(pvt) ? "ganged" : "unganged"));
1202
1203 if (!dct_ganging_enabled(pvt))
1204 edac_dbg(0, " Address range split per DCT: %s\n",
1205 (dct_high_range_enabled(pvt) ? "yes" : "no"));
1206
1207 edac_dbg(0, " data interleave for ECC: %s, DRAM cleared since last warm reset: %s\n",
1208 (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
1209 (dct_memory_cleared(pvt) ? "yes" : "no"));
1210
1211 edac_dbg(0, " channel interleave: %s, "
1212 "interleave bits selector: 0x%x\n",
1213 (dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
1214 dct_sel_interleave_addr(pvt));
1215 }
1216
1217 amd64_read_dct_pci_cfg(pvt, DCT_SEL_HI, &pvt->dct_sel_hi);
1218 }
1219
1220 /*
1221 * Determine channel (DCT) based on the interleaving mode: F10h BKDG, 2.8.9 Memory
1222 * Interleaving Modes.
1223 */
1224 static u8 f1x_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
1225 bool hi_range_sel, u8 intlv_en)
1226 {
1227 u8 dct_sel_high = (pvt->dct_sel_lo >> 1) & 1;
1228
1229 if (dct_ganging_enabled(pvt))
1230 return 0;
1231
1232 if (hi_range_sel)
1233 return dct_sel_high;
1234
1235 /*
1236 * see F2x110[DctSelIntLvAddr] - channel interleave mode
1237 */
1238 if (dct_interleave_enabled(pvt)) {
1239 u8 intlv_addr = dct_sel_interleave_addr(pvt);
1240
1241 /* return DCT select function: 0=DCT0, 1=DCT1 */
1242 if (!intlv_addr)
1243 return sys_addr >> 6 & 1;
1244
1245 if (intlv_addr & 0x2) {
1246 u8 shift = intlv_addr & 0x1 ? 9 : 6;
1247 u32 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;
1248
1249 return ((sys_addr >> shift) & 1) ^ temp;
1250 }
1251
1252 return (sys_addr >> (12 + hweight8(intlv_en))) & 1;
1253 }
1254
1255 if (dct_high_range_enabled(pvt))
1256 return ~dct_sel_high & 1;
1257
1258 return 0;
1259 }
1260
1261 /* Convert the sys_addr to the normalized DCT address */
1262 static u64 f1x_get_norm_dct_addr(struct amd64_pvt *pvt, u8 range,
1263 u64 sys_addr, bool hi_rng,
1264 u32 dct_sel_base_addr)
1265 {
1266 u64 chan_off;
1267 u64 dram_base = get_dram_base(pvt, range);
1268 u64 hole_off = f10_dhar_offset(pvt);
1269 u64 dct_sel_base_off = (pvt->dct_sel_hi & 0xFFFFFC00) << 16;
1270
1271 if (hi_rng) {
1272 /*
1273 * if
1274 * base address of high range is below 4Gb
1275 * (bits [47:27] at [31:11])
1276 * DRAM address space on this DCT is hoisted above 4Gb &&
1277 * sys_addr > 4Gb
1278 *
1279 * remove hole offset from sys_addr
1280 * else
1281 * remove high range offset from sys_addr
1282 */
1283 if ((!(dct_sel_base_addr >> 16) ||
1284 dct_sel_base_addr < dhar_base(pvt)) &&
1285 dhar_valid(pvt) &&
1286 (sys_addr >= BIT_64(32)))
1287 chan_off = hole_off;
1288 else
1289 chan_off = dct_sel_base_off;
1290 } else {
1291 /*
1292 * if
1293 * we have a valid hole &&
1294 * sys_addr > 4Gb
1295 *
1296 * remove hole
1297 * else
1298 * remove dram base to normalize to DCT address
1299 */
1300 if (dhar_valid(pvt) && (sys_addr >= BIT_64(32)))
1301 chan_off = hole_off;
1302 else
1303 chan_off = dram_base;
1304 }
1305
1306 return (sys_addr & GENMASK(6,47)) - (chan_off & GENMASK(23,47));
1307 }
1308
1309 /*
1310 * checks if the csrow passed in is marked as SPARED, if so returns the new
1311 * spare row
1312 */
1313 static int f10_process_possible_spare(struct amd64_pvt *pvt, u8 dct, int csrow)
1314 {
1315 int tmp_cs;
1316
1317 if (online_spare_swap_done(pvt, dct) &&
1318 csrow == online_spare_bad_dramcs(pvt, dct)) {
1319
1320 for_each_chip_select(tmp_cs, dct, pvt) {
1321 if (chip_select_base(tmp_cs, dct, pvt) & 0x2) {
1322 csrow = tmp_cs;
1323 break;
1324 }
1325 }
1326 }
1327 return csrow;
1328 }
1329
1330 /*
1331 * Iterate over the DRAM DCT "base" and "mask" registers looking for a
1332 * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
1333 *
1334 * Return:
1335 * -EINVAL: NOT FOUND
1336 * 0..csrow = Chip-Select Row
1337 */
1338 static int f1x_lookup_addr_in_dct(u64 in_addr, u8 nid, u8 dct)
1339 {
1340 struct mem_ctl_info *mci;
1341 struct amd64_pvt *pvt;
1342 u64 cs_base, cs_mask;
1343 int cs_found = -EINVAL;
1344 int csrow;
1345
1346 mci = mcis[nid];
1347 if (!mci)
1348 return cs_found;
1349
1350 pvt = mci->pvt_info;
1351
1352 edac_dbg(1, "input addr: 0x%llx, DCT: %d\n", in_addr, dct);
1353
1354 for_each_chip_select(csrow, dct, pvt) {
1355 if (!csrow_enabled(csrow, dct, pvt))
1356 continue;
1357
1358 get_cs_base_and_mask(pvt, csrow, dct, &cs_base, &cs_mask);
1359
1360 edac_dbg(1, " CSROW=%d CSBase=0x%llx CSMask=0x%llx\n",
1361 csrow, cs_base, cs_mask);
1362
1363 cs_mask = ~cs_mask;
1364
1365 edac_dbg(1, " (InputAddr & ~CSMask)=0x%llx (CSBase & ~CSMask)=0x%llx\n",
1366 (in_addr & cs_mask), (cs_base & cs_mask));
1367
1368 if ((in_addr & cs_mask) == (cs_base & cs_mask)) {
1369 cs_found = f10_process_possible_spare(pvt, dct, csrow);
1370
1371 edac_dbg(1, " MATCH csrow=%d\n", cs_found);
1372 break;
1373 }
1374 }
1375 return cs_found;
1376 }
1377
1378 /*
1379 * See F2x10C. Non-interleaved graphics framebuffer memory under the 16G is
1380 * swapped with a region located at the bottom of memory so that the GPU can use
1381 * the interleaved region and thus two channels.
1382 */
1383 static u64 f1x_swap_interleaved_region(struct amd64_pvt *pvt, u64 sys_addr)
1384 {
1385 u32 swap_reg, swap_base, swap_limit, rgn_size, tmp_addr;
1386
1387 if (boot_cpu_data.x86 == 0x10) {
1388 /* only revC3 and revE have that feature */
1389 if (boot_cpu_data.x86_model < 4 ||
1390 (boot_cpu_data.x86_model < 0xa &&
1391 boot_cpu_data.x86_mask < 3))
1392 return sys_addr;
1393 }
1394
1395 amd64_read_dct_pci_cfg(pvt, SWAP_INTLV_REG, &swap_reg);
1396
1397 if (!(swap_reg & 0x1))
1398 return sys_addr;
1399
1400 swap_base = (swap_reg >> 3) & 0x7f;
1401 swap_limit = (swap_reg >> 11) & 0x7f;
1402 rgn_size = (swap_reg >> 20) & 0x7f;
1403 tmp_addr = sys_addr >> 27;
1404
1405 if (!(sys_addr >> 34) &&
1406 (((tmp_addr >= swap_base) &&
1407 (tmp_addr <= swap_limit)) ||
1408 (tmp_addr < rgn_size)))
1409 return sys_addr ^ (u64)swap_base << 27;
1410
1411 return sys_addr;
1412 }
1413
1414 /* For a given @dram_range, check if @sys_addr falls within it. */
1415 static int f1x_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
1416 u64 sys_addr, int *chan_sel)
1417 {
1418 int cs_found = -EINVAL;
1419 u64 chan_addr;
1420 u32 dct_sel_base;
1421 u8 channel;
1422 bool high_range = false;
1423
1424 u8 node_id = dram_dst_node(pvt, range);
1425 u8 intlv_en = dram_intlv_en(pvt, range);
1426 u32 intlv_sel = dram_intlv_sel(pvt, range);
1427
1428 edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
1429 range, sys_addr, get_dram_limit(pvt, range));
1430
1431 if (dhar_valid(pvt) &&
1432 dhar_base(pvt) <= sys_addr &&
1433 sys_addr < BIT_64(32)) {
1434 amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
1435 sys_addr);
1436 return -EINVAL;
1437 }
1438
1439 if (intlv_en && (intlv_sel != ((sys_addr >> 12) & intlv_en)))
1440 return -EINVAL;
1441
1442 sys_addr = f1x_swap_interleaved_region(pvt, sys_addr);
1443
1444 dct_sel_base = dct_sel_baseaddr(pvt);
1445
1446 /*
1447 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
1448 * select between DCT0 and DCT1.
1449 */
1450 if (dct_high_range_enabled(pvt) &&
1451 !dct_ganging_enabled(pvt) &&
1452 ((sys_addr >> 27) >= (dct_sel_base >> 11)))
1453 high_range = true;
1454
1455 channel = f1x_determine_channel(pvt, sys_addr, high_range, intlv_en);
1456
1457 chan_addr = f1x_get_norm_dct_addr(pvt, range, sys_addr,
1458 high_range, dct_sel_base);
1459
1460 /* Remove node interleaving, see F1x120 */
1461 if (intlv_en)
1462 chan_addr = ((chan_addr >> (12 + hweight8(intlv_en))) << 12) |
1463 (chan_addr & 0xfff);
1464
1465 /* remove channel interleave */
1466 if (dct_interleave_enabled(pvt) &&
1467 !dct_high_range_enabled(pvt) &&
1468 !dct_ganging_enabled(pvt)) {
1469
1470 if (dct_sel_interleave_addr(pvt) != 1) {
1471 if (dct_sel_interleave_addr(pvt) == 0x3)
1472 /* hash 9 */
1473 chan_addr = ((chan_addr >> 10) << 9) |
1474 (chan_addr & 0x1ff);
1475 else
1476 /* A[6] or hash 6 */
1477 chan_addr = ((chan_addr >> 7) << 6) |
1478 (chan_addr & 0x3f);
1479 } else
1480 /* A[12] */
1481 chan_addr = ((chan_addr >> 13) << 12) |
1482 (chan_addr & 0xfff);
1483 }
1484
1485 edac_dbg(1, " Normalized DCT addr: 0x%llx\n", chan_addr);
1486
1487 cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, channel);
1488
1489 if (cs_found >= 0)
1490 *chan_sel = channel;
1491
1492 return cs_found;
1493 }
1494
1495 static int f1x_translate_sysaddr_to_cs(struct amd64_pvt *pvt, u64 sys_addr,
1496 int *chan_sel)
1497 {
1498 int cs_found = -EINVAL;
1499 unsigned range;
1500
1501 for (range = 0; range < DRAM_RANGES; range++) {
1502
1503 if (!dram_rw(pvt, range))
1504 continue;
1505
1506 if ((get_dram_base(pvt, range) <= sys_addr) &&
1507 (get_dram_limit(pvt, range) >= sys_addr)) {
1508
1509 cs_found = f1x_match_to_this_node(pvt, range,
1510 sys_addr, chan_sel);
1511 if (cs_found >= 0)
1512 break;
1513 }
1514 }
1515 return cs_found;
1516 }
1517
1518 /*
1519 * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
1520 * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
1521 *
1522 * The @sys_addr is usually an error address received from the hardware
1523 * (MCX_ADDR).
1524 */
1525 static void f1x_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
1526 struct err_info *err)
1527 {
1528 struct amd64_pvt *pvt = mci->pvt_info;
1529
1530 error_address_to_page_and_offset(sys_addr, err);
1531
1532 err->csrow = f1x_translate_sysaddr_to_cs(pvt, sys_addr, &err->channel);
1533 if (err->csrow < 0) {
1534 err->err_code = ERR_CSROW;
1535 return;
1536 }
1537
1538 /*
1539 * We need the syndromes for channel detection only when we're
1540 * ganged. Otherwise @chan should already contain the channel at
1541 * this point.
1542 */
1543 if (dct_ganging_enabled(pvt))
1544 err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome);
1545 }
1546
1547 /*
1548 * debug routine to display the memory sizes of all logical DIMMs and its
1549 * CSROWs
1550 */
1551 static void amd64_debug_display_dimm_sizes(struct amd64_pvt *pvt, u8 ctrl)
1552 {
1553 int dimm, size0, size1;
1554 u32 *dcsb = ctrl ? pvt->csels[1].csbases : pvt->csels[0].csbases;
1555 u32 dbam = ctrl ? pvt->dbam1 : pvt->dbam0;
1556
1557 if (boot_cpu_data.x86 == 0xf) {
1558 /* K8 families < revF not supported yet */
1559 if (pvt->ext_model < K8_REV_F)
1560 return;
1561 else
1562 WARN_ON(ctrl != 0);
1563 }
1564
1565 dbam = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->dbam1 : pvt->dbam0;
1566 dcsb = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->csels[1].csbases
1567 : pvt->csels[0].csbases;
1568
1569 edac_dbg(1, "F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n",
1570 ctrl, dbam);
1571
1572 edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);
1573
1574 /* Dump memory sizes for DIMM and its CSROWs */
1575 for (dimm = 0; dimm < 4; dimm++) {
1576
1577 size0 = 0;
1578 if (dcsb[dimm*2] & DCSB_CS_ENABLE)
1579 size0 = pvt->ops->dbam_to_cs(pvt, ctrl,
1580 DBAM_DIMM(dimm, dbam));
1581
1582 size1 = 0;
1583 if (dcsb[dimm*2 + 1] & DCSB_CS_ENABLE)
1584 size1 = pvt->ops->dbam_to_cs(pvt, ctrl,
1585 DBAM_DIMM(dimm, dbam));
1586
1587 amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
1588 dimm * 2, size0,
1589 dimm * 2 + 1, size1);
1590 }
1591 }
1592
1593 static struct amd64_family_type amd64_family_types[] = {
1594 [K8_CPUS] = {
1595 .ctl_name = "K8",
1596 .f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
1597 .f3_id = PCI_DEVICE_ID_AMD_K8_NB_MISC,
1598 .ops = {
1599 .early_channel_count = k8_early_channel_count,
1600 .map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow,
1601 .dbam_to_cs = k8_dbam_to_chip_select,
1602 .read_dct_pci_cfg = k8_read_dct_pci_cfg,
1603 }
1604 },
1605 [F10_CPUS] = {
1606 .ctl_name = "F10h",
1607 .f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP,
1608 .f3_id = PCI_DEVICE_ID_AMD_10H_NB_MISC,
1609 .ops = {
1610 .early_channel_count = f1x_early_channel_count,
1611 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
1612 .dbam_to_cs = f10_dbam_to_chip_select,
1613 .read_dct_pci_cfg = f10_read_dct_pci_cfg,
1614 }
1615 },
1616 [F15_CPUS] = {
1617 .ctl_name = "F15h",
1618 .f1_id = PCI_DEVICE_ID_AMD_15H_NB_F1,
1619 .f3_id = PCI_DEVICE_ID_AMD_15H_NB_F3,
1620 .ops = {
1621 .early_channel_count = f1x_early_channel_count,
1622 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
1623 .dbam_to_cs = f15_dbam_to_chip_select,
1624 .read_dct_pci_cfg = f15_read_dct_pci_cfg,
1625 }
1626 },
1627 [F16_CPUS] = {
1628 .ctl_name = "F16h",
1629 .f1_id = PCI_DEVICE_ID_AMD_16H_NB_F1,
1630 .f3_id = PCI_DEVICE_ID_AMD_16H_NB_F3,
1631 .ops = {
1632 .early_channel_count = f1x_early_channel_count,
1633 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
1634 .dbam_to_cs = f16_dbam_to_chip_select,
1635 .read_dct_pci_cfg = f10_read_dct_pci_cfg,
1636 }
1637 },
1638 };
1639
1640 /*
1641 * These are tables of eigenvectors (one per line) which can be used for the
1642 * construction of the syndrome tables. The modified syndrome search algorithm
1643 * uses those to find the symbol in error and thus the DIMM.
1644 *
1645 * Algorithm courtesy of Ross LaFetra from AMD.
1646 */
1647 static const u16 x4_vectors[] = {
1648 0x2f57, 0x1afe, 0x66cc, 0xdd88,
1649 0x11eb, 0x3396, 0x7f4c, 0xeac8,
1650 0x0001, 0x0002, 0x0004, 0x0008,
1651 0x1013, 0x3032, 0x4044, 0x8088,
1652 0x106b, 0x30d6, 0x70fc, 0xe0a8,
1653 0x4857, 0xc4fe, 0x13cc, 0x3288,
1654 0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
1655 0x1f39, 0x251e, 0xbd6c, 0x6bd8,
1656 0x15c1, 0x2a42, 0x89ac, 0x4758,
1657 0x2b03, 0x1602, 0x4f0c, 0xca08,
1658 0x1f07, 0x3a0e, 0x6b04, 0xbd08,
1659 0x8ba7, 0x465e, 0x244c, 0x1cc8,
1660 0x2b87, 0x164e, 0x642c, 0xdc18,
1661 0x40b9, 0x80de, 0x1094, 0x20e8,
1662 0x27db, 0x1eb6, 0x9dac, 0x7b58,
1663 0x11c1, 0x2242, 0x84ac, 0x4c58,
1664 0x1be5, 0x2d7a, 0x5e34, 0xa718,
1665 0x4b39, 0x8d1e, 0x14b4, 0x28d8,
1666 0x4c97, 0xc87e, 0x11fc, 0x33a8,
1667 0x8e97, 0x497e, 0x2ffc, 0x1aa8,
1668 0x16b3, 0x3d62, 0x4f34, 0x8518,
1669 0x1e2f, 0x391a, 0x5cac, 0xf858,
1670 0x1d9f, 0x3b7a, 0x572c, 0xfe18,
1671 0x15f5, 0x2a5a, 0x5264, 0xa3b8,
1672 0x1dbb, 0x3b66, 0x715c, 0xe3f8,
1673 0x4397, 0xc27e, 0x17fc, 0x3ea8,
1674 0x1617, 0x3d3e, 0x6464, 0xb8b8,
1675 0x23ff, 0x12aa, 0xab6c, 0x56d8,
1676 0x2dfb, 0x1ba6, 0x913c, 0x7328,
1677 0x185d, 0x2ca6, 0x7914, 0x9e28,
1678 0x171b, 0x3e36, 0x7d7c, 0xebe8,
1679 0x4199, 0x82ee, 0x19f4, 0x2e58,
1680 0x4807, 0xc40e, 0x130c, 0x3208,
1681 0x1905, 0x2e0a, 0x5804, 0xac08,
1682 0x213f, 0x132a, 0xadfc, 0x5ba8,
1683 0x19a9, 0x2efe, 0xb5cc, 0x6f88,
1684 };
1685
1686 static const u16 x8_vectors[] = {
1687 0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
1688 0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
1689 0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
1690 0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
1691 0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
1692 0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
1693 0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
1694 0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
1695 0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
1696 0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
1697 0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
1698 0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
1699 0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
1700 0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
1701 0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
1702 0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
1703 0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
1704 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
1705 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
1706 };
1707
1708 static int decode_syndrome(u16 syndrome, const u16 *vectors, unsigned num_vecs,
1709 unsigned v_dim)
1710 {
1711 unsigned int i, err_sym;
1712
1713 for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
1714 u16 s = syndrome;
1715 unsigned v_idx = err_sym * v_dim;
1716 unsigned v_end = (err_sym + 1) * v_dim;
1717
1718 /* walk over all 16 bits of the syndrome */
1719 for (i = 1; i < (1U << 16); i <<= 1) {
1720
1721 /* if bit is set in that eigenvector... */
1722 if (v_idx < v_end && vectors[v_idx] & i) {
1723 u16 ev_comp = vectors[v_idx++];
1724
1725 /* ... and bit set in the modified syndrome, */
1726 if (s & i) {
1727 /* remove it. */
1728 s ^= ev_comp;
1729
1730 if (!s)
1731 return err_sym;
1732 }
1733
1734 } else if (s & i)
1735 /* can't get to zero, move to next symbol */
1736 break;
1737 }
1738 }
1739
1740 edac_dbg(0, "syndrome(%x) not found\n", syndrome);
1741 return -1;
1742 }
1743
1744 static int map_err_sym_to_channel(int err_sym, int sym_size)
1745 {
1746 if (sym_size == 4)
1747 switch (err_sym) {
1748 case 0x20:
1749 case 0x21:
1750 return 0;
1751 break;
1752 case 0x22:
1753 case 0x23:
1754 return 1;
1755 break;
1756 default:
1757 return err_sym >> 4;
1758 break;
1759 }
1760 /* x8 symbols */
1761 else
1762 switch (err_sym) {
1763 /* imaginary bits not in a DIMM */
1764 case 0x10:
1765 WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
1766 err_sym);
1767 return -1;
1768 break;
1769
1770 case 0x11:
1771 return 0;
1772 break;
1773 case 0x12:
1774 return 1;
1775 break;
1776 default:
1777 return err_sym >> 3;
1778 break;
1779 }
1780 return -1;
1781 }
1782
1783 static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
1784 {
1785 struct amd64_pvt *pvt = mci->pvt_info;
1786 int err_sym = -1;
1787
1788 if (pvt->ecc_sym_sz == 8)
1789 err_sym = decode_syndrome(syndrome, x8_vectors,
1790 ARRAY_SIZE(x8_vectors),
1791 pvt->ecc_sym_sz);
1792 else if (pvt->ecc_sym_sz == 4)
1793 err_sym = decode_syndrome(syndrome, x4_vectors,
1794 ARRAY_SIZE(x4_vectors),
1795 pvt->ecc_sym_sz);
1796 else {
1797 amd64_warn("Illegal syndrome type: %u\n", pvt->ecc_sym_sz);
1798 return err_sym;
1799 }
1800
1801 return map_err_sym_to_channel(err_sym, pvt->ecc_sym_sz);
1802 }
1803
1804 static void __log_bus_error(struct mem_ctl_info *mci, struct err_info *err,
1805 u8 ecc_type)
1806 {
1807 enum hw_event_mc_err_type err_type;
1808 const char *string;
1809
1810 if (ecc_type == 2)
1811 err_type = HW_EVENT_ERR_CORRECTED;
1812 else if (ecc_type == 1)
1813 err_type = HW_EVENT_ERR_UNCORRECTED;
1814 else {
1815 WARN(1, "Something is rotten in the state of Denmark.\n");
1816 return;
1817 }
1818
1819 switch (err->err_code) {
1820 case DECODE_OK:
1821 string = "";
1822 break;
1823 case ERR_NODE:
1824 string = "Failed to map error addr to a node";
1825 break;
1826 case ERR_CSROW:
1827 string = "Failed to map error addr to a csrow";
1828 break;
1829 case ERR_CHANNEL:
1830 string = "unknown syndrome - possible error reporting race";
1831 break;
1832 default:
1833 string = "WTF error";
1834 break;
1835 }
1836
1837 edac_mc_handle_error(err_type, mci, 1,
1838 err->page, err->offset, err->syndrome,
1839 err->csrow, err->channel, -1,
1840 string, "");
1841 }
1842
1843 static inline void __amd64_decode_bus_error(struct mem_ctl_info *mci,
1844 struct mce *m)
1845 {
1846 struct amd64_pvt *pvt = mci->pvt_info;
1847 u8 ecc_type = (m->status >> 45) & 0x3;
1848 u8 xec = XEC(m->status, 0x1f);
1849 u16 ec = EC(m->status);
1850 u64 sys_addr;
1851 struct err_info err;
1852
1853 /* Bail out early if this was an 'observed' error */
1854 if (PP(ec) == NBSL_PP_OBS)
1855 return;
1856
1857 /* Do only ECC errors */
1858 if (xec && xec != F10_NBSL_EXT_ERR_ECC)
1859 return;
1860
1861 memset(&err, 0, sizeof(err));
1862
1863 sys_addr = get_error_address(m);
1864
1865 if (ecc_type == 2)
1866 err.syndrome = extract_syndrome(m->status);
1867
1868 pvt->ops->map_sysaddr_to_csrow(mci, sys_addr, &err);
1869
1870 __log_bus_error(mci, &err, ecc_type);
1871 }
1872
1873 void amd64_decode_bus_error(int node_id, struct mce *m)
1874 {
1875 __amd64_decode_bus_error(mcis[node_id], m);
1876 }
1877
1878 /*
1879 * Use pvt->F2 which contains the F2 CPU PCI device to get the related
1880 * F1 (AddrMap) and F3 (Misc) devices. Return negative value on error.
1881 */
1882 static int reserve_mc_sibling_devs(struct amd64_pvt *pvt, u16 f1_id, u16 f3_id)
1883 {
1884 /* Reserve the ADDRESS MAP Device */
1885 pvt->F1 = pci_get_related_function(pvt->F2->vendor, f1_id, pvt->F2);
1886 if (!pvt->F1) {
1887 amd64_err("error address map device not found: "
1888 "vendor %x device 0x%x (broken BIOS?)\n",
1889 PCI_VENDOR_ID_AMD, f1_id);
1890 return -ENODEV;
1891 }
1892
1893 /* Reserve the MISC Device */
1894 pvt->F3 = pci_get_related_function(pvt->F2->vendor, f3_id, pvt->F2);
1895 if (!pvt->F3) {
1896 pci_dev_put(pvt->F1);
1897 pvt->F1 = NULL;
1898
1899 amd64_err("error F3 device not found: "
1900 "vendor %x device 0x%x (broken BIOS?)\n",
1901 PCI_VENDOR_ID_AMD, f3_id);
1902
1903 return -ENODEV;
1904 }
1905 edac_dbg(1, "F1: %s\n", pci_name(pvt->F1));
1906 edac_dbg(1, "F2: %s\n", pci_name(pvt->F2));
1907 edac_dbg(1, "F3: %s\n", pci_name(pvt->F3));
1908
1909 return 0;
1910 }
1911
1912 static void free_mc_sibling_devs(struct amd64_pvt *pvt)
1913 {
1914 pci_dev_put(pvt->F1);
1915 pci_dev_put(pvt->F3);
1916 }
1917
1918 /*
1919 * Retrieve the hardware registers of the memory controller (this includes the
1920 * 'Address Map' and 'Misc' device regs)
1921 */
1922 static void read_mc_regs(struct amd64_pvt *pvt)
1923 {
1924 struct cpuinfo_x86 *c = &boot_cpu_data;
1925 u64 msr_val;
1926 u32 tmp;
1927 unsigned range;
1928
1929 /*
1930 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
1931 * those are Read-As-Zero
1932 */
1933 rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
1934 edac_dbg(0, " TOP_MEM: 0x%016llx\n", pvt->top_mem);
1935
1936 /* check first whether TOP_MEM2 is enabled */
1937 rdmsrl(MSR_K8_SYSCFG, msr_val);
1938 if (msr_val & (1U << 21)) {
1939 rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
1940 edac_dbg(0, " TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
1941 } else
1942 edac_dbg(0, " TOP_MEM2 disabled\n");
1943
1944 amd64_read_pci_cfg(pvt->F3, NBCAP, &pvt->nbcap);
1945
1946 read_dram_ctl_register(pvt);
1947
1948 for (range = 0; range < DRAM_RANGES; range++) {
1949 u8 rw;
1950
1951 /* read settings for this DRAM range */
1952 read_dram_base_limit_regs(pvt, range);
1953
1954 rw = dram_rw(pvt, range);
1955 if (!rw)
1956 continue;
1957
1958 edac_dbg(1, " DRAM range[%d], base: 0x%016llx; limit: 0x%016llx\n",
1959 range,
1960 get_dram_base(pvt, range),
1961 get_dram_limit(pvt, range));
1962
1963 edac_dbg(1, " IntlvEn=%s; Range access: %s%s IntlvSel=%d DstNode=%d\n",
1964 dram_intlv_en(pvt, range) ? "Enabled" : "Disabled",
1965 (rw & 0x1) ? "R" : "-",
1966 (rw & 0x2) ? "W" : "-",
1967 dram_intlv_sel(pvt, range),
1968 dram_dst_node(pvt, range));
1969 }
1970
1971 read_dct_base_mask(pvt);
1972
1973 amd64_read_pci_cfg(pvt->F1, DHAR, &pvt->dhar);
1974 amd64_read_dct_pci_cfg(pvt, DBAM0, &pvt->dbam0);
1975
1976 amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare);
1977
1978 amd64_read_dct_pci_cfg(pvt, DCLR0, &pvt->dclr0);
1979 amd64_read_dct_pci_cfg(pvt, DCHR0, &pvt->dchr0);
1980
1981 if (!dct_ganging_enabled(pvt)) {
1982 amd64_read_dct_pci_cfg(pvt, DCLR1, &pvt->dclr1);
1983 amd64_read_dct_pci_cfg(pvt, DCHR1, &pvt->dchr1);
1984 }
1985
1986 pvt->ecc_sym_sz = 4;
1987
1988 if (c->x86 >= 0x10) {
1989 amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp);
1990 if (c->x86 != 0x16)
1991 /* F16h has only DCT0 */
1992 amd64_read_dct_pci_cfg(pvt, DBAM1, &pvt->dbam1);
1993
1994 /* F10h, revD and later can do x8 ECC too */
1995 if ((c->x86 > 0x10 || c->x86_model > 7) && tmp & BIT(25))
1996 pvt->ecc_sym_sz = 8;
1997 }
1998 dump_misc_regs(pvt);
1999 }
2000
2001 /*
2002 * NOTE: CPU Revision Dependent code
2003 *
2004 * Input:
2005 * @csrow_nr ChipSelect Row Number (0..NUM_CHIPSELECTS-1)
2006 * k8 private pointer to -->
2007 * DRAM Bank Address mapping register
2008 * node_id
2009 * DCL register where dual_channel_active is
2010 *
2011 * The DBAM register consists of 4 sets of 4 bits each definitions:
2012 *
2013 * Bits: CSROWs
2014 * 0-3 CSROWs 0 and 1
2015 * 4-7 CSROWs 2 and 3
2016 * 8-11 CSROWs 4 and 5
2017 * 12-15 CSROWs 6 and 7
2018 *
2019 * Values range from: 0 to 15
2020 * The meaning of the values depends on CPU revision and dual-channel state,
2021 * see relevant BKDG more info.
2022 *
2023 * The memory controller provides for total of only 8 CSROWs in its current
2024 * architecture. Each "pair" of CSROWs normally represents just one DIMM in
2025 * single channel or two (2) DIMMs in dual channel mode.
2026 *
2027 * The following code logic collapses the various tables for CSROW based on CPU
2028 * revision.
2029 *
2030 * Returns:
2031 * The number of PAGE_SIZE pages on the specified CSROW number it
2032 * encompasses
2033 *
2034 */
2035 static u32 amd64_csrow_nr_pages(struct amd64_pvt *pvt, u8 dct, int csrow_nr)
2036 {
2037 u32 cs_mode, nr_pages;
2038 u32 dbam = dct ? pvt->dbam1 : pvt->dbam0;
2039
2040
2041 /*
2042 * The math on this doesn't look right on the surface because x/2*4 can
2043 * be simplified to x*2 but this expression makes use of the fact that
2044 * it is integral math where 1/2=0. This intermediate value becomes the
2045 * number of bits to shift the DBAM register to extract the proper CSROW
2046 * field.
2047 */
2048 cs_mode = DBAM_DIMM(csrow_nr / 2, dbam);
2049
2050 nr_pages = pvt->ops->dbam_to_cs(pvt, dct, cs_mode) << (20 - PAGE_SHIFT);
2051
2052 edac_dbg(0, "csrow: %d, channel: %d, DBAM idx: %d\n",
2053 csrow_nr, dct, cs_mode);
2054 edac_dbg(0, "nr_pages/channel: %u\n", nr_pages);
2055
2056 return nr_pages;
2057 }
2058
2059 /*
2060 * Initialize the array of csrow attribute instances, based on the values
2061 * from pci config hardware registers.
2062 */
2063 static int init_csrows(struct mem_ctl_info *mci)
2064 {
2065 struct amd64_pvt *pvt = mci->pvt_info;
2066 struct csrow_info *csrow;
2067 struct dimm_info *dimm;
2068 enum edac_type edac_mode;
2069 enum mem_type mtype;
2070 int i, j, empty = 1;
2071 int nr_pages = 0;
2072 u32 val;
2073
2074 amd64_read_pci_cfg(pvt->F3, NBCFG, &val);
2075
2076 pvt->nbcfg = val;
2077
2078 edac_dbg(0, "node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
2079 pvt->mc_node_id, val,
2080 !!(val & NBCFG_CHIPKILL), !!(val & NBCFG_ECC_ENABLE));
2081
2082 /*
2083 * We iterate over DCT0 here but we look at DCT1 in parallel, if needed.
2084 */
2085 for_each_chip_select(i, 0, pvt) {
2086 bool row_dct0 = !!csrow_enabled(i, 0, pvt);
2087 bool row_dct1 = false;
2088
2089 if (boot_cpu_data.x86 != 0xf)
2090 row_dct1 = !!csrow_enabled(i, 1, pvt);
2091
2092 if (!row_dct0 && !row_dct1)
2093 continue;
2094
2095 csrow = mci->csrows[i];
2096 empty = 0;
2097
2098 edac_dbg(1, "MC node: %d, csrow: %d\n",
2099 pvt->mc_node_id, i);
2100
2101 if (row_dct0) {
2102 nr_pages = amd64_csrow_nr_pages(pvt, 0, i);
2103 csrow->channels[0]->dimm->nr_pages = nr_pages;
2104 }
2105
2106 /* K8 has only one DCT */
2107 if (boot_cpu_data.x86 != 0xf && row_dct1) {
2108 int row_dct1_pages = amd64_csrow_nr_pages(pvt, 1, i);
2109
2110 csrow->channels[1]->dimm->nr_pages = row_dct1_pages;
2111 nr_pages += row_dct1_pages;
2112 }
2113
2114 mtype = amd64_determine_memory_type(pvt, i);
2115
2116 edac_dbg(1, "Total csrow%d pages: %u\n", i, nr_pages);
2117
2118 /*
2119 * determine whether CHIPKILL or JUST ECC or NO ECC is operating
2120 */
2121 if (pvt->nbcfg & NBCFG_ECC_ENABLE)
2122 edac_mode = (pvt->nbcfg & NBCFG_CHIPKILL) ?
2123 EDAC_S4ECD4ED : EDAC_SECDED;
2124 else
2125 edac_mode = EDAC_NONE;
2126
2127 for (j = 0; j < pvt->channel_count; j++) {
2128 dimm = csrow->channels[j]->dimm;
2129 dimm->mtype = mtype;
2130 dimm->edac_mode = edac_mode;
2131 }
2132 }
2133
2134 return empty;
2135 }
2136
2137 /* get all cores on this DCT */
2138 static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, u16 nid)
2139 {
2140 int cpu;
2141
2142 for_each_online_cpu(cpu)
2143 if (amd_get_nb_id(cpu) == nid)
2144 cpumask_set_cpu(cpu, mask);
2145 }
2146
2147 /* check MCG_CTL on all the cpus on this node */
2148 static bool amd64_nb_mce_bank_enabled_on_node(u16 nid)
2149 {
2150 cpumask_var_t mask;
2151 int cpu, nbe;
2152 bool ret = false;
2153
2154 if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
2155 amd64_warn("%s: Error allocating mask\n", __func__);
2156 return false;
2157 }
2158
2159 get_cpus_on_this_dct_cpumask(mask, nid);
2160
2161 rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);
2162
2163 for_each_cpu(cpu, mask) {
2164 struct msr *reg = per_cpu_ptr(msrs, cpu);
2165 nbe = reg->l & MSR_MCGCTL_NBE;
2166
2167 edac_dbg(0, "core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
2168 cpu, reg->q,
2169 (nbe ? "enabled" : "disabled"));
2170
2171 if (!nbe)
2172 goto out;
2173 }
2174 ret = true;
2175
2176 out:
2177 free_cpumask_var(mask);
2178 return ret;
2179 }
2180
2181 static int toggle_ecc_err_reporting(struct ecc_settings *s, u16 nid, bool on)
2182 {
2183 cpumask_var_t cmask;
2184 int cpu;
2185
2186 if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
2187 amd64_warn("%s: error allocating mask\n", __func__);
2188 return false;
2189 }
2190
2191 get_cpus_on_this_dct_cpumask(cmask, nid);
2192
2193 rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2194
2195 for_each_cpu(cpu, cmask) {
2196
2197 struct msr *reg = per_cpu_ptr(msrs, cpu);
2198
2199 if (on) {
2200 if (reg->l & MSR_MCGCTL_NBE)
2201 s->flags.nb_mce_enable = 1;
2202
2203 reg->l |= MSR_MCGCTL_NBE;
2204 } else {
2205 /*
2206 * Turn off NB MCE reporting only when it was off before
2207 */
2208 if (!s->flags.nb_mce_enable)
2209 reg->l &= ~MSR_MCGCTL_NBE;
2210 }
2211 }
2212 wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2213
2214 free_cpumask_var(cmask);
2215
2216 return 0;
2217 }
2218
2219 static bool enable_ecc_error_reporting(struct ecc_settings *s, u16 nid,
2220 struct pci_dev *F3)
2221 {
2222 bool ret = true;
2223 u32 value, mask = 0x3; /* UECC/CECC enable */
2224
2225 if (toggle_ecc_err_reporting(s, nid, ON)) {
2226 amd64_warn("Error enabling ECC reporting over MCGCTL!\n");
2227 return false;
2228 }
2229
2230 amd64_read_pci_cfg(F3, NBCTL, &value);
2231
2232 s->old_nbctl = value & mask;
2233 s->nbctl_valid = true;
2234
2235 value |= mask;
2236 amd64_write_pci_cfg(F3, NBCTL, value);
2237
2238 amd64_read_pci_cfg(F3, NBCFG, &value);
2239
2240 edac_dbg(0, "1: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
2241 nid, value, !!(value & NBCFG_ECC_ENABLE));
2242
2243 if (!(value & NBCFG_ECC_ENABLE)) {
2244 amd64_warn("DRAM ECC disabled on this node, enabling...\n");
2245
2246 s->flags.nb_ecc_prev = 0;
2247
2248 /* Attempt to turn on DRAM ECC Enable */
2249 value |= NBCFG_ECC_ENABLE;
2250 amd64_write_pci_cfg(F3, NBCFG, value);
2251
2252 amd64_read_pci_cfg(F3, NBCFG, &value);
2253
2254 if (!(value & NBCFG_ECC_ENABLE)) {
2255 amd64_warn("Hardware rejected DRAM ECC enable,"
2256 "check memory DIMM configuration.\n");
2257 ret = false;
2258 } else {
2259 amd64_info("Hardware accepted DRAM ECC Enable\n");
2260 }
2261 } else {
2262 s->flags.nb_ecc_prev = 1;
2263 }
2264
2265 edac_dbg(0, "2: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
2266 nid, value, !!(value & NBCFG_ECC_ENABLE));
2267
2268 return ret;
2269 }
2270
2271 static void restore_ecc_error_reporting(struct ecc_settings *s, u16 nid,
2272 struct pci_dev *F3)
2273 {
2274 u32 value, mask = 0x3; /* UECC/CECC enable */
2275
2276
2277 if (!s->nbctl_valid)
2278 return;
2279
2280 amd64_read_pci_cfg(F3, NBCTL, &value);
2281 value &= ~mask;
2282 value |= s->old_nbctl;
2283
2284 amd64_write_pci_cfg(F3, NBCTL, value);
2285
2286 /* restore previous BIOS DRAM ECC "off" setting we force-enabled */
2287 if (!s->flags.nb_ecc_prev) {
2288 amd64_read_pci_cfg(F3, NBCFG, &value);
2289 value &= ~NBCFG_ECC_ENABLE;
2290 amd64_write_pci_cfg(F3, NBCFG, value);
2291 }
2292
2293 /* restore the NB Enable MCGCTL bit */
2294 if (toggle_ecc_err_reporting(s, nid, OFF))
2295 amd64_warn("Error restoring NB MCGCTL settings!\n");
2296 }
2297
2298 /*
2299 * EDAC requires that the BIOS have ECC enabled before
2300 * taking over the processing of ECC errors. A command line
2301 * option allows to force-enable hardware ECC later in
2302 * enable_ecc_error_reporting().
2303 */
2304 static const char *ecc_msg =
2305 "ECC disabled in the BIOS or no ECC capability, module will not load.\n"
2306 " Either enable ECC checking or force module loading by setting "
2307 "'ecc_enable_override'.\n"
2308 " (Note that use of the override may cause unknown side effects.)\n";
2309
2310 static bool ecc_enabled(struct pci_dev *F3, u16 nid)
2311 {
2312 u32 value;
2313 u8 ecc_en = 0;
2314 bool nb_mce_en = false;
2315
2316 amd64_read_pci_cfg(F3, NBCFG, &value);
2317
2318 ecc_en = !!(value & NBCFG_ECC_ENABLE);
2319 amd64_info("DRAM ECC %s.\n", (ecc_en ? "enabled" : "disabled"));
2320
2321 nb_mce_en = amd64_nb_mce_bank_enabled_on_node(nid);
2322 if (!nb_mce_en)
2323 amd64_notice("NB MCE bank disabled, set MSR "
2324 "0x%08x[4] on node %d to enable.\n",
2325 MSR_IA32_MCG_CTL, nid);
2326
2327 if (!ecc_en || !nb_mce_en) {
2328 amd64_notice("%s", ecc_msg);
2329 return false;
2330 }
2331 return true;
2332 }
2333
2334 static int set_mc_sysfs_attrs(struct mem_ctl_info *mci)
2335 {
2336 int rc;
2337
2338 rc = amd64_create_sysfs_dbg_files(mci);
2339 if (rc < 0)
2340 return rc;
2341
2342 if (boot_cpu_data.x86 >= 0x10) {
2343 rc = amd64_create_sysfs_inject_files(mci);
2344 if (rc < 0)
2345 return rc;
2346 }
2347
2348 return 0;
2349 }
2350
2351 static void del_mc_sysfs_attrs(struct mem_ctl_info *mci)
2352 {
2353 amd64_remove_sysfs_dbg_files(mci);
2354
2355 if (boot_cpu_data.x86 >= 0x10)
2356 amd64_remove_sysfs_inject_files(mci);
2357 }
2358
2359 static void setup_mci_misc_attrs(struct mem_ctl_info *mci,
2360 struct amd64_family_type *fam)
2361 {
2362 struct amd64_pvt *pvt = mci->pvt_info;
2363
2364 mci->mtype_cap = MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
2365 mci->edac_ctl_cap = EDAC_FLAG_NONE;
2366
2367 if (pvt->nbcap & NBCAP_SECDED)
2368 mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
2369
2370 if (pvt->nbcap & NBCAP_CHIPKILL)
2371 mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
2372
2373 mci->edac_cap = amd64_determine_edac_cap(pvt);
2374 mci->mod_name = EDAC_MOD_STR;
2375 mci->mod_ver = EDAC_AMD64_VERSION;
2376 mci->ctl_name = fam->ctl_name;
2377 mci->dev_name = pci_name(pvt->F2);
2378 mci->ctl_page_to_phys = NULL;
2379
2380 /* memory scrubber interface */
2381 mci->set_sdram_scrub_rate = amd64_set_scrub_rate;
2382 mci->get_sdram_scrub_rate = amd64_get_scrub_rate;
2383 }
2384
2385 /*
2386 * returns a pointer to the family descriptor on success, NULL otherwise.
2387 */
2388 static struct amd64_family_type *amd64_per_family_init(struct amd64_pvt *pvt)
2389 {
2390 u8 fam = boot_cpu_data.x86;
2391 struct amd64_family_type *fam_type = NULL;
2392
2393 switch (fam) {
2394 case 0xf:
2395 fam_type = &amd64_family_types[K8_CPUS];
2396 pvt->ops = &amd64_family_types[K8_CPUS].ops;
2397 break;
2398
2399 case 0x10:
2400 fam_type = &amd64_family_types[F10_CPUS];
2401 pvt->ops = &amd64_family_types[F10_CPUS].ops;
2402 break;
2403
2404 case 0x15:
2405 fam_type = &amd64_family_types[F15_CPUS];
2406 pvt->ops = &amd64_family_types[F15_CPUS].ops;
2407 break;
2408
2409 case 0x16:
2410 fam_type = &amd64_family_types[F16_CPUS];
2411 pvt->ops = &amd64_family_types[F16_CPUS].ops;
2412 break;
2413
2414 default:
2415 amd64_err("Unsupported family!\n");
2416 return NULL;
2417 }
2418
2419 pvt->ext_model = boot_cpu_data.x86_model >> 4;
2420
2421 amd64_info("%s %sdetected (node %d).\n", fam_type->ctl_name,
2422 (fam == 0xf ?
2423 (pvt->ext_model >= K8_REV_F ? "revF or later "
2424 : "revE or earlier ")
2425 : ""), pvt->mc_node_id);
2426 return fam_type;
2427 }
2428
2429 static int amd64_init_one_instance(struct pci_dev *F2)
2430 {
2431 struct amd64_pvt *pvt = NULL;
2432 struct amd64_family_type *fam_type = NULL;
2433 struct mem_ctl_info *mci = NULL;
2434 struct edac_mc_layer layers[2];
2435 int err = 0, ret;
2436 u16 nid = amd_get_node_id(F2);
2437
2438 ret = -ENOMEM;
2439 pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
2440 if (!pvt)
2441 goto err_ret;
2442
2443 pvt->mc_node_id = nid;
2444 pvt->F2 = F2;
2445
2446 ret = -EINVAL;
2447 fam_type = amd64_per_family_init(pvt);
2448 if (!fam_type)
2449 goto err_free;
2450
2451 ret = -ENODEV;
2452 err = reserve_mc_sibling_devs(pvt, fam_type->f1_id, fam_type->f3_id);
2453 if (err)
2454 goto err_free;
2455
2456 read_mc_regs(pvt);
2457
2458 /*
2459 * We need to determine how many memory channels there are. Then use
2460 * that information for calculating the size of the dynamic instance
2461 * tables in the 'mci' structure.
2462 */
2463 ret = -EINVAL;
2464 pvt->channel_count = pvt->ops->early_channel_count(pvt);
2465 if (pvt->channel_count < 0)
2466 goto err_siblings;
2467
2468 ret = -ENOMEM;
2469 layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
2470 layers[0].size = pvt->csels[0].b_cnt;
2471 layers[0].is_virt_csrow = true;
2472 layers[1].type = EDAC_MC_LAYER_CHANNEL;
2473 layers[1].size = pvt->channel_count;
2474 layers[1].is_virt_csrow = false;
2475 mci = edac_mc_alloc(nid, ARRAY_SIZE(layers), layers, 0);
2476 if (!mci)
2477 goto err_siblings;
2478
2479 mci->pvt_info = pvt;
2480 mci->pdev = &pvt->F2->dev;
2481
2482 setup_mci_misc_attrs(mci, fam_type);
2483
2484 if (init_csrows(mci))
2485 mci->edac_cap = EDAC_FLAG_NONE;
2486
2487 ret = -ENODEV;
2488 if (edac_mc_add_mc(mci)) {
2489 edac_dbg(1, "failed edac_mc_add_mc()\n");
2490 goto err_add_mc;
2491 }
2492 if (set_mc_sysfs_attrs(mci)) {
2493 edac_dbg(1, "failed edac_mc_add_mc()\n");
2494 goto err_add_sysfs;
2495 }
2496
2497 /* register stuff with EDAC MCE */
2498 if (report_gart_errors)
2499 amd_report_gart_errors(true);
2500
2501 amd_register_ecc_decoder(amd64_decode_bus_error);
2502
2503 mcis[nid] = mci;
2504
2505 atomic_inc(&drv_instances);
2506
2507 return 0;
2508
2509 err_add_sysfs:
2510 edac_mc_del_mc(mci->pdev);
2511 err_add_mc:
2512 edac_mc_free(mci);
2513
2514 err_siblings:
2515 free_mc_sibling_devs(pvt);
2516
2517 err_free:
2518 kfree(pvt);
2519
2520 err_ret:
2521 return ret;
2522 }
2523
2524 static int amd64_probe_one_instance(struct pci_dev *pdev,
2525 const struct pci_device_id *mc_type)
2526 {
2527 u16 nid = amd_get_node_id(pdev);
2528 struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
2529 struct ecc_settings *s;
2530 int ret = 0;
2531
2532 ret = pci_enable_device(pdev);
2533 if (ret < 0) {
2534 edac_dbg(0, "ret=%d\n", ret);
2535 return -EIO;
2536 }
2537
2538 ret = -ENOMEM;
2539 s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL);
2540 if (!s)
2541 goto err_out;
2542
2543 ecc_stngs[nid] = s;
2544
2545 if (!ecc_enabled(F3, nid)) {
2546 ret = -ENODEV;
2547
2548 if (!ecc_enable_override)
2549 goto err_enable;
2550
2551 amd64_warn("Forcing ECC on!\n");
2552
2553 if (!enable_ecc_error_reporting(s, nid, F3))
2554 goto err_enable;
2555 }
2556
2557 ret = amd64_init_one_instance(pdev);
2558 if (ret < 0) {
2559 amd64_err("Error probing instance: %d\n", nid);
2560 restore_ecc_error_reporting(s, nid, F3);
2561 }
2562
2563 return ret;
2564
2565 err_enable:
2566 kfree(s);
2567 ecc_stngs[nid] = NULL;
2568
2569 err_out:
2570 return ret;
2571 }
2572
2573 static void amd64_remove_one_instance(struct pci_dev *pdev)
2574 {
2575 struct mem_ctl_info *mci;
2576 struct amd64_pvt *pvt;
2577 u16 nid = amd_get_node_id(pdev);
2578 struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
2579 struct ecc_settings *s = ecc_stngs[nid];
2580
2581 mci = find_mci_by_dev(&pdev->dev);
2582 del_mc_sysfs_attrs(mci);
2583 /* Remove from EDAC CORE tracking list */
2584 mci = edac_mc_del_mc(&pdev->dev);
2585 if (!mci)
2586 return;
2587
2588 pvt = mci->pvt_info;
2589
2590 restore_ecc_error_reporting(s, nid, F3);
2591
2592 free_mc_sibling_devs(pvt);
2593
2594 /* unregister from EDAC MCE */
2595 amd_report_gart_errors(false);
2596 amd_unregister_ecc_decoder(amd64_decode_bus_error);
2597
2598 kfree(ecc_stngs[nid]);
2599 ecc_stngs[nid] = NULL;
2600
2601 /* Free the EDAC CORE resources */
2602 mci->pvt_info = NULL;
2603 mcis[nid] = NULL;
2604
2605 kfree(pvt);
2606 edac_mc_free(mci);
2607 }
2608
2609 /*
2610 * This table is part of the interface for loading drivers for PCI devices. The
2611 * PCI core identifies what devices are on a system during boot, and then
2612 * inquiry this table to see if this driver is for a given device found.
2613 */
2614 static DEFINE_PCI_DEVICE_TABLE(amd64_pci_table) = {
2615 {
2616 .vendor = PCI_VENDOR_ID_AMD,
2617 .device = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
2618 .subvendor = PCI_ANY_ID,
2619 .subdevice = PCI_ANY_ID,
2620 .class = 0,
2621 .class_mask = 0,
2622 },
2623 {
2624 .vendor = PCI_VENDOR_ID_AMD,
2625 .device = PCI_DEVICE_ID_AMD_10H_NB_DRAM,
2626 .subvendor = PCI_ANY_ID,
2627 .subdevice = PCI_ANY_ID,
2628 .class = 0,
2629 .class_mask = 0,
2630 },
2631 {
2632 .vendor = PCI_VENDOR_ID_AMD,
2633 .device = PCI_DEVICE_ID_AMD_15H_NB_F2,
2634 .subvendor = PCI_ANY_ID,
2635 .subdevice = PCI_ANY_ID,
2636 .class = 0,
2637 .class_mask = 0,
2638 },
2639 {
2640 .vendor = PCI_VENDOR_ID_AMD,
2641 .device = PCI_DEVICE_ID_AMD_16H_NB_F2,
2642 .subvendor = PCI_ANY_ID,
2643 .subdevice = PCI_ANY_ID,
2644 .class = 0,
2645 .class_mask = 0,
2646 },
2647
2648 {0, }
2649 };
2650 MODULE_DEVICE_TABLE(pci, amd64_pci_table);
2651
2652 static struct pci_driver amd64_pci_driver = {
2653 .name = EDAC_MOD_STR,
2654 .probe = amd64_probe_one_instance,
2655 .remove = amd64_remove_one_instance,
2656 .id_table = amd64_pci_table,
2657 };
2658
2659 static void setup_pci_device(void)
2660 {
2661 struct mem_ctl_info *mci;
2662 struct amd64_pvt *pvt;
2663
2664 if (amd64_ctl_pci)
2665 return;
2666
2667 mci = mcis[0];
2668 if (mci) {
2669
2670 pvt = mci->pvt_info;
2671 amd64_ctl_pci =
2672 edac_pci_create_generic_ctl(&pvt->F2->dev, EDAC_MOD_STR);
2673
2674 if (!amd64_ctl_pci) {
2675 pr_warning("%s(): Unable to create PCI control\n",
2676 __func__);
2677
2678 pr_warning("%s(): PCI error report via EDAC not set\n",
2679 __func__);
2680 }
2681 }
2682 }
2683
2684 static int __init amd64_edac_init(void)
2685 {
2686 int err = -ENODEV;
2687
2688 printk(KERN_INFO "AMD64 EDAC driver v%s\n", EDAC_AMD64_VERSION);
2689
2690 opstate_init();
2691
2692 if (amd_cache_northbridges() < 0)
2693 goto err_ret;
2694
2695 err = -ENOMEM;
2696 mcis = kzalloc(amd_nb_num() * sizeof(mcis[0]), GFP_KERNEL);
2697 ecc_stngs = kzalloc(amd_nb_num() * sizeof(ecc_stngs[0]), GFP_KERNEL);
2698 if (!(mcis && ecc_stngs))
2699 goto err_free;
2700
2701 msrs = msrs_alloc();
2702 if (!msrs)
2703 goto err_free;
2704
2705 err = pci_register_driver(&amd64_pci_driver);
2706 if (err)
2707 goto err_pci;
2708
2709 err = -ENODEV;
2710 if (!atomic_read(&drv_instances))
2711 goto err_no_instances;
2712
2713 setup_pci_device();
2714 return 0;
2715
2716 err_no_instances:
2717 pci_unregister_driver(&amd64_pci_driver);
2718
2719 err_pci:
2720 msrs_free(msrs);
2721 msrs = NULL;
2722
2723 err_free:
2724 kfree(mcis);
2725 mcis = NULL;
2726
2727 kfree(ecc_stngs);
2728 ecc_stngs = NULL;
2729
2730 err_ret:
2731 return err;
2732 }
2733
2734 static void __exit amd64_edac_exit(void)
2735 {
2736 if (amd64_ctl_pci)
2737 edac_pci_release_generic_ctl(amd64_ctl_pci);
2738
2739 pci_unregister_driver(&amd64_pci_driver);
2740
2741 kfree(ecc_stngs);
2742 ecc_stngs = NULL;
2743
2744 kfree(mcis);
2745 mcis = NULL;
2746
2747 msrs_free(msrs);
2748 msrs = NULL;
2749 }
2750
2751 module_init(amd64_edac_init);
2752 module_exit(amd64_edac_exit);
2753
2754 MODULE_LICENSE("GPL");
2755 MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
2756 "Dave Peterson, Thayne Harbaugh");
2757 MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
2758 EDAC_AMD64_VERSION);
2759
2760 module_param(edac_op_state, int, 0444);
2761 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");