]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/edac/amd64_edac.c
Merge tag 'armsoc-defconfig' of git://git.kernel.org/pub/scm/linux/kernel/git/arm...
[mirror_ubuntu-artful-kernel.git] / drivers / edac / amd64_edac.c
1 #include "amd64_edac.h"
2 #include <asm/amd_nb.h>
3
4 static struct edac_pci_ctl_info *pci_ctl;
5
6 static int report_gart_errors;
7 module_param(report_gart_errors, int, 0644);
8
9 /*
10 * Set by command line parameter. If BIOS has enabled the ECC, this override is
11 * cleared to prevent re-enabling the hardware by this driver.
12 */
13 static int ecc_enable_override;
14 module_param(ecc_enable_override, int, 0644);
15
16 static struct msr __percpu *msrs;
17
18 /* Per-node stuff */
19 static struct ecc_settings **ecc_stngs;
20
21 /*
22 * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
23 * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
24 * or higher value'.
25 *
26 *FIXME: Produce a better mapping/linearisation.
27 */
28 static const struct scrubrate {
29 u32 scrubval; /* bit pattern for scrub rate */
30 u32 bandwidth; /* bandwidth consumed (bytes/sec) */
31 } scrubrates[] = {
32 { 0x01, 1600000000UL},
33 { 0x02, 800000000UL},
34 { 0x03, 400000000UL},
35 { 0x04, 200000000UL},
36 { 0x05, 100000000UL},
37 { 0x06, 50000000UL},
38 { 0x07, 25000000UL},
39 { 0x08, 12284069UL},
40 { 0x09, 6274509UL},
41 { 0x0A, 3121951UL},
42 { 0x0B, 1560975UL},
43 { 0x0C, 781440UL},
44 { 0x0D, 390720UL},
45 { 0x0E, 195300UL},
46 { 0x0F, 97650UL},
47 { 0x10, 48854UL},
48 { 0x11, 24427UL},
49 { 0x12, 12213UL},
50 { 0x13, 6101UL},
51 { 0x14, 3051UL},
52 { 0x15, 1523UL},
53 { 0x16, 761UL},
54 { 0x00, 0UL}, /* scrubbing off */
55 };
56
57 int __amd64_read_pci_cfg_dword(struct pci_dev *pdev, int offset,
58 u32 *val, const char *func)
59 {
60 int err = 0;
61
62 err = pci_read_config_dword(pdev, offset, val);
63 if (err)
64 amd64_warn("%s: error reading F%dx%03x.\n",
65 func, PCI_FUNC(pdev->devfn), offset);
66
67 return err;
68 }
69
70 int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset,
71 u32 val, const char *func)
72 {
73 int err = 0;
74
75 err = pci_write_config_dword(pdev, offset, val);
76 if (err)
77 amd64_warn("%s: error writing to F%dx%03x.\n",
78 func, PCI_FUNC(pdev->devfn), offset);
79
80 return err;
81 }
82
83 /*
84 * Select DCT to which PCI cfg accesses are routed
85 */
86 static void f15h_select_dct(struct amd64_pvt *pvt, u8 dct)
87 {
88 u32 reg = 0;
89
90 amd64_read_pci_cfg(pvt->F1, DCT_CFG_SEL, &reg);
91 reg &= (pvt->model == 0x30) ? ~3 : ~1;
92 reg |= dct;
93 amd64_write_pci_cfg(pvt->F1, DCT_CFG_SEL, reg);
94 }
95
96 /*
97 *
98 * Depending on the family, F2 DCT reads need special handling:
99 *
100 * K8: has a single DCT only and no address offsets >= 0x100
101 *
102 * F10h: each DCT has its own set of regs
103 * DCT0 -> F2x040..
104 * DCT1 -> F2x140..
105 *
106 * F16h: has only 1 DCT
107 *
108 * F15h: we select which DCT we access using F1x10C[DctCfgSel]
109 */
110 static inline int amd64_read_dct_pci_cfg(struct amd64_pvt *pvt, u8 dct,
111 int offset, u32 *val)
112 {
113 switch (pvt->fam) {
114 case 0xf:
115 if (dct || offset >= 0x100)
116 return -EINVAL;
117 break;
118
119 case 0x10:
120 if (dct) {
121 /*
122 * Note: If ganging is enabled, barring the regs
123 * F2x[1,0]98 and F2x[1,0]9C; reads reads to F2x1xx
124 * return 0. (cf. Section 2.8.1 F10h BKDG)
125 */
126 if (dct_ganging_enabled(pvt))
127 return 0;
128
129 offset += 0x100;
130 }
131 break;
132
133 case 0x15:
134 /*
135 * F15h: F2x1xx addresses do not map explicitly to DCT1.
136 * We should select which DCT we access using F1x10C[DctCfgSel]
137 */
138 dct = (dct && pvt->model == 0x30) ? 3 : dct;
139 f15h_select_dct(pvt, dct);
140 break;
141
142 case 0x16:
143 if (dct)
144 return -EINVAL;
145 break;
146
147 default:
148 break;
149 }
150 return amd64_read_pci_cfg(pvt->F2, offset, val);
151 }
152
153 /*
154 * Memory scrubber control interface. For K8, memory scrubbing is handled by
155 * hardware and can involve L2 cache, dcache as well as the main memory. With
156 * F10, this is extended to L3 cache scrubbing on CPU models sporting that
157 * functionality.
158 *
159 * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
160 * (dram) over to cache lines. This is nasty, so we will use bandwidth in
161 * bytes/sec for the setting.
162 *
163 * Currently, we only do dram scrubbing. If the scrubbing is done in software on
164 * other archs, we might not have access to the caches directly.
165 */
166
167 static inline void __f17h_set_scrubval(struct amd64_pvt *pvt, u32 scrubval)
168 {
169 /*
170 * Fam17h supports scrub values between 0x5 and 0x14. Also, the values
171 * are shifted down by 0x5, so scrubval 0x5 is written to the register
172 * as 0x0, scrubval 0x6 as 0x1, etc.
173 */
174 if (scrubval >= 0x5 && scrubval <= 0x14) {
175 scrubval -= 0x5;
176 pci_write_bits32(pvt->F6, F17H_SCR_LIMIT_ADDR, scrubval, 0xF);
177 pci_write_bits32(pvt->F6, F17H_SCR_BASE_ADDR, 1, 0x1);
178 } else {
179 pci_write_bits32(pvt->F6, F17H_SCR_BASE_ADDR, 0, 0x1);
180 }
181 }
182 /*
183 * Scan the scrub rate mapping table for a close or matching bandwidth value to
184 * issue. If requested is too big, then use last maximum value found.
185 */
186 static int __set_scrub_rate(struct amd64_pvt *pvt, u32 new_bw, u32 min_rate)
187 {
188 u32 scrubval;
189 int i;
190
191 /*
192 * map the configured rate (new_bw) to a value specific to the AMD64
193 * memory controller and apply to register. Search for the first
194 * bandwidth entry that is greater or equal than the setting requested
195 * and program that. If at last entry, turn off DRAM scrubbing.
196 *
197 * If no suitable bandwidth is found, turn off DRAM scrubbing entirely
198 * by falling back to the last element in scrubrates[].
199 */
200 for (i = 0; i < ARRAY_SIZE(scrubrates) - 1; i++) {
201 /*
202 * skip scrub rates which aren't recommended
203 * (see F10 BKDG, F3x58)
204 */
205 if (scrubrates[i].scrubval < min_rate)
206 continue;
207
208 if (scrubrates[i].bandwidth <= new_bw)
209 break;
210 }
211
212 scrubval = scrubrates[i].scrubval;
213
214 if (pvt->fam == 0x17) {
215 __f17h_set_scrubval(pvt, scrubval);
216 } else if (pvt->fam == 0x15 && pvt->model == 0x60) {
217 f15h_select_dct(pvt, 0);
218 pci_write_bits32(pvt->F2, F15H_M60H_SCRCTRL, scrubval, 0x001F);
219 f15h_select_dct(pvt, 1);
220 pci_write_bits32(pvt->F2, F15H_M60H_SCRCTRL, scrubval, 0x001F);
221 } else {
222 pci_write_bits32(pvt->F3, SCRCTRL, scrubval, 0x001F);
223 }
224
225 if (scrubval)
226 return scrubrates[i].bandwidth;
227
228 return 0;
229 }
230
231 static int set_scrub_rate(struct mem_ctl_info *mci, u32 bw)
232 {
233 struct amd64_pvt *pvt = mci->pvt_info;
234 u32 min_scrubrate = 0x5;
235
236 if (pvt->fam == 0xf)
237 min_scrubrate = 0x0;
238
239 if (pvt->fam == 0x15) {
240 /* Erratum #505 */
241 if (pvt->model < 0x10)
242 f15h_select_dct(pvt, 0);
243
244 if (pvt->model == 0x60)
245 min_scrubrate = 0x6;
246 }
247 return __set_scrub_rate(pvt, bw, min_scrubrate);
248 }
249
250 static int get_scrub_rate(struct mem_ctl_info *mci)
251 {
252 struct amd64_pvt *pvt = mci->pvt_info;
253 int i, retval = -EINVAL;
254 u32 scrubval = 0;
255
256 switch (pvt->fam) {
257 case 0x15:
258 /* Erratum #505 */
259 if (pvt->model < 0x10)
260 f15h_select_dct(pvt, 0);
261
262 if (pvt->model == 0x60)
263 amd64_read_pci_cfg(pvt->F2, F15H_M60H_SCRCTRL, &scrubval);
264 break;
265
266 case 0x17:
267 amd64_read_pci_cfg(pvt->F6, F17H_SCR_BASE_ADDR, &scrubval);
268 if (scrubval & BIT(0)) {
269 amd64_read_pci_cfg(pvt->F6, F17H_SCR_LIMIT_ADDR, &scrubval);
270 scrubval &= 0xF;
271 scrubval += 0x5;
272 } else {
273 scrubval = 0;
274 }
275 break;
276
277 default:
278 amd64_read_pci_cfg(pvt->F3, SCRCTRL, &scrubval);
279 break;
280 }
281
282 scrubval = scrubval & 0x001F;
283
284 for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
285 if (scrubrates[i].scrubval == scrubval) {
286 retval = scrubrates[i].bandwidth;
287 break;
288 }
289 }
290 return retval;
291 }
292
293 /*
294 * returns true if the SysAddr given by sys_addr matches the
295 * DRAM base/limit associated with node_id
296 */
297 static bool base_limit_match(struct amd64_pvt *pvt, u64 sys_addr, u8 nid)
298 {
299 u64 addr;
300
301 /* The K8 treats this as a 40-bit value. However, bits 63-40 will be
302 * all ones if the most significant implemented address bit is 1.
303 * Here we discard bits 63-40. See section 3.4.2 of AMD publication
304 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
305 * Application Programming.
306 */
307 addr = sys_addr & 0x000000ffffffffffull;
308
309 return ((addr >= get_dram_base(pvt, nid)) &&
310 (addr <= get_dram_limit(pvt, nid)));
311 }
312
313 /*
314 * Attempt to map a SysAddr to a node. On success, return a pointer to the
315 * mem_ctl_info structure for the node that the SysAddr maps to.
316 *
317 * On failure, return NULL.
318 */
319 static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
320 u64 sys_addr)
321 {
322 struct amd64_pvt *pvt;
323 u8 node_id;
324 u32 intlv_en, bits;
325
326 /*
327 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
328 * 3.4.4.2) registers to map the SysAddr to a node ID.
329 */
330 pvt = mci->pvt_info;
331
332 /*
333 * The value of this field should be the same for all DRAM Base
334 * registers. Therefore we arbitrarily choose to read it from the
335 * register for node 0.
336 */
337 intlv_en = dram_intlv_en(pvt, 0);
338
339 if (intlv_en == 0) {
340 for (node_id = 0; node_id < DRAM_RANGES; node_id++) {
341 if (base_limit_match(pvt, sys_addr, node_id))
342 goto found;
343 }
344 goto err_no_match;
345 }
346
347 if (unlikely((intlv_en != 0x01) &&
348 (intlv_en != 0x03) &&
349 (intlv_en != 0x07))) {
350 amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en);
351 return NULL;
352 }
353
354 bits = (((u32) sys_addr) >> 12) & intlv_en;
355
356 for (node_id = 0; ; ) {
357 if ((dram_intlv_sel(pvt, node_id) & intlv_en) == bits)
358 break; /* intlv_sel field matches */
359
360 if (++node_id >= DRAM_RANGES)
361 goto err_no_match;
362 }
363
364 /* sanity test for sys_addr */
365 if (unlikely(!base_limit_match(pvt, sys_addr, node_id))) {
366 amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address"
367 "range for node %d with node interleaving enabled.\n",
368 __func__, sys_addr, node_id);
369 return NULL;
370 }
371
372 found:
373 return edac_mc_find((int)node_id);
374
375 err_no_match:
376 edac_dbg(2, "sys_addr 0x%lx doesn't match any node\n",
377 (unsigned long)sys_addr);
378
379 return NULL;
380 }
381
382 /*
383 * compute the CS base address of the @csrow on the DRAM controller @dct.
384 * For details see F2x[5C:40] in the processor's BKDG
385 */
386 static void get_cs_base_and_mask(struct amd64_pvt *pvt, int csrow, u8 dct,
387 u64 *base, u64 *mask)
388 {
389 u64 csbase, csmask, base_bits, mask_bits;
390 u8 addr_shift;
391
392 if (pvt->fam == 0xf && pvt->ext_model < K8_REV_F) {
393 csbase = pvt->csels[dct].csbases[csrow];
394 csmask = pvt->csels[dct].csmasks[csrow];
395 base_bits = GENMASK_ULL(31, 21) | GENMASK_ULL(15, 9);
396 mask_bits = GENMASK_ULL(29, 21) | GENMASK_ULL(15, 9);
397 addr_shift = 4;
398
399 /*
400 * F16h and F15h, models 30h and later need two addr_shift values:
401 * 8 for high and 6 for low (cf. F16h BKDG).
402 */
403 } else if (pvt->fam == 0x16 ||
404 (pvt->fam == 0x15 && pvt->model >= 0x30)) {
405 csbase = pvt->csels[dct].csbases[csrow];
406 csmask = pvt->csels[dct].csmasks[csrow >> 1];
407
408 *base = (csbase & GENMASK_ULL(15, 5)) << 6;
409 *base |= (csbase & GENMASK_ULL(30, 19)) << 8;
410
411 *mask = ~0ULL;
412 /* poke holes for the csmask */
413 *mask &= ~((GENMASK_ULL(15, 5) << 6) |
414 (GENMASK_ULL(30, 19) << 8));
415
416 *mask |= (csmask & GENMASK_ULL(15, 5)) << 6;
417 *mask |= (csmask & GENMASK_ULL(30, 19)) << 8;
418
419 return;
420 } else {
421 csbase = pvt->csels[dct].csbases[csrow];
422 csmask = pvt->csels[dct].csmasks[csrow >> 1];
423 addr_shift = 8;
424
425 if (pvt->fam == 0x15)
426 base_bits = mask_bits =
427 GENMASK_ULL(30,19) | GENMASK_ULL(13,5);
428 else
429 base_bits = mask_bits =
430 GENMASK_ULL(28,19) | GENMASK_ULL(13,5);
431 }
432
433 *base = (csbase & base_bits) << addr_shift;
434
435 *mask = ~0ULL;
436 /* poke holes for the csmask */
437 *mask &= ~(mask_bits << addr_shift);
438 /* OR them in */
439 *mask |= (csmask & mask_bits) << addr_shift;
440 }
441
442 #define for_each_chip_select(i, dct, pvt) \
443 for (i = 0; i < pvt->csels[dct].b_cnt; i++)
444
445 #define chip_select_base(i, dct, pvt) \
446 pvt->csels[dct].csbases[i]
447
448 #define for_each_chip_select_mask(i, dct, pvt) \
449 for (i = 0; i < pvt->csels[dct].m_cnt; i++)
450
451 /*
452 * @input_addr is an InputAddr associated with the node given by mci. Return the
453 * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
454 */
455 static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
456 {
457 struct amd64_pvt *pvt;
458 int csrow;
459 u64 base, mask;
460
461 pvt = mci->pvt_info;
462
463 for_each_chip_select(csrow, 0, pvt) {
464 if (!csrow_enabled(csrow, 0, pvt))
465 continue;
466
467 get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);
468
469 mask = ~mask;
470
471 if ((input_addr & mask) == (base & mask)) {
472 edac_dbg(2, "InputAddr 0x%lx matches csrow %d (node %d)\n",
473 (unsigned long)input_addr, csrow,
474 pvt->mc_node_id);
475
476 return csrow;
477 }
478 }
479 edac_dbg(2, "no matching csrow for InputAddr 0x%lx (MC node %d)\n",
480 (unsigned long)input_addr, pvt->mc_node_id);
481
482 return -1;
483 }
484
485 /*
486 * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
487 * for the node represented by mci. Info is passed back in *hole_base,
488 * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if
489 * info is invalid. Info may be invalid for either of the following reasons:
490 *
491 * - The revision of the node is not E or greater. In this case, the DRAM Hole
492 * Address Register does not exist.
493 *
494 * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
495 * indicating that its contents are not valid.
496 *
497 * The values passed back in *hole_base, *hole_offset, and *hole_size are
498 * complete 32-bit values despite the fact that the bitfields in the DHAR
499 * only represent bits 31-24 of the base and offset values.
500 */
501 int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
502 u64 *hole_offset, u64 *hole_size)
503 {
504 struct amd64_pvt *pvt = mci->pvt_info;
505
506 /* only revE and later have the DRAM Hole Address Register */
507 if (pvt->fam == 0xf && pvt->ext_model < K8_REV_E) {
508 edac_dbg(1, " revision %d for node %d does not support DHAR\n",
509 pvt->ext_model, pvt->mc_node_id);
510 return 1;
511 }
512
513 /* valid for Fam10h and above */
514 if (pvt->fam >= 0x10 && !dhar_mem_hoist_valid(pvt)) {
515 edac_dbg(1, " Dram Memory Hoisting is DISABLED on this system\n");
516 return 1;
517 }
518
519 if (!dhar_valid(pvt)) {
520 edac_dbg(1, " Dram Memory Hoisting is DISABLED on this node %d\n",
521 pvt->mc_node_id);
522 return 1;
523 }
524
525 /* This node has Memory Hoisting */
526
527 /* +------------------+--------------------+--------------------+-----
528 * | memory | DRAM hole | relocated |
529 * | [0, (x - 1)] | [x, 0xffffffff] | addresses from |
530 * | | | DRAM hole |
531 * | | | [0x100000000, |
532 * | | | (0x100000000+ |
533 * | | | (0xffffffff-x))] |
534 * +------------------+--------------------+--------------------+-----
535 *
536 * Above is a diagram of physical memory showing the DRAM hole and the
537 * relocated addresses from the DRAM hole. As shown, the DRAM hole
538 * starts at address x (the base address) and extends through address
539 * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the
540 * addresses in the hole so that they start at 0x100000000.
541 */
542
543 *hole_base = dhar_base(pvt);
544 *hole_size = (1ULL << 32) - *hole_base;
545
546 *hole_offset = (pvt->fam > 0xf) ? f10_dhar_offset(pvt)
547 : k8_dhar_offset(pvt);
548
549 edac_dbg(1, " DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
550 pvt->mc_node_id, (unsigned long)*hole_base,
551 (unsigned long)*hole_offset, (unsigned long)*hole_size);
552
553 return 0;
554 }
555 EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
556
557 /*
558 * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is
559 * assumed that sys_addr maps to the node given by mci.
560 *
561 * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
562 * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
563 * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
564 * then it is also involved in translating a SysAddr to a DramAddr. Sections
565 * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
566 * These parts of the documentation are unclear. I interpret them as follows:
567 *
568 * When node n receives a SysAddr, it processes the SysAddr as follows:
569 *
570 * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
571 * Limit registers for node n. If the SysAddr is not within the range
572 * specified by the base and limit values, then node n ignores the Sysaddr
573 * (since it does not map to node n). Otherwise continue to step 2 below.
574 *
575 * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
576 * disabled so skip to step 3 below. Otherwise see if the SysAddr is within
577 * the range of relocated addresses (starting at 0x100000000) from the DRAM
578 * hole. If not, skip to step 3 below. Else get the value of the
579 * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
580 * offset defined by this value from the SysAddr.
581 *
582 * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
583 * Base register for node n. To obtain the DramAddr, subtract the base
584 * address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
585 */
586 static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
587 {
588 struct amd64_pvt *pvt = mci->pvt_info;
589 u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
590 int ret;
591
592 dram_base = get_dram_base(pvt, pvt->mc_node_id);
593
594 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
595 &hole_size);
596 if (!ret) {
597 if ((sys_addr >= (1ULL << 32)) &&
598 (sys_addr < ((1ULL << 32) + hole_size))) {
599 /* use DHAR to translate SysAddr to DramAddr */
600 dram_addr = sys_addr - hole_offset;
601
602 edac_dbg(2, "using DHAR to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
603 (unsigned long)sys_addr,
604 (unsigned long)dram_addr);
605
606 return dram_addr;
607 }
608 }
609
610 /*
611 * Translate the SysAddr to a DramAddr as shown near the start of
612 * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8
613 * only deals with 40-bit values. Therefore we discard bits 63-40 of
614 * sys_addr below. If bit 39 of sys_addr is 1 then the bits we
615 * discard are all 1s. Otherwise the bits we discard are all 0s. See
616 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
617 * Programmer's Manual Volume 1 Application Programming.
618 */
619 dram_addr = (sys_addr & GENMASK_ULL(39, 0)) - dram_base;
620
621 edac_dbg(2, "using DRAM Base register to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
622 (unsigned long)sys_addr, (unsigned long)dram_addr);
623 return dram_addr;
624 }
625
626 /*
627 * @intlv_en is the value of the IntlvEn field from a DRAM Base register
628 * (section 3.4.4.1). Return the number of bits from a SysAddr that are used
629 * for node interleaving.
630 */
631 static int num_node_interleave_bits(unsigned intlv_en)
632 {
633 static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
634 int n;
635
636 BUG_ON(intlv_en > 7);
637 n = intlv_shift_table[intlv_en];
638 return n;
639 }
640
641 /* Translate the DramAddr given by @dram_addr to an InputAddr. */
642 static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
643 {
644 struct amd64_pvt *pvt;
645 int intlv_shift;
646 u64 input_addr;
647
648 pvt = mci->pvt_info;
649
650 /*
651 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
652 * concerning translating a DramAddr to an InputAddr.
653 */
654 intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
655 input_addr = ((dram_addr >> intlv_shift) & GENMASK_ULL(35, 12)) +
656 (dram_addr & 0xfff);
657
658 edac_dbg(2, " Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
659 intlv_shift, (unsigned long)dram_addr,
660 (unsigned long)input_addr);
661
662 return input_addr;
663 }
664
665 /*
666 * Translate the SysAddr represented by @sys_addr to an InputAddr. It is
667 * assumed that @sys_addr maps to the node given by mci.
668 */
669 static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
670 {
671 u64 input_addr;
672
673 input_addr =
674 dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
675
676 edac_dbg(2, "SysAddr 0x%lx translates to InputAddr 0x%lx\n",
677 (unsigned long)sys_addr, (unsigned long)input_addr);
678
679 return input_addr;
680 }
681
682 /* Map the Error address to a PAGE and PAGE OFFSET. */
683 static inline void error_address_to_page_and_offset(u64 error_address,
684 struct err_info *err)
685 {
686 err->page = (u32) (error_address >> PAGE_SHIFT);
687 err->offset = ((u32) error_address) & ~PAGE_MASK;
688 }
689
690 /*
691 * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
692 * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
693 * of a node that detected an ECC memory error. mci represents the node that
694 * the error address maps to (possibly different from the node that detected
695 * the error). Return the number of the csrow that sys_addr maps to, or -1 on
696 * error.
697 */
698 static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
699 {
700 int csrow;
701
702 csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
703
704 if (csrow == -1)
705 amd64_mc_err(mci, "Failed to translate InputAddr to csrow for "
706 "address 0x%lx\n", (unsigned long)sys_addr);
707 return csrow;
708 }
709
710 static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
711
712 /*
713 * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
714 * are ECC capable.
715 */
716 static unsigned long determine_edac_cap(struct amd64_pvt *pvt)
717 {
718 unsigned long edac_cap = EDAC_FLAG_NONE;
719 u8 bit;
720
721 if (pvt->umc) {
722 u8 i, umc_en_mask = 0, dimm_ecc_en_mask = 0;
723
724 for (i = 0; i < NUM_UMCS; i++) {
725 if (!(pvt->umc[i].sdp_ctrl & UMC_SDP_INIT))
726 continue;
727
728 umc_en_mask |= BIT(i);
729
730 /* UMC Configuration bit 12 (DimmEccEn) */
731 if (pvt->umc[i].umc_cfg & BIT(12))
732 dimm_ecc_en_mask |= BIT(i);
733 }
734
735 if (umc_en_mask == dimm_ecc_en_mask)
736 edac_cap = EDAC_FLAG_SECDED;
737 } else {
738 bit = (pvt->fam > 0xf || pvt->ext_model >= K8_REV_F)
739 ? 19
740 : 17;
741
742 if (pvt->dclr0 & BIT(bit))
743 edac_cap = EDAC_FLAG_SECDED;
744 }
745
746 return edac_cap;
747 }
748
749 static void debug_display_dimm_sizes(struct amd64_pvt *, u8);
750
751 static void debug_dump_dramcfg_low(struct amd64_pvt *pvt, u32 dclr, int chan)
752 {
753 edac_dbg(1, "F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);
754
755 if (pvt->dram_type == MEM_LRDDR3) {
756 u32 dcsm = pvt->csels[chan].csmasks[0];
757 /*
758 * It's assumed all LRDIMMs in a DCT are going to be of
759 * same 'type' until proven otherwise. So, use a cs
760 * value of '0' here to get dcsm value.
761 */
762 edac_dbg(1, " LRDIMM %dx rank multiply\n", (dcsm & 0x3));
763 }
764
765 edac_dbg(1, "All DIMMs support ECC:%s\n",
766 (dclr & BIT(19)) ? "yes" : "no");
767
768
769 edac_dbg(1, " PAR/ERR parity: %s\n",
770 (dclr & BIT(8)) ? "enabled" : "disabled");
771
772 if (pvt->fam == 0x10)
773 edac_dbg(1, " DCT 128bit mode width: %s\n",
774 (dclr & BIT(11)) ? "128b" : "64b");
775
776 edac_dbg(1, " x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
777 (dclr & BIT(12)) ? "yes" : "no",
778 (dclr & BIT(13)) ? "yes" : "no",
779 (dclr & BIT(14)) ? "yes" : "no",
780 (dclr & BIT(15)) ? "yes" : "no");
781 }
782
783 static void debug_display_dimm_sizes_df(struct amd64_pvt *pvt, u8 ctrl)
784 {
785 u32 *dcsb = ctrl ? pvt->csels[1].csbases : pvt->csels[0].csbases;
786 int dimm, size0, size1;
787
788 edac_printk(KERN_DEBUG, EDAC_MC, "UMC%d chip selects:\n", ctrl);
789
790 for (dimm = 0; dimm < 4; dimm++) {
791 size0 = 0;
792
793 if (dcsb[dimm*2] & DCSB_CS_ENABLE)
794 size0 = pvt->ops->dbam_to_cs(pvt, ctrl, 0, dimm);
795
796 size1 = 0;
797 if (dcsb[dimm*2 + 1] & DCSB_CS_ENABLE)
798 size1 = pvt->ops->dbam_to_cs(pvt, ctrl, 0, dimm);
799
800 amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
801 dimm * 2, size0,
802 dimm * 2 + 1, size1);
803 }
804 }
805
806 static void __dump_misc_regs_df(struct amd64_pvt *pvt)
807 {
808 struct amd64_umc *umc;
809 u32 i, tmp, umc_base;
810
811 for (i = 0; i < NUM_UMCS; i++) {
812 umc_base = get_umc_base(i);
813 umc = &pvt->umc[i];
814
815 edac_dbg(1, "UMC%d DIMM cfg: 0x%x\n", i, umc->dimm_cfg);
816 edac_dbg(1, "UMC%d UMC cfg: 0x%x\n", i, umc->umc_cfg);
817 edac_dbg(1, "UMC%d SDP ctrl: 0x%x\n", i, umc->sdp_ctrl);
818 edac_dbg(1, "UMC%d ECC ctrl: 0x%x\n", i, umc->ecc_ctrl);
819
820 amd_smn_read(pvt->mc_node_id, umc_base + UMCCH_ECC_BAD_SYMBOL, &tmp);
821 edac_dbg(1, "UMC%d ECC bad symbol: 0x%x\n", i, tmp);
822
823 amd_smn_read(pvt->mc_node_id, umc_base + UMCCH_UMC_CAP, &tmp);
824 edac_dbg(1, "UMC%d UMC cap: 0x%x\n", i, tmp);
825 edac_dbg(1, "UMC%d UMC cap high: 0x%x\n", i, umc->umc_cap_hi);
826
827 edac_dbg(1, "UMC%d ECC capable: %s, ChipKill ECC capable: %s\n",
828 i, (umc->umc_cap_hi & BIT(30)) ? "yes" : "no",
829 (umc->umc_cap_hi & BIT(31)) ? "yes" : "no");
830 edac_dbg(1, "UMC%d All DIMMs support ECC: %s\n",
831 i, (umc->umc_cfg & BIT(12)) ? "yes" : "no");
832 edac_dbg(1, "UMC%d x4 DIMMs present: %s\n",
833 i, (umc->dimm_cfg & BIT(6)) ? "yes" : "no");
834 edac_dbg(1, "UMC%d x16 DIMMs present: %s\n",
835 i, (umc->dimm_cfg & BIT(7)) ? "yes" : "no");
836
837 if (pvt->dram_type == MEM_LRDDR4) {
838 amd_smn_read(pvt->mc_node_id, umc_base + UMCCH_ADDR_CFG, &tmp);
839 edac_dbg(1, "UMC%d LRDIMM %dx rank multiply\n",
840 i, 1 << ((tmp >> 4) & 0x3));
841 }
842
843 debug_display_dimm_sizes_df(pvt, i);
844 }
845
846 edac_dbg(1, "F0x104 (DRAM Hole Address): 0x%08x, base: 0x%08x\n",
847 pvt->dhar, dhar_base(pvt));
848 }
849
850 /* Display and decode various NB registers for debug purposes. */
851 static void __dump_misc_regs(struct amd64_pvt *pvt)
852 {
853 edac_dbg(1, "F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);
854
855 edac_dbg(1, " NB two channel DRAM capable: %s\n",
856 (pvt->nbcap & NBCAP_DCT_DUAL) ? "yes" : "no");
857
858 edac_dbg(1, " ECC capable: %s, ChipKill ECC capable: %s\n",
859 (pvt->nbcap & NBCAP_SECDED) ? "yes" : "no",
860 (pvt->nbcap & NBCAP_CHIPKILL) ? "yes" : "no");
861
862 debug_dump_dramcfg_low(pvt, pvt->dclr0, 0);
863
864 edac_dbg(1, "F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
865
866 edac_dbg(1, "F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, offset: 0x%08x\n",
867 pvt->dhar, dhar_base(pvt),
868 (pvt->fam == 0xf) ? k8_dhar_offset(pvt)
869 : f10_dhar_offset(pvt));
870
871 debug_display_dimm_sizes(pvt, 0);
872
873 /* everything below this point is Fam10h and above */
874 if (pvt->fam == 0xf)
875 return;
876
877 debug_display_dimm_sizes(pvt, 1);
878
879 /* Only if NOT ganged does dclr1 have valid info */
880 if (!dct_ganging_enabled(pvt))
881 debug_dump_dramcfg_low(pvt, pvt->dclr1, 1);
882 }
883
884 /* Display and decode various NB registers for debug purposes. */
885 static void dump_misc_regs(struct amd64_pvt *pvt)
886 {
887 if (pvt->umc)
888 __dump_misc_regs_df(pvt);
889 else
890 __dump_misc_regs(pvt);
891
892 edac_dbg(1, " DramHoleValid: %s\n", dhar_valid(pvt) ? "yes" : "no");
893
894 amd64_info("using %s syndromes.\n",
895 ((pvt->ecc_sym_sz == 8) ? "x8" : "x4"));
896 }
897
898 /*
899 * See BKDG, F2x[1,0][5C:40], F2[1,0][6C:60]
900 */
901 static void prep_chip_selects(struct amd64_pvt *pvt)
902 {
903 if (pvt->fam == 0xf && pvt->ext_model < K8_REV_F) {
904 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
905 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 8;
906 } else if (pvt->fam == 0x15 && pvt->model == 0x30) {
907 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 4;
908 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 2;
909 } else {
910 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
911 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 4;
912 }
913 }
914
915 /*
916 * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask registers
917 */
918 static void read_dct_base_mask(struct amd64_pvt *pvt)
919 {
920 int base_reg0, base_reg1, mask_reg0, mask_reg1, cs;
921
922 prep_chip_selects(pvt);
923
924 if (pvt->umc) {
925 base_reg0 = get_umc_base(0) + UMCCH_BASE_ADDR;
926 base_reg1 = get_umc_base(1) + UMCCH_BASE_ADDR;
927 mask_reg0 = get_umc_base(0) + UMCCH_ADDR_MASK;
928 mask_reg1 = get_umc_base(1) + UMCCH_ADDR_MASK;
929 } else {
930 base_reg0 = DCSB0;
931 base_reg1 = DCSB1;
932 mask_reg0 = DCSM0;
933 mask_reg1 = DCSM1;
934 }
935
936 for_each_chip_select(cs, 0, pvt) {
937 int reg0 = base_reg0 + (cs * 4);
938 int reg1 = base_reg1 + (cs * 4);
939 u32 *base0 = &pvt->csels[0].csbases[cs];
940 u32 *base1 = &pvt->csels[1].csbases[cs];
941
942 if (pvt->umc) {
943 if (!amd_smn_read(pvt->mc_node_id, reg0, base0))
944 edac_dbg(0, " DCSB0[%d]=0x%08x reg: 0x%x\n",
945 cs, *base0, reg0);
946
947 if (!amd_smn_read(pvt->mc_node_id, reg1, base1))
948 edac_dbg(0, " DCSB1[%d]=0x%08x reg: 0x%x\n",
949 cs, *base1, reg1);
950 } else {
951 if (!amd64_read_dct_pci_cfg(pvt, 0, reg0, base0))
952 edac_dbg(0, " DCSB0[%d]=0x%08x reg: F2x%x\n",
953 cs, *base0, reg0);
954
955 if (pvt->fam == 0xf)
956 continue;
957
958 if (!amd64_read_dct_pci_cfg(pvt, 1, reg0, base1))
959 edac_dbg(0, " DCSB1[%d]=0x%08x reg: F2x%x\n",
960 cs, *base1, (pvt->fam == 0x10) ? reg1
961 : reg0);
962 }
963 }
964
965 for_each_chip_select_mask(cs, 0, pvt) {
966 int reg0 = mask_reg0 + (cs * 4);
967 int reg1 = mask_reg1 + (cs * 4);
968 u32 *mask0 = &pvt->csels[0].csmasks[cs];
969 u32 *mask1 = &pvt->csels[1].csmasks[cs];
970
971 if (pvt->umc) {
972 if (!amd_smn_read(pvt->mc_node_id, reg0, mask0))
973 edac_dbg(0, " DCSM0[%d]=0x%08x reg: 0x%x\n",
974 cs, *mask0, reg0);
975
976 if (!amd_smn_read(pvt->mc_node_id, reg1, mask1))
977 edac_dbg(0, " DCSM1[%d]=0x%08x reg: 0x%x\n",
978 cs, *mask1, reg1);
979 } else {
980 if (!amd64_read_dct_pci_cfg(pvt, 0, reg0, mask0))
981 edac_dbg(0, " DCSM0[%d]=0x%08x reg: F2x%x\n",
982 cs, *mask0, reg0);
983
984 if (pvt->fam == 0xf)
985 continue;
986
987 if (!amd64_read_dct_pci_cfg(pvt, 1, reg0, mask1))
988 edac_dbg(0, " DCSM1[%d]=0x%08x reg: F2x%x\n",
989 cs, *mask1, (pvt->fam == 0x10) ? reg1
990 : reg0);
991 }
992 }
993 }
994
995 static void determine_memory_type(struct amd64_pvt *pvt)
996 {
997 u32 dram_ctrl, dcsm;
998
999 switch (pvt->fam) {
1000 case 0xf:
1001 if (pvt->ext_model >= K8_REV_F)
1002 goto ddr3;
1003
1004 pvt->dram_type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
1005 return;
1006
1007 case 0x10:
1008 if (pvt->dchr0 & DDR3_MODE)
1009 goto ddr3;
1010
1011 pvt->dram_type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
1012 return;
1013
1014 case 0x15:
1015 if (pvt->model < 0x60)
1016 goto ddr3;
1017
1018 /*
1019 * Model 0x60h needs special handling:
1020 *
1021 * We use a Chip Select value of '0' to obtain dcsm.
1022 * Theoretically, it is possible to populate LRDIMMs of different
1023 * 'Rank' value on a DCT. But this is not the common case. So,
1024 * it's reasonable to assume all DIMMs are going to be of same
1025 * 'type' until proven otherwise.
1026 */
1027 amd64_read_dct_pci_cfg(pvt, 0, DRAM_CONTROL, &dram_ctrl);
1028 dcsm = pvt->csels[0].csmasks[0];
1029
1030 if (((dram_ctrl >> 8) & 0x7) == 0x2)
1031 pvt->dram_type = MEM_DDR4;
1032 else if (pvt->dclr0 & BIT(16))
1033 pvt->dram_type = MEM_DDR3;
1034 else if (dcsm & 0x3)
1035 pvt->dram_type = MEM_LRDDR3;
1036 else
1037 pvt->dram_type = MEM_RDDR3;
1038
1039 return;
1040
1041 case 0x16:
1042 goto ddr3;
1043
1044 case 0x17:
1045 if ((pvt->umc[0].dimm_cfg | pvt->umc[1].dimm_cfg) & BIT(5))
1046 pvt->dram_type = MEM_LRDDR4;
1047 else if ((pvt->umc[0].dimm_cfg | pvt->umc[1].dimm_cfg) & BIT(4))
1048 pvt->dram_type = MEM_RDDR4;
1049 else
1050 pvt->dram_type = MEM_DDR4;
1051 return;
1052
1053 default:
1054 WARN(1, KERN_ERR "%s: Family??? 0x%x\n", __func__, pvt->fam);
1055 pvt->dram_type = MEM_EMPTY;
1056 }
1057 return;
1058
1059 ddr3:
1060 pvt->dram_type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
1061 }
1062
1063 /* Get the number of DCT channels the memory controller is using. */
1064 static int k8_early_channel_count(struct amd64_pvt *pvt)
1065 {
1066 int flag;
1067
1068 if (pvt->ext_model >= K8_REV_F)
1069 /* RevF (NPT) and later */
1070 flag = pvt->dclr0 & WIDTH_128;
1071 else
1072 /* RevE and earlier */
1073 flag = pvt->dclr0 & REVE_WIDTH_128;
1074
1075 /* not used */
1076 pvt->dclr1 = 0;
1077
1078 return (flag) ? 2 : 1;
1079 }
1080
1081 /* On F10h and later ErrAddr is MC4_ADDR[47:1] */
1082 static u64 get_error_address(struct amd64_pvt *pvt, struct mce *m)
1083 {
1084 u16 mce_nid = amd_get_nb_id(m->extcpu);
1085 struct mem_ctl_info *mci;
1086 u8 start_bit = 1;
1087 u8 end_bit = 47;
1088 u64 addr;
1089
1090 mci = edac_mc_find(mce_nid);
1091 if (!mci)
1092 return 0;
1093
1094 pvt = mci->pvt_info;
1095
1096 if (pvt->fam == 0xf) {
1097 start_bit = 3;
1098 end_bit = 39;
1099 }
1100
1101 addr = m->addr & GENMASK_ULL(end_bit, start_bit);
1102
1103 /*
1104 * Erratum 637 workaround
1105 */
1106 if (pvt->fam == 0x15) {
1107 u64 cc6_base, tmp_addr;
1108 u32 tmp;
1109 u8 intlv_en;
1110
1111 if ((addr & GENMASK_ULL(47, 24)) >> 24 != 0x00fdf7)
1112 return addr;
1113
1114
1115 amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_LIM, &tmp);
1116 intlv_en = tmp >> 21 & 0x7;
1117
1118 /* add [47:27] + 3 trailing bits */
1119 cc6_base = (tmp & GENMASK_ULL(20, 0)) << 3;
1120
1121 /* reverse and add DramIntlvEn */
1122 cc6_base |= intlv_en ^ 0x7;
1123
1124 /* pin at [47:24] */
1125 cc6_base <<= 24;
1126
1127 if (!intlv_en)
1128 return cc6_base | (addr & GENMASK_ULL(23, 0));
1129
1130 amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_BASE, &tmp);
1131
1132 /* faster log2 */
1133 tmp_addr = (addr & GENMASK_ULL(23, 12)) << __fls(intlv_en + 1);
1134
1135 /* OR DramIntlvSel into bits [14:12] */
1136 tmp_addr |= (tmp & GENMASK_ULL(23, 21)) >> 9;
1137
1138 /* add remaining [11:0] bits from original MC4_ADDR */
1139 tmp_addr |= addr & GENMASK_ULL(11, 0);
1140
1141 return cc6_base | tmp_addr;
1142 }
1143
1144 return addr;
1145 }
1146
1147 static struct pci_dev *pci_get_related_function(unsigned int vendor,
1148 unsigned int device,
1149 struct pci_dev *related)
1150 {
1151 struct pci_dev *dev = NULL;
1152
1153 while ((dev = pci_get_device(vendor, device, dev))) {
1154 if (pci_domain_nr(dev->bus) == pci_domain_nr(related->bus) &&
1155 (dev->bus->number == related->bus->number) &&
1156 (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
1157 break;
1158 }
1159
1160 return dev;
1161 }
1162
1163 static void read_dram_base_limit_regs(struct amd64_pvt *pvt, unsigned range)
1164 {
1165 struct amd_northbridge *nb;
1166 struct pci_dev *f1 = NULL;
1167 unsigned int pci_func;
1168 int off = range << 3;
1169 u32 llim;
1170
1171 amd64_read_pci_cfg(pvt->F1, DRAM_BASE_LO + off, &pvt->ranges[range].base.lo);
1172 amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_LO + off, &pvt->ranges[range].lim.lo);
1173
1174 if (pvt->fam == 0xf)
1175 return;
1176
1177 if (!dram_rw(pvt, range))
1178 return;
1179
1180 amd64_read_pci_cfg(pvt->F1, DRAM_BASE_HI + off, &pvt->ranges[range].base.hi);
1181 amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_HI + off, &pvt->ranges[range].lim.hi);
1182
1183 /* F15h: factor in CC6 save area by reading dst node's limit reg */
1184 if (pvt->fam != 0x15)
1185 return;
1186
1187 nb = node_to_amd_nb(dram_dst_node(pvt, range));
1188 if (WARN_ON(!nb))
1189 return;
1190
1191 if (pvt->model == 0x60)
1192 pci_func = PCI_DEVICE_ID_AMD_15H_M60H_NB_F1;
1193 else if (pvt->model == 0x30)
1194 pci_func = PCI_DEVICE_ID_AMD_15H_M30H_NB_F1;
1195 else
1196 pci_func = PCI_DEVICE_ID_AMD_15H_NB_F1;
1197
1198 f1 = pci_get_related_function(nb->misc->vendor, pci_func, nb->misc);
1199 if (WARN_ON(!f1))
1200 return;
1201
1202 amd64_read_pci_cfg(f1, DRAM_LOCAL_NODE_LIM, &llim);
1203
1204 pvt->ranges[range].lim.lo &= GENMASK_ULL(15, 0);
1205
1206 /* {[39:27],111b} */
1207 pvt->ranges[range].lim.lo |= ((llim & 0x1fff) << 3 | 0x7) << 16;
1208
1209 pvt->ranges[range].lim.hi &= GENMASK_ULL(7, 0);
1210
1211 /* [47:40] */
1212 pvt->ranges[range].lim.hi |= llim >> 13;
1213
1214 pci_dev_put(f1);
1215 }
1216
1217 static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
1218 struct err_info *err)
1219 {
1220 struct amd64_pvt *pvt = mci->pvt_info;
1221
1222 error_address_to_page_and_offset(sys_addr, err);
1223
1224 /*
1225 * Find out which node the error address belongs to. This may be
1226 * different from the node that detected the error.
1227 */
1228 err->src_mci = find_mc_by_sys_addr(mci, sys_addr);
1229 if (!err->src_mci) {
1230 amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n",
1231 (unsigned long)sys_addr);
1232 err->err_code = ERR_NODE;
1233 return;
1234 }
1235
1236 /* Now map the sys_addr to a CSROW */
1237 err->csrow = sys_addr_to_csrow(err->src_mci, sys_addr);
1238 if (err->csrow < 0) {
1239 err->err_code = ERR_CSROW;
1240 return;
1241 }
1242
1243 /* CHIPKILL enabled */
1244 if (pvt->nbcfg & NBCFG_CHIPKILL) {
1245 err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome);
1246 if (err->channel < 0) {
1247 /*
1248 * Syndrome didn't map, so we don't know which of the
1249 * 2 DIMMs is in error. So we need to ID 'both' of them
1250 * as suspect.
1251 */
1252 amd64_mc_warn(err->src_mci, "unknown syndrome 0x%04x - "
1253 "possible error reporting race\n",
1254 err->syndrome);
1255 err->err_code = ERR_CHANNEL;
1256 return;
1257 }
1258 } else {
1259 /*
1260 * non-chipkill ecc mode
1261 *
1262 * The k8 documentation is unclear about how to determine the
1263 * channel number when using non-chipkill memory. This method
1264 * was obtained from email communication with someone at AMD.
1265 * (Wish the email was placed in this comment - norsk)
1266 */
1267 err->channel = ((sys_addr & BIT(3)) != 0);
1268 }
1269 }
1270
1271 static int ddr2_cs_size(unsigned i, bool dct_width)
1272 {
1273 unsigned shift = 0;
1274
1275 if (i <= 2)
1276 shift = i;
1277 else if (!(i & 0x1))
1278 shift = i >> 1;
1279 else
1280 shift = (i + 1) >> 1;
1281
1282 return 128 << (shift + !!dct_width);
1283 }
1284
1285 static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1286 unsigned cs_mode, int cs_mask_nr)
1287 {
1288 u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
1289
1290 if (pvt->ext_model >= K8_REV_F) {
1291 WARN_ON(cs_mode > 11);
1292 return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
1293 }
1294 else if (pvt->ext_model >= K8_REV_D) {
1295 unsigned diff;
1296 WARN_ON(cs_mode > 10);
1297
1298 /*
1299 * the below calculation, besides trying to win an obfuscated C
1300 * contest, maps cs_mode values to DIMM chip select sizes. The
1301 * mappings are:
1302 *
1303 * cs_mode CS size (mb)
1304 * ======= ============
1305 * 0 32
1306 * 1 64
1307 * 2 128
1308 * 3 128
1309 * 4 256
1310 * 5 512
1311 * 6 256
1312 * 7 512
1313 * 8 1024
1314 * 9 1024
1315 * 10 2048
1316 *
1317 * Basically, it calculates a value with which to shift the
1318 * smallest CS size of 32MB.
1319 *
1320 * ddr[23]_cs_size have a similar purpose.
1321 */
1322 diff = cs_mode/3 + (unsigned)(cs_mode > 5);
1323
1324 return 32 << (cs_mode - diff);
1325 }
1326 else {
1327 WARN_ON(cs_mode > 6);
1328 return 32 << cs_mode;
1329 }
1330 }
1331
1332 /*
1333 * Get the number of DCT channels in use.
1334 *
1335 * Return:
1336 * number of Memory Channels in operation
1337 * Pass back:
1338 * contents of the DCL0_LOW register
1339 */
1340 static int f1x_early_channel_count(struct amd64_pvt *pvt)
1341 {
1342 int i, j, channels = 0;
1343
1344 /* On F10h, if we are in 128 bit mode, then we are using 2 channels */
1345 if (pvt->fam == 0x10 && (pvt->dclr0 & WIDTH_128))
1346 return 2;
1347
1348 /*
1349 * Need to check if in unganged mode: In such, there are 2 channels,
1350 * but they are not in 128 bit mode and thus the above 'dclr0' status
1351 * bit will be OFF.
1352 *
1353 * Need to check DCT0[0] and DCT1[0] to see if only one of them has
1354 * their CSEnable bit on. If so, then SINGLE DIMM case.
1355 */
1356 edac_dbg(0, "Data width is not 128 bits - need more decoding\n");
1357
1358 /*
1359 * Check DRAM Bank Address Mapping values for each DIMM to see if there
1360 * is more than just one DIMM present in unganged mode. Need to check
1361 * both controllers since DIMMs can be placed in either one.
1362 */
1363 for (i = 0; i < 2; i++) {
1364 u32 dbam = (i ? pvt->dbam1 : pvt->dbam0);
1365
1366 for (j = 0; j < 4; j++) {
1367 if (DBAM_DIMM(j, dbam) > 0) {
1368 channels++;
1369 break;
1370 }
1371 }
1372 }
1373
1374 if (channels > 2)
1375 channels = 2;
1376
1377 amd64_info("MCT channel count: %d\n", channels);
1378
1379 return channels;
1380 }
1381
1382 static int f17_early_channel_count(struct amd64_pvt *pvt)
1383 {
1384 int i, channels = 0;
1385
1386 /* SDP Control bit 31 (SdpInit) is clear for unused UMC channels */
1387 for (i = 0; i < NUM_UMCS; i++)
1388 channels += !!(pvt->umc[i].sdp_ctrl & UMC_SDP_INIT);
1389
1390 amd64_info("MCT channel count: %d\n", channels);
1391
1392 return channels;
1393 }
1394
1395 static int ddr3_cs_size(unsigned i, bool dct_width)
1396 {
1397 unsigned shift = 0;
1398 int cs_size = 0;
1399
1400 if (i == 0 || i == 3 || i == 4)
1401 cs_size = -1;
1402 else if (i <= 2)
1403 shift = i;
1404 else if (i == 12)
1405 shift = 7;
1406 else if (!(i & 0x1))
1407 shift = i >> 1;
1408 else
1409 shift = (i + 1) >> 1;
1410
1411 if (cs_size != -1)
1412 cs_size = (128 * (1 << !!dct_width)) << shift;
1413
1414 return cs_size;
1415 }
1416
1417 static int ddr3_lrdimm_cs_size(unsigned i, unsigned rank_multiply)
1418 {
1419 unsigned shift = 0;
1420 int cs_size = 0;
1421
1422 if (i < 4 || i == 6)
1423 cs_size = -1;
1424 else if (i == 12)
1425 shift = 7;
1426 else if (!(i & 0x1))
1427 shift = i >> 1;
1428 else
1429 shift = (i + 1) >> 1;
1430
1431 if (cs_size != -1)
1432 cs_size = rank_multiply * (128 << shift);
1433
1434 return cs_size;
1435 }
1436
1437 static int ddr4_cs_size(unsigned i)
1438 {
1439 int cs_size = 0;
1440
1441 if (i == 0)
1442 cs_size = -1;
1443 else if (i == 1)
1444 cs_size = 1024;
1445 else
1446 /* Min cs_size = 1G */
1447 cs_size = 1024 * (1 << (i >> 1));
1448
1449 return cs_size;
1450 }
1451
1452 static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1453 unsigned cs_mode, int cs_mask_nr)
1454 {
1455 u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
1456
1457 WARN_ON(cs_mode > 11);
1458
1459 if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
1460 return ddr3_cs_size(cs_mode, dclr & WIDTH_128);
1461 else
1462 return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
1463 }
1464
1465 /*
1466 * F15h supports only 64bit DCT interfaces
1467 */
1468 static int f15_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1469 unsigned cs_mode, int cs_mask_nr)
1470 {
1471 WARN_ON(cs_mode > 12);
1472
1473 return ddr3_cs_size(cs_mode, false);
1474 }
1475
1476 /* F15h M60h supports DDR4 mapping as well.. */
1477 static int f15_m60h_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1478 unsigned cs_mode, int cs_mask_nr)
1479 {
1480 int cs_size;
1481 u32 dcsm = pvt->csels[dct].csmasks[cs_mask_nr];
1482
1483 WARN_ON(cs_mode > 12);
1484
1485 if (pvt->dram_type == MEM_DDR4) {
1486 if (cs_mode > 9)
1487 return -1;
1488
1489 cs_size = ddr4_cs_size(cs_mode);
1490 } else if (pvt->dram_type == MEM_LRDDR3) {
1491 unsigned rank_multiply = dcsm & 0xf;
1492
1493 if (rank_multiply == 3)
1494 rank_multiply = 4;
1495 cs_size = ddr3_lrdimm_cs_size(cs_mode, rank_multiply);
1496 } else {
1497 /* Minimum cs size is 512mb for F15hM60h*/
1498 if (cs_mode == 0x1)
1499 return -1;
1500
1501 cs_size = ddr3_cs_size(cs_mode, false);
1502 }
1503
1504 return cs_size;
1505 }
1506
1507 /*
1508 * F16h and F15h model 30h have only limited cs_modes.
1509 */
1510 static int f16_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1511 unsigned cs_mode, int cs_mask_nr)
1512 {
1513 WARN_ON(cs_mode > 12);
1514
1515 if (cs_mode == 6 || cs_mode == 8 ||
1516 cs_mode == 9 || cs_mode == 12)
1517 return -1;
1518 else
1519 return ddr3_cs_size(cs_mode, false);
1520 }
1521
1522 static int f17_base_addr_to_cs_size(struct amd64_pvt *pvt, u8 umc,
1523 unsigned int cs_mode, int csrow_nr)
1524 {
1525 u32 base_addr = pvt->csels[umc].csbases[csrow_nr];
1526
1527 /* Each mask is used for every two base addresses. */
1528 u32 addr_mask = pvt->csels[umc].csmasks[csrow_nr >> 1];
1529
1530 /* Register [31:1] = Address [39:9]. Size is in kBs here. */
1531 u32 size = ((addr_mask >> 1) - (base_addr >> 1) + 1) >> 1;
1532
1533 edac_dbg(1, "BaseAddr: 0x%x, AddrMask: 0x%x\n", base_addr, addr_mask);
1534
1535 /* Return size in MBs. */
1536 return size >> 10;
1537 }
1538
1539 static void read_dram_ctl_register(struct amd64_pvt *pvt)
1540 {
1541
1542 if (pvt->fam == 0xf)
1543 return;
1544
1545 if (!amd64_read_pci_cfg(pvt->F2, DCT_SEL_LO, &pvt->dct_sel_lo)) {
1546 edac_dbg(0, "F2x110 (DCTSelLow): 0x%08x, High range addrs at: 0x%x\n",
1547 pvt->dct_sel_lo, dct_sel_baseaddr(pvt));
1548
1549 edac_dbg(0, " DCTs operate in %s mode\n",
1550 (dct_ganging_enabled(pvt) ? "ganged" : "unganged"));
1551
1552 if (!dct_ganging_enabled(pvt))
1553 edac_dbg(0, " Address range split per DCT: %s\n",
1554 (dct_high_range_enabled(pvt) ? "yes" : "no"));
1555
1556 edac_dbg(0, " data interleave for ECC: %s, DRAM cleared since last warm reset: %s\n",
1557 (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
1558 (dct_memory_cleared(pvt) ? "yes" : "no"));
1559
1560 edac_dbg(0, " channel interleave: %s, "
1561 "interleave bits selector: 0x%x\n",
1562 (dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
1563 dct_sel_interleave_addr(pvt));
1564 }
1565
1566 amd64_read_pci_cfg(pvt->F2, DCT_SEL_HI, &pvt->dct_sel_hi);
1567 }
1568
1569 /*
1570 * Determine channel (DCT) based on the interleaving mode (see F15h M30h BKDG,
1571 * 2.10.12 Memory Interleaving Modes).
1572 */
1573 static u8 f15_m30h_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
1574 u8 intlv_en, int num_dcts_intlv,
1575 u32 dct_sel)
1576 {
1577 u8 channel = 0;
1578 u8 select;
1579
1580 if (!(intlv_en))
1581 return (u8)(dct_sel);
1582
1583 if (num_dcts_intlv == 2) {
1584 select = (sys_addr >> 8) & 0x3;
1585 channel = select ? 0x3 : 0;
1586 } else if (num_dcts_intlv == 4) {
1587 u8 intlv_addr = dct_sel_interleave_addr(pvt);
1588 switch (intlv_addr) {
1589 case 0x4:
1590 channel = (sys_addr >> 8) & 0x3;
1591 break;
1592 case 0x5:
1593 channel = (sys_addr >> 9) & 0x3;
1594 break;
1595 }
1596 }
1597 return channel;
1598 }
1599
1600 /*
1601 * Determine channel (DCT) based on the interleaving mode: F10h BKDG, 2.8.9 Memory
1602 * Interleaving Modes.
1603 */
1604 static u8 f1x_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
1605 bool hi_range_sel, u8 intlv_en)
1606 {
1607 u8 dct_sel_high = (pvt->dct_sel_lo >> 1) & 1;
1608
1609 if (dct_ganging_enabled(pvt))
1610 return 0;
1611
1612 if (hi_range_sel)
1613 return dct_sel_high;
1614
1615 /*
1616 * see F2x110[DctSelIntLvAddr] - channel interleave mode
1617 */
1618 if (dct_interleave_enabled(pvt)) {
1619 u8 intlv_addr = dct_sel_interleave_addr(pvt);
1620
1621 /* return DCT select function: 0=DCT0, 1=DCT1 */
1622 if (!intlv_addr)
1623 return sys_addr >> 6 & 1;
1624
1625 if (intlv_addr & 0x2) {
1626 u8 shift = intlv_addr & 0x1 ? 9 : 6;
1627 u32 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) & 1;
1628
1629 return ((sys_addr >> shift) & 1) ^ temp;
1630 }
1631
1632 if (intlv_addr & 0x4) {
1633 u8 shift = intlv_addr & 0x1 ? 9 : 8;
1634
1635 return (sys_addr >> shift) & 1;
1636 }
1637
1638 return (sys_addr >> (12 + hweight8(intlv_en))) & 1;
1639 }
1640
1641 if (dct_high_range_enabled(pvt))
1642 return ~dct_sel_high & 1;
1643
1644 return 0;
1645 }
1646
1647 /* Convert the sys_addr to the normalized DCT address */
1648 static u64 f1x_get_norm_dct_addr(struct amd64_pvt *pvt, u8 range,
1649 u64 sys_addr, bool hi_rng,
1650 u32 dct_sel_base_addr)
1651 {
1652 u64 chan_off;
1653 u64 dram_base = get_dram_base(pvt, range);
1654 u64 hole_off = f10_dhar_offset(pvt);
1655 u64 dct_sel_base_off = (u64)(pvt->dct_sel_hi & 0xFFFFFC00) << 16;
1656
1657 if (hi_rng) {
1658 /*
1659 * if
1660 * base address of high range is below 4Gb
1661 * (bits [47:27] at [31:11])
1662 * DRAM address space on this DCT is hoisted above 4Gb &&
1663 * sys_addr > 4Gb
1664 *
1665 * remove hole offset from sys_addr
1666 * else
1667 * remove high range offset from sys_addr
1668 */
1669 if ((!(dct_sel_base_addr >> 16) ||
1670 dct_sel_base_addr < dhar_base(pvt)) &&
1671 dhar_valid(pvt) &&
1672 (sys_addr >= BIT_64(32)))
1673 chan_off = hole_off;
1674 else
1675 chan_off = dct_sel_base_off;
1676 } else {
1677 /*
1678 * if
1679 * we have a valid hole &&
1680 * sys_addr > 4Gb
1681 *
1682 * remove hole
1683 * else
1684 * remove dram base to normalize to DCT address
1685 */
1686 if (dhar_valid(pvt) && (sys_addr >= BIT_64(32)))
1687 chan_off = hole_off;
1688 else
1689 chan_off = dram_base;
1690 }
1691
1692 return (sys_addr & GENMASK_ULL(47,6)) - (chan_off & GENMASK_ULL(47,23));
1693 }
1694
1695 /*
1696 * checks if the csrow passed in is marked as SPARED, if so returns the new
1697 * spare row
1698 */
1699 static int f10_process_possible_spare(struct amd64_pvt *pvt, u8 dct, int csrow)
1700 {
1701 int tmp_cs;
1702
1703 if (online_spare_swap_done(pvt, dct) &&
1704 csrow == online_spare_bad_dramcs(pvt, dct)) {
1705
1706 for_each_chip_select(tmp_cs, dct, pvt) {
1707 if (chip_select_base(tmp_cs, dct, pvt) & 0x2) {
1708 csrow = tmp_cs;
1709 break;
1710 }
1711 }
1712 }
1713 return csrow;
1714 }
1715
1716 /*
1717 * Iterate over the DRAM DCT "base" and "mask" registers looking for a
1718 * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
1719 *
1720 * Return:
1721 * -EINVAL: NOT FOUND
1722 * 0..csrow = Chip-Select Row
1723 */
1724 static int f1x_lookup_addr_in_dct(u64 in_addr, u8 nid, u8 dct)
1725 {
1726 struct mem_ctl_info *mci;
1727 struct amd64_pvt *pvt;
1728 u64 cs_base, cs_mask;
1729 int cs_found = -EINVAL;
1730 int csrow;
1731
1732 mci = edac_mc_find(nid);
1733 if (!mci)
1734 return cs_found;
1735
1736 pvt = mci->pvt_info;
1737
1738 edac_dbg(1, "input addr: 0x%llx, DCT: %d\n", in_addr, dct);
1739
1740 for_each_chip_select(csrow, dct, pvt) {
1741 if (!csrow_enabled(csrow, dct, pvt))
1742 continue;
1743
1744 get_cs_base_and_mask(pvt, csrow, dct, &cs_base, &cs_mask);
1745
1746 edac_dbg(1, " CSROW=%d CSBase=0x%llx CSMask=0x%llx\n",
1747 csrow, cs_base, cs_mask);
1748
1749 cs_mask = ~cs_mask;
1750
1751 edac_dbg(1, " (InputAddr & ~CSMask)=0x%llx (CSBase & ~CSMask)=0x%llx\n",
1752 (in_addr & cs_mask), (cs_base & cs_mask));
1753
1754 if ((in_addr & cs_mask) == (cs_base & cs_mask)) {
1755 if (pvt->fam == 0x15 && pvt->model >= 0x30) {
1756 cs_found = csrow;
1757 break;
1758 }
1759 cs_found = f10_process_possible_spare(pvt, dct, csrow);
1760
1761 edac_dbg(1, " MATCH csrow=%d\n", cs_found);
1762 break;
1763 }
1764 }
1765 return cs_found;
1766 }
1767
1768 /*
1769 * See F2x10C. Non-interleaved graphics framebuffer memory under the 16G is
1770 * swapped with a region located at the bottom of memory so that the GPU can use
1771 * the interleaved region and thus two channels.
1772 */
1773 static u64 f1x_swap_interleaved_region(struct amd64_pvt *pvt, u64 sys_addr)
1774 {
1775 u32 swap_reg, swap_base, swap_limit, rgn_size, tmp_addr;
1776
1777 if (pvt->fam == 0x10) {
1778 /* only revC3 and revE have that feature */
1779 if (pvt->model < 4 || (pvt->model < 0xa && pvt->stepping < 3))
1780 return sys_addr;
1781 }
1782
1783 amd64_read_pci_cfg(pvt->F2, SWAP_INTLV_REG, &swap_reg);
1784
1785 if (!(swap_reg & 0x1))
1786 return sys_addr;
1787
1788 swap_base = (swap_reg >> 3) & 0x7f;
1789 swap_limit = (swap_reg >> 11) & 0x7f;
1790 rgn_size = (swap_reg >> 20) & 0x7f;
1791 tmp_addr = sys_addr >> 27;
1792
1793 if (!(sys_addr >> 34) &&
1794 (((tmp_addr >= swap_base) &&
1795 (tmp_addr <= swap_limit)) ||
1796 (tmp_addr < rgn_size)))
1797 return sys_addr ^ (u64)swap_base << 27;
1798
1799 return sys_addr;
1800 }
1801
1802 /* For a given @dram_range, check if @sys_addr falls within it. */
1803 static int f1x_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
1804 u64 sys_addr, int *chan_sel)
1805 {
1806 int cs_found = -EINVAL;
1807 u64 chan_addr;
1808 u32 dct_sel_base;
1809 u8 channel;
1810 bool high_range = false;
1811
1812 u8 node_id = dram_dst_node(pvt, range);
1813 u8 intlv_en = dram_intlv_en(pvt, range);
1814 u32 intlv_sel = dram_intlv_sel(pvt, range);
1815
1816 edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
1817 range, sys_addr, get_dram_limit(pvt, range));
1818
1819 if (dhar_valid(pvt) &&
1820 dhar_base(pvt) <= sys_addr &&
1821 sys_addr < BIT_64(32)) {
1822 amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
1823 sys_addr);
1824 return -EINVAL;
1825 }
1826
1827 if (intlv_en && (intlv_sel != ((sys_addr >> 12) & intlv_en)))
1828 return -EINVAL;
1829
1830 sys_addr = f1x_swap_interleaved_region(pvt, sys_addr);
1831
1832 dct_sel_base = dct_sel_baseaddr(pvt);
1833
1834 /*
1835 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
1836 * select between DCT0 and DCT1.
1837 */
1838 if (dct_high_range_enabled(pvt) &&
1839 !dct_ganging_enabled(pvt) &&
1840 ((sys_addr >> 27) >= (dct_sel_base >> 11)))
1841 high_range = true;
1842
1843 channel = f1x_determine_channel(pvt, sys_addr, high_range, intlv_en);
1844
1845 chan_addr = f1x_get_norm_dct_addr(pvt, range, sys_addr,
1846 high_range, dct_sel_base);
1847
1848 /* Remove node interleaving, see F1x120 */
1849 if (intlv_en)
1850 chan_addr = ((chan_addr >> (12 + hweight8(intlv_en))) << 12) |
1851 (chan_addr & 0xfff);
1852
1853 /* remove channel interleave */
1854 if (dct_interleave_enabled(pvt) &&
1855 !dct_high_range_enabled(pvt) &&
1856 !dct_ganging_enabled(pvt)) {
1857
1858 if (dct_sel_interleave_addr(pvt) != 1) {
1859 if (dct_sel_interleave_addr(pvt) == 0x3)
1860 /* hash 9 */
1861 chan_addr = ((chan_addr >> 10) << 9) |
1862 (chan_addr & 0x1ff);
1863 else
1864 /* A[6] or hash 6 */
1865 chan_addr = ((chan_addr >> 7) << 6) |
1866 (chan_addr & 0x3f);
1867 } else
1868 /* A[12] */
1869 chan_addr = ((chan_addr >> 13) << 12) |
1870 (chan_addr & 0xfff);
1871 }
1872
1873 edac_dbg(1, " Normalized DCT addr: 0x%llx\n", chan_addr);
1874
1875 cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, channel);
1876
1877 if (cs_found >= 0)
1878 *chan_sel = channel;
1879
1880 return cs_found;
1881 }
1882
1883 static int f15_m30h_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
1884 u64 sys_addr, int *chan_sel)
1885 {
1886 int cs_found = -EINVAL;
1887 int num_dcts_intlv = 0;
1888 u64 chan_addr, chan_offset;
1889 u64 dct_base, dct_limit;
1890 u32 dct_cont_base_reg, dct_cont_limit_reg, tmp;
1891 u8 channel, alias_channel, leg_mmio_hole, dct_sel, dct_offset_en;
1892
1893 u64 dhar_offset = f10_dhar_offset(pvt);
1894 u8 intlv_addr = dct_sel_interleave_addr(pvt);
1895 u8 node_id = dram_dst_node(pvt, range);
1896 u8 intlv_en = dram_intlv_en(pvt, range);
1897
1898 amd64_read_pci_cfg(pvt->F1, DRAM_CONT_BASE, &dct_cont_base_reg);
1899 amd64_read_pci_cfg(pvt->F1, DRAM_CONT_LIMIT, &dct_cont_limit_reg);
1900
1901 dct_offset_en = (u8) ((dct_cont_base_reg >> 3) & BIT(0));
1902 dct_sel = (u8) ((dct_cont_base_reg >> 4) & 0x7);
1903
1904 edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
1905 range, sys_addr, get_dram_limit(pvt, range));
1906
1907 if (!(get_dram_base(pvt, range) <= sys_addr) &&
1908 !(get_dram_limit(pvt, range) >= sys_addr))
1909 return -EINVAL;
1910
1911 if (dhar_valid(pvt) &&
1912 dhar_base(pvt) <= sys_addr &&
1913 sys_addr < BIT_64(32)) {
1914 amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
1915 sys_addr);
1916 return -EINVAL;
1917 }
1918
1919 /* Verify sys_addr is within DCT Range. */
1920 dct_base = (u64) dct_sel_baseaddr(pvt);
1921 dct_limit = (dct_cont_limit_reg >> 11) & 0x1FFF;
1922
1923 if (!(dct_cont_base_reg & BIT(0)) &&
1924 !(dct_base <= (sys_addr >> 27) &&
1925 dct_limit >= (sys_addr >> 27)))
1926 return -EINVAL;
1927
1928 /* Verify number of dct's that participate in channel interleaving. */
1929 num_dcts_intlv = (int) hweight8(intlv_en);
1930
1931 if (!(num_dcts_intlv % 2 == 0) || (num_dcts_intlv > 4))
1932 return -EINVAL;
1933
1934 if (pvt->model >= 0x60)
1935 channel = f1x_determine_channel(pvt, sys_addr, false, intlv_en);
1936 else
1937 channel = f15_m30h_determine_channel(pvt, sys_addr, intlv_en,
1938 num_dcts_intlv, dct_sel);
1939
1940 /* Verify we stay within the MAX number of channels allowed */
1941 if (channel > 3)
1942 return -EINVAL;
1943
1944 leg_mmio_hole = (u8) (dct_cont_base_reg >> 1 & BIT(0));
1945
1946 /* Get normalized DCT addr */
1947 if (leg_mmio_hole && (sys_addr >= BIT_64(32)))
1948 chan_offset = dhar_offset;
1949 else
1950 chan_offset = dct_base << 27;
1951
1952 chan_addr = sys_addr - chan_offset;
1953
1954 /* remove channel interleave */
1955 if (num_dcts_intlv == 2) {
1956 if (intlv_addr == 0x4)
1957 chan_addr = ((chan_addr >> 9) << 8) |
1958 (chan_addr & 0xff);
1959 else if (intlv_addr == 0x5)
1960 chan_addr = ((chan_addr >> 10) << 9) |
1961 (chan_addr & 0x1ff);
1962 else
1963 return -EINVAL;
1964
1965 } else if (num_dcts_intlv == 4) {
1966 if (intlv_addr == 0x4)
1967 chan_addr = ((chan_addr >> 10) << 8) |
1968 (chan_addr & 0xff);
1969 else if (intlv_addr == 0x5)
1970 chan_addr = ((chan_addr >> 11) << 9) |
1971 (chan_addr & 0x1ff);
1972 else
1973 return -EINVAL;
1974 }
1975
1976 if (dct_offset_en) {
1977 amd64_read_pci_cfg(pvt->F1,
1978 DRAM_CONT_HIGH_OFF + (int) channel * 4,
1979 &tmp);
1980 chan_addr += (u64) ((tmp >> 11) & 0xfff) << 27;
1981 }
1982
1983 f15h_select_dct(pvt, channel);
1984
1985 edac_dbg(1, " Normalized DCT addr: 0x%llx\n", chan_addr);
1986
1987 /*
1988 * Find Chip select:
1989 * if channel = 3, then alias it to 1. This is because, in F15 M30h,
1990 * there is support for 4 DCT's, but only 2 are currently functional.
1991 * They are DCT0 and DCT3. But we have read all registers of DCT3 into
1992 * pvt->csels[1]. So we need to use '1' here to get correct info.
1993 * Refer F15 M30h BKDG Section 2.10 and 2.10.3 for clarifications.
1994 */
1995 alias_channel = (channel == 3) ? 1 : channel;
1996
1997 cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, alias_channel);
1998
1999 if (cs_found >= 0)
2000 *chan_sel = alias_channel;
2001
2002 return cs_found;
2003 }
2004
2005 static int f1x_translate_sysaddr_to_cs(struct amd64_pvt *pvt,
2006 u64 sys_addr,
2007 int *chan_sel)
2008 {
2009 int cs_found = -EINVAL;
2010 unsigned range;
2011
2012 for (range = 0; range < DRAM_RANGES; range++) {
2013 if (!dram_rw(pvt, range))
2014 continue;
2015
2016 if (pvt->fam == 0x15 && pvt->model >= 0x30)
2017 cs_found = f15_m30h_match_to_this_node(pvt, range,
2018 sys_addr,
2019 chan_sel);
2020
2021 else if ((get_dram_base(pvt, range) <= sys_addr) &&
2022 (get_dram_limit(pvt, range) >= sys_addr)) {
2023 cs_found = f1x_match_to_this_node(pvt, range,
2024 sys_addr, chan_sel);
2025 if (cs_found >= 0)
2026 break;
2027 }
2028 }
2029 return cs_found;
2030 }
2031
2032 /*
2033 * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
2034 * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
2035 *
2036 * The @sys_addr is usually an error address received from the hardware
2037 * (MCX_ADDR).
2038 */
2039 static void f1x_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
2040 struct err_info *err)
2041 {
2042 struct amd64_pvt *pvt = mci->pvt_info;
2043
2044 error_address_to_page_and_offset(sys_addr, err);
2045
2046 err->csrow = f1x_translate_sysaddr_to_cs(pvt, sys_addr, &err->channel);
2047 if (err->csrow < 0) {
2048 err->err_code = ERR_CSROW;
2049 return;
2050 }
2051
2052 /*
2053 * We need the syndromes for channel detection only when we're
2054 * ganged. Otherwise @chan should already contain the channel at
2055 * this point.
2056 */
2057 if (dct_ganging_enabled(pvt))
2058 err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome);
2059 }
2060
2061 /*
2062 * debug routine to display the memory sizes of all logical DIMMs and its
2063 * CSROWs
2064 */
2065 static void debug_display_dimm_sizes(struct amd64_pvt *pvt, u8 ctrl)
2066 {
2067 int dimm, size0, size1;
2068 u32 *dcsb = ctrl ? pvt->csels[1].csbases : pvt->csels[0].csbases;
2069 u32 dbam = ctrl ? pvt->dbam1 : pvt->dbam0;
2070
2071 if (pvt->fam == 0xf) {
2072 /* K8 families < revF not supported yet */
2073 if (pvt->ext_model < K8_REV_F)
2074 return;
2075 else
2076 WARN_ON(ctrl != 0);
2077 }
2078
2079 if (pvt->fam == 0x10) {
2080 dbam = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->dbam1
2081 : pvt->dbam0;
2082 dcsb = (ctrl && !dct_ganging_enabled(pvt)) ?
2083 pvt->csels[1].csbases :
2084 pvt->csels[0].csbases;
2085 } else if (ctrl) {
2086 dbam = pvt->dbam0;
2087 dcsb = pvt->csels[1].csbases;
2088 }
2089 edac_dbg(1, "F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n",
2090 ctrl, dbam);
2091
2092 edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);
2093
2094 /* Dump memory sizes for DIMM and its CSROWs */
2095 for (dimm = 0; dimm < 4; dimm++) {
2096
2097 size0 = 0;
2098 if (dcsb[dimm*2] & DCSB_CS_ENABLE)
2099 /*
2100 * For F15m60h, we need multiplier for LRDIMM cs_size
2101 * calculation. We pass dimm value to the dbam_to_cs
2102 * mapper so we can find the multiplier from the
2103 * corresponding DCSM.
2104 */
2105 size0 = pvt->ops->dbam_to_cs(pvt, ctrl,
2106 DBAM_DIMM(dimm, dbam),
2107 dimm);
2108
2109 size1 = 0;
2110 if (dcsb[dimm*2 + 1] & DCSB_CS_ENABLE)
2111 size1 = pvt->ops->dbam_to_cs(pvt, ctrl,
2112 DBAM_DIMM(dimm, dbam),
2113 dimm);
2114
2115 amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
2116 dimm * 2, size0,
2117 dimm * 2 + 1, size1);
2118 }
2119 }
2120
2121 static struct amd64_family_type family_types[] = {
2122 [K8_CPUS] = {
2123 .ctl_name = "K8",
2124 .f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
2125 .f2_id = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
2126 .ops = {
2127 .early_channel_count = k8_early_channel_count,
2128 .map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow,
2129 .dbam_to_cs = k8_dbam_to_chip_select,
2130 }
2131 },
2132 [F10_CPUS] = {
2133 .ctl_name = "F10h",
2134 .f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP,
2135 .f2_id = PCI_DEVICE_ID_AMD_10H_NB_DRAM,
2136 .ops = {
2137 .early_channel_count = f1x_early_channel_count,
2138 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
2139 .dbam_to_cs = f10_dbam_to_chip_select,
2140 }
2141 },
2142 [F15_CPUS] = {
2143 .ctl_name = "F15h",
2144 .f1_id = PCI_DEVICE_ID_AMD_15H_NB_F1,
2145 .f2_id = PCI_DEVICE_ID_AMD_15H_NB_F2,
2146 .ops = {
2147 .early_channel_count = f1x_early_channel_count,
2148 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
2149 .dbam_to_cs = f15_dbam_to_chip_select,
2150 }
2151 },
2152 [F15_M30H_CPUS] = {
2153 .ctl_name = "F15h_M30h",
2154 .f1_id = PCI_DEVICE_ID_AMD_15H_M30H_NB_F1,
2155 .f2_id = PCI_DEVICE_ID_AMD_15H_M30H_NB_F2,
2156 .ops = {
2157 .early_channel_count = f1x_early_channel_count,
2158 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
2159 .dbam_to_cs = f16_dbam_to_chip_select,
2160 }
2161 },
2162 [F15_M60H_CPUS] = {
2163 .ctl_name = "F15h_M60h",
2164 .f1_id = PCI_DEVICE_ID_AMD_15H_M60H_NB_F1,
2165 .f2_id = PCI_DEVICE_ID_AMD_15H_M60H_NB_F2,
2166 .ops = {
2167 .early_channel_count = f1x_early_channel_count,
2168 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
2169 .dbam_to_cs = f15_m60h_dbam_to_chip_select,
2170 }
2171 },
2172 [F16_CPUS] = {
2173 .ctl_name = "F16h",
2174 .f1_id = PCI_DEVICE_ID_AMD_16H_NB_F1,
2175 .f2_id = PCI_DEVICE_ID_AMD_16H_NB_F2,
2176 .ops = {
2177 .early_channel_count = f1x_early_channel_count,
2178 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
2179 .dbam_to_cs = f16_dbam_to_chip_select,
2180 }
2181 },
2182 [F16_M30H_CPUS] = {
2183 .ctl_name = "F16h_M30h",
2184 .f1_id = PCI_DEVICE_ID_AMD_16H_M30H_NB_F1,
2185 .f2_id = PCI_DEVICE_ID_AMD_16H_M30H_NB_F2,
2186 .ops = {
2187 .early_channel_count = f1x_early_channel_count,
2188 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
2189 .dbam_to_cs = f16_dbam_to_chip_select,
2190 }
2191 },
2192 [F17_CPUS] = {
2193 .ctl_name = "F17h",
2194 .f0_id = PCI_DEVICE_ID_AMD_17H_DF_F0,
2195 .f6_id = PCI_DEVICE_ID_AMD_17H_DF_F6,
2196 .ops = {
2197 .early_channel_count = f17_early_channel_count,
2198 .dbam_to_cs = f17_base_addr_to_cs_size,
2199 }
2200 },
2201 };
2202
2203 /*
2204 * These are tables of eigenvectors (one per line) which can be used for the
2205 * construction of the syndrome tables. The modified syndrome search algorithm
2206 * uses those to find the symbol in error and thus the DIMM.
2207 *
2208 * Algorithm courtesy of Ross LaFetra from AMD.
2209 */
2210 static const u16 x4_vectors[] = {
2211 0x2f57, 0x1afe, 0x66cc, 0xdd88,
2212 0x11eb, 0x3396, 0x7f4c, 0xeac8,
2213 0x0001, 0x0002, 0x0004, 0x0008,
2214 0x1013, 0x3032, 0x4044, 0x8088,
2215 0x106b, 0x30d6, 0x70fc, 0xe0a8,
2216 0x4857, 0xc4fe, 0x13cc, 0x3288,
2217 0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
2218 0x1f39, 0x251e, 0xbd6c, 0x6bd8,
2219 0x15c1, 0x2a42, 0x89ac, 0x4758,
2220 0x2b03, 0x1602, 0x4f0c, 0xca08,
2221 0x1f07, 0x3a0e, 0x6b04, 0xbd08,
2222 0x8ba7, 0x465e, 0x244c, 0x1cc8,
2223 0x2b87, 0x164e, 0x642c, 0xdc18,
2224 0x40b9, 0x80de, 0x1094, 0x20e8,
2225 0x27db, 0x1eb6, 0x9dac, 0x7b58,
2226 0x11c1, 0x2242, 0x84ac, 0x4c58,
2227 0x1be5, 0x2d7a, 0x5e34, 0xa718,
2228 0x4b39, 0x8d1e, 0x14b4, 0x28d8,
2229 0x4c97, 0xc87e, 0x11fc, 0x33a8,
2230 0x8e97, 0x497e, 0x2ffc, 0x1aa8,
2231 0x16b3, 0x3d62, 0x4f34, 0x8518,
2232 0x1e2f, 0x391a, 0x5cac, 0xf858,
2233 0x1d9f, 0x3b7a, 0x572c, 0xfe18,
2234 0x15f5, 0x2a5a, 0x5264, 0xa3b8,
2235 0x1dbb, 0x3b66, 0x715c, 0xe3f8,
2236 0x4397, 0xc27e, 0x17fc, 0x3ea8,
2237 0x1617, 0x3d3e, 0x6464, 0xb8b8,
2238 0x23ff, 0x12aa, 0xab6c, 0x56d8,
2239 0x2dfb, 0x1ba6, 0x913c, 0x7328,
2240 0x185d, 0x2ca6, 0x7914, 0x9e28,
2241 0x171b, 0x3e36, 0x7d7c, 0xebe8,
2242 0x4199, 0x82ee, 0x19f4, 0x2e58,
2243 0x4807, 0xc40e, 0x130c, 0x3208,
2244 0x1905, 0x2e0a, 0x5804, 0xac08,
2245 0x213f, 0x132a, 0xadfc, 0x5ba8,
2246 0x19a9, 0x2efe, 0xb5cc, 0x6f88,
2247 };
2248
2249 static const u16 x8_vectors[] = {
2250 0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
2251 0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
2252 0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
2253 0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
2254 0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
2255 0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
2256 0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
2257 0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
2258 0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
2259 0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
2260 0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
2261 0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
2262 0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
2263 0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
2264 0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
2265 0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
2266 0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
2267 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
2268 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
2269 };
2270
2271 static int decode_syndrome(u16 syndrome, const u16 *vectors, unsigned num_vecs,
2272 unsigned v_dim)
2273 {
2274 unsigned int i, err_sym;
2275
2276 for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
2277 u16 s = syndrome;
2278 unsigned v_idx = err_sym * v_dim;
2279 unsigned v_end = (err_sym + 1) * v_dim;
2280
2281 /* walk over all 16 bits of the syndrome */
2282 for (i = 1; i < (1U << 16); i <<= 1) {
2283
2284 /* if bit is set in that eigenvector... */
2285 if (v_idx < v_end && vectors[v_idx] & i) {
2286 u16 ev_comp = vectors[v_idx++];
2287
2288 /* ... and bit set in the modified syndrome, */
2289 if (s & i) {
2290 /* remove it. */
2291 s ^= ev_comp;
2292
2293 if (!s)
2294 return err_sym;
2295 }
2296
2297 } else if (s & i)
2298 /* can't get to zero, move to next symbol */
2299 break;
2300 }
2301 }
2302
2303 edac_dbg(0, "syndrome(%x) not found\n", syndrome);
2304 return -1;
2305 }
2306
2307 static int map_err_sym_to_channel(int err_sym, int sym_size)
2308 {
2309 if (sym_size == 4)
2310 switch (err_sym) {
2311 case 0x20:
2312 case 0x21:
2313 return 0;
2314 break;
2315 case 0x22:
2316 case 0x23:
2317 return 1;
2318 break;
2319 default:
2320 return err_sym >> 4;
2321 break;
2322 }
2323 /* x8 symbols */
2324 else
2325 switch (err_sym) {
2326 /* imaginary bits not in a DIMM */
2327 case 0x10:
2328 WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
2329 err_sym);
2330 return -1;
2331 break;
2332
2333 case 0x11:
2334 return 0;
2335 break;
2336 case 0x12:
2337 return 1;
2338 break;
2339 default:
2340 return err_sym >> 3;
2341 break;
2342 }
2343 return -1;
2344 }
2345
2346 static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
2347 {
2348 struct amd64_pvt *pvt = mci->pvt_info;
2349 int err_sym = -1;
2350
2351 if (pvt->ecc_sym_sz == 8)
2352 err_sym = decode_syndrome(syndrome, x8_vectors,
2353 ARRAY_SIZE(x8_vectors),
2354 pvt->ecc_sym_sz);
2355 else if (pvt->ecc_sym_sz == 4)
2356 err_sym = decode_syndrome(syndrome, x4_vectors,
2357 ARRAY_SIZE(x4_vectors),
2358 pvt->ecc_sym_sz);
2359 else {
2360 amd64_warn("Illegal syndrome type: %u\n", pvt->ecc_sym_sz);
2361 return err_sym;
2362 }
2363
2364 return map_err_sym_to_channel(err_sym, pvt->ecc_sym_sz);
2365 }
2366
2367 static void __log_ecc_error(struct mem_ctl_info *mci, struct err_info *err,
2368 u8 ecc_type)
2369 {
2370 enum hw_event_mc_err_type err_type;
2371 const char *string;
2372
2373 if (ecc_type == 2)
2374 err_type = HW_EVENT_ERR_CORRECTED;
2375 else if (ecc_type == 1)
2376 err_type = HW_EVENT_ERR_UNCORRECTED;
2377 else if (ecc_type == 3)
2378 err_type = HW_EVENT_ERR_DEFERRED;
2379 else {
2380 WARN(1, "Something is rotten in the state of Denmark.\n");
2381 return;
2382 }
2383
2384 switch (err->err_code) {
2385 case DECODE_OK:
2386 string = "";
2387 break;
2388 case ERR_NODE:
2389 string = "Failed to map error addr to a node";
2390 break;
2391 case ERR_CSROW:
2392 string = "Failed to map error addr to a csrow";
2393 break;
2394 case ERR_CHANNEL:
2395 string = "Unknown syndrome - possible error reporting race";
2396 break;
2397 case ERR_SYND:
2398 string = "MCA_SYND not valid - unknown syndrome and csrow";
2399 break;
2400 case ERR_NORM_ADDR:
2401 string = "Cannot decode normalized address";
2402 break;
2403 default:
2404 string = "WTF error";
2405 break;
2406 }
2407
2408 edac_mc_handle_error(err_type, mci, 1,
2409 err->page, err->offset, err->syndrome,
2410 err->csrow, err->channel, -1,
2411 string, "");
2412 }
2413
2414 static inline void decode_bus_error(int node_id, struct mce *m)
2415 {
2416 struct mem_ctl_info *mci;
2417 struct amd64_pvt *pvt;
2418 u8 ecc_type = (m->status >> 45) & 0x3;
2419 u8 xec = XEC(m->status, 0x1f);
2420 u16 ec = EC(m->status);
2421 u64 sys_addr;
2422 struct err_info err;
2423
2424 mci = edac_mc_find(node_id);
2425 if (!mci)
2426 return;
2427
2428 pvt = mci->pvt_info;
2429
2430 /* Bail out early if this was an 'observed' error */
2431 if (PP(ec) == NBSL_PP_OBS)
2432 return;
2433
2434 /* Do only ECC errors */
2435 if (xec && xec != F10_NBSL_EXT_ERR_ECC)
2436 return;
2437
2438 memset(&err, 0, sizeof(err));
2439
2440 sys_addr = get_error_address(pvt, m);
2441
2442 if (ecc_type == 2)
2443 err.syndrome = extract_syndrome(m->status);
2444
2445 pvt->ops->map_sysaddr_to_csrow(mci, sys_addr, &err);
2446
2447 __log_ecc_error(mci, &err, ecc_type);
2448 }
2449
2450 /*
2451 * To find the UMC channel represented by this bank we need to match on its
2452 * instance_id. The instance_id of a bank is held in the lower 32 bits of its
2453 * IPID.
2454 */
2455 static int find_umc_channel(struct amd64_pvt *pvt, struct mce *m)
2456 {
2457 u32 umc_instance_id[] = {0x50f00, 0x150f00};
2458 u32 instance_id = m->ipid & GENMASK(31, 0);
2459 int i, channel = -1;
2460
2461 for (i = 0; i < ARRAY_SIZE(umc_instance_id); i++)
2462 if (umc_instance_id[i] == instance_id)
2463 channel = i;
2464
2465 return channel;
2466 }
2467
2468 static void decode_umc_error(int node_id, struct mce *m)
2469 {
2470 u8 ecc_type = (m->status >> 45) & 0x3;
2471 struct mem_ctl_info *mci;
2472 struct amd64_pvt *pvt;
2473 struct err_info err;
2474 u64 sys_addr;
2475
2476 mci = edac_mc_find(node_id);
2477 if (!mci)
2478 return;
2479
2480 pvt = mci->pvt_info;
2481
2482 memset(&err, 0, sizeof(err));
2483
2484 if (m->status & MCI_STATUS_DEFERRED)
2485 ecc_type = 3;
2486
2487 err.channel = find_umc_channel(pvt, m);
2488 if (err.channel < 0) {
2489 err.err_code = ERR_CHANNEL;
2490 goto log_error;
2491 }
2492
2493 if (umc_normaddr_to_sysaddr(m->addr, pvt->mc_node_id, err.channel, &sys_addr)) {
2494 err.err_code = ERR_NORM_ADDR;
2495 goto log_error;
2496 }
2497
2498 error_address_to_page_and_offset(sys_addr, &err);
2499
2500 if (!(m->status & MCI_STATUS_SYNDV)) {
2501 err.err_code = ERR_SYND;
2502 goto log_error;
2503 }
2504
2505 if (ecc_type == 2) {
2506 u8 length = (m->synd >> 18) & 0x3f;
2507
2508 if (length)
2509 err.syndrome = (m->synd >> 32) & GENMASK(length - 1, 0);
2510 else
2511 err.err_code = ERR_CHANNEL;
2512 }
2513
2514 err.csrow = m->synd & 0x7;
2515
2516 log_error:
2517 __log_ecc_error(mci, &err, ecc_type);
2518 }
2519
2520 /*
2521 * Use pvt->F3 which contains the F3 CPU PCI device to get the related
2522 * F1 (AddrMap) and F2 (Dct) devices. Return negative value on error.
2523 * Reserve F0 and F6 on systems with a UMC.
2524 */
2525 static int
2526 reserve_mc_sibling_devs(struct amd64_pvt *pvt, u16 pci_id1, u16 pci_id2)
2527 {
2528 if (pvt->umc) {
2529 pvt->F0 = pci_get_related_function(pvt->F3->vendor, pci_id1, pvt->F3);
2530 if (!pvt->F0) {
2531 amd64_err("F0 not found, device 0x%x (broken BIOS?)\n", pci_id1);
2532 return -ENODEV;
2533 }
2534
2535 pvt->F6 = pci_get_related_function(pvt->F3->vendor, pci_id2, pvt->F3);
2536 if (!pvt->F6) {
2537 pci_dev_put(pvt->F0);
2538 pvt->F0 = NULL;
2539
2540 amd64_err("F6 not found: device 0x%x (broken BIOS?)\n", pci_id2);
2541 return -ENODEV;
2542 }
2543
2544 edac_dbg(1, "F0: %s\n", pci_name(pvt->F0));
2545 edac_dbg(1, "F3: %s\n", pci_name(pvt->F3));
2546 edac_dbg(1, "F6: %s\n", pci_name(pvt->F6));
2547
2548 return 0;
2549 }
2550
2551 /* Reserve the ADDRESS MAP Device */
2552 pvt->F1 = pci_get_related_function(pvt->F3->vendor, pci_id1, pvt->F3);
2553 if (!pvt->F1) {
2554 amd64_err("F1 not found: device 0x%x (broken BIOS?)\n", pci_id1);
2555 return -ENODEV;
2556 }
2557
2558 /* Reserve the DCT Device */
2559 pvt->F2 = pci_get_related_function(pvt->F3->vendor, pci_id2, pvt->F3);
2560 if (!pvt->F2) {
2561 pci_dev_put(pvt->F1);
2562 pvt->F1 = NULL;
2563
2564 amd64_err("F2 not found: device 0x%x (broken BIOS?)\n", pci_id2);
2565 return -ENODEV;
2566 }
2567
2568 edac_dbg(1, "F1: %s\n", pci_name(pvt->F1));
2569 edac_dbg(1, "F2: %s\n", pci_name(pvt->F2));
2570 edac_dbg(1, "F3: %s\n", pci_name(pvt->F3));
2571
2572 return 0;
2573 }
2574
2575 static void free_mc_sibling_devs(struct amd64_pvt *pvt)
2576 {
2577 if (pvt->umc) {
2578 pci_dev_put(pvt->F0);
2579 pci_dev_put(pvt->F6);
2580 } else {
2581 pci_dev_put(pvt->F1);
2582 pci_dev_put(pvt->F2);
2583 }
2584 }
2585
2586 static void determine_ecc_sym_sz(struct amd64_pvt *pvt)
2587 {
2588 pvt->ecc_sym_sz = 4;
2589
2590 if (pvt->umc) {
2591 u8 i;
2592
2593 for (i = 0; i < NUM_UMCS; i++) {
2594 /* Check enabled channels only: */
2595 if ((pvt->umc[i].sdp_ctrl & UMC_SDP_INIT) &&
2596 (pvt->umc[i].ecc_ctrl & BIT(7))) {
2597 pvt->ecc_sym_sz = 8;
2598 break;
2599 }
2600 }
2601
2602 return;
2603 }
2604
2605 if (pvt->fam >= 0x10) {
2606 u32 tmp;
2607
2608 amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp);
2609 /* F16h has only DCT0, so no need to read dbam1. */
2610 if (pvt->fam != 0x16)
2611 amd64_read_dct_pci_cfg(pvt, 1, DBAM0, &pvt->dbam1);
2612
2613 /* F10h, revD and later can do x8 ECC too. */
2614 if ((pvt->fam > 0x10 || pvt->model > 7) && tmp & BIT(25))
2615 pvt->ecc_sym_sz = 8;
2616 }
2617 }
2618
2619 /*
2620 * Retrieve the hardware registers of the memory controller.
2621 */
2622 static void __read_mc_regs_df(struct amd64_pvt *pvt)
2623 {
2624 u8 nid = pvt->mc_node_id;
2625 struct amd64_umc *umc;
2626 u32 i, umc_base;
2627
2628 /* Read registers from each UMC */
2629 for (i = 0; i < NUM_UMCS; i++) {
2630
2631 umc_base = get_umc_base(i);
2632 umc = &pvt->umc[i];
2633
2634 amd_smn_read(nid, umc_base + UMCCH_DIMM_CFG, &umc->dimm_cfg);
2635 amd_smn_read(nid, umc_base + UMCCH_UMC_CFG, &umc->umc_cfg);
2636 amd_smn_read(nid, umc_base + UMCCH_SDP_CTRL, &umc->sdp_ctrl);
2637 amd_smn_read(nid, umc_base + UMCCH_ECC_CTRL, &umc->ecc_ctrl);
2638 amd_smn_read(nid, umc_base + UMCCH_UMC_CAP_HI, &umc->umc_cap_hi);
2639 }
2640 }
2641
2642 /*
2643 * Retrieve the hardware registers of the memory controller (this includes the
2644 * 'Address Map' and 'Misc' device regs)
2645 */
2646 static void read_mc_regs(struct amd64_pvt *pvt)
2647 {
2648 unsigned int range;
2649 u64 msr_val;
2650
2651 /*
2652 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
2653 * those are Read-As-Zero.
2654 */
2655 rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
2656 edac_dbg(0, " TOP_MEM: 0x%016llx\n", pvt->top_mem);
2657
2658 /* Check first whether TOP_MEM2 is enabled: */
2659 rdmsrl(MSR_K8_SYSCFG, msr_val);
2660 if (msr_val & BIT(21)) {
2661 rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
2662 edac_dbg(0, " TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
2663 } else {
2664 edac_dbg(0, " TOP_MEM2 disabled\n");
2665 }
2666
2667 if (pvt->umc) {
2668 __read_mc_regs_df(pvt);
2669 amd64_read_pci_cfg(pvt->F0, DF_DHAR, &pvt->dhar);
2670
2671 goto skip;
2672 }
2673
2674 amd64_read_pci_cfg(pvt->F3, NBCAP, &pvt->nbcap);
2675
2676 read_dram_ctl_register(pvt);
2677
2678 for (range = 0; range < DRAM_RANGES; range++) {
2679 u8 rw;
2680
2681 /* read settings for this DRAM range */
2682 read_dram_base_limit_regs(pvt, range);
2683
2684 rw = dram_rw(pvt, range);
2685 if (!rw)
2686 continue;
2687
2688 edac_dbg(1, " DRAM range[%d], base: 0x%016llx; limit: 0x%016llx\n",
2689 range,
2690 get_dram_base(pvt, range),
2691 get_dram_limit(pvt, range));
2692
2693 edac_dbg(1, " IntlvEn=%s; Range access: %s%s IntlvSel=%d DstNode=%d\n",
2694 dram_intlv_en(pvt, range) ? "Enabled" : "Disabled",
2695 (rw & 0x1) ? "R" : "-",
2696 (rw & 0x2) ? "W" : "-",
2697 dram_intlv_sel(pvt, range),
2698 dram_dst_node(pvt, range));
2699 }
2700
2701 amd64_read_pci_cfg(pvt->F1, DHAR, &pvt->dhar);
2702 amd64_read_dct_pci_cfg(pvt, 0, DBAM0, &pvt->dbam0);
2703
2704 amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare);
2705
2706 amd64_read_dct_pci_cfg(pvt, 0, DCLR0, &pvt->dclr0);
2707 amd64_read_dct_pci_cfg(pvt, 0, DCHR0, &pvt->dchr0);
2708
2709 if (!dct_ganging_enabled(pvt)) {
2710 amd64_read_dct_pci_cfg(pvt, 1, DCLR0, &pvt->dclr1);
2711 amd64_read_dct_pci_cfg(pvt, 1, DCHR0, &pvt->dchr1);
2712 }
2713
2714 skip:
2715 read_dct_base_mask(pvt);
2716
2717 determine_memory_type(pvt);
2718 edac_dbg(1, " DIMM type: %s\n", edac_mem_types[pvt->dram_type]);
2719
2720 determine_ecc_sym_sz(pvt);
2721
2722 dump_misc_regs(pvt);
2723 }
2724
2725 /*
2726 * NOTE: CPU Revision Dependent code
2727 *
2728 * Input:
2729 * @csrow_nr ChipSelect Row Number (0..NUM_CHIPSELECTS-1)
2730 * k8 private pointer to -->
2731 * DRAM Bank Address mapping register
2732 * node_id
2733 * DCL register where dual_channel_active is
2734 *
2735 * The DBAM register consists of 4 sets of 4 bits each definitions:
2736 *
2737 * Bits: CSROWs
2738 * 0-3 CSROWs 0 and 1
2739 * 4-7 CSROWs 2 and 3
2740 * 8-11 CSROWs 4 and 5
2741 * 12-15 CSROWs 6 and 7
2742 *
2743 * Values range from: 0 to 15
2744 * The meaning of the values depends on CPU revision and dual-channel state,
2745 * see relevant BKDG more info.
2746 *
2747 * The memory controller provides for total of only 8 CSROWs in its current
2748 * architecture. Each "pair" of CSROWs normally represents just one DIMM in
2749 * single channel or two (2) DIMMs in dual channel mode.
2750 *
2751 * The following code logic collapses the various tables for CSROW based on CPU
2752 * revision.
2753 *
2754 * Returns:
2755 * The number of PAGE_SIZE pages on the specified CSROW number it
2756 * encompasses
2757 *
2758 */
2759 static u32 get_csrow_nr_pages(struct amd64_pvt *pvt, u8 dct, int csrow_nr)
2760 {
2761 u32 cs_mode, nr_pages;
2762 u32 dbam = dct ? pvt->dbam1 : pvt->dbam0;
2763
2764
2765 /*
2766 * The math on this doesn't look right on the surface because x/2*4 can
2767 * be simplified to x*2 but this expression makes use of the fact that
2768 * it is integral math where 1/2=0. This intermediate value becomes the
2769 * number of bits to shift the DBAM register to extract the proper CSROW
2770 * field.
2771 */
2772 cs_mode = DBAM_DIMM(csrow_nr / 2, dbam);
2773
2774 nr_pages = pvt->ops->dbam_to_cs(pvt, dct, cs_mode, (csrow_nr / 2))
2775 << (20 - PAGE_SHIFT);
2776
2777 edac_dbg(0, "csrow: %d, channel: %d, DBAM idx: %d\n",
2778 csrow_nr, dct, cs_mode);
2779 edac_dbg(0, "nr_pages/channel: %u\n", nr_pages);
2780
2781 return nr_pages;
2782 }
2783
2784 /*
2785 * Initialize the array of csrow attribute instances, based on the values
2786 * from pci config hardware registers.
2787 */
2788 static int init_csrows(struct mem_ctl_info *mci)
2789 {
2790 struct amd64_pvt *pvt = mci->pvt_info;
2791 enum edac_type edac_mode = EDAC_NONE;
2792 struct csrow_info *csrow;
2793 struct dimm_info *dimm;
2794 int i, j, empty = 1;
2795 int nr_pages = 0;
2796 u32 val;
2797
2798 if (!pvt->umc) {
2799 amd64_read_pci_cfg(pvt->F3, NBCFG, &val);
2800
2801 pvt->nbcfg = val;
2802
2803 edac_dbg(0, "node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
2804 pvt->mc_node_id, val,
2805 !!(val & NBCFG_CHIPKILL), !!(val & NBCFG_ECC_ENABLE));
2806 }
2807
2808 /*
2809 * We iterate over DCT0 here but we look at DCT1 in parallel, if needed.
2810 */
2811 for_each_chip_select(i, 0, pvt) {
2812 bool row_dct0 = !!csrow_enabled(i, 0, pvt);
2813 bool row_dct1 = false;
2814
2815 if (pvt->fam != 0xf)
2816 row_dct1 = !!csrow_enabled(i, 1, pvt);
2817
2818 if (!row_dct0 && !row_dct1)
2819 continue;
2820
2821 csrow = mci->csrows[i];
2822 empty = 0;
2823
2824 edac_dbg(1, "MC node: %d, csrow: %d\n",
2825 pvt->mc_node_id, i);
2826
2827 if (row_dct0) {
2828 nr_pages = get_csrow_nr_pages(pvt, 0, i);
2829 csrow->channels[0]->dimm->nr_pages = nr_pages;
2830 }
2831
2832 /* K8 has only one DCT */
2833 if (pvt->fam != 0xf && row_dct1) {
2834 int row_dct1_pages = get_csrow_nr_pages(pvt, 1, i);
2835
2836 csrow->channels[1]->dimm->nr_pages = row_dct1_pages;
2837 nr_pages += row_dct1_pages;
2838 }
2839
2840 edac_dbg(1, "Total csrow%d pages: %u\n", i, nr_pages);
2841
2842 /* Determine DIMM ECC mode: */
2843 if (pvt->umc) {
2844 if (mci->edac_ctl_cap & EDAC_FLAG_S4ECD4ED)
2845 edac_mode = EDAC_S4ECD4ED;
2846 else if (mci->edac_ctl_cap & EDAC_FLAG_SECDED)
2847 edac_mode = EDAC_SECDED;
2848
2849 } else if (pvt->nbcfg & NBCFG_ECC_ENABLE) {
2850 edac_mode = (pvt->nbcfg & NBCFG_CHIPKILL)
2851 ? EDAC_S4ECD4ED
2852 : EDAC_SECDED;
2853 }
2854
2855 for (j = 0; j < pvt->channel_count; j++) {
2856 dimm = csrow->channels[j]->dimm;
2857 dimm->mtype = pvt->dram_type;
2858 dimm->edac_mode = edac_mode;
2859 }
2860 }
2861
2862 return empty;
2863 }
2864
2865 /* get all cores on this DCT */
2866 static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, u16 nid)
2867 {
2868 int cpu;
2869
2870 for_each_online_cpu(cpu)
2871 if (amd_get_nb_id(cpu) == nid)
2872 cpumask_set_cpu(cpu, mask);
2873 }
2874
2875 /* check MCG_CTL on all the cpus on this node */
2876 static bool nb_mce_bank_enabled_on_node(u16 nid)
2877 {
2878 cpumask_var_t mask;
2879 int cpu, nbe;
2880 bool ret = false;
2881
2882 if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
2883 amd64_warn("%s: Error allocating mask\n", __func__);
2884 return false;
2885 }
2886
2887 get_cpus_on_this_dct_cpumask(mask, nid);
2888
2889 rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);
2890
2891 for_each_cpu(cpu, mask) {
2892 struct msr *reg = per_cpu_ptr(msrs, cpu);
2893 nbe = reg->l & MSR_MCGCTL_NBE;
2894
2895 edac_dbg(0, "core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
2896 cpu, reg->q,
2897 (nbe ? "enabled" : "disabled"));
2898
2899 if (!nbe)
2900 goto out;
2901 }
2902 ret = true;
2903
2904 out:
2905 free_cpumask_var(mask);
2906 return ret;
2907 }
2908
2909 static int toggle_ecc_err_reporting(struct ecc_settings *s, u16 nid, bool on)
2910 {
2911 cpumask_var_t cmask;
2912 int cpu;
2913
2914 if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
2915 amd64_warn("%s: error allocating mask\n", __func__);
2916 return -ENOMEM;
2917 }
2918
2919 get_cpus_on_this_dct_cpumask(cmask, nid);
2920
2921 rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2922
2923 for_each_cpu(cpu, cmask) {
2924
2925 struct msr *reg = per_cpu_ptr(msrs, cpu);
2926
2927 if (on) {
2928 if (reg->l & MSR_MCGCTL_NBE)
2929 s->flags.nb_mce_enable = 1;
2930
2931 reg->l |= MSR_MCGCTL_NBE;
2932 } else {
2933 /*
2934 * Turn off NB MCE reporting only when it was off before
2935 */
2936 if (!s->flags.nb_mce_enable)
2937 reg->l &= ~MSR_MCGCTL_NBE;
2938 }
2939 }
2940 wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2941
2942 free_cpumask_var(cmask);
2943
2944 return 0;
2945 }
2946
2947 static bool enable_ecc_error_reporting(struct ecc_settings *s, u16 nid,
2948 struct pci_dev *F3)
2949 {
2950 bool ret = true;
2951 u32 value, mask = 0x3; /* UECC/CECC enable */
2952
2953 if (toggle_ecc_err_reporting(s, nid, ON)) {
2954 amd64_warn("Error enabling ECC reporting over MCGCTL!\n");
2955 return false;
2956 }
2957
2958 amd64_read_pci_cfg(F3, NBCTL, &value);
2959
2960 s->old_nbctl = value & mask;
2961 s->nbctl_valid = true;
2962
2963 value |= mask;
2964 amd64_write_pci_cfg(F3, NBCTL, value);
2965
2966 amd64_read_pci_cfg(F3, NBCFG, &value);
2967
2968 edac_dbg(0, "1: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
2969 nid, value, !!(value & NBCFG_ECC_ENABLE));
2970
2971 if (!(value & NBCFG_ECC_ENABLE)) {
2972 amd64_warn("DRAM ECC disabled on this node, enabling...\n");
2973
2974 s->flags.nb_ecc_prev = 0;
2975
2976 /* Attempt to turn on DRAM ECC Enable */
2977 value |= NBCFG_ECC_ENABLE;
2978 amd64_write_pci_cfg(F3, NBCFG, value);
2979
2980 amd64_read_pci_cfg(F3, NBCFG, &value);
2981
2982 if (!(value & NBCFG_ECC_ENABLE)) {
2983 amd64_warn("Hardware rejected DRAM ECC enable,"
2984 "check memory DIMM configuration.\n");
2985 ret = false;
2986 } else {
2987 amd64_info("Hardware accepted DRAM ECC Enable\n");
2988 }
2989 } else {
2990 s->flags.nb_ecc_prev = 1;
2991 }
2992
2993 edac_dbg(0, "2: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
2994 nid, value, !!(value & NBCFG_ECC_ENABLE));
2995
2996 return ret;
2997 }
2998
2999 static void restore_ecc_error_reporting(struct ecc_settings *s, u16 nid,
3000 struct pci_dev *F3)
3001 {
3002 u32 value, mask = 0x3; /* UECC/CECC enable */
3003
3004 if (!s->nbctl_valid)
3005 return;
3006
3007 amd64_read_pci_cfg(F3, NBCTL, &value);
3008 value &= ~mask;
3009 value |= s->old_nbctl;
3010
3011 amd64_write_pci_cfg(F3, NBCTL, value);
3012
3013 /* restore previous BIOS DRAM ECC "off" setting we force-enabled */
3014 if (!s->flags.nb_ecc_prev) {
3015 amd64_read_pci_cfg(F3, NBCFG, &value);
3016 value &= ~NBCFG_ECC_ENABLE;
3017 amd64_write_pci_cfg(F3, NBCFG, value);
3018 }
3019
3020 /* restore the NB Enable MCGCTL bit */
3021 if (toggle_ecc_err_reporting(s, nid, OFF))
3022 amd64_warn("Error restoring NB MCGCTL settings!\n");
3023 }
3024
3025 /*
3026 * EDAC requires that the BIOS have ECC enabled before
3027 * taking over the processing of ECC errors. A command line
3028 * option allows to force-enable hardware ECC later in
3029 * enable_ecc_error_reporting().
3030 */
3031 static const char *ecc_msg =
3032 "ECC disabled in the BIOS or no ECC capability, module will not load.\n"
3033 " Either enable ECC checking or force module loading by setting "
3034 "'ecc_enable_override'.\n"
3035 " (Note that use of the override may cause unknown side effects.)\n";
3036
3037 static bool ecc_enabled(struct pci_dev *F3, u16 nid)
3038 {
3039 bool nb_mce_en = false;
3040 u8 ecc_en = 0, i;
3041 u32 value;
3042
3043 if (boot_cpu_data.x86 >= 0x17) {
3044 u8 umc_en_mask = 0, ecc_en_mask = 0;
3045
3046 for (i = 0; i < NUM_UMCS; i++) {
3047 u32 base = get_umc_base(i);
3048
3049 /* Only check enabled UMCs. */
3050 if (amd_smn_read(nid, base + UMCCH_SDP_CTRL, &value))
3051 continue;
3052
3053 if (!(value & UMC_SDP_INIT))
3054 continue;
3055
3056 umc_en_mask |= BIT(i);
3057
3058 if (amd_smn_read(nid, base + UMCCH_UMC_CAP_HI, &value))
3059 continue;
3060
3061 if (value & UMC_ECC_ENABLED)
3062 ecc_en_mask |= BIT(i);
3063 }
3064
3065 /* Check whether at least one UMC is enabled: */
3066 if (umc_en_mask)
3067 ecc_en = umc_en_mask == ecc_en_mask;
3068
3069 /* Assume UMC MCA banks are enabled. */
3070 nb_mce_en = true;
3071 } else {
3072 amd64_read_pci_cfg(F3, NBCFG, &value);
3073
3074 ecc_en = !!(value & NBCFG_ECC_ENABLE);
3075
3076 nb_mce_en = nb_mce_bank_enabled_on_node(nid);
3077 if (!nb_mce_en)
3078 amd64_notice("NB MCE bank disabled, set MSR 0x%08x[4] on node %d to enable.\n",
3079 MSR_IA32_MCG_CTL, nid);
3080 }
3081
3082 amd64_info("DRAM ECC %s.\n", (ecc_en ? "enabled" : "disabled"));
3083
3084 if (!ecc_en || !nb_mce_en) {
3085 amd64_notice("%s", ecc_msg);
3086 return false;
3087 }
3088 return true;
3089 }
3090
3091 static inline void
3092 f17h_determine_edac_ctl_cap(struct mem_ctl_info *mci, struct amd64_pvt *pvt)
3093 {
3094 u8 i, ecc_en = 1, cpk_en = 1;
3095
3096 for (i = 0; i < NUM_UMCS; i++) {
3097 if (pvt->umc[i].sdp_ctrl & UMC_SDP_INIT) {
3098 ecc_en &= !!(pvt->umc[i].umc_cap_hi & UMC_ECC_ENABLED);
3099 cpk_en &= !!(pvt->umc[i].umc_cap_hi & UMC_ECC_CHIPKILL_CAP);
3100 }
3101 }
3102
3103 /* Set chipkill only if ECC is enabled: */
3104 if (ecc_en) {
3105 mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
3106
3107 if (cpk_en)
3108 mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
3109 }
3110 }
3111
3112 static void setup_mci_misc_attrs(struct mem_ctl_info *mci,
3113 struct amd64_family_type *fam)
3114 {
3115 struct amd64_pvt *pvt = mci->pvt_info;
3116
3117 mci->mtype_cap = MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
3118 mci->edac_ctl_cap = EDAC_FLAG_NONE;
3119
3120 if (pvt->umc) {
3121 f17h_determine_edac_ctl_cap(mci, pvt);
3122 } else {
3123 if (pvt->nbcap & NBCAP_SECDED)
3124 mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
3125
3126 if (pvt->nbcap & NBCAP_CHIPKILL)
3127 mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
3128 }
3129
3130 mci->edac_cap = determine_edac_cap(pvt);
3131 mci->mod_name = EDAC_MOD_STR;
3132 mci->mod_ver = EDAC_AMD64_VERSION;
3133 mci->ctl_name = fam->ctl_name;
3134 mci->dev_name = pci_name(pvt->F3);
3135 mci->ctl_page_to_phys = NULL;
3136
3137 /* memory scrubber interface */
3138 mci->set_sdram_scrub_rate = set_scrub_rate;
3139 mci->get_sdram_scrub_rate = get_scrub_rate;
3140 }
3141
3142 /*
3143 * returns a pointer to the family descriptor on success, NULL otherwise.
3144 */
3145 static struct amd64_family_type *per_family_init(struct amd64_pvt *pvt)
3146 {
3147 struct amd64_family_type *fam_type = NULL;
3148
3149 pvt->ext_model = boot_cpu_data.x86_model >> 4;
3150 pvt->stepping = boot_cpu_data.x86_mask;
3151 pvt->model = boot_cpu_data.x86_model;
3152 pvt->fam = boot_cpu_data.x86;
3153
3154 switch (pvt->fam) {
3155 case 0xf:
3156 fam_type = &family_types[K8_CPUS];
3157 pvt->ops = &family_types[K8_CPUS].ops;
3158 break;
3159
3160 case 0x10:
3161 fam_type = &family_types[F10_CPUS];
3162 pvt->ops = &family_types[F10_CPUS].ops;
3163 break;
3164
3165 case 0x15:
3166 if (pvt->model == 0x30) {
3167 fam_type = &family_types[F15_M30H_CPUS];
3168 pvt->ops = &family_types[F15_M30H_CPUS].ops;
3169 break;
3170 } else if (pvt->model == 0x60) {
3171 fam_type = &family_types[F15_M60H_CPUS];
3172 pvt->ops = &family_types[F15_M60H_CPUS].ops;
3173 break;
3174 }
3175
3176 fam_type = &family_types[F15_CPUS];
3177 pvt->ops = &family_types[F15_CPUS].ops;
3178 break;
3179
3180 case 0x16:
3181 if (pvt->model == 0x30) {
3182 fam_type = &family_types[F16_M30H_CPUS];
3183 pvt->ops = &family_types[F16_M30H_CPUS].ops;
3184 break;
3185 }
3186 fam_type = &family_types[F16_CPUS];
3187 pvt->ops = &family_types[F16_CPUS].ops;
3188 break;
3189
3190 case 0x17:
3191 fam_type = &family_types[F17_CPUS];
3192 pvt->ops = &family_types[F17_CPUS].ops;
3193 break;
3194
3195 default:
3196 amd64_err("Unsupported family!\n");
3197 return NULL;
3198 }
3199
3200 amd64_info("%s %sdetected (node %d).\n", fam_type->ctl_name,
3201 (pvt->fam == 0xf ?
3202 (pvt->ext_model >= K8_REV_F ? "revF or later "
3203 : "revE or earlier ")
3204 : ""), pvt->mc_node_id);
3205 return fam_type;
3206 }
3207
3208 static const struct attribute_group *amd64_edac_attr_groups[] = {
3209 #ifdef CONFIG_EDAC_DEBUG
3210 &amd64_edac_dbg_group,
3211 #endif
3212 #ifdef CONFIG_EDAC_AMD64_ERROR_INJECTION
3213 &amd64_edac_inj_group,
3214 #endif
3215 NULL
3216 };
3217
3218 static int init_one_instance(unsigned int nid)
3219 {
3220 struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
3221 struct amd64_family_type *fam_type = NULL;
3222 struct mem_ctl_info *mci = NULL;
3223 struct edac_mc_layer layers[2];
3224 struct amd64_pvt *pvt = NULL;
3225 u16 pci_id1, pci_id2;
3226 int err = 0, ret;
3227
3228 ret = -ENOMEM;
3229 pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
3230 if (!pvt)
3231 goto err_ret;
3232
3233 pvt->mc_node_id = nid;
3234 pvt->F3 = F3;
3235
3236 ret = -EINVAL;
3237 fam_type = per_family_init(pvt);
3238 if (!fam_type)
3239 goto err_free;
3240
3241 if (pvt->fam >= 0x17) {
3242 pvt->umc = kcalloc(NUM_UMCS, sizeof(struct amd64_umc), GFP_KERNEL);
3243 if (!pvt->umc) {
3244 ret = -ENOMEM;
3245 goto err_free;
3246 }
3247
3248 pci_id1 = fam_type->f0_id;
3249 pci_id2 = fam_type->f6_id;
3250 } else {
3251 pci_id1 = fam_type->f1_id;
3252 pci_id2 = fam_type->f2_id;
3253 }
3254
3255 err = reserve_mc_sibling_devs(pvt, pci_id1, pci_id2);
3256 if (err)
3257 goto err_post_init;
3258
3259 read_mc_regs(pvt);
3260
3261 /*
3262 * We need to determine how many memory channels there are. Then use
3263 * that information for calculating the size of the dynamic instance
3264 * tables in the 'mci' structure.
3265 */
3266 ret = -EINVAL;
3267 pvt->channel_count = pvt->ops->early_channel_count(pvt);
3268 if (pvt->channel_count < 0)
3269 goto err_siblings;
3270
3271 ret = -ENOMEM;
3272 layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
3273 layers[0].size = pvt->csels[0].b_cnt;
3274 layers[0].is_virt_csrow = true;
3275 layers[1].type = EDAC_MC_LAYER_CHANNEL;
3276
3277 /*
3278 * Always allocate two channels since we can have setups with DIMMs on
3279 * only one channel. Also, this simplifies handling later for the price
3280 * of a couple of KBs tops.
3281 */
3282 layers[1].size = 2;
3283 layers[1].is_virt_csrow = false;
3284
3285 mci = edac_mc_alloc(nid, ARRAY_SIZE(layers), layers, 0);
3286 if (!mci)
3287 goto err_siblings;
3288
3289 mci->pvt_info = pvt;
3290 mci->pdev = &pvt->F3->dev;
3291
3292 setup_mci_misc_attrs(mci, fam_type);
3293
3294 if (init_csrows(mci))
3295 mci->edac_cap = EDAC_FLAG_NONE;
3296
3297 ret = -ENODEV;
3298 if (edac_mc_add_mc_with_groups(mci, amd64_edac_attr_groups)) {
3299 edac_dbg(1, "failed edac_mc_add_mc()\n");
3300 goto err_add_mc;
3301 }
3302
3303 /* register stuff with EDAC MCE */
3304 if (report_gart_errors)
3305 amd_report_gart_errors(true);
3306
3307 if (pvt->umc)
3308 amd_register_ecc_decoder(decode_umc_error);
3309 else
3310 amd_register_ecc_decoder(decode_bus_error);
3311
3312 return 0;
3313
3314 err_add_mc:
3315 edac_mc_free(mci);
3316
3317 err_siblings:
3318 free_mc_sibling_devs(pvt);
3319
3320 err_post_init:
3321 if (pvt->fam >= 0x17)
3322 kfree(pvt->umc);
3323
3324 err_free:
3325 kfree(pvt);
3326
3327 err_ret:
3328 return ret;
3329 }
3330
3331 static int probe_one_instance(unsigned int nid)
3332 {
3333 struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
3334 struct ecc_settings *s;
3335 int ret;
3336
3337 ret = -ENOMEM;
3338 s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL);
3339 if (!s)
3340 goto err_out;
3341
3342 ecc_stngs[nid] = s;
3343
3344 if (!ecc_enabled(F3, nid)) {
3345 ret = -ENODEV;
3346
3347 if (!ecc_enable_override)
3348 goto err_enable;
3349
3350 if (boot_cpu_data.x86 >= 0x17) {
3351 amd64_warn("Forcing ECC on is not recommended on newer systems. Please enable ECC in BIOS.");
3352 goto err_enable;
3353 } else
3354 amd64_warn("Forcing ECC on!\n");
3355
3356 if (!enable_ecc_error_reporting(s, nid, F3))
3357 goto err_enable;
3358 }
3359
3360 ret = init_one_instance(nid);
3361 if (ret < 0) {
3362 amd64_err("Error probing instance: %d\n", nid);
3363
3364 if (boot_cpu_data.x86 < 0x17)
3365 restore_ecc_error_reporting(s, nid, F3);
3366 }
3367
3368 return ret;
3369
3370 err_enable:
3371 kfree(s);
3372 ecc_stngs[nid] = NULL;
3373
3374 err_out:
3375 return ret;
3376 }
3377
3378 static void remove_one_instance(unsigned int nid)
3379 {
3380 struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
3381 struct ecc_settings *s = ecc_stngs[nid];
3382 struct mem_ctl_info *mci;
3383 struct amd64_pvt *pvt;
3384
3385 mci = find_mci_by_dev(&F3->dev);
3386 WARN_ON(!mci);
3387
3388 /* Remove from EDAC CORE tracking list */
3389 mci = edac_mc_del_mc(&F3->dev);
3390 if (!mci)
3391 return;
3392
3393 pvt = mci->pvt_info;
3394
3395 restore_ecc_error_reporting(s, nid, F3);
3396
3397 free_mc_sibling_devs(pvt);
3398
3399 /* unregister from EDAC MCE */
3400 amd_report_gart_errors(false);
3401
3402 if (pvt->umc)
3403 amd_unregister_ecc_decoder(decode_umc_error);
3404 else
3405 amd_unregister_ecc_decoder(decode_bus_error);
3406
3407 kfree(ecc_stngs[nid]);
3408 ecc_stngs[nid] = NULL;
3409
3410 /* Free the EDAC CORE resources */
3411 mci->pvt_info = NULL;
3412
3413 kfree(pvt);
3414 edac_mc_free(mci);
3415 }
3416
3417 static void setup_pci_device(void)
3418 {
3419 struct mem_ctl_info *mci;
3420 struct amd64_pvt *pvt;
3421
3422 if (pci_ctl)
3423 return;
3424
3425 mci = edac_mc_find(0);
3426 if (!mci)
3427 return;
3428
3429 pvt = mci->pvt_info;
3430 if (pvt->umc)
3431 pci_ctl = edac_pci_create_generic_ctl(&pvt->F0->dev, EDAC_MOD_STR);
3432 else
3433 pci_ctl = edac_pci_create_generic_ctl(&pvt->F2->dev, EDAC_MOD_STR);
3434 if (!pci_ctl) {
3435 pr_warn("%s(): Unable to create PCI control\n", __func__);
3436 pr_warn("%s(): PCI error report via EDAC not set\n", __func__);
3437 }
3438 }
3439
3440 static const struct x86_cpu_id amd64_cpuids[] = {
3441 { X86_VENDOR_AMD, 0xF, X86_MODEL_ANY, X86_FEATURE_ANY, 0 },
3442 { X86_VENDOR_AMD, 0x10, X86_MODEL_ANY, X86_FEATURE_ANY, 0 },
3443 { X86_VENDOR_AMD, 0x15, X86_MODEL_ANY, X86_FEATURE_ANY, 0 },
3444 { X86_VENDOR_AMD, 0x16, X86_MODEL_ANY, X86_FEATURE_ANY, 0 },
3445 { X86_VENDOR_AMD, 0x17, X86_MODEL_ANY, X86_FEATURE_ANY, 0 },
3446 { }
3447 };
3448 MODULE_DEVICE_TABLE(x86cpu, amd64_cpuids);
3449
3450 static int __init amd64_edac_init(void)
3451 {
3452 int err = -ENODEV;
3453 int i;
3454
3455 if (amd_cache_northbridges() < 0)
3456 goto err_ret;
3457
3458 opstate_init();
3459
3460 err = -ENOMEM;
3461 ecc_stngs = kzalloc(amd_nb_num() * sizeof(ecc_stngs[0]), GFP_KERNEL);
3462 if (!ecc_stngs)
3463 goto err_free;
3464
3465 msrs = msrs_alloc();
3466 if (!msrs)
3467 goto err_free;
3468
3469 for (i = 0; i < amd_nb_num(); i++)
3470 if (probe_one_instance(i)) {
3471 /* unwind properly */
3472 while (--i >= 0)
3473 remove_one_instance(i);
3474
3475 goto err_pci;
3476 }
3477
3478 setup_pci_device();
3479
3480 #ifdef CONFIG_X86_32
3481 amd64_err("%s on 32-bit is unsupported. USE AT YOUR OWN RISK!\n", EDAC_MOD_STR);
3482 #endif
3483
3484 printk(KERN_INFO "AMD64 EDAC driver v%s\n", EDAC_AMD64_VERSION);
3485
3486 return 0;
3487
3488 err_pci:
3489 msrs_free(msrs);
3490 msrs = NULL;
3491
3492 err_free:
3493 kfree(ecc_stngs);
3494 ecc_stngs = NULL;
3495
3496 err_ret:
3497 return err;
3498 }
3499
3500 static void __exit amd64_edac_exit(void)
3501 {
3502 int i;
3503
3504 if (pci_ctl)
3505 edac_pci_release_generic_ctl(pci_ctl);
3506
3507 for (i = 0; i < amd_nb_num(); i++)
3508 remove_one_instance(i);
3509
3510 kfree(ecc_stngs);
3511 ecc_stngs = NULL;
3512
3513 msrs_free(msrs);
3514 msrs = NULL;
3515 }
3516
3517 module_init(amd64_edac_init);
3518 module_exit(amd64_edac_exit);
3519
3520 MODULE_LICENSE("GPL");
3521 MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
3522 "Dave Peterson, Thayne Harbaugh");
3523 MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
3524 EDAC_AMD64_VERSION);
3525
3526 module_param(edac_op_state, int, 0444);
3527 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");