]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/edac/amd64_edac.c
EDAC, amd64: Autoload amd64_edac_mod on Fam17h systems
[mirror_ubuntu-artful-kernel.git] / drivers / edac / amd64_edac.c
1 #include "amd64_edac.h"
2 #include <asm/amd_nb.h>
3
4 static struct edac_pci_ctl_info *pci_ctl;
5
6 static int report_gart_errors;
7 module_param(report_gart_errors, int, 0644);
8
9 /*
10 * Set by command line parameter. If BIOS has enabled the ECC, this override is
11 * cleared to prevent re-enabling the hardware by this driver.
12 */
13 static int ecc_enable_override;
14 module_param(ecc_enable_override, int, 0644);
15
16 static struct msr __percpu *msrs;
17
18 /* Per-node stuff */
19 static struct ecc_settings **ecc_stngs;
20
21 /*
22 * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
23 * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
24 * or higher value'.
25 *
26 *FIXME: Produce a better mapping/linearisation.
27 */
28 static const struct scrubrate {
29 u32 scrubval; /* bit pattern for scrub rate */
30 u32 bandwidth; /* bandwidth consumed (bytes/sec) */
31 } scrubrates[] = {
32 { 0x01, 1600000000UL},
33 { 0x02, 800000000UL},
34 { 0x03, 400000000UL},
35 { 0x04, 200000000UL},
36 { 0x05, 100000000UL},
37 { 0x06, 50000000UL},
38 { 0x07, 25000000UL},
39 { 0x08, 12284069UL},
40 { 0x09, 6274509UL},
41 { 0x0A, 3121951UL},
42 { 0x0B, 1560975UL},
43 { 0x0C, 781440UL},
44 { 0x0D, 390720UL},
45 { 0x0E, 195300UL},
46 { 0x0F, 97650UL},
47 { 0x10, 48854UL},
48 { 0x11, 24427UL},
49 { 0x12, 12213UL},
50 { 0x13, 6101UL},
51 { 0x14, 3051UL},
52 { 0x15, 1523UL},
53 { 0x16, 761UL},
54 { 0x00, 0UL}, /* scrubbing off */
55 };
56
57 int __amd64_read_pci_cfg_dword(struct pci_dev *pdev, int offset,
58 u32 *val, const char *func)
59 {
60 int err = 0;
61
62 err = pci_read_config_dword(pdev, offset, val);
63 if (err)
64 amd64_warn("%s: error reading F%dx%03x.\n",
65 func, PCI_FUNC(pdev->devfn), offset);
66
67 return err;
68 }
69
70 int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset,
71 u32 val, const char *func)
72 {
73 int err = 0;
74
75 err = pci_write_config_dword(pdev, offset, val);
76 if (err)
77 amd64_warn("%s: error writing to F%dx%03x.\n",
78 func, PCI_FUNC(pdev->devfn), offset);
79
80 return err;
81 }
82
83 /*
84 * Select DCT to which PCI cfg accesses are routed
85 */
86 static void f15h_select_dct(struct amd64_pvt *pvt, u8 dct)
87 {
88 u32 reg = 0;
89
90 amd64_read_pci_cfg(pvt->F1, DCT_CFG_SEL, &reg);
91 reg &= (pvt->model == 0x30) ? ~3 : ~1;
92 reg |= dct;
93 amd64_write_pci_cfg(pvt->F1, DCT_CFG_SEL, reg);
94 }
95
96 /*
97 *
98 * Depending on the family, F2 DCT reads need special handling:
99 *
100 * K8: has a single DCT only and no address offsets >= 0x100
101 *
102 * F10h: each DCT has its own set of regs
103 * DCT0 -> F2x040..
104 * DCT1 -> F2x140..
105 *
106 * F16h: has only 1 DCT
107 *
108 * F15h: we select which DCT we access using F1x10C[DctCfgSel]
109 */
110 static inline int amd64_read_dct_pci_cfg(struct amd64_pvt *pvt, u8 dct,
111 int offset, u32 *val)
112 {
113 switch (pvt->fam) {
114 case 0xf:
115 if (dct || offset >= 0x100)
116 return -EINVAL;
117 break;
118
119 case 0x10:
120 if (dct) {
121 /*
122 * Note: If ganging is enabled, barring the regs
123 * F2x[1,0]98 and F2x[1,0]9C; reads reads to F2x1xx
124 * return 0. (cf. Section 2.8.1 F10h BKDG)
125 */
126 if (dct_ganging_enabled(pvt))
127 return 0;
128
129 offset += 0x100;
130 }
131 break;
132
133 case 0x15:
134 /*
135 * F15h: F2x1xx addresses do not map explicitly to DCT1.
136 * We should select which DCT we access using F1x10C[DctCfgSel]
137 */
138 dct = (dct && pvt->model == 0x30) ? 3 : dct;
139 f15h_select_dct(pvt, dct);
140 break;
141
142 case 0x16:
143 if (dct)
144 return -EINVAL;
145 break;
146
147 default:
148 break;
149 }
150 return amd64_read_pci_cfg(pvt->F2, offset, val);
151 }
152
153 /*
154 * Memory scrubber control interface. For K8, memory scrubbing is handled by
155 * hardware and can involve L2 cache, dcache as well as the main memory. With
156 * F10, this is extended to L3 cache scrubbing on CPU models sporting that
157 * functionality.
158 *
159 * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
160 * (dram) over to cache lines. This is nasty, so we will use bandwidth in
161 * bytes/sec for the setting.
162 *
163 * Currently, we only do dram scrubbing. If the scrubbing is done in software on
164 * other archs, we might not have access to the caches directly.
165 */
166
167 static inline void __f17h_set_scrubval(struct amd64_pvt *pvt, u32 scrubval)
168 {
169 /*
170 * Fam17h supports scrub values between 0x5 and 0x14. Also, the values
171 * are shifted down by 0x5, so scrubval 0x5 is written to the register
172 * as 0x0, scrubval 0x6 as 0x1, etc.
173 */
174 if (scrubval >= 0x5 && scrubval <= 0x14) {
175 scrubval -= 0x5;
176 pci_write_bits32(pvt->F6, F17H_SCR_LIMIT_ADDR, scrubval, 0xF);
177 pci_write_bits32(pvt->F6, F17H_SCR_BASE_ADDR, 1, 0x1);
178 } else {
179 pci_write_bits32(pvt->F6, F17H_SCR_BASE_ADDR, 0, 0x1);
180 }
181 }
182 /*
183 * Scan the scrub rate mapping table for a close or matching bandwidth value to
184 * issue. If requested is too big, then use last maximum value found.
185 */
186 static int __set_scrub_rate(struct amd64_pvt *pvt, u32 new_bw, u32 min_rate)
187 {
188 u32 scrubval;
189 int i;
190
191 /*
192 * map the configured rate (new_bw) to a value specific to the AMD64
193 * memory controller and apply to register. Search for the first
194 * bandwidth entry that is greater or equal than the setting requested
195 * and program that. If at last entry, turn off DRAM scrubbing.
196 *
197 * If no suitable bandwidth is found, turn off DRAM scrubbing entirely
198 * by falling back to the last element in scrubrates[].
199 */
200 for (i = 0; i < ARRAY_SIZE(scrubrates) - 1; i++) {
201 /*
202 * skip scrub rates which aren't recommended
203 * (see F10 BKDG, F3x58)
204 */
205 if (scrubrates[i].scrubval < min_rate)
206 continue;
207
208 if (scrubrates[i].bandwidth <= new_bw)
209 break;
210 }
211
212 scrubval = scrubrates[i].scrubval;
213
214 if (pvt->fam == 0x17) {
215 __f17h_set_scrubval(pvt, scrubval);
216 } else if (pvt->fam == 0x15 && pvt->model == 0x60) {
217 f15h_select_dct(pvt, 0);
218 pci_write_bits32(pvt->F2, F15H_M60H_SCRCTRL, scrubval, 0x001F);
219 f15h_select_dct(pvt, 1);
220 pci_write_bits32(pvt->F2, F15H_M60H_SCRCTRL, scrubval, 0x001F);
221 } else {
222 pci_write_bits32(pvt->F3, SCRCTRL, scrubval, 0x001F);
223 }
224
225 if (scrubval)
226 return scrubrates[i].bandwidth;
227
228 return 0;
229 }
230
231 static int set_scrub_rate(struct mem_ctl_info *mci, u32 bw)
232 {
233 struct amd64_pvt *pvt = mci->pvt_info;
234 u32 min_scrubrate = 0x5;
235
236 if (pvt->fam == 0xf)
237 min_scrubrate = 0x0;
238
239 if (pvt->fam == 0x15) {
240 /* Erratum #505 */
241 if (pvt->model < 0x10)
242 f15h_select_dct(pvt, 0);
243
244 if (pvt->model == 0x60)
245 min_scrubrate = 0x6;
246 }
247 return __set_scrub_rate(pvt, bw, min_scrubrate);
248 }
249
250 static int get_scrub_rate(struct mem_ctl_info *mci)
251 {
252 struct amd64_pvt *pvt = mci->pvt_info;
253 int i, retval = -EINVAL;
254 u32 scrubval = 0;
255
256 switch (pvt->fam) {
257 case 0x15:
258 /* Erratum #505 */
259 if (pvt->model < 0x10)
260 f15h_select_dct(pvt, 0);
261
262 if (pvt->model == 0x60)
263 amd64_read_pci_cfg(pvt->F2, F15H_M60H_SCRCTRL, &scrubval);
264 break;
265
266 case 0x17:
267 amd64_read_pci_cfg(pvt->F6, F17H_SCR_BASE_ADDR, &scrubval);
268 if (scrubval & BIT(0)) {
269 amd64_read_pci_cfg(pvt->F6, F17H_SCR_LIMIT_ADDR, &scrubval);
270 scrubval &= 0xF;
271 scrubval += 0x5;
272 } else {
273 scrubval = 0;
274 }
275 break;
276
277 default:
278 amd64_read_pci_cfg(pvt->F3, SCRCTRL, &scrubval);
279 break;
280 }
281
282 scrubval = scrubval & 0x001F;
283
284 for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
285 if (scrubrates[i].scrubval == scrubval) {
286 retval = scrubrates[i].bandwidth;
287 break;
288 }
289 }
290 return retval;
291 }
292
293 /*
294 * returns true if the SysAddr given by sys_addr matches the
295 * DRAM base/limit associated with node_id
296 */
297 static bool base_limit_match(struct amd64_pvt *pvt, u64 sys_addr, u8 nid)
298 {
299 u64 addr;
300
301 /* The K8 treats this as a 40-bit value. However, bits 63-40 will be
302 * all ones if the most significant implemented address bit is 1.
303 * Here we discard bits 63-40. See section 3.4.2 of AMD publication
304 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
305 * Application Programming.
306 */
307 addr = sys_addr & 0x000000ffffffffffull;
308
309 return ((addr >= get_dram_base(pvt, nid)) &&
310 (addr <= get_dram_limit(pvt, nid)));
311 }
312
313 /*
314 * Attempt to map a SysAddr to a node. On success, return a pointer to the
315 * mem_ctl_info structure for the node that the SysAddr maps to.
316 *
317 * On failure, return NULL.
318 */
319 static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
320 u64 sys_addr)
321 {
322 struct amd64_pvt *pvt;
323 u8 node_id;
324 u32 intlv_en, bits;
325
326 /*
327 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
328 * 3.4.4.2) registers to map the SysAddr to a node ID.
329 */
330 pvt = mci->pvt_info;
331
332 /*
333 * The value of this field should be the same for all DRAM Base
334 * registers. Therefore we arbitrarily choose to read it from the
335 * register for node 0.
336 */
337 intlv_en = dram_intlv_en(pvt, 0);
338
339 if (intlv_en == 0) {
340 for (node_id = 0; node_id < DRAM_RANGES; node_id++) {
341 if (base_limit_match(pvt, sys_addr, node_id))
342 goto found;
343 }
344 goto err_no_match;
345 }
346
347 if (unlikely((intlv_en != 0x01) &&
348 (intlv_en != 0x03) &&
349 (intlv_en != 0x07))) {
350 amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en);
351 return NULL;
352 }
353
354 bits = (((u32) sys_addr) >> 12) & intlv_en;
355
356 for (node_id = 0; ; ) {
357 if ((dram_intlv_sel(pvt, node_id) & intlv_en) == bits)
358 break; /* intlv_sel field matches */
359
360 if (++node_id >= DRAM_RANGES)
361 goto err_no_match;
362 }
363
364 /* sanity test for sys_addr */
365 if (unlikely(!base_limit_match(pvt, sys_addr, node_id))) {
366 amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address"
367 "range for node %d with node interleaving enabled.\n",
368 __func__, sys_addr, node_id);
369 return NULL;
370 }
371
372 found:
373 return edac_mc_find((int)node_id);
374
375 err_no_match:
376 edac_dbg(2, "sys_addr 0x%lx doesn't match any node\n",
377 (unsigned long)sys_addr);
378
379 return NULL;
380 }
381
382 /*
383 * compute the CS base address of the @csrow on the DRAM controller @dct.
384 * For details see F2x[5C:40] in the processor's BKDG
385 */
386 static void get_cs_base_and_mask(struct amd64_pvt *pvt, int csrow, u8 dct,
387 u64 *base, u64 *mask)
388 {
389 u64 csbase, csmask, base_bits, mask_bits;
390 u8 addr_shift;
391
392 if (pvt->fam == 0xf && pvt->ext_model < K8_REV_F) {
393 csbase = pvt->csels[dct].csbases[csrow];
394 csmask = pvt->csels[dct].csmasks[csrow];
395 base_bits = GENMASK_ULL(31, 21) | GENMASK_ULL(15, 9);
396 mask_bits = GENMASK_ULL(29, 21) | GENMASK_ULL(15, 9);
397 addr_shift = 4;
398
399 /*
400 * F16h and F15h, models 30h and later need two addr_shift values:
401 * 8 for high and 6 for low (cf. F16h BKDG).
402 */
403 } else if (pvt->fam == 0x16 ||
404 (pvt->fam == 0x15 && pvt->model >= 0x30)) {
405 csbase = pvt->csels[dct].csbases[csrow];
406 csmask = pvt->csels[dct].csmasks[csrow >> 1];
407
408 *base = (csbase & GENMASK_ULL(15, 5)) << 6;
409 *base |= (csbase & GENMASK_ULL(30, 19)) << 8;
410
411 *mask = ~0ULL;
412 /* poke holes for the csmask */
413 *mask &= ~((GENMASK_ULL(15, 5) << 6) |
414 (GENMASK_ULL(30, 19) << 8));
415
416 *mask |= (csmask & GENMASK_ULL(15, 5)) << 6;
417 *mask |= (csmask & GENMASK_ULL(30, 19)) << 8;
418
419 return;
420 } else {
421 csbase = pvt->csels[dct].csbases[csrow];
422 csmask = pvt->csels[dct].csmasks[csrow >> 1];
423 addr_shift = 8;
424
425 if (pvt->fam == 0x15)
426 base_bits = mask_bits =
427 GENMASK_ULL(30,19) | GENMASK_ULL(13,5);
428 else
429 base_bits = mask_bits =
430 GENMASK_ULL(28,19) | GENMASK_ULL(13,5);
431 }
432
433 *base = (csbase & base_bits) << addr_shift;
434
435 *mask = ~0ULL;
436 /* poke holes for the csmask */
437 *mask &= ~(mask_bits << addr_shift);
438 /* OR them in */
439 *mask |= (csmask & mask_bits) << addr_shift;
440 }
441
442 #define for_each_chip_select(i, dct, pvt) \
443 for (i = 0; i < pvt->csels[dct].b_cnt; i++)
444
445 #define chip_select_base(i, dct, pvt) \
446 pvt->csels[dct].csbases[i]
447
448 #define for_each_chip_select_mask(i, dct, pvt) \
449 for (i = 0; i < pvt->csels[dct].m_cnt; i++)
450
451 /*
452 * @input_addr is an InputAddr associated with the node given by mci. Return the
453 * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
454 */
455 static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
456 {
457 struct amd64_pvt *pvt;
458 int csrow;
459 u64 base, mask;
460
461 pvt = mci->pvt_info;
462
463 for_each_chip_select(csrow, 0, pvt) {
464 if (!csrow_enabled(csrow, 0, pvt))
465 continue;
466
467 get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);
468
469 mask = ~mask;
470
471 if ((input_addr & mask) == (base & mask)) {
472 edac_dbg(2, "InputAddr 0x%lx matches csrow %d (node %d)\n",
473 (unsigned long)input_addr, csrow,
474 pvt->mc_node_id);
475
476 return csrow;
477 }
478 }
479 edac_dbg(2, "no matching csrow for InputAddr 0x%lx (MC node %d)\n",
480 (unsigned long)input_addr, pvt->mc_node_id);
481
482 return -1;
483 }
484
485 /*
486 * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
487 * for the node represented by mci. Info is passed back in *hole_base,
488 * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if
489 * info is invalid. Info may be invalid for either of the following reasons:
490 *
491 * - The revision of the node is not E or greater. In this case, the DRAM Hole
492 * Address Register does not exist.
493 *
494 * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
495 * indicating that its contents are not valid.
496 *
497 * The values passed back in *hole_base, *hole_offset, and *hole_size are
498 * complete 32-bit values despite the fact that the bitfields in the DHAR
499 * only represent bits 31-24 of the base and offset values.
500 */
501 int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
502 u64 *hole_offset, u64 *hole_size)
503 {
504 struct amd64_pvt *pvt = mci->pvt_info;
505
506 /* only revE and later have the DRAM Hole Address Register */
507 if (pvt->fam == 0xf && pvt->ext_model < K8_REV_E) {
508 edac_dbg(1, " revision %d for node %d does not support DHAR\n",
509 pvt->ext_model, pvt->mc_node_id);
510 return 1;
511 }
512
513 /* valid for Fam10h and above */
514 if (pvt->fam >= 0x10 && !dhar_mem_hoist_valid(pvt)) {
515 edac_dbg(1, " Dram Memory Hoisting is DISABLED on this system\n");
516 return 1;
517 }
518
519 if (!dhar_valid(pvt)) {
520 edac_dbg(1, " Dram Memory Hoisting is DISABLED on this node %d\n",
521 pvt->mc_node_id);
522 return 1;
523 }
524
525 /* This node has Memory Hoisting */
526
527 /* +------------------+--------------------+--------------------+-----
528 * | memory | DRAM hole | relocated |
529 * | [0, (x - 1)] | [x, 0xffffffff] | addresses from |
530 * | | | DRAM hole |
531 * | | | [0x100000000, |
532 * | | | (0x100000000+ |
533 * | | | (0xffffffff-x))] |
534 * +------------------+--------------------+--------------------+-----
535 *
536 * Above is a diagram of physical memory showing the DRAM hole and the
537 * relocated addresses from the DRAM hole. As shown, the DRAM hole
538 * starts at address x (the base address) and extends through address
539 * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the
540 * addresses in the hole so that they start at 0x100000000.
541 */
542
543 *hole_base = dhar_base(pvt);
544 *hole_size = (1ULL << 32) - *hole_base;
545
546 *hole_offset = (pvt->fam > 0xf) ? f10_dhar_offset(pvt)
547 : k8_dhar_offset(pvt);
548
549 edac_dbg(1, " DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
550 pvt->mc_node_id, (unsigned long)*hole_base,
551 (unsigned long)*hole_offset, (unsigned long)*hole_size);
552
553 return 0;
554 }
555 EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
556
557 /*
558 * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is
559 * assumed that sys_addr maps to the node given by mci.
560 *
561 * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
562 * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
563 * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
564 * then it is also involved in translating a SysAddr to a DramAddr. Sections
565 * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
566 * These parts of the documentation are unclear. I interpret them as follows:
567 *
568 * When node n receives a SysAddr, it processes the SysAddr as follows:
569 *
570 * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
571 * Limit registers for node n. If the SysAddr is not within the range
572 * specified by the base and limit values, then node n ignores the Sysaddr
573 * (since it does not map to node n). Otherwise continue to step 2 below.
574 *
575 * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
576 * disabled so skip to step 3 below. Otherwise see if the SysAddr is within
577 * the range of relocated addresses (starting at 0x100000000) from the DRAM
578 * hole. If not, skip to step 3 below. Else get the value of the
579 * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
580 * offset defined by this value from the SysAddr.
581 *
582 * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
583 * Base register for node n. To obtain the DramAddr, subtract the base
584 * address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
585 */
586 static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
587 {
588 struct amd64_pvt *pvt = mci->pvt_info;
589 u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
590 int ret;
591
592 dram_base = get_dram_base(pvt, pvt->mc_node_id);
593
594 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
595 &hole_size);
596 if (!ret) {
597 if ((sys_addr >= (1ULL << 32)) &&
598 (sys_addr < ((1ULL << 32) + hole_size))) {
599 /* use DHAR to translate SysAddr to DramAddr */
600 dram_addr = sys_addr - hole_offset;
601
602 edac_dbg(2, "using DHAR to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
603 (unsigned long)sys_addr,
604 (unsigned long)dram_addr);
605
606 return dram_addr;
607 }
608 }
609
610 /*
611 * Translate the SysAddr to a DramAddr as shown near the start of
612 * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8
613 * only deals with 40-bit values. Therefore we discard bits 63-40 of
614 * sys_addr below. If bit 39 of sys_addr is 1 then the bits we
615 * discard are all 1s. Otherwise the bits we discard are all 0s. See
616 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
617 * Programmer's Manual Volume 1 Application Programming.
618 */
619 dram_addr = (sys_addr & GENMASK_ULL(39, 0)) - dram_base;
620
621 edac_dbg(2, "using DRAM Base register to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
622 (unsigned long)sys_addr, (unsigned long)dram_addr);
623 return dram_addr;
624 }
625
626 /*
627 * @intlv_en is the value of the IntlvEn field from a DRAM Base register
628 * (section 3.4.4.1). Return the number of bits from a SysAddr that are used
629 * for node interleaving.
630 */
631 static int num_node_interleave_bits(unsigned intlv_en)
632 {
633 static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
634 int n;
635
636 BUG_ON(intlv_en > 7);
637 n = intlv_shift_table[intlv_en];
638 return n;
639 }
640
641 /* Translate the DramAddr given by @dram_addr to an InputAddr. */
642 static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
643 {
644 struct amd64_pvt *pvt;
645 int intlv_shift;
646 u64 input_addr;
647
648 pvt = mci->pvt_info;
649
650 /*
651 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
652 * concerning translating a DramAddr to an InputAddr.
653 */
654 intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
655 input_addr = ((dram_addr >> intlv_shift) & GENMASK_ULL(35, 12)) +
656 (dram_addr & 0xfff);
657
658 edac_dbg(2, " Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
659 intlv_shift, (unsigned long)dram_addr,
660 (unsigned long)input_addr);
661
662 return input_addr;
663 }
664
665 /*
666 * Translate the SysAddr represented by @sys_addr to an InputAddr. It is
667 * assumed that @sys_addr maps to the node given by mci.
668 */
669 static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
670 {
671 u64 input_addr;
672
673 input_addr =
674 dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
675
676 edac_dbg(2, "SysAddr 0x%lx translates to InputAddr 0x%lx\n",
677 (unsigned long)sys_addr, (unsigned long)input_addr);
678
679 return input_addr;
680 }
681
682 /* Map the Error address to a PAGE and PAGE OFFSET. */
683 static inline void error_address_to_page_and_offset(u64 error_address,
684 struct err_info *err)
685 {
686 err->page = (u32) (error_address >> PAGE_SHIFT);
687 err->offset = ((u32) error_address) & ~PAGE_MASK;
688 }
689
690 /*
691 * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
692 * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
693 * of a node that detected an ECC memory error. mci represents the node that
694 * the error address maps to (possibly different from the node that detected
695 * the error). Return the number of the csrow that sys_addr maps to, or -1 on
696 * error.
697 */
698 static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
699 {
700 int csrow;
701
702 csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
703
704 if (csrow == -1)
705 amd64_mc_err(mci, "Failed to translate InputAddr to csrow for "
706 "address 0x%lx\n", (unsigned long)sys_addr);
707 return csrow;
708 }
709
710 static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
711
712 /*
713 * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
714 * are ECC capable.
715 */
716 static unsigned long determine_edac_cap(struct amd64_pvt *pvt)
717 {
718 unsigned long edac_cap = EDAC_FLAG_NONE;
719 u8 bit;
720
721 if (pvt->umc) {
722 u8 i, umc_en_mask = 0, dimm_ecc_en_mask = 0;
723
724 for (i = 0; i < NUM_UMCS; i++) {
725 if (!(pvt->umc[i].sdp_ctrl & UMC_SDP_INIT))
726 continue;
727
728 umc_en_mask |= BIT(i);
729
730 /* UMC Configuration bit 12 (DimmEccEn) */
731 if (pvt->umc[i].umc_cfg & BIT(12))
732 dimm_ecc_en_mask |= BIT(i);
733 }
734
735 if (umc_en_mask == dimm_ecc_en_mask)
736 edac_cap = EDAC_FLAG_SECDED;
737 } else {
738 bit = (pvt->fam > 0xf || pvt->ext_model >= K8_REV_F)
739 ? 19
740 : 17;
741
742 if (pvt->dclr0 & BIT(bit))
743 edac_cap = EDAC_FLAG_SECDED;
744 }
745
746 return edac_cap;
747 }
748
749 static void debug_display_dimm_sizes(struct amd64_pvt *, u8);
750
751 static void debug_dump_dramcfg_low(struct amd64_pvt *pvt, u32 dclr, int chan)
752 {
753 edac_dbg(1, "F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);
754
755 if (pvt->dram_type == MEM_LRDDR3) {
756 u32 dcsm = pvt->csels[chan].csmasks[0];
757 /*
758 * It's assumed all LRDIMMs in a DCT are going to be of
759 * same 'type' until proven otherwise. So, use a cs
760 * value of '0' here to get dcsm value.
761 */
762 edac_dbg(1, " LRDIMM %dx rank multiply\n", (dcsm & 0x3));
763 }
764
765 edac_dbg(1, "All DIMMs support ECC:%s\n",
766 (dclr & BIT(19)) ? "yes" : "no");
767
768
769 edac_dbg(1, " PAR/ERR parity: %s\n",
770 (dclr & BIT(8)) ? "enabled" : "disabled");
771
772 if (pvt->fam == 0x10)
773 edac_dbg(1, " DCT 128bit mode width: %s\n",
774 (dclr & BIT(11)) ? "128b" : "64b");
775
776 edac_dbg(1, " x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
777 (dclr & BIT(12)) ? "yes" : "no",
778 (dclr & BIT(13)) ? "yes" : "no",
779 (dclr & BIT(14)) ? "yes" : "no",
780 (dclr & BIT(15)) ? "yes" : "no");
781 }
782
783 static void debug_display_dimm_sizes_df(struct amd64_pvt *pvt, u8 ctrl)
784 {
785 u32 *dcsb = ctrl ? pvt->csels[1].csbases : pvt->csels[0].csbases;
786 int dimm, size0, size1;
787
788 edac_printk(KERN_DEBUG, EDAC_MC, "UMC%d chip selects:\n", ctrl);
789
790 for (dimm = 0; dimm < 4; dimm++) {
791 size0 = 0;
792
793 if (dcsb[dimm*2] & DCSB_CS_ENABLE)
794 size0 = pvt->ops->dbam_to_cs(pvt, ctrl, 0, dimm);
795
796 size1 = 0;
797 if (dcsb[dimm*2 + 1] & DCSB_CS_ENABLE)
798 size1 = pvt->ops->dbam_to_cs(pvt, ctrl, 0, dimm);
799
800 amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
801 dimm * 2, size0,
802 dimm * 2 + 1, size1);
803 }
804 }
805
806 static void __dump_misc_regs_df(struct amd64_pvt *pvt)
807 {
808 struct amd64_umc *umc;
809 u32 i, tmp, umc_base;
810
811 for (i = 0; i < NUM_UMCS; i++) {
812 umc_base = get_umc_base(i);
813 umc = &pvt->umc[i];
814
815 edac_dbg(1, "UMC%d DIMM cfg: 0x%x\n", i, umc->dimm_cfg);
816 edac_dbg(1, "UMC%d UMC cfg: 0x%x\n", i, umc->umc_cfg);
817 edac_dbg(1, "UMC%d SDP ctrl: 0x%x\n", i, umc->sdp_ctrl);
818 edac_dbg(1, "UMC%d ECC ctrl: 0x%x\n", i, umc->ecc_ctrl);
819
820 amd_smn_read(pvt->mc_node_id, umc_base + UMCCH_ECC_BAD_SYMBOL, &tmp);
821 edac_dbg(1, "UMC%d ECC bad symbol: 0x%x\n", i, tmp);
822
823 amd_smn_read(pvt->mc_node_id, umc_base + UMCCH_UMC_CAP, &tmp);
824 edac_dbg(1, "UMC%d UMC cap: 0x%x\n", i, tmp);
825 edac_dbg(1, "UMC%d UMC cap high: 0x%x\n", i, umc->umc_cap_hi);
826
827 edac_dbg(1, "UMC%d ECC capable: %s, ChipKill ECC capable: %s\n",
828 i, (umc->umc_cap_hi & BIT(30)) ? "yes" : "no",
829 (umc->umc_cap_hi & BIT(31)) ? "yes" : "no");
830 edac_dbg(1, "UMC%d All DIMMs support ECC: %s\n",
831 i, (umc->umc_cfg & BIT(12)) ? "yes" : "no");
832 edac_dbg(1, "UMC%d x4 DIMMs present: %s\n",
833 i, (umc->dimm_cfg & BIT(6)) ? "yes" : "no");
834 edac_dbg(1, "UMC%d x16 DIMMs present: %s\n",
835 i, (umc->dimm_cfg & BIT(7)) ? "yes" : "no");
836
837 if (pvt->dram_type == MEM_LRDDR4) {
838 amd_smn_read(pvt->mc_node_id, umc_base + UMCCH_ADDR_CFG, &tmp);
839 edac_dbg(1, "UMC%d LRDIMM %dx rank multiply\n",
840 i, 1 << ((tmp >> 4) & 0x3));
841 }
842
843 debug_display_dimm_sizes_df(pvt, i);
844 }
845
846 edac_dbg(1, "F0x104 (DRAM Hole Address): 0x%08x, base: 0x%08x\n",
847 pvt->dhar, dhar_base(pvt));
848 }
849
850 /* Display and decode various NB registers for debug purposes. */
851 static void __dump_misc_regs(struct amd64_pvt *pvt)
852 {
853 edac_dbg(1, "F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);
854
855 edac_dbg(1, " NB two channel DRAM capable: %s\n",
856 (pvt->nbcap & NBCAP_DCT_DUAL) ? "yes" : "no");
857
858 edac_dbg(1, " ECC capable: %s, ChipKill ECC capable: %s\n",
859 (pvt->nbcap & NBCAP_SECDED) ? "yes" : "no",
860 (pvt->nbcap & NBCAP_CHIPKILL) ? "yes" : "no");
861
862 debug_dump_dramcfg_low(pvt, pvt->dclr0, 0);
863
864 edac_dbg(1, "F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
865
866 edac_dbg(1, "F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, offset: 0x%08x\n",
867 pvt->dhar, dhar_base(pvt),
868 (pvt->fam == 0xf) ? k8_dhar_offset(pvt)
869 : f10_dhar_offset(pvt));
870
871 debug_display_dimm_sizes(pvt, 0);
872
873 /* everything below this point is Fam10h and above */
874 if (pvt->fam == 0xf)
875 return;
876
877 debug_display_dimm_sizes(pvt, 1);
878
879 /* Only if NOT ganged does dclr1 have valid info */
880 if (!dct_ganging_enabled(pvt))
881 debug_dump_dramcfg_low(pvt, pvt->dclr1, 1);
882 }
883
884 /* Display and decode various NB registers for debug purposes. */
885 static void dump_misc_regs(struct amd64_pvt *pvt)
886 {
887 if (pvt->umc)
888 __dump_misc_regs_df(pvt);
889 else
890 __dump_misc_regs(pvt);
891
892 edac_dbg(1, " DramHoleValid: %s\n", dhar_valid(pvt) ? "yes" : "no");
893
894 amd64_info("using %s syndromes.\n",
895 ((pvt->ecc_sym_sz == 8) ? "x8" : "x4"));
896 }
897
898 /*
899 * See BKDG, F2x[1,0][5C:40], F2[1,0][6C:60]
900 */
901 static void prep_chip_selects(struct amd64_pvt *pvt)
902 {
903 if (pvt->fam == 0xf && pvt->ext_model < K8_REV_F) {
904 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
905 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 8;
906 } else if (pvt->fam == 0x15 && pvt->model == 0x30) {
907 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 4;
908 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 2;
909 } else {
910 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
911 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 4;
912 }
913 }
914
915 /*
916 * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask registers
917 */
918 static void read_dct_base_mask(struct amd64_pvt *pvt)
919 {
920 int base_reg0, base_reg1, mask_reg0, mask_reg1, cs;
921
922 prep_chip_selects(pvt);
923
924 if (pvt->umc) {
925 base_reg0 = get_umc_base(0) + UMCCH_BASE_ADDR;
926 base_reg1 = get_umc_base(1) + UMCCH_BASE_ADDR;
927 mask_reg0 = get_umc_base(0) + UMCCH_ADDR_MASK;
928 mask_reg1 = get_umc_base(1) + UMCCH_ADDR_MASK;
929 } else {
930 base_reg0 = DCSB0;
931 base_reg1 = DCSB1;
932 mask_reg0 = DCSM0;
933 mask_reg1 = DCSM1;
934 }
935
936 for_each_chip_select(cs, 0, pvt) {
937 int reg0 = base_reg0 + (cs * 4);
938 int reg1 = base_reg1 + (cs * 4);
939 u32 *base0 = &pvt->csels[0].csbases[cs];
940 u32 *base1 = &pvt->csels[1].csbases[cs];
941
942 if (pvt->umc) {
943 if (!amd_smn_read(pvt->mc_node_id, reg0, base0))
944 edac_dbg(0, " DCSB0[%d]=0x%08x reg: 0x%x\n",
945 cs, *base0, reg0);
946
947 if (!amd_smn_read(pvt->mc_node_id, reg1, base1))
948 edac_dbg(0, " DCSB1[%d]=0x%08x reg: 0x%x\n",
949 cs, *base1, reg1);
950 } else {
951 if (!amd64_read_dct_pci_cfg(pvt, 0, reg0, base0))
952 edac_dbg(0, " DCSB0[%d]=0x%08x reg: F2x%x\n",
953 cs, *base0, reg0);
954
955 if (pvt->fam == 0xf)
956 continue;
957
958 if (!amd64_read_dct_pci_cfg(pvt, 1, reg0, base1))
959 edac_dbg(0, " DCSB1[%d]=0x%08x reg: F2x%x\n",
960 cs, *base1, (pvt->fam == 0x10) ? reg1
961 : reg0);
962 }
963 }
964
965 for_each_chip_select_mask(cs, 0, pvt) {
966 int reg0 = mask_reg0 + (cs * 4);
967 int reg1 = mask_reg1 + (cs * 4);
968 u32 *mask0 = &pvt->csels[0].csmasks[cs];
969 u32 *mask1 = &pvt->csels[1].csmasks[cs];
970
971 if (pvt->umc) {
972 if (!amd_smn_read(pvt->mc_node_id, reg0, mask0))
973 edac_dbg(0, " DCSM0[%d]=0x%08x reg: 0x%x\n",
974 cs, *mask0, reg0);
975
976 if (!amd_smn_read(pvt->mc_node_id, reg1, mask1))
977 edac_dbg(0, " DCSM1[%d]=0x%08x reg: 0x%x\n",
978 cs, *mask1, reg1);
979 } else {
980 if (!amd64_read_dct_pci_cfg(pvt, 0, reg0, mask0))
981 edac_dbg(0, " DCSM0[%d]=0x%08x reg: F2x%x\n",
982 cs, *mask0, reg0);
983
984 if (pvt->fam == 0xf)
985 continue;
986
987 if (!amd64_read_dct_pci_cfg(pvt, 1, reg0, mask1))
988 edac_dbg(0, " DCSM1[%d]=0x%08x reg: F2x%x\n",
989 cs, *mask1, (pvt->fam == 0x10) ? reg1
990 : reg0);
991 }
992 }
993 }
994
995 static void determine_memory_type(struct amd64_pvt *pvt)
996 {
997 u32 dram_ctrl, dcsm;
998
999 switch (pvt->fam) {
1000 case 0xf:
1001 if (pvt->ext_model >= K8_REV_F)
1002 goto ddr3;
1003
1004 pvt->dram_type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
1005 return;
1006
1007 case 0x10:
1008 if (pvt->dchr0 & DDR3_MODE)
1009 goto ddr3;
1010
1011 pvt->dram_type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
1012 return;
1013
1014 case 0x15:
1015 if (pvt->model < 0x60)
1016 goto ddr3;
1017
1018 /*
1019 * Model 0x60h needs special handling:
1020 *
1021 * We use a Chip Select value of '0' to obtain dcsm.
1022 * Theoretically, it is possible to populate LRDIMMs of different
1023 * 'Rank' value on a DCT. But this is not the common case. So,
1024 * it's reasonable to assume all DIMMs are going to be of same
1025 * 'type' until proven otherwise.
1026 */
1027 amd64_read_dct_pci_cfg(pvt, 0, DRAM_CONTROL, &dram_ctrl);
1028 dcsm = pvt->csels[0].csmasks[0];
1029
1030 if (((dram_ctrl >> 8) & 0x7) == 0x2)
1031 pvt->dram_type = MEM_DDR4;
1032 else if (pvt->dclr0 & BIT(16))
1033 pvt->dram_type = MEM_DDR3;
1034 else if (dcsm & 0x3)
1035 pvt->dram_type = MEM_LRDDR3;
1036 else
1037 pvt->dram_type = MEM_RDDR3;
1038
1039 return;
1040
1041 case 0x16:
1042 goto ddr3;
1043
1044 case 0x17:
1045 if ((pvt->umc[0].dimm_cfg | pvt->umc[1].dimm_cfg) & BIT(5))
1046 pvt->dram_type = MEM_LRDDR4;
1047 else if ((pvt->umc[0].dimm_cfg | pvt->umc[1].dimm_cfg) & BIT(4))
1048 pvt->dram_type = MEM_RDDR4;
1049 else
1050 pvt->dram_type = MEM_DDR4;
1051 return;
1052
1053 default:
1054 WARN(1, KERN_ERR "%s: Family??? 0x%x\n", __func__, pvt->fam);
1055 pvt->dram_type = MEM_EMPTY;
1056 }
1057 return;
1058
1059 ddr3:
1060 pvt->dram_type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
1061 }
1062
1063 /* Get the number of DCT channels the memory controller is using. */
1064 static int k8_early_channel_count(struct amd64_pvt *pvt)
1065 {
1066 int flag;
1067
1068 if (pvt->ext_model >= K8_REV_F)
1069 /* RevF (NPT) and later */
1070 flag = pvt->dclr0 & WIDTH_128;
1071 else
1072 /* RevE and earlier */
1073 flag = pvt->dclr0 & REVE_WIDTH_128;
1074
1075 /* not used */
1076 pvt->dclr1 = 0;
1077
1078 return (flag) ? 2 : 1;
1079 }
1080
1081 /* On F10h and later ErrAddr is MC4_ADDR[47:1] */
1082 static u64 get_error_address(struct amd64_pvt *pvt, struct mce *m)
1083 {
1084 u16 mce_nid = amd_get_nb_id(m->extcpu);
1085 struct mem_ctl_info *mci;
1086 u8 start_bit = 1;
1087 u8 end_bit = 47;
1088 u64 addr;
1089
1090 mci = edac_mc_find(mce_nid);
1091 if (!mci)
1092 return 0;
1093
1094 pvt = mci->pvt_info;
1095
1096 if (pvt->fam == 0xf) {
1097 start_bit = 3;
1098 end_bit = 39;
1099 }
1100
1101 addr = m->addr & GENMASK_ULL(end_bit, start_bit);
1102
1103 /*
1104 * Erratum 637 workaround
1105 */
1106 if (pvt->fam == 0x15) {
1107 u64 cc6_base, tmp_addr;
1108 u32 tmp;
1109 u8 intlv_en;
1110
1111 if ((addr & GENMASK_ULL(47, 24)) >> 24 != 0x00fdf7)
1112 return addr;
1113
1114
1115 amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_LIM, &tmp);
1116 intlv_en = tmp >> 21 & 0x7;
1117
1118 /* add [47:27] + 3 trailing bits */
1119 cc6_base = (tmp & GENMASK_ULL(20, 0)) << 3;
1120
1121 /* reverse and add DramIntlvEn */
1122 cc6_base |= intlv_en ^ 0x7;
1123
1124 /* pin at [47:24] */
1125 cc6_base <<= 24;
1126
1127 if (!intlv_en)
1128 return cc6_base | (addr & GENMASK_ULL(23, 0));
1129
1130 amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_BASE, &tmp);
1131
1132 /* faster log2 */
1133 tmp_addr = (addr & GENMASK_ULL(23, 12)) << __fls(intlv_en + 1);
1134
1135 /* OR DramIntlvSel into bits [14:12] */
1136 tmp_addr |= (tmp & GENMASK_ULL(23, 21)) >> 9;
1137
1138 /* add remaining [11:0] bits from original MC4_ADDR */
1139 tmp_addr |= addr & GENMASK_ULL(11, 0);
1140
1141 return cc6_base | tmp_addr;
1142 }
1143
1144 return addr;
1145 }
1146
1147 static struct pci_dev *pci_get_related_function(unsigned int vendor,
1148 unsigned int device,
1149 struct pci_dev *related)
1150 {
1151 struct pci_dev *dev = NULL;
1152
1153 while ((dev = pci_get_device(vendor, device, dev))) {
1154 if (pci_domain_nr(dev->bus) == pci_domain_nr(related->bus) &&
1155 (dev->bus->number == related->bus->number) &&
1156 (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
1157 break;
1158 }
1159
1160 return dev;
1161 }
1162
1163 static void read_dram_base_limit_regs(struct amd64_pvt *pvt, unsigned range)
1164 {
1165 struct amd_northbridge *nb;
1166 struct pci_dev *f1 = NULL;
1167 unsigned int pci_func;
1168 int off = range << 3;
1169 u32 llim;
1170
1171 amd64_read_pci_cfg(pvt->F1, DRAM_BASE_LO + off, &pvt->ranges[range].base.lo);
1172 amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_LO + off, &pvt->ranges[range].lim.lo);
1173
1174 if (pvt->fam == 0xf)
1175 return;
1176
1177 if (!dram_rw(pvt, range))
1178 return;
1179
1180 amd64_read_pci_cfg(pvt->F1, DRAM_BASE_HI + off, &pvt->ranges[range].base.hi);
1181 amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_HI + off, &pvt->ranges[range].lim.hi);
1182
1183 /* F15h: factor in CC6 save area by reading dst node's limit reg */
1184 if (pvt->fam != 0x15)
1185 return;
1186
1187 nb = node_to_amd_nb(dram_dst_node(pvt, range));
1188 if (WARN_ON(!nb))
1189 return;
1190
1191 if (pvt->model == 0x60)
1192 pci_func = PCI_DEVICE_ID_AMD_15H_M60H_NB_F1;
1193 else if (pvt->model == 0x30)
1194 pci_func = PCI_DEVICE_ID_AMD_15H_M30H_NB_F1;
1195 else
1196 pci_func = PCI_DEVICE_ID_AMD_15H_NB_F1;
1197
1198 f1 = pci_get_related_function(nb->misc->vendor, pci_func, nb->misc);
1199 if (WARN_ON(!f1))
1200 return;
1201
1202 amd64_read_pci_cfg(f1, DRAM_LOCAL_NODE_LIM, &llim);
1203
1204 pvt->ranges[range].lim.lo &= GENMASK_ULL(15, 0);
1205
1206 /* {[39:27],111b} */
1207 pvt->ranges[range].lim.lo |= ((llim & 0x1fff) << 3 | 0x7) << 16;
1208
1209 pvt->ranges[range].lim.hi &= GENMASK_ULL(7, 0);
1210
1211 /* [47:40] */
1212 pvt->ranges[range].lim.hi |= llim >> 13;
1213
1214 pci_dev_put(f1);
1215 }
1216
1217 static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
1218 struct err_info *err)
1219 {
1220 struct amd64_pvt *pvt = mci->pvt_info;
1221
1222 error_address_to_page_and_offset(sys_addr, err);
1223
1224 /*
1225 * Find out which node the error address belongs to. This may be
1226 * different from the node that detected the error.
1227 */
1228 err->src_mci = find_mc_by_sys_addr(mci, sys_addr);
1229 if (!err->src_mci) {
1230 amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n",
1231 (unsigned long)sys_addr);
1232 err->err_code = ERR_NODE;
1233 return;
1234 }
1235
1236 /* Now map the sys_addr to a CSROW */
1237 err->csrow = sys_addr_to_csrow(err->src_mci, sys_addr);
1238 if (err->csrow < 0) {
1239 err->err_code = ERR_CSROW;
1240 return;
1241 }
1242
1243 /* CHIPKILL enabled */
1244 if (pvt->nbcfg & NBCFG_CHIPKILL) {
1245 err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome);
1246 if (err->channel < 0) {
1247 /*
1248 * Syndrome didn't map, so we don't know which of the
1249 * 2 DIMMs is in error. So we need to ID 'both' of them
1250 * as suspect.
1251 */
1252 amd64_mc_warn(err->src_mci, "unknown syndrome 0x%04x - "
1253 "possible error reporting race\n",
1254 err->syndrome);
1255 err->err_code = ERR_CHANNEL;
1256 return;
1257 }
1258 } else {
1259 /*
1260 * non-chipkill ecc mode
1261 *
1262 * The k8 documentation is unclear about how to determine the
1263 * channel number when using non-chipkill memory. This method
1264 * was obtained from email communication with someone at AMD.
1265 * (Wish the email was placed in this comment - norsk)
1266 */
1267 err->channel = ((sys_addr & BIT(3)) != 0);
1268 }
1269 }
1270
1271 static int ddr2_cs_size(unsigned i, bool dct_width)
1272 {
1273 unsigned shift = 0;
1274
1275 if (i <= 2)
1276 shift = i;
1277 else if (!(i & 0x1))
1278 shift = i >> 1;
1279 else
1280 shift = (i + 1) >> 1;
1281
1282 return 128 << (shift + !!dct_width);
1283 }
1284
1285 static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1286 unsigned cs_mode, int cs_mask_nr)
1287 {
1288 u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
1289
1290 if (pvt->ext_model >= K8_REV_F) {
1291 WARN_ON(cs_mode > 11);
1292 return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
1293 }
1294 else if (pvt->ext_model >= K8_REV_D) {
1295 unsigned diff;
1296 WARN_ON(cs_mode > 10);
1297
1298 /*
1299 * the below calculation, besides trying to win an obfuscated C
1300 * contest, maps cs_mode values to DIMM chip select sizes. The
1301 * mappings are:
1302 *
1303 * cs_mode CS size (mb)
1304 * ======= ============
1305 * 0 32
1306 * 1 64
1307 * 2 128
1308 * 3 128
1309 * 4 256
1310 * 5 512
1311 * 6 256
1312 * 7 512
1313 * 8 1024
1314 * 9 1024
1315 * 10 2048
1316 *
1317 * Basically, it calculates a value with which to shift the
1318 * smallest CS size of 32MB.
1319 *
1320 * ddr[23]_cs_size have a similar purpose.
1321 */
1322 diff = cs_mode/3 + (unsigned)(cs_mode > 5);
1323
1324 return 32 << (cs_mode - diff);
1325 }
1326 else {
1327 WARN_ON(cs_mode > 6);
1328 return 32 << cs_mode;
1329 }
1330 }
1331
1332 /*
1333 * Get the number of DCT channels in use.
1334 *
1335 * Return:
1336 * number of Memory Channels in operation
1337 * Pass back:
1338 * contents of the DCL0_LOW register
1339 */
1340 static int f1x_early_channel_count(struct amd64_pvt *pvt)
1341 {
1342 int i, j, channels = 0;
1343
1344 /* On F10h, if we are in 128 bit mode, then we are using 2 channels */
1345 if (pvt->fam == 0x10 && (pvt->dclr0 & WIDTH_128))
1346 return 2;
1347
1348 /*
1349 * Need to check if in unganged mode: In such, there are 2 channels,
1350 * but they are not in 128 bit mode and thus the above 'dclr0' status
1351 * bit will be OFF.
1352 *
1353 * Need to check DCT0[0] and DCT1[0] to see if only one of them has
1354 * their CSEnable bit on. If so, then SINGLE DIMM case.
1355 */
1356 edac_dbg(0, "Data width is not 128 bits - need more decoding\n");
1357
1358 /*
1359 * Check DRAM Bank Address Mapping values for each DIMM to see if there
1360 * is more than just one DIMM present in unganged mode. Need to check
1361 * both controllers since DIMMs can be placed in either one.
1362 */
1363 for (i = 0; i < 2; i++) {
1364 u32 dbam = (i ? pvt->dbam1 : pvt->dbam0);
1365
1366 for (j = 0; j < 4; j++) {
1367 if (DBAM_DIMM(j, dbam) > 0) {
1368 channels++;
1369 break;
1370 }
1371 }
1372 }
1373
1374 if (channels > 2)
1375 channels = 2;
1376
1377 amd64_info("MCT channel count: %d\n", channels);
1378
1379 return channels;
1380 }
1381
1382 static int f17_early_channel_count(struct amd64_pvt *pvt)
1383 {
1384 int i, channels = 0;
1385
1386 /* SDP Control bit 31 (SdpInit) is clear for unused UMC channels */
1387 for (i = 0; i < NUM_UMCS; i++)
1388 channels += !!(pvt->umc[i].sdp_ctrl & UMC_SDP_INIT);
1389
1390 amd64_info("MCT channel count: %d\n", channels);
1391
1392 return channels;
1393 }
1394
1395 static int ddr3_cs_size(unsigned i, bool dct_width)
1396 {
1397 unsigned shift = 0;
1398 int cs_size = 0;
1399
1400 if (i == 0 || i == 3 || i == 4)
1401 cs_size = -1;
1402 else if (i <= 2)
1403 shift = i;
1404 else if (i == 12)
1405 shift = 7;
1406 else if (!(i & 0x1))
1407 shift = i >> 1;
1408 else
1409 shift = (i + 1) >> 1;
1410
1411 if (cs_size != -1)
1412 cs_size = (128 * (1 << !!dct_width)) << shift;
1413
1414 return cs_size;
1415 }
1416
1417 static int ddr3_lrdimm_cs_size(unsigned i, unsigned rank_multiply)
1418 {
1419 unsigned shift = 0;
1420 int cs_size = 0;
1421
1422 if (i < 4 || i == 6)
1423 cs_size = -1;
1424 else if (i == 12)
1425 shift = 7;
1426 else if (!(i & 0x1))
1427 shift = i >> 1;
1428 else
1429 shift = (i + 1) >> 1;
1430
1431 if (cs_size != -1)
1432 cs_size = rank_multiply * (128 << shift);
1433
1434 return cs_size;
1435 }
1436
1437 static int ddr4_cs_size(unsigned i)
1438 {
1439 int cs_size = 0;
1440
1441 if (i == 0)
1442 cs_size = -1;
1443 else if (i == 1)
1444 cs_size = 1024;
1445 else
1446 /* Min cs_size = 1G */
1447 cs_size = 1024 * (1 << (i >> 1));
1448
1449 return cs_size;
1450 }
1451
1452 static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1453 unsigned cs_mode, int cs_mask_nr)
1454 {
1455 u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
1456
1457 WARN_ON(cs_mode > 11);
1458
1459 if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
1460 return ddr3_cs_size(cs_mode, dclr & WIDTH_128);
1461 else
1462 return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
1463 }
1464
1465 /*
1466 * F15h supports only 64bit DCT interfaces
1467 */
1468 static int f15_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1469 unsigned cs_mode, int cs_mask_nr)
1470 {
1471 WARN_ON(cs_mode > 12);
1472
1473 return ddr3_cs_size(cs_mode, false);
1474 }
1475
1476 /* F15h M60h supports DDR4 mapping as well.. */
1477 static int f15_m60h_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1478 unsigned cs_mode, int cs_mask_nr)
1479 {
1480 int cs_size;
1481 u32 dcsm = pvt->csels[dct].csmasks[cs_mask_nr];
1482
1483 WARN_ON(cs_mode > 12);
1484
1485 if (pvt->dram_type == MEM_DDR4) {
1486 if (cs_mode > 9)
1487 return -1;
1488
1489 cs_size = ddr4_cs_size(cs_mode);
1490 } else if (pvt->dram_type == MEM_LRDDR3) {
1491 unsigned rank_multiply = dcsm & 0xf;
1492
1493 if (rank_multiply == 3)
1494 rank_multiply = 4;
1495 cs_size = ddr3_lrdimm_cs_size(cs_mode, rank_multiply);
1496 } else {
1497 /* Minimum cs size is 512mb for F15hM60h*/
1498 if (cs_mode == 0x1)
1499 return -1;
1500
1501 cs_size = ddr3_cs_size(cs_mode, false);
1502 }
1503
1504 return cs_size;
1505 }
1506
1507 /*
1508 * F16h and F15h model 30h have only limited cs_modes.
1509 */
1510 static int f16_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1511 unsigned cs_mode, int cs_mask_nr)
1512 {
1513 WARN_ON(cs_mode > 12);
1514
1515 if (cs_mode == 6 || cs_mode == 8 ||
1516 cs_mode == 9 || cs_mode == 12)
1517 return -1;
1518 else
1519 return ddr3_cs_size(cs_mode, false);
1520 }
1521
1522 static int f17_base_addr_to_cs_size(struct amd64_pvt *pvt, u8 umc,
1523 unsigned int cs_mode, int csrow_nr)
1524 {
1525 u32 base_addr = pvt->csels[umc].csbases[csrow_nr];
1526
1527 /* Each mask is used for every two base addresses. */
1528 u32 addr_mask = pvt->csels[umc].csmasks[csrow_nr >> 1];
1529
1530 /* Register [31:1] = Address [39:9]. Size is in kBs here. */
1531 u32 size = ((addr_mask >> 1) - (base_addr >> 1) + 1) >> 1;
1532
1533 edac_dbg(1, "BaseAddr: 0x%x, AddrMask: 0x%x\n", base_addr, addr_mask);
1534
1535 /* Return size in MBs. */
1536 return size >> 10;
1537 }
1538
1539 static void read_dram_ctl_register(struct amd64_pvt *pvt)
1540 {
1541
1542 if (pvt->fam == 0xf)
1543 return;
1544
1545 if (!amd64_read_pci_cfg(pvt->F2, DCT_SEL_LO, &pvt->dct_sel_lo)) {
1546 edac_dbg(0, "F2x110 (DCTSelLow): 0x%08x, High range addrs at: 0x%x\n",
1547 pvt->dct_sel_lo, dct_sel_baseaddr(pvt));
1548
1549 edac_dbg(0, " DCTs operate in %s mode\n",
1550 (dct_ganging_enabled(pvt) ? "ganged" : "unganged"));
1551
1552 if (!dct_ganging_enabled(pvt))
1553 edac_dbg(0, " Address range split per DCT: %s\n",
1554 (dct_high_range_enabled(pvt) ? "yes" : "no"));
1555
1556 edac_dbg(0, " data interleave for ECC: %s, DRAM cleared since last warm reset: %s\n",
1557 (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
1558 (dct_memory_cleared(pvt) ? "yes" : "no"));
1559
1560 edac_dbg(0, " channel interleave: %s, "
1561 "interleave bits selector: 0x%x\n",
1562 (dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
1563 dct_sel_interleave_addr(pvt));
1564 }
1565
1566 amd64_read_pci_cfg(pvt->F2, DCT_SEL_HI, &pvt->dct_sel_hi);
1567 }
1568
1569 /*
1570 * Determine channel (DCT) based on the interleaving mode (see F15h M30h BKDG,
1571 * 2.10.12 Memory Interleaving Modes).
1572 */
1573 static u8 f15_m30h_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
1574 u8 intlv_en, int num_dcts_intlv,
1575 u32 dct_sel)
1576 {
1577 u8 channel = 0;
1578 u8 select;
1579
1580 if (!(intlv_en))
1581 return (u8)(dct_sel);
1582
1583 if (num_dcts_intlv == 2) {
1584 select = (sys_addr >> 8) & 0x3;
1585 channel = select ? 0x3 : 0;
1586 } else if (num_dcts_intlv == 4) {
1587 u8 intlv_addr = dct_sel_interleave_addr(pvt);
1588 switch (intlv_addr) {
1589 case 0x4:
1590 channel = (sys_addr >> 8) & 0x3;
1591 break;
1592 case 0x5:
1593 channel = (sys_addr >> 9) & 0x3;
1594 break;
1595 }
1596 }
1597 return channel;
1598 }
1599
1600 /*
1601 * Determine channel (DCT) based on the interleaving mode: F10h BKDG, 2.8.9 Memory
1602 * Interleaving Modes.
1603 */
1604 static u8 f1x_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
1605 bool hi_range_sel, u8 intlv_en)
1606 {
1607 u8 dct_sel_high = (pvt->dct_sel_lo >> 1) & 1;
1608
1609 if (dct_ganging_enabled(pvt))
1610 return 0;
1611
1612 if (hi_range_sel)
1613 return dct_sel_high;
1614
1615 /*
1616 * see F2x110[DctSelIntLvAddr] - channel interleave mode
1617 */
1618 if (dct_interleave_enabled(pvt)) {
1619 u8 intlv_addr = dct_sel_interleave_addr(pvt);
1620
1621 /* return DCT select function: 0=DCT0, 1=DCT1 */
1622 if (!intlv_addr)
1623 return sys_addr >> 6 & 1;
1624
1625 if (intlv_addr & 0x2) {
1626 u8 shift = intlv_addr & 0x1 ? 9 : 6;
1627 u32 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) & 1;
1628
1629 return ((sys_addr >> shift) & 1) ^ temp;
1630 }
1631
1632 if (intlv_addr & 0x4) {
1633 u8 shift = intlv_addr & 0x1 ? 9 : 8;
1634
1635 return (sys_addr >> shift) & 1;
1636 }
1637
1638 return (sys_addr >> (12 + hweight8(intlv_en))) & 1;
1639 }
1640
1641 if (dct_high_range_enabled(pvt))
1642 return ~dct_sel_high & 1;
1643
1644 return 0;
1645 }
1646
1647 /* Convert the sys_addr to the normalized DCT address */
1648 static u64 f1x_get_norm_dct_addr(struct amd64_pvt *pvt, u8 range,
1649 u64 sys_addr, bool hi_rng,
1650 u32 dct_sel_base_addr)
1651 {
1652 u64 chan_off;
1653 u64 dram_base = get_dram_base(pvt, range);
1654 u64 hole_off = f10_dhar_offset(pvt);
1655 u64 dct_sel_base_off = (u64)(pvt->dct_sel_hi & 0xFFFFFC00) << 16;
1656
1657 if (hi_rng) {
1658 /*
1659 * if
1660 * base address of high range is below 4Gb
1661 * (bits [47:27] at [31:11])
1662 * DRAM address space on this DCT is hoisted above 4Gb &&
1663 * sys_addr > 4Gb
1664 *
1665 * remove hole offset from sys_addr
1666 * else
1667 * remove high range offset from sys_addr
1668 */
1669 if ((!(dct_sel_base_addr >> 16) ||
1670 dct_sel_base_addr < dhar_base(pvt)) &&
1671 dhar_valid(pvt) &&
1672 (sys_addr >= BIT_64(32)))
1673 chan_off = hole_off;
1674 else
1675 chan_off = dct_sel_base_off;
1676 } else {
1677 /*
1678 * if
1679 * we have a valid hole &&
1680 * sys_addr > 4Gb
1681 *
1682 * remove hole
1683 * else
1684 * remove dram base to normalize to DCT address
1685 */
1686 if (dhar_valid(pvt) && (sys_addr >= BIT_64(32)))
1687 chan_off = hole_off;
1688 else
1689 chan_off = dram_base;
1690 }
1691
1692 return (sys_addr & GENMASK_ULL(47,6)) - (chan_off & GENMASK_ULL(47,23));
1693 }
1694
1695 /*
1696 * checks if the csrow passed in is marked as SPARED, if so returns the new
1697 * spare row
1698 */
1699 static int f10_process_possible_spare(struct amd64_pvt *pvt, u8 dct, int csrow)
1700 {
1701 int tmp_cs;
1702
1703 if (online_spare_swap_done(pvt, dct) &&
1704 csrow == online_spare_bad_dramcs(pvt, dct)) {
1705
1706 for_each_chip_select(tmp_cs, dct, pvt) {
1707 if (chip_select_base(tmp_cs, dct, pvt) & 0x2) {
1708 csrow = tmp_cs;
1709 break;
1710 }
1711 }
1712 }
1713 return csrow;
1714 }
1715
1716 /*
1717 * Iterate over the DRAM DCT "base" and "mask" registers looking for a
1718 * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
1719 *
1720 * Return:
1721 * -EINVAL: NOT FOUND
1722 * 0..csrow = Chip-Select Row
1723 */
1724 static int f1x_lookup_addr_in_dct(u64 in_addr, u8 nid, u8 dct)
1725 {
1726 struct mem_ctl_info *mci;
1727 struct amd64_pvt *pvt;
1728 u64 cs_base, cs_mask;
1729 int cs_found = -EINVAL;
1730 int csrow;
1731
1732 mci = edac_mc_find(nid);
1733 if (!mci)
1734 return cs_found;
1735
1736 pvt = mci->pvt_info;
1737
1738 edac_dbg(1, "input addr: 0x%llx, DCT: %d\n", in_addr, dct);
1739
1740 for_each_chip_select(csrow, dct, pvt) {
1741 if (!csrow_enabled(csrow, dct, pvt))
1742 continue;
1743
1744 get_cs_base_and_mask(pvt, csrow, dct, &cs_base, &cs_mask);
1745
1746 edac_dbg(1, " CSROW=%d CSBase=0x%llx CSMask=0x%llx\n",
1747 csrow, cs_base, cs_mask);
1748
1749 cs_mask = ~cs_mask;
1750
1751 edac_dbg(1, " (InputAddr & ~CSMask)=0x%llx (CSBase & ~CSMask)=0x%llx\n",
1752 (in_addr & cs_mask), (cs_base & cs_mask));
1753
1754 if ((in_addr & cs_mask) == (cs_base & cs_mask)) {
1755 if (pvt->fam == 0x15 && pvt->model >= 0x30) {
1756 cs_found = csrow;
1757 break;
1758 }
1759 cs_found = f10_process_possible_spare(pvt, dct, csrow);
1760
1761 edac_dbg(1, " MATCH csrow=%d\n", cs_found);
1762 break;
1763 }
1764 }
1765 return cs_found;
1766 }
1767
1768 /*
1769 * See F2x10C. Non-interleaved graphics framebuffer memory under the 16G is
1770 * swapped with a region located at the bottom of memory so that the GPU can use
1771 * the interleaved region and thus two channels.
1772 */
1773 static u64 f1x_swap_interleaved_region(struct amd64_pvt *pvt, u64 sys_addr)
1774 {
1775 u32 swap_reg, swap_base, swap_limit, rgn_size, tmp_addr;
1776
1777 if (pvt->fam == 0x10) {
1778 /* only revC3 and revE have that feature */
1779 if (pvt->model < 4 || (pvt->model < 0xa && pvt->stepping < 3))
1780 return sys_addr;
1781 }
1782
1783 amd64_read_pci_cfg(pvt->F2, SWAP_INTLV_REG, &swap_reg);
1784
1785 if (!(swap_reg & 0x1))
1786 return sys_addr;
1787
1788 swap_base = (swap_reg >> 3) & 0x7f;
1789 swap_limit = (swap_reg >> 11) & 0x7f;
1790 rgn_size = (swap_reg >> 20) & 0x7f;
1791 tmp_addr = sys_addr >> 27;
1792
1793 if (!(sys_addr >> 34) &&
1794 (((tmp_addr >= swap_base) &&
1795 (tmp_addr <= swap_limit)) ||
1796 (tmp_addr < rgn_size)))
1797 return sys_addr ^ (u64)swap_base << 27;
1798
1799 return sys_addr;
1800 }
1801
1802 /* For a given @dram_range, check if @sys_addr falls within it. */
1803 static int f1x_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
1804 u64 sys_addr, int *chan_sel)
1805 {
1806 int cs_found = -EINVAL;
1807 u64 chan_addr;
1808 u32 dct_sel_base;
1809 u8 channel;
1810 bool high_range = false;
1811
1812 u8 node_id = dram_dst_node(pvt, range);
1813 u8 intlv_en = dram_intlv_en(pvt, range);
1814 u32 intlv_sel = dram_intlv_sel(pvt, range);
1815
1816 edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
1817 range, sys_addr, get_dram_limit(pvt, range));
1818
1819 if (dhar_valid(pvt) &&
1820 dhar_base(pvt) <= sys_addr &&
1821 sys_addr < BIT_64(32)) {
1822 amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
1823 sys_addr);
1824 return -EINVAL;
1825 }
1826
1827 if (intlv_en && (intlv_sel != ((sys_addr >> 12) & intlv_en)))
1828 return -EINVAL;
1829
1830 sys_addr = f1x_swap_interleaved_region(pvt, sys_addr);
1831
1832 dct_sel_base = dct_sel_baseaddr(pvt);
1833
1834 /*
1835 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
1836 * select between DCT0 and DCT1.
1837 */
1838 if (dct_high_range_enabled(pvt) &&
1839 !dct_ganging_enabled(pvt) &&
1840 ((sys_addr >> 27) >= (dct_sel_base >> 11)))
1841 high_range = true;
1842
1843 channel = f1x_determine_channel(pvt, sys_addr, high_range, intlv_en);
1844
1845 chan_addr = f1x_get_norm_dct_addr(pvt, range, sys_addr,
1846 high_range, dct_sel_base);
1847
1848 /* Remove node interleaving, see F1x120 */
1849 if (intlv_en)
1850 chan_addr = ((chan_addr >> (12 + hweight8(intlv_en))) << 12) |
1851 (chan_addr & 0xfff);
1852
1853 /* remove channel interleave */
1854 if (dct_interleave_enabled(pvt) &&
1855 !dct_high_range_enabled(pvt) &&
1856 !dct_ganging_enabled(pvt)) {
1857
1858 if (dct_sel_interleave_addr(pvt) != 1) {
1859 if (dct_sel_interleave_addr(pvt) == 0x3)
1860 /* hash 9 */
1861 chan_addr = ((chan_addr >> 10) << 9) |
1862 (chan_addr & 0x1ff);
1863 else
1864 /* A[6] or hash 6 */
1865 chan_addr = ((chan_addr >> 7) << 6) |
1866 (chan_addr & 0x3f);
1867 } else
1868 /* A[12] */
1869 chan_addr = ((chan_addr >> 13) << 12) |
1870 (chan_addr & 0xfff);
1871 }
1872
1873 edac_dbg(1, " Normalized DCT addr: 0x%llx\n", chan_addr);
1874
1875 cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, channel);
1876
1877 if (cs_found >= 0)
1878 *chan_sel = channel;
1879
1880 return cs_found;
1881 }
1882
1883 static int f15_m30h_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
1884 u64 sys_addr, int *chan_sel)
1885 {
1886 int cs_found = -EINVAL;
1887 int num_dcts_intlv = 0;
1888 u64 chan_addr, chan_offset;
1889 u64 dct_base, dct_limit;
1890 u32 dct_cont_base_reg, dct_cont_limit_reg, tmp;
1891 u8 channel, alias_channel, leg_mmio_hole, dct_sel, dct_offset_en;
1892
1893 u64 dhar_offset = f10_dhar_offset(pvt);
1894 u8 intlv_addr = dct_sel_interleave_addr(pvt);
1895 u8 node_id = dram_dst_node(pvt, range);
1896 u8 intlv_en = dram_intlv_en(pvt, range);
1897
1898 amd64_read_pci_cfg(pvt->F1, DRAM_CONT_BASE, &dct_cont_base_reg);
1899 amd64_read_pci_cfg(pvt->F1, DRAM_CONT_LIMIT, &dct_cont_limit_reg);
1900
1901 dct_offset_en = (u8) ((dct_cont_base_reg >> 3) & BIT(0));
1902 dct_sel = (u8) ((dct_cont_base_reg >> 4) & 0x7);
1903
1904 edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
1905 range, sys_addr, get_dram_limit(pvt, range));
1906
1907 if (!(get_dram_base(pvt, range) <= sys_addr) &&
1908 !(get_dram_limit(pvt, range) >= sys_addr))
1909 return -EINVAL;
1910
1911 if (dhar_valid(pvt) &&
1912 dhar_base(pvt) <= sys_addr &&
1913 sys_addr < BIT_64(32)) {
1914 amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
1915 sys_addr);
1916 return -EINVAL;
1917 }
1918
1919 /* Verify sys_addr is within DCT Range. */
1920 dct_base = (u64) dct_sel_baseaddr(pvt);
1921 dct_limit = (dct_cont_limit_reg >> 11) & 0x1FFF;
1922
1923 if (!(dct_cont_base_reg & BIT(0)) &&
1924 !(dct_base <= (sys_addr >> 27) &&
1925 dct_limit >= (sys_addr >> 27)))
1926 return -EINVAL;
1927
1928 /* Verify number of dct's that participate in channel interleaving. */
1929 num_dcts_intlv = (int) hweight8(intlv_en);
1930
1931 if (!(num_dcts_intlv % 2 == 0) || (num_dcts_intlv > 4))
1932 return -EINVAL;
1933
1934 if (pvt->model >= 0x60)
1935 channel = f1x_determine_channel(pvt, sys_addr, false, intlv_en);
1936 else
1937 channel = f15_m30h_determine_channel(pvt, sys_addr, intlv_en,
1938 num_dcts_intlv, dct_sel);
1939
1940 /* Verify we stay within the MAX number of channels allowed */
1941 if (channel > 3)
1942 return -EINVAL;
1943
1944 leg_mmio_hole = (u8) (dct_cont_base_reg >> 1 & BIT(0));
1945
1946 /* Get normalized DCT addr */
1947 if (leg_mmio_hole && (sys_addr >= BIT_64(32)))
1948 chan_offset = dhar_offset;
1949 else
1950 chan_offset = dct_base << 27;
1951
1952 chan_addr = sys_addr - chan_offset;
1953
1954 /* remove channel interleave */
1955 if (num_dcts_intlv == 2) {
1956 if (intlv_addr == 0x4)
1957 chan_addr = ((chan_addr >> 9) << 8) |
1958 (chan_addr & 0xff);
1959 else if (intlv_addr == 0x5)
1960 chan_addr = ((chan_addr >> 10) << 9) |
1961 (chan_addr & 0x1ff);
1962 else
1963 return -EINVAL;
1964
1965 } else if (num_dcts_intlv == 4) {
1966 if (intlv_addr == 0x4)
1967 chan_addr = ((chan_addr >> 10) << 8) |
1968 (chan_addr & 0xff);
1969 else if (intlv_addr == 0x5)
1970 chan_addr = ((chan_addr >> 11) << 9) |
1971 (chan_addr & 0x1ff);
1972 else
1973 return -EINVAL;
1974 }
1975
1976 if (dct_offset_en) {
1977 amd64_read_pci_cfg(pvt->F1,
1978 DRAM_CONT_HIGH_OFF + (int) channel * 4,
1979 &tmp);
1980 chan_addr += (u64) ((tmp >> 11) & 0xfff) << 27;
1981 }
1982
1983 f15h_select_dct(pvt, channel);
1984
1985 edac_dbg(1, " Normalized DCT addr: 0x%llx\n", chan_addr);
1986
1987 /*
1988 * Find Chip select:
1989 * if channel = 3, then alias it to 1. This is because, in F15 M30h,
1990 * there is support for 4 DCT's, but only 2 are currently functional.
1991 * They are DCT0 and DCT3. But we have read all registers of DCT3 into
1992 * pvt->csels[1]. So we need to use '1' here to get correct info.
1993 * Refer F15 M30h BKDG Section 2.10 and 2.10.3 for clarifications.
1994 */
1995 alias_channel = (channel == 3) ? 1 : channel;
1996
1997 cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, alias_channel);
1998
1999 if (cs_found >= 0)
2000 *chan_sel = alias_channel;
2001
2002 return cs_found;
2003 }
2004
2005 static int f1x_translate_sysaddr_to_cs(struct amd64_pvt *pvt,
2006 u64 sys_addr,
2007 int *chan_sel)
2008 {
2009 int cs_found = -EINVAL;
2010 unsigned range;
2011
2012 for (range = 0; range < DRAM_RANGES; range++) {
2013 if (!dram_rw(pvt, range))
2014 continue;
2015
2016 if (pvt->fam == 0x15 && pvt->model >= 0x30)
2017 cs_found = f15_m30h_match_to_this_node(pvt, range,
2018 sys_addr,
2019 chan_sel);
2020
2021 else if ((get_dram_base(pvt, range) <= sys_addr) &&
2022 (get_dram_limit(pvt, range) >= sys_addr)) {
2023 cs_found = f1x_match_to_this_node(pvt, range,
2024 sys_addr, chan_sel);
2025 if (cs_found >= 0)
2026 break;
2027 }
2028 }
2029 return cs_found;
2030 }
2031
2032 /*
2033 * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
2034 * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
2035 *
2036 * The @sys_addr is usually an error address received from the hardware
2037 * (MCX_ADDR).
2038 */
2039 static void f1x_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
2040 struct err_info *err)
2041 {
2042 struct amd64_pvt *pvt = mci->pvt_info;
2043
2044 error_address_to_page_and_offset(sys_addr, err);
2045
2046 err->csrow = f1x_translate_sysaddr_to_cs(pvt, sys_addr, &err->channel);
2047 if (err->csrow < 0) {
2048 err->err_code = ERR_CSROW;
2049 return;
2050 }
2051
2052 /*
2053 * We need the syndromes for channel detection only when we're
2054 * ganged. Otherwise @chan should already contain the channel at
2055 * this point.
2056 */
2057 if (dct_ganging_enabled(pvt))
2058 err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome);
2059 }
2060
2061 /*
2062 * debug routine to display the memory sizes of all logical DIMMs and its
2063 * CSROWs
2064 */
2065 static void debug_display_dimm_sizes(struct amd64_pvt *pvt, u8 ctrl)
2066 {
2067 int dimm, size0, size1;
2068 u32 *dcsb = ctrl ? pvt->csels[1].csbases : pvt->csels[0].csbases;
2069 u32 dbam = ctrl ? pvt->dbam1 : pvt->dbam0;
2070
2071 if (pvt->fam == 0xf) {
2072 /* K8 families < revF not supported yet */
2073 if (pvt->ext_model < K8_REV_F)
2074 return;
2075 else
2076 WARN_ON(ctrl != 0);
2077 }
2078
2079 if (pvt->fam == 0x10) {
2080 dbam = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->dbam1
2081 : pvt->dbam0;
2082 dcsb = (ctrl && !dct_ganging_enabled(pvt)) ?
2083 pvt->csels[1].csbases :
2084 pvt->csels[0].csbases;
2085 } else if (ctrl) {
2086 dbam = pvt->dbam0;
2087 dcsb = pvt->csels[1].csbases;
2088 }
2089 edac_dbg(1, "F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n",
2090 ctrl, dbam);
2091
2092 edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);
2093
2094 /* Dump memory sizes for DIMM and its CSROWs */
2095 for (dimm = 0; dimm < 4; dimm++) {
2096
2097 size0 = 0;
2098 if (dcsb[dimm*2] & DCSB_CS_ENABLE)
2099 /*
2100 * For F15m60h, we need multiplier for LRDIMM cs_size
2101 * calculation. We pass dimm value to the dbam_to_cs
2102 * mapper so we can find the multiplier from the
2103 * corresponding DCSM.
2104 */
2105 size0 = pvt->ops->dbam_to_cs(pvt, ctrl,
2106 DBAM_DIMM(dimm, dbam),
2107 dimm);
2108
2109 size1 = 0;
2110 if (dcsb[dimm*2 + 1] & DCSB_CS_ENABLE)
2111 size1 = pvt->ops->dbam_to_cs(pvt, ctrl,
2112 DBAM_DIMM(dimm, dbam),
2113 dimm);
2114
2115 amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
2116 dimm * 2, size0,
2117 dimm * 2 + 1, size1);
2118 }
2119 }
2120
2121 static struct amd64_family_type family_types[] = {
2122 [K8_CPUS] = {
2123 .ctl_name = "K8",
2124 .f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
2125 .f2_id = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
2126 .ops = {
2127 .early_channel_count = k8_early_channel_count,
2128 .map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow,
2129 .dbam_to_cs = k8_dbam_to_chip_select,
2130 }
2131 },
2132 [F10_CPUS] = {
2133 .ctl_name = "F10h",
2134 .f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP,
2135 .f2_id = PCI_DEVICE_ID_AMD_10H_NB_DRAM,
2136 .ops = {
2137 .early_channel_count = f1x_early_channel_count,
2138 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
2139 .dbam_to_cs = f10_dbam_to_chip_select,
2140 }
2141 },
2142 [F15_CPUS] = {
2143 .ctl_name = "F15h",
2144 .f1_id = PCI_DEVICE_ID_AMD_15H_NB_F1,
2145 .f2_id = PCI_DEVICE_ID_AMD_15H_NB_F2,
2146 .ops = {
2147 .early_channel_count = f1x_early_channel_count,
2148 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
2149 .dbam_to_cs = f15_dbam_to_chip_select,
2150 }
2151 },
2152 [F15_M30H_CPUS] = {
2153 .ctl_name = "F15h_M30h",
2154 .f1_id = PCI_DEVICE_ID_AMD_15H_M30H_NB_F1,
2155 .f2_id = PCI_DEVICE_ID_AMD_15H_M30H_NB_F2,
2156 .ops = {
2157 .early_channel_count = f1x_early_channel_count,
2158 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
2159 .dbam_to_cs = f16_dbam_to_chip_select,
2160 }
2161 },
2162 [F15_M60H_CPUS] = {
2163 .ctl_name = "F15h_M60h",
2164 .f1_id = PCI_DEVICE_ID_AMD_15H_M60H_NB_F1,
2165 .f2_id = PCI_DEVICE_ID_AMD_15H_M60H_NB_F2,
2166 .ops = {
2167 .early_channel_count = f1x_early_channel_count,
2168 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
2169 .dbam_to_cs = f15_m60h_dbam_to_chip_select,
2170 }
2171 },
2172 [F16_CPUS] = {
2173 .ctl_name = "F16h",
2174 .f1_id = PCI_DEVICE_ID_AMD_16H_NB_F1,
2175 .f2_id = PCI_DEVICE_ID_AMD_16H_NB_F2,
2176 .ops = {
2177 .early_channel_count = f1x_early_channel_count,
2178 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
2179 .dbam_to_cs = f16_dbam_to_chip_select,
2180 }
2181 },
2182 [F16_M30H_CPUS] = {
2183 .ctl_name = "F16h_M30h",
2184 .f1_id = PCI_DEVICE_ID_AMD_16H_M30H_NB_F1,
2185 .f2_id = PCI_DEVICE_ID_AMD_16H_M30H_NB_F2,
2186 .ops = {
2187 .early_channel_count = f1x_early_channel_count,
2188 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
2189 .dbam_to_cs = f16_dbam_to_chip_select,
2190 }
2191 },
2192 [F17_CPUS] = {
2193 .ctl_name = "F17h",
2194 .f0_id = PCI_DEVICE_ID_AMD_17H_DF_F0,
2195 .f6_id = PCI_DEVICE_ID_AMD_17H_DF_F6,
2196 .ops = {
2197 .early_channel_count = f17_early_channel_count,
2198 .dbam_to_cs = f17_base_addr_to_cs_size,
2199 }
2200 },
2201 };
2202
2203 /*
2204 * These are tables of eigenvectors (one per line) which can be used for the
2205 * construction of the syndrome tables. The modified syndrome search algorithm
2206 * uses those to find the symbol in error and thus the DIMM.
2207 *
2208 * Algorithm courtesy of Ross LaFetra from AMD.
2209 */
2210 static const u16 x4_vectors[] = {
2211 0x2f57, 0x1afe, 0x66cc, 0xdd88,
2212 0x11eb, 0x3396, 0x7f4c, 0xeac8,
2213 0x0001, 0x0002, 0x0004, 0x0008,
2214 0x1013, 0x3032, 0x4044, 0x8088,
2215 0x106b, 0x30d6, 0x70fc, 0xe0a8,
2216 0x4857, 0xc4fe, 0x13cc, 0x3288,
2217 0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
2218 0x1f39, 0x251e, 0xbd6c, 0x6bd8,
2219 0x15c1, 0x2a42, 0x89ac, 0x4758,
2220 0x2b03, 0x1602, 0x4f0c, 0xca08,
2221 0x1f07, 0x3a0e, 0x6b04, 0xbd08,
2222 0x8ba7, 0x465e, 0x244c, 0x1cc8,
2223 0x2b87, 0x164e, 0x642c, 0xdc18,
2224 0x40b9, 0x80de, 0x1094, 0x20e8,
2225 0x27db, 0x1eb6, 0x9dac, 0x7b58,
2226 0x11c1, 0x2242, 0x84ac, 0x4c58,
2227 0x1be5, 0x2d7a, 0x5e34, 0xa718,
2228 0x4b39, 0x8d1e, 0x14b4, 0x28d8,
2229 0x4c97, 0xc87e, 0x11fc, 0x33a8,
2230 0x8e97, 0x497e, 0x2ffc, 0x1aa8,
2231 0x16b3, 0x3d62, 0x4f34, 0x8518,
2232 0x1e2f, 0x391a, 0x5cac, 0xf858,
2233 0x1d9f, 0x3b7a, 0x572c, 0xfe18,
2234 0x15f5, 0x2a5a, 0x5264, 0xa3b8,
2235 0x1dbb, 0x3b66, 0x715c, 0xe3f8,
2236 0x4397, 0xc27e, 0x17fc, 0x3ea8,
2237 0x1617, 0x3d3e, 0x6464, 0xb8b8,
2238 0x23ff, 0x12aa, 0xab6c, 0x56d8,
2239 0x2dfb, 0x1ba6, 0x913c, 0x7328,
2240 0x185d, 0x2ca6, 0x7914, 0x9e28,
2241 0x171b, 0x3e36, 0x7d7c, 0xebe8,
2242 0x4199, 0x82ee, 0x19f4, 0x2e58,
2243 0x4807, 0xc40e, 0x130c, 0x3208,
2244 0x1905, 0x2e0a, 0x5804, 0xac08,
2245 0x213f, 0x132a, 0xadfc, 0x5ba8,
2246 0x19a9, 0x2efe, 0xb5cc, 0x6f88,
2247 };
2248
2249 static const u16 x8_vectors[] = {
2250 0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
2251 0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
2252 0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
2253 0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
2254 0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
2255 0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
2256 0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
2257 0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
2258 0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
2259 0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
2260 0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
2261 0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
2262 0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
2263 0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
2264 0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
2265 0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
2266 0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
2267 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
2268 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
2269 };
2270
2271 static int decode_syndrome(u16 syndrome, const u16 *vectors, unsigned num_vecs,
2272 unsigned v_dim)
2273 {
2274 unsigned int i, err_sym;
2275
2276 for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
2277 u16 s = syndrome;
2278 unsigned v_idx = err_sym * v_dim;
2279 unsigned v_end = (err_sym + 1) * v_dim;
2280
2281 /* walk over all 16 bits of the syndrome */
2282 for (i = 1; i < (1U << 16); i <<= 1) {
2283
2284 /* if bit is set in that eigenvector... */
2285 if (v_idx < v_end && vectors[v_idx] & i) {
2286 u16 ev_comp = vectors[v_idx++];
2287
2288 /* ... and bit set in the modified syndrome, */
2289 if (s & i) {
2290 /* remove it. */
2291 s ^= ev_comp;
2292
2293 if (!s)
2294 return err_sym;
2295 }
2296
2297 } else if (s & i)
2298 /* can't get to zero, move to next symbol */
2299 break;
2300 }
2301 }
2302
2303 edac_dbg(0, "syndrome(%x) not found\n", syndrome);
2304 return -1;
2305 }
2306
2307 static int map_err_sym_to_channel(int err_sym, int sym_size)
2308 {
2309 if (sym_size == 4)
2310 switch (err_sym) {
2311 case 0x20:
2312 case 0x21:
2313 return 0;
2314 break;
2315 case 0x22:
2316 case 0x23:
2317 return 1;
2318 break;
2319 default:
2320 return err_sym >> 4;
2321 break;
2322 }
2323 /* x8 symbols */
2324 else
2325 switch (err_sym) {
2326 /* imaginary bits not in a DIMM */
2327 case 0x10:
2328 WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
2329 err_sym);
2330 return -1;
2331 break;
2332
2333 case 0x11:
2334 return 0;
2335 break;
2336 case 0x12:
2337 return 1;
2338 break;
2339 default:
2340 return err_sym >> 3;
2341 break;
2342 }
2343 return -1;
2344 }
2345
2346 static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
2347 {
2348 struct amd64_pvt *pvt = mci->pvt_info;
2349 int err_sym = -1;
2350
2351 if (pvt->ecc_sym_sz == 8)
2352 err_sym = decode_syndrome(syndrome, x8_vectors,
2353 ARRAY_SIZE(x8_vectors),
2354 pvt->ecc_sym_sz);
2355 else if (pvt->ecc_sym_sz == 4)
2356 err_sym = decode_syndrome(syndrome, x4_vectors,
2357 ARRAY_SIZE(x4_vectors),
2358 pvt->ecc_sym_sz);
2359 else {
2360 amd64_warn("Illegal syndrome type: %u\n", pvt->ecc_sym_sz);
2361 return err_sym;
2362 }
2363
2364 return map_err_sym_to_channel(err_sym, pvt->ecc_sym_sz);
2365 }
2366
2367 static void __log_ecc_error(struct mem_ctl_info *mci, struct err_info *err,
2368 u8 ecc_type)
2369 {
2370 enum hw_event_mc_err_type err_type;
2371 const char *string;
2372
2373 if (ecc_type == 2)
2374 err_type = HW_EVENT_ERR_CORRECTED;
2375 else if (ecc_type == 1)
2376 err_type = HW_EVENT_ERR_UNCORRECTED;
2377 else if (ecc_type == 3)
2378 err_type = HW_EVENT_ERR_DEFERRED;
2379 else {
2380 WARN(1, "Something is rotten in the state of Denmark.\n");
2381 return;
2382 }
2383
2384 switch (err->err_code) {
2385 case DECODE_OK:
2386 string = "";
2387 break;
2388 case ERR_NODE:
2389 string = "Failed to map error addr to a node";
2390 break;
2391 case ERR_CSROW:
2392 string = "Failed to map error addr to a csrow";
2393 break;
2394 case ERR_CHANNEL:
2395 string = "Unknown syndrome - possible error reporting race";
2396 break;
2397 case ERR_SYND:
2398 string = "MCA_SYND not valid - unknown syndrome and csrow";
2399 break;
2400 case ERR_NORM_ADDR:
2401 string = "Cannot decode normalized address";
2402 break;
2403 default:
2404 string = "WTF error";
2405 break;
2406 }
2407
2408 edac_mc_handle_error(err_type, mci, 1,
2409 err->page, err->offset, err->syndrome,
2410 err->csrow, err->channel, -1,
2411 string, "");
2412 }
2413
2414 static inline void decode_bus_error(int node_id, struct mce *m)
2415 {
2416 struct mem_ctl_info *mci;
2417 struct amd64_pvt *pvt;
2418 u8 ecc_type = (m->status >> 45) & 0x3;
2419 u8 xec = XEC(m->status, 0x1f);
2420 u16 ec = EC(m->status);
2421 u64 sys_addr;
2422 struct err_info err;
2423
2424 mci = edac_mc_find(node_id);
2425 if (!mci)
2426 return;
2427
2428 pvt = mci->pvt_info;
2429
2430 /* Bail out early if this was an 'observed' error */
2431 if (PP(ec) == NBSL_PP_OBS)
2432 return;
2433
2434 /* Do only ECC errors */
2435 if (xec && xec != F10_NBSL_EXT_ERR_ECC)
2436 return;
2437
2438 memset(&err, 0, sizeof(err));
2439
2440 sys_addr = get_error_address(pvt, m);
2441
2442 if (ecc_type == 2)
2443 err.syndrome = extract_syndrome(m->status);
2444
2445 pvt->ops->map_sysaddr_to_csrow(mci, sys_addr, &err);
2446
2447 __log_ecc_error(mci, &err, ecc_type);
2448 }
2449
2450 /*
2451 * To find the UMC channel represented by this bank we need to match on its
2452 * instance_id. The instance_id of a bank is held in the lower 32 bits of its
2453 * IPID.
2454 */
2455 static int find_umc_channel(struct amd64_pvt *pvt, struct mce *m)
2456 {
2457 u32 umc_instance_id[] = {0x50f00, 0x150f00};
2458 u32 instance_id = m->ipid & GENMASK(31, 0);
2459 int i, channel = -1;
2460
2461 for (i = 0; i < ARRAY_SIZE(umc_instance_id); i++)
2462 if (umc_instance_id[i] == instance_id)
2463 channel = i;
2464
2465 return channel;
2466 }
2467
2468 static void decode_umc_error(int node_id, struct mce *m)
2469 {
2470 u8 ecc_type = (m->status >> 45) & 0x3;
2471 struct mem_ctl_info *mci;
2472 struct amd64_pvt *pvt;
2473 struct err_info err;
2474 u64 sys_addr;
2475
2476 mci = edac_mc_find(node_id);
2477 if (!mci)
2478 return;
2479
2480 pvt = mci->pvt_info;
2481
2482 memset(&err, 0, sizeof(err));
2483
2484 if (m->status & MCI_STATUS_DEFERRED)
2485 ecc_type = 3;
2486
2487 err.channel = find_umc_channel(pvt, m);
2488 if (err.channel < 0) {
2489 err.err_code = ERR_CHANNEL;
2490 goto log_error;
2491 }
2492
2493 if (umc_normaddr_to_sysaddr(m->addr, pvt->mc_node_id, err.channel, &sys_addr)) {
2494 err.err_code = ERR_NORM_ADDR;
2495 goto log_error;
2496 }
2497
2498 error_address_to_page_and_offset(sys_addr, &err);
2499
2500 if (!(m->status & MCI_STATUS_SYNDV)) {
2501 err.err_code = ERR_SYND;
2502 goto log_error;
2503 }
2504
2505 if (ecc_type == 2) {
2506 u8 length = (m->synd >> 18) & 0x3f;
2507
2508 if (length)
2509 err.syndrome = (m->synd >> 32) & GENMASK(length - 1, 0);
2510 else
2511 err.err_code = ERR_CHANNEL;
2512 }
2513
2514 err.csrow = m->synd & 0x7;
2515
2516 log_error:
2517 __log_ecc_error(mci, &err, ecc_type);
2518 }
2519
2520 /*
2521 * Use pvt->F3 which contains the F3 CPU PCI device to get the related
2522 * F1 (AddrMap) and F2 (Dct) devices. Return negative value on error.
2523 * Reserve F0 and F6 on systems with a UMC.
2524 */
2525 static int
2526 reserve_mc_sibling_devs(struct amd64_pvt *pvt, u16 pci_id1, u16 pci_id2)
2527 {
2528 if (pvt->umc) {
2529 pvt->F0 = pci_get_related_function(pvt->F3->vendor, pci_id1, pvt->F3);
2530 if (!pvt->F0) {
2531 amd64_err("error F0 device not found: vendor %x device 0x%x (broken BIOS?)\n",
2532 PCI_VENDOR_ID_AMD, pci_id1);
2533 return -ENODEV;
2534 }
2535
2536 pvt->F6 = pci_get_related_function(pvt->F3->vendor, pci_id2, pvt->F3);
2537 if (!pvt->F6) {
2538 pci_dev_put(pvt->F0);
2539 pvt->F0 = NULL;
2540
2541 amd64_err("error F6 device not found: vendor %x device 0x%x (broken BIOS?)\n",
2542 PCI_VENDOR_ID_AMD, pci_id2);
2543
2544 return -ENODEV;
2545 }
2546 edac_dbg(1, "F0: %s\n", pci_name(pvt->F0));
2547 edac_dbg(1, "F3: %s\n", pci_name(pvt->F3));
2548 edac_dbg(1, "F6: %s\n", pci_name(pvt->F6));
2549
2550 return 0;
2551 }
2552
2553 /* Reserve the ADDRESS MAP Device */
2554 pvt->F1 = pci_get_related_function(pvt->F3->vendor, pci_id1, pvt->F3);
2555 if (!pvt->F1) {
2556 amd64_err("error address map device not found: vendor %x device 0x%x (broken BIOS?)\n",
2557 PCI_VENDOR_ID_AMD, pci_id1);
2558 return -ENODEV;
2559 }
2560
2561 /* Reserve the DCT Device */
2562 pvt->F2 = pci_get_related_function(pvt->F3->vendor, pci_id2, pvt->F3);
2563 if (!pvt->F2) {
2564 pci_dev_put(pvt->F1);
2565 pvt->F1 = NULL;
2566
2567 amd64_err("error F2 device not found: vendor %x device 0x%x (broken BIOS?)\n",
2568 PCI_VENDOR_ID_AMD, pci_id2);
2569 return -ENODEV;
2570 }
2571
2572 edac_dbg(1, "F1: %s\n", pci_name(pvt->F1));
2573 edac_dbg(1, "F2: %s\n", pci_name(pvt->F2));
2574 edac_dbg(1, "F3: %s\n", pci_name(pvt->F3));
2575
2576 return 0;
2577 }
2578
2579 static void free_mc_sibling_devs(struct amd64_pvt *pvt)
2580 {
2581 if (pvt->umc) {
2582 pci_dev_put(pvt->F0);
2583 pci_dev_put(pvt->F6);
2584 } else {
2585 pci_dev_put(pvt->F1);
2586 pci_dev_put(pvt->F2);
2587 }
2588 }
2589
2590 static void determine_ecc_sym_sz(struct amd64_pvt *pvt)
2591 {
2592 pvt->ecc_sym_sz = 4;
2593
2594 if (pvt->umc) {
2595 u8 i;
2596
2597 for (i = 0; i < NUM_UMCS; i++) {
2598 /* Check enabled channels only: */
2599 if ((pvt->umc[i].sdp_ctrl & UMC_SDP_INIT) &&
2600 (pvt->umc[i].ecc_ctrl & BIT(7))) {
2601 pvt->ecc_sym_sz = 8;
2602 break;
2603 }
2604 }
2605
2606 return;
2607 }
2608
2609 if (pvt->fam >= 0x10) {
2610 u32 tmp;
2611
2612 amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp);
2613 /* F16h has only DCT0, so no need to read dbam1. */
2614 if (pvt->fam != 0x16)
2615 amd64_read_dct_pci_cfg(pvt, 1, DBAM0, &pvt->dbam1);
2616
2617 /* F10h, revD and later can do x8 ECC too. */
2618 if ((pvt->fam > 0x10 || pvt->model > 7) && tmp & BIT(25))
2619 pvt->ecc_sym_sz = 8;
2620 }
2621 }
2622
2623 /*
2624 * Retrieve the hardware registers of the memory controller.
2625 */
2626 static void __read_mc_regs_df(struct amd64_pvt *pvt)
2627 {
2628 u8 nid = pvt->mc_node_id;
2629 struct amd64_umc *umc;
2630 u32 i, umc_base;
2631
2632 /* Read registers from each UMC */
2633 for (i = 0; i < NUM_UMCS; i++) {
2634
2635 umc_base = get_umc_base(i);
2636 umc = &pvt->umc[i];
2637
2638 amd_smn_read(nid, umc_base + UMCCH_DIMM_CFG, &umc->dimm_cfg);
2639 amd_smn_read(nid, umc_base + UMCCH_UMC_CFG, &umc->umc_cfg);
2640 amd_smn_read(nid, umc_base + UMCCH_SDP_CTRL, &umc->sdp_ctrl);
2641 amd_smn_read(nid, umc_base + UMCCH_ECC_CTRL, &umc->ecc_ctrl);
2642 amd_smn_read(nid, umc_base + UMCCH_UMC_CAP_HI, &umc->umc_cap_hi);
2643 }
2644 }
2645
2646 /*
2647 * Retrieve the hardware registers of the memory controller (this includes the
2648 * 'Address Map' and 'Misc' device regs)
2649 */
2650 static void read_mc_regs(struct amd64_pvt *pvt)
2651 {
2652 unsigned int range;
2653 u64 msr_val;
2654
2655 /*
2656 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
2657 * those are Read-As-Zero.
2658 */
2659 rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
2660 edac_dbg(0, " TOP_MEM: 0x%016llx\n", pvt->top_mem);
2661
2662 /* Check first whether TOP_MEM2 is enabled: */
2663 rdmsrl(MSR_K8_SYSCFG, msr_val);
2664 if (msr_val & BIT(21)) {
2665 rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
2666 edac_dbg(0, " TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
2667 } else {
2668 edac_dbg(0, " TOP_MEM2 disabled\n");
2669 }
2670
2671 if (pvt->umc) {
2672 __read_mc_regs_df(pvt);
2673 amd64_read_pci_cfg(pvt->F0, DF_DHAR, &pvt->dhar);
2674
2675 goto skip;
2676 }
2677
2678 amd64_read_pci_cfg(pvt->F3, NBCAP, &pvt->nbcap);
2679
2680 read_dram_ctl_register(pvt);
2681
2682 for (range = 0; range < DRAM_RANGES; range++) {
2683 u8 rw;
2684
2685 /* read settings for this DRAM range */
2686 read_dram_base_limit_regs(pvt, range);
2687
2688 rw = dram_rw(pvt, range);
2689 if (!rw)
2690 continue;
2691
2692 edac_dbg(1, " DRAM range[%d], base: 0x%016llx; limit: 0x%016llx\n",
2693 range,
2694 get_dram_base(pvt, range),
2695 get_dram_limit(pvt, range));
2696
2697 edac_dbg(1, " IntlvEn=%s; Range access: %s%s IntlvSel=%d DstNode=%d\n",
2698 dram_intlv_en(pvt, range) ? "Enabled" : "Disabled",
2699 (rw & 0x1) ? "R" : "-",
2700 (rw & 0x2) ? "W" : "-",
2701 dram_intlv_sel(pvt, range),
2702 dram_dst_node(pvt, range));
2703 }
2704
2705 amd64_read_pci_cfg(pvt->F1, DHAR, &pvt->dhar);
2706 amd64_read_dct_pci_cfg(pvt, 0, DBAM0, &pvt->dbam0);
2707
2708 amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare);
2709
2710 amd64_read_dct_pci_cfg(pvt, 0, DCLR0, &pvt->dclr0);
2711 amd64_read_dct_pci_cfg(pvt, 0, DCHR0, &pvt->dchr0);
2712
2713 if (!dct_ganging_enabled(pvt)) {
2714 amd64_read_dct_pci_cfg(pvt, 1, DCLR0, &pvt->dclr1);
2715 amd64_read_dct_pci_cfg(pvt, 1, DCHR0, &pvt->dchr1);
2716 }
2717
2718 skip:
2719 read_dct_base_mask(pvt);
2720
2721 determine_memory_type(pvt);
2722 edac_dbg(1, " DIMM type: %s\n", edac_mem_types[pvt->dram_type]);
2723
2724 determine_ecc_sym_sz(pvt);
2725
2726 dump_misc_regs(pvt);
2727 }
2728
2729 /*
2730 * NOTE: CPU Revision Dependent code
2731 *
2732 * Input:
2733 * @csrow_nr ChipSelect Row Number (0..NUM_CHIPSELECTS-1)
2734 * k8 private pointer to -->
2735 * DRAM Bank Address mapping register
2736 * node_id
2737 * DCL register where dual_channel_active is
2738 *
2739 * The DBAM register consists of 4 sets of 4 bits each definitions:
2740 *
2741 * Bits: CSROWs
2742 * 0-3 CSROWs 0 and 1
2743 * 4-7 CSROWs 2 and 3
2744 * 8-11 CSROWs 4 and 5
2745 * 12-15 CSROWs 6 and 7
2746 *
2747 * Values range from: 0 to 15
2748 * The meaning of the values depends on CPU revision and dual-channel state,
2749 * see relevant BKDG more info.
2750 *
2751 * The memory controller provides for total of only 8 CSROWs in its current
2752 * architecture. Each "pair" of CSROWs normally represents just one DIMM in
2753 * single channel or two (2) DIMMs in dual channel mode.
2754 *
2755 * The following code logic collapses the various tables for CSROW based on CPU
2756 * revision.
2757 *
2758 * Returns:
2759 * The number of PAGE_SIZE pages on the specified CSROW number it
2760 * encompasses
2761 *
2762 */
2763 static u32 get_csrow_nr_pages(struct amd64_pvt *pvt, u8 dct, int csrow_nr)
2764 {
2765 u32 cs_mode, nr_pages;
2766 u32 dbam = dct ? pvt->dbam1 : pvt->dbam0;
2767
2768
2769 /*
2770 * The math on this doesn't look right on the surface because x/2*4 can
2771 * be simplified to x*2 but this expression makes use of the fact that
2772 * it is integral math where 1/2=0. This intermediate value becomes the
2773 * number of bits to shift the DBAM register to extract the proper CSROW
2774 * field.
2775 */
2776 cs_mode = DBAM_DIMM(csrow_nr / 2, dbam);
2777
2778 nr_pages = pvt->ops->dbam_to_cs(pvt, dct, cs_mode, (csrow_nr / 2))
2779 << (20 - PAGE_SHIFT);
2780
2781 edac_dbg(0, "csrow: %d, channel: %d, DBAM idx: %d\n",
2782 csrow_nr, dct, cs_mode);
2783 edac_dbg(0, "nr_pages/channel: %u\n", nr_pages);
2784
2785 return nr_pages;
2786 }
2787
2788 /*
2789 * Initialize the array of csrow attribute instances, based on the values
2790 * from pci config hardware registers.
2791 */
2792 static int init_csrows(struct mem_ctl_info *mci)
2793 {
2794 struct amd64_pvt *pvt = mci->pvt_info;
2795 enum edac_type edac_mode = EDAC_NONE;
2796 struct csrow_info *csrow;
2797 struct dimm_info *dimm;
2798 int i, j, empty = 1;
2799 int nr_pages = 0;
2800 u32 val;
2801
2802 if (!pvt->umc) {
2803 amd64_read_pci_cfg(pvt->F3, NBCFG, &val);
2804
2805 pvt->nbcfg = val;
2806
2807 edac_dbg(0, "node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
2808 pvt->mc_node_id, val,
2809 !!(val & NBCFG_CHIPKILL), !!(val & NBCFG_ECC_ENABLE));
2810 }
2811
2812 /*
2813 * We iterate over DCT0 here but we look at DCT1 in parallel, if needed.
2814 */
2815 for_each_chip_select(i, 0, pvt) {
2816 bool row_dct0 = !!csrow_enabled(i, 0, pvt);
2817 bool row_dct1 = false;
2818
2819 if (pvt->fam != 0xf)
2820 row_dct1 = !!csrow_enabled(i, 1, pvt);
2821
2822 if (!row_dct0 && !row_dct1)
2823 continue;
2824
2825 csrow = mci->csrows[i];
2826 empty = 0;
2827
2828 edac_dbg(1, "MC node: %d, csrow: %d\n",
2829 pvt->mc_node_id, i);
2830
2831 if (row_dct0) {
2832 nr_pages = get_csrow_nr_pages(pvt, 0, i);
2833 csrow->channels[0]->dimm->nr_pages = nr_pages;
2834 }
2835
2836 /* K8 has only one DCT */
2837 if (pvt->fam != 0xf && row_dct1) {
2838 int row_dct1_pages = get_csrow_nr_pages(pvt, 1, i);
2839
2840 csrow->channels[1]->dimm->nr_pages = row_dct1_pages;
2841 nr_pages += row_dct1_pages;
2842 }
2843
2844 edac_dbg(1, "Total csrow%d pages: %u\n", i, nr_pages);
2845
2846 /* Determine DIMM ECC mode: */
2847 if (pvt->umc) {
2848 if (mci->edac_ctl_cap & EDAC_FLAG_S4ECD4ED)
2849 edac_mode = EDAC_S4ECD4ED;
2850 else if (mci->edac_ctl_cap & EDAC_FLAG_SECDED)
2851 edac_mode = EDAC_SECDED;
2852
2853 } else if (pvt->nbcfg & NBCFG_ECC_ENABLE) {
2854 edac_mode = (pvt->nbcfg & NBCFG_CHIPKILL)
2855 ? EDAC_S4ECD4ED
2856 : EDAC_SECDED;
2857 }
2858
2859 for (j = 0; j < pvt->channel_count; j++) {
2860 dimm = csrow->channels[j]->dimm;
2861 dimm->mtype = pvt->dram_type;
2862 dimm->edac_mode = edac_mode;
2863 }
2864 }
2865
2866 return empty;
2867 }
2868
2869 /* get all cores on this DCT */
2870 static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, u16 nid)
2871 {
2872 int cpu;
2873
2874 for_each_online_cpu(cpu)
2875 if (amd_get_nb_id(cpu) == nid)
2876 cpumask_set_cpu(cpu, mask);
2877 }
2878
2879 /* check MCG_CTL on all the cpus on this node */
2880 static bool nb_mce_bank_enabled_on_node(u16 nid)
2881 {
2882 cpumask_var_t mask;
2883 int cpu, nbe;
2884 bool ret = false;
2885
2886 if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
2887 amd64_warn("%s: Error allocating mask\n", __func__);
2888 return false;
2889 }
2890
2891 get_cpus_on_this_dct_cpumask(mask, nid);
2892
2893 rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);
2894
2895 for_each_cpu(cpu, mask) {
2896 struct msr *reg = per_cpu_ptr(msrs, cpu);
2897 nbe = reg->l & MSR_MCGCTL_NBE;
2898
2899 edac_dbg(0, "core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
2900 cpu, reg->q,
2901 (nbe ? "enabled" : "disabled"));
2902
2903 if (!nbe)
2904 goto out;
2905 }
2906 ret = true;
2907
2908 out:
2909 free_cpumask_var(mask);
2910 return ret;
2911 }
2912
2913 static int toggle_ecc_err_reporting(struct ecc_settings *s, u16 nid, bool on)
2914 {
2915 cpumask_var_t cmask;
2916 int cpu;
2917
2918 if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
2919 amd64_warn("%s: error allocating mask\n", __func__);
2920 return false;
2921 }
2922
2923 get_cpus_on_this_dct_cpumask(cmask, nid);
2924
2925 rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2926
2927 for_each_cpu(cpu, cmask) {
2928
2929 struct msr *reg = per_cpu_ptr(msrs, cpu);
2930
2931 if (on) {
2932 if (reg->l & MSR_MCGCTL_NBE)
2933 s->flags.nb_mce_enable = 1;
2934
2935 reg->l |= MSR_MCGCTL_NBE;
2936 } else {
2937 /*
2938 * Turn off NB MCE reporting only when it was off before
2939 */
2940 if (!s->flags.nb_mce_enable)
2941 reg->l &= ~MSR_MCGCTL_NBE;
2942 }
2943 }
2944 wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2945
2946 free_cpumask_var(cmask);
2947
2948 return 0;
2949 }
2950
2951 static bool enable_ecc_error_reporting(struct ecc_settings *s, u16 nid,
2952 struct pci_dev *F3)
2953 {
2954 bool ret = true;
2955 u32 value, mask = 0x3; /* UECC/CECC enable */
2956
2957 if (toggle_ecc_err_reporting(s, nid, ON)) {
2958 amd64_warn("Error enabling ECC reporting over MCGCTL!\n");
2959 return false;
2960 }
2961
2962 amd64_read_pci_cfg(F3, NBCTL, &value);
2963
2964 s->old_nbctl = value & mask;
2965 s->nbctl_valid = true;
2966
2967 value |= mask;
2968 amd64_write_pci_cfg(F3, NBCTL, value);
2969
2970 amd64_read_pci_cfg(F3, NBCFG, &value);
2971
2972 edac_dbg(0, "1: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
2973 nid, value, !!(value & NBCFG_ECC_ENABLE));
2974
2975 if (!(value & NBCFG_ECC_ENABLE)) {
2976 amd64_warn("DRAM ECC disabled on this node, enabling...\n");
2977
2978 s->flags.nb_ecc_prev = 0;
2979
2980 /* Attempt to turn on DRAM ECC Enable */
2981 value |= NBCFG_ECC_ENABLE;
2982 amd64_write_pci_cfg(F3, NBCFG, value);
2983
2984 amd64_read_pci_cfg(F3, NBCFG, &value);
2985
2986 if (!(value & NBCFG_ECC_ENABLE)) {
2987 amd64_warn("Hardware rejected DRAM ECC enable,"
2988 "check memory DIMM configuration.\n");
2989 ret = false;
2990 } else {
2991 amd64_info("Hardware accepted DRAM ECC Enable\n");
2992 }
2993 } else {
2994 s->flags.nb_ecc_prev = 1;
2995 }
2996
2997 edac_dbg(0, "2: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
2998 nid, value, !!(value & NBCFG_ECC_ENABLE));
2999
3000 return ret;
3001 }
3002
3003 static void restore_ecc_error_reporting(struct ecc_settings *s, u16 nid,
3004 struct pci_dev *F3)
3005 {
3006 u32 value, mask = 0x3; /* UECC/CECC enable */
3007
3008 if (!s->nbctl_valid)
3009 return;
3010
3011 amd64_read_pci_cfg(F3, NBCTL, &value);
3012 value &= ~mask;
3013 value |= s->old_nbctl;
3014
3015 amd64_write_pci_cfg(F3, NBCTL, value);
3016
3017 /* restore previous BIOS DRAM ECC "off" setting we force-enabled */
3018 if (!s->flags.nb_ecc_prev) {
3019 amd64_read_pci_cfg(F3, NBCFG, &value);
3020 value &= ~NBCFG_ECC_ENABLE;
3021 amd64_write_pci_cfg(F3, NBCFG, value);
3022 }
3023
3024 /* restore the NB Enable MCGCTL bit */
3025 if (toggle_ecc_err_reporting(s, nid, OFF))
3026 amd64_warn("Error restoring NB MCGCTL settings!\n");
3027 }
3028
3029 /*
3030 * EDAC requires that the BIOS have ECC enabled before
3031 * taking over the processing of ECC errors. A command line
3032 * option allows to force-enable hardware ECC later in
3033 * enable_ecc_error_reporting().
3034 */
3035 static const char *ecc_msg =
3036 "ECC disabled in the BIOS or no ECC capability, module will not load.\n"
3037 " Either enable ECC checking or force module loading by setting "
3038 "'ecc_enable_override'.\n"
3039 " (Note that use of the override may cause unknown side effects.)\n";
3040
3041 static bool ecc_enabled(struct pci_dev *F3, u16 nid)
3042 {
3043 bool nb_mce_en = false;
3044 u8 ecc_en = 0, i;
3045 u32 value;
3046
3047 if (boot_cpu_data.x86 >= 0x17) {
3048 u8 umc_en_mask = 0, ecc_en_mask = 0;
3049
3050 for (i = 0; i < NUM_UMCS; i++) {
3051 u32 base = get_umc_base(i);
3052
3053 /* Only check enabled UMCs. */
3054 if (amd_smn_read(nid, base + UMCCH_SDP_CTRL, &value))
3055 continue;
3056
3057 if (!(value & UMC_SDP_INIT))
3058 continue;
3059
3060 umc_en_mask |= BIT(i);
3061
3062 if (amd_smn_read(nid, base + UMCCH_UMC_CAP_HI, &value))
3063 continue;
3064
3065 if (value & UMC_ECC_ENABLED)
3066 ecc_en_mask |= BIT(i);
3067 }
3068
3069 /* Check whether at least one UMC is enabled: */
3070 if (umc_en_mask)
3071 ecc_en = umc_en_mask == ecc_en_mask;
3072
3073 /* Assume UMC MCA banks are enabled. */
3074 nb_mce_en = true;
3075 } else {
3076 amd64_read_pci_cfg(F3, NBCFG, &value);
3077
3078 ecc_en = !!(value & NBCFG_ECC_ENABLE);
3079
3080 nb_mce_en = nb_mce_bank_enabled_on_node(nid);
3081 if (!nb_mce_en)
3082 amd64_notice("NB MCE bank disabled, set MSR 0x%08x[4] on node %d to enable.\n",
3083 MSR_IA32_MCG_CTL, nid);
3084 }
3085
3086 amd64_info("DRAM ECC %s.\n", (ecc_en ? "enabled" : "disabled"));
3087
3088 if (!ecc_en || !nb_mce_en) {
3089 amd64_notice("%s", ecc_msg);
3090 return false;
3091 }
3092 return true;
3093 }
3094
3095 static inline void
3096 f17h_determine_edac_ctl_cap(struct mem_ctl_info *mci, struct amd64_pvt *pvt)
3097 {
3098 u8 i, ecc_en = 1, cpk_en = 1;
3099
3100 for (i = 0; i < NUM_UMCS; i++) {
3101 if (pvt->umc[i].sdp_ctrl & UMC_SDP_INIT) {
3102 ecc_en &= !!(pvt->umc[i].umc_cap_hi & UMC_ECC_ENABLED);
3103 cpk_en &= !!(pvt->umc[i].umc_cap_hi & UMC_ECC_CHIPKILL_CAP);
3104 }
3105 }
3106
3107 /* Set chipkill only if ECC is enabled: */
3108 if (ecc_en) {
3109 mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
3110
3111 if (cpk_en)
3112 mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
3113 }
3114 }
3115
3116 static void setup_mci_misc_attrs(struct mem_ctl_info *mci,
3117 struct amd64_family_type *fam)
3118 {
3119 struct amd64_pvt *pvt = mci->pvt_info;
3120
3121 mci->mtype_cap = MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
3122 mci->edac_ctl_cap = EDAC_FLAG_NONE;
3123
3124 if (pvt->umc) {
3125 f17h_determine_edac_ctl_cap(mci, pvt);
3126 } else {
3127 if (pvt->nbcap & NBCAP_SECDED)
3128 mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
3129
3130 if (pvt->nbcap & NBCAP_CHIPKILL)
3131 mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
3132 }
3133
3134 mci->edac_cap = determine_edac_cap(pvt);
3135 mci->mod_name = EDAC_MOD_STR;
3136 mci->mod_ver = EDAC_AMD64_VERSION;
3137 mci->ctl_name = fam->ctl_name;
3138 mci->dev_name = pci_name(pvt->F3);
3139 mci->ctl_page_to_phys = NULL;
3140
3141 /* memory scrubber interface */
3142 mci->set_sdram_scrub_rate = set_scrub_rate;
3143 mci->get_sdram_scrub_rate = get_scrub_rate;
3144 }
3145
3146 /*
3147 * returns a pointer to the family descriptor on success, NULL otherwise.
3148 */
3149 static struct amd64_family_type *per_family_init(struct amd64_pvt *pvt)
3150 {
3151 struct amd64_family_type *fam_type = NULL;
3152
3153 pvt->ext_model = boot_cpu_data.x86_model >> 4;
3154 pvt->stepping = boot_cpu_data.x86_mask;
3155 pvt->model = boot_cpu_data.x86_model;
3156 pvt->fam = boot_cpu_data.x86;
3157
3158 switch (pvt->fam) {
3159 case 0xf:
3160 fam_type = &family_types[K8_CPUS];
3161 pvt->ops = &family_types[K8_CPUS].ops;
3162 break;
3163
3164 case 0x10:
3165 fam_type = &family_types[F10_CPUS];
3166 pvt->ops = &family_types[F10_CPUS].ops;
3167 break;
3168
3169 case 0x15:
3170 if (pvt->model == 0x30) {
3171 fam_type = &family_types[F15_M30H_CPUS];
3172 pvt->ops = &family_types[F15_M30H_CPUS].ops;
3173 break;
3174 } else if (pvt->model == 0x60) {
3175 fam_type = &family_types[F15_M60H_CPUS];
3176 pvt->ops = &family_types[F15_M60H_CPUS].ops;
3177 break;
3178 }
3179
3180 fam_type = &family_types[F15_CPUS];
3181 pvt->ops = &family_types[F15_CPUS].ops;
3182 break;
3183
3184 case 0x16:
3185 if (pvt->model == 0x30) {
3186 fam_type = &family_types[F16_M30H_CPUS];
3187 pvt->ops = &family_types[F16_M30H_CPUS].ops;
3188 break;
3189 }
3190 fam_type = &family_types[F16_CPUS];
3191 pvt->ops = &family_types[F16_CPUS].ops;
3192 break;
3193
3194 case 0x17:
3195 fam_type = &family_types[F17_CPUS];
3196 pvt->ops = &family_types[F17_CPUS].ops;
3197 break;
3198
3199 default:
3200 amd64_err("Unsupported family!\n");
3201 return NULL;
3202 }
3203
3204 amd64_info("%s %sdetected (node %d).\n", fam_type->ctl_name,
3205 (pvt->fam == 0xf ?
3206 (pvt->ext_model >= K8_REV_F ? "revF or later "
3207 : "revE or earlier ")
3208 : ""), pvt->mc_node_id);
3209 return fam_type;
3210 }
3211
3212 static const struct attribute_group *amd64_edac_attr_groups[] = {
3213 #ifdef CONFIG_EDAC_DEBUG
3214 &amd64_edac_dbg_group,
3215 #endif
3216 #ifdef CONFIG_EDAC_AMD64_ERROR_INJECTION
3217 &amd64_edac_inj_group,
3218 #endif
3219 NULL
3220 };
3221
3222 static int init_one_instance(unsigned int nid)
3223 {
3224 struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
3225 struct amd64_family_type *fam_type = NULL;
3226 struct mem_ctl_info *mci = NULL;
3227 struct edac_mc_layer layers[2];
3228 struct amd64_pvt *pvt = NULL;
3229 u16 pci_id1, pci_id2;
3230 int err = 0, ret;
3231
3232 ret = -ENOMEM;
3233 pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
3234 if (!pvt)
3235 goto err_ret;
3236
3237 pvt->mc_node_id = nid;
3238 pvt->F3 = F3;
3239
3240 ret = -EINVAL;
3241 fam_type = per_family_init(pvt);
3242 if (!fam_type)
3243 goto err_free;
3244
3245 if (pvt->fam >= 0x17) {
3246 pvt->umc = kcalloc(NUM_UMCS, sizeof(struct amd64_umc), GFP_KERNEL);
3247 if (!pvt->umc) {
3248 ret = -ENOMEM;
3249 goto err_free;
3250 }
3251
3252 pci_id1 = fam_type->f0_id;
3253 pci_id2 = fam_type->f6_id;
3254 } else {
3255 pci_id1 = fam_type->f1_id;
3256 pci_id2 = fam_type->f2_id;
3257 }
3258
3259 err = reserve_mc_sibling_devs(pvt, pci_id1, pci_id2);
3260 if (err)
3261 goto err_post_init;
3262
3263 read_mc_regs(pvt);
3264
3265 /*
3266 * We need to determine how many memory channels there are. Then use
3267 * that information for calculating the size of the dynamic instance
3268 * tables in the 'mci' structure.
3269 */
3270 ret = -EINVAL;
3271 pvt->channel_count = pvt->ops->early_channel_count(pvt);
3272 if (pvt->channel_count < 0)
3273 goto err_siblings;
3274
3275 ret = -ENOMEM;
3276 layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
3277 layers[0].size = pvt->csels[0].b_cnt;
3278 layers[0].is_virt_csrow = true;
3279 layers[1].type = EDAC_MC_LAYER_CHANNEL;
3280
3281 /*
3282 * Always allocate two channels since we can have setups with DIMMs on
3283 * only one channel. Also, this simplifies handling later for the price
3284 * of a couple of KBs tops.
3285 */
3286 layers[1].size = 2;
3287 layers[1].is_virt_csrow = false;
3288
3289 mci = edac_mc_alloc(nid, ARRAY_SIZE(layers), layers, 0);
3290 if (!mci)
3291 goto err_siblings;
3292
3293 mci->pvt_info = pvt;
3294 mci->pdev = &pvt->F3->dev;
3295
3296 setup_mci_misc_attrs(mci, fam_type);
3297
3298 if (init_csrows(mci))
3299 mci->edac_cap = EDAC_FLAG_NONE;
3300
3301 ret = -ENODEV;
3302 if (edac_mc_add_mc_with_groups(mci, amd64_edac_attr_groups)) {
3303 edac_dbg(1, "failed edac_mc_add_mc()\n");
3304 goto err_add_mc;
3305 }
3306
3307 /* register stuff with EDAC MCE */
3308 if (report_gart_errors)
3309 amd_report_gart_errors(true);
3310
3311 if (pvt->umc)
3312 amd_register_ecc_decoder(decode_umc_error);
3313 else
3314 amd_register_ecc_decoder(decode_bus_error);
3315
3316 return 0;
3317
3318 err_add_mc:
3319 edac_mc_free(mci);
3320
3321 err_siblings:
3322 free_mc_sibling_devs(pvt);
3323
3324 err_post_init:
3325 if (pvt->fam >= 0x17)
3326 kfree(pvt->umc);
3327
3328 err_free:
3329 kfree(pvt);
3330
3331 err_ret:
3332 return ret;
3333 }
3334
3335 static int probe_one_instance(unsigned int nid)
3336 {
3337 struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
3338 struct ecc_settings *s;
3339 int ret;
3340
3341 ret = -ENOMEM;
3342 s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL);
3343 if (!s)
3344 goto err_out;
3345
3346 ecc_stngs[nid] = s;
3347
3348 if (!ecc_enabled(F3, nid)) {
3349 ret = -ENODEV;
3350
3351 if (!ecc_enable_override)
3352 goto err_enable;
3353
3354 if (boot_cpu_data.x86 >= 0x17) {
3355 amd64_warn("Forcing ECC on is not recommended on newer systems. Please enable ECC in BIOS.");
3356 goto err_enable;
3357 } else
3358 amd64_warn("Forcing ECC on!\n");
3359
3360 if (!enable_ecc_error_reporting(s, nid, F3))
3361 goto err_enable;
3362 }
3363
3364 ret = init_one_instance(nid);
3365 if (ret < 0) {
3366 amd64_err("Error probing instance: %d\n", nid);
3367
3368 if (boot_cpu_data.x86 < 0x17)
3369 restore_ecc_error_reporting(s, nid, F3);
3370 }
3371
3372 return ret;
3373
3374 err_enable:
3375 kfree(s);
3376 ecc_stngs[nid] = NULL;
3377
3378 err_out:
3379 return ret;
3380 }
3381
3382 static void remove_one_instance(unsigned int nid)
3383 {
3384 struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
3385 struct ecc_settings *s = ecc_stngs[nid];
3386 struct mem_ctl_info *mci;
3387 struct amd64_pvt *pvt;
3388
3389 mci = find_mci_by_dev(&F3->dev);
3390 WARN_ON(!mci);
3391
3392 /* Remove from EDAC CORE tracking list */
3393 mci = edac_mc_del_mc(&F3->dev);
3394 if (!mci)
3395 return;
3396
3397 pvt = mci->pvt_info;
3398
3399 restore_ecc_error_reporting(s, nid, F3);
3400
3401 free_mc_sibling_devs(pvt);
3402
3403 /* unregister from EDAC MCE */
3404 amd_report_gart_errors(false);
3405
3406 if (pvt->umc)
3407 amd_unregister_ecc_decoder(decode_umc_error);
3408 else
3409 amd_unregister_ecc_decoder(decode_bus_error);
3410
3411 kfree(ecc_stngs[nid]);
3412 ecc_stngs[nid] = NULL;
3413
3414 /* Free the EDAC CORE resources */
3415 mci->pvt_info = NULL;
3416
3417 kfree(pvt);
3418 edac_mc_free(mci);
3419 }
3420
3421 static void setup_pci_device(void)
3422 {
3423 struct mem_ctl_info *mci;
3424 struct amd64_pvt *pvt;
3425
3426 if (pci_ctl)
3427 return;
3428
3429 mci = edac_mc_find(0);
3430 if (!mci)
3431 return;
3432
3433 pvt = mci->pvt_info;
3434 if (pvt->umc)
3435 pci_ctl = edac_pci_create_generic_ctl(&pvt->F0->dev, EDAC_MOD_STR);
3436 else
3437 pci_ctl = edac_pci_create_generic_ctl(&pvt->F2->dev, EDAC_MOD_STR);
3438 if (!pci_ctl) {
3439 pr_warn("%s(): Unable to create PCI control\n", __func__);
3440 pr_warn("%s(): PCI error report via EDAC not set\n", __func__);
3441 }
3442 }
3443
3444 static const struct x86_cpu_id amd64_cpuids[] = {
3445 { X86_VENDOR_AMD, 0xF, X86_MODEL_ANY, X86_FEATURE_ANY, 0 },
3446 { X86_VENDOR_AMD, 0x10, X86_MODEL_ANY, X86_FEATURE_ANY, 0 },
3447 { X86_VENDOR_AMD, 0x15, X86_MODEL_ANY, X86_FEATURE_ANY, 0 },
3448 { X86_VENDOR_AMD, 0x16, X86_MODEL_ANY, X86_FEATURE_ANY, 0 },
3449 { X86_VENDOR_AMD, 0x17, X86_MODEL_ANY, X86_FEATURE_ANY, 0 },
3450 { }
3451 };
3452 MODULE_DEVICE_TABLE(x86cpu, amd64_cpuids);
3453
3454 static int __init amd64_edac_init(void)
3455 {
3456 int err = -ENODEV;
3457 int i;
3458
3459 if (amd_cache_northbridges() < 0)
3460 goto err_ret;
3461
3462 opstate_init();
3463
3464 err = -ENOMEM;
3465 ecc_stngs = kzalloc(amd_nb_num() * sizeof(ecc_stngs[0]), GFP_KERNEL);
3466 if (!ecc_stngs)
3467 goto err_free;
3468
3469 msrs = msrs_alloc();
3470 if (!msrs)
3471 goto err_free;
3472
3473 for (i = 0; i < amd_nb_num(); i++)
3474 if (probe_one_instance(i)) {
3475 /* unwind properly */
3476 while (--i >= 0)
3477 remove_one_instance(i);
3478
3479 goto err_pci;
3480 }
3481
3482 setup_pci_device();
3483
3484 #ifdef CONFIG_X86_32
3485 amd64_err("%s on 32-bit is unsupported. USE AT YOUR OWN RISK!\n", EDAC_MOD_STR);
3486 #endif
3487
3488 printk(KERN_INFO "AMD64 EDAC driver v%s\n", EDAC_AMD64_VERSION);
3489
3490 return 0;
3491
3492 err_pci:
3493 msrs_free(msrs);
3494 msrs = NULL;
3495
3496 err_free:
3497 kfree(ecc_stngs);
3498 ecc_stngs = NULL;
3499
3500 err_ret:
3501 return err;
3502 }
3503
3504 static void __exit amd64_edac_exit(void)
3505 {
3506 int i;
3507
3508 if (pci_ctl)
3509 edac_pci_release_generic_ctl(pci_ctl);
3510
3511 for (i = 0; i < amd_nb_num(); i++)
3512 remove_one_instance(i);
3513
3514 kfree(ecc_stngs);
3515 ecc_stngs = NULL;
3516
3517 msrs_free(msrs);
3518 msrs = NULL;
3519 }
3520
3521 module_init(amd64_edac_init);
3522 module_exit(amd64_edac_exit);
3523
3524 MODULE_LICENSE("GPL");
3525 MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
3526 "Dave Peterson, Thayne Harbaugh");
3527 MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
3528 EDAC_AMD64_VERSION);
3529
3530 module_param(edac_op_state, int, 0444);
3531 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");