]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/edac/amd64_edac.c
Merge branch 'mips-next-3.10' of git://git.linux-mips.org/pub/scm/john/linux-john...
[mirror_ubuntu-bionic-kernel.git] / drivers / edac / amd64_edac.c
1 #include "amd64_edac.h"
2 #include <asm/amd_nb.h>
3
4 static struct edac_pci_ctl_info *amd64_ctl_pci;
5
6 static int report_gart_errors;
7 module_param(report_gart_errors, int, 0644);
8
9 /*
10 * Set by command line parameter. If BIOS has enabled the ECC, this override is
11 * cleared to prevent re-enabling the hardware by this driver.
12 */
13 static int ecc_enable_override;
14 module_param(ecc_enable_override, int, 0644);
15
16 static struct msr __percpu *msrs;
17
18 /*
19 * count successfully initialized driver instances for setup_pci_device()
20 */
21 static atomic_t drv_instances = ATOMIC_INIT(0);
22
23 /* Per-node driver instances */
24 static struct mem_ctl_info **mcis;
25 static struct ecc_settings **ecc_stngs;
26
27 /*
28 * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
29 * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
30 * or higher value'.
31 *
32 *FIXME: Produce a better mapping/linearisation.
33 */
34 static const struct scrubrate {
35 u32 scrubval; /* bit pattern for scrub rate */
36 u32 bandwidth; /* bandwidth consumed (bytes/sec) */
37 } scrubrates[] = {
38 { 0x01, 1600000000UL},
39 { 0x02, 800000000UL},
40 { 0x03, 400000000UL},
41 { 0x04, 200000000UL},
42 { 0x05, 100000000UL},
43 { 0x06, 50000000UL},
44 { 0x07, 25000000UL},
45 { 0x08, 12284069UL},
46 { 0x09, 6274509UL},
47 { 0x0A, 3121951UL},
48 { 0x0B, 1560975UL},
49 { 0x0C, 781440UL},
50 { 0x0D, 390720UL},
51 { 0x0E, 195300UL},
52 { 0x0F, 97650UL},
53 { 0x10, 48854UL},
54 { 0x11, 24427UL},
55 { 0x12, 12213UL},
56 { 0x13, 6101UL},
57 { 0x14, 3051UL},
58 { 0x15, 1523UL},
59 { 0x16, 761UL},
60 { 0x00, 0UL}, /* scrubbing off */
61 };
62
63 int __amd64_read_pci_cfg_dword(struct pci_dev *pdev, int offset,
64 u32 *val, const char *func)
65 {
66 int err = 0;
67
68 err = pci_read_config_dword(pdev, offset, val);
69 if (err)
70 amd64_warn("%s: error reading F%dx%03x.\n",
71 func, PCI_FUNC(pdev->devfn), offset);
72
73 return err;
74 }
75
76 int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset,
77 u32 val, const char *func)
78 {
79 int err = 0;
80
81 err = pci_write_config_dword(pdev, offset, val);
82 if (err)
83 amd64_warn("%s: error writing to F%dx%03x.\n",
84 func, PCI_FUNC(pdev->devfn), offset);
85
86 return err;
87 }
88
89 /*
90 *
91 * Depending on the family, F2 DCT reads need special handling:
92 *
93 * K8: has a single DCT only
94 *
95 * F10h: each DCT has its own set of regs
96 * DCT0 -> F2x040..
97 * DCT1 -> F2x140..
98 *
99 * F15h: we select which DCT we access using F1x10C[DctCfgSel]
100 *
101 */
102 static int k8_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
103 const char *func)
104 {
105 if (addr >= 0x100)
106 return -EINVAL;
107
108 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
109 }
110
111 static int f10_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
112 const char *func)
113 {
114 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
115 }
116
117 /*
118 * Select DCT to which PCI cfg accesses are routed
119 */
120 static void f15h_select_dct(struct amd64_pvt *pvt, u8 dct)
121 {
122 u32 reg = 0;
123
124 amd64_read_pci_cfg(pvt->F1, DCT_CFG_SEL, &reg);
125 reg &= 0xfffffffe;
126 reg |= dct;
127 amd64_write_pci_cfg(pvt->F1, DCT_CFG_SEL, reg);
128 }
129
130 static int f15_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
131 const char *func)
132 {
133 u8 dct = 0;
134
135 if (addr >= 0x140 && addr <= 0x1a0) {
136 dct = 1;
137 addr -= 0x100;
138 }
139
140 f15h_select_dct(pvt, dct);
141
142 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
143 }
144
145 /*
146 * Memory scrubber control interface. For K8, memory scrubbing is handled by
147 * hardware and can involve L2 cache, dcache as well as the main memory. With
148 * F10, this is extended to L3 cache scrubbing on CPU models sporting that
149 * functionality.
150 *
151 * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
152 * (dram) over to cache lines. This is nasty, so we will use bandwidth in
153 * bytes/sec for the setting.
154 *
155 * Currently, we only do dram scrubbing. If the scrubbing is done in software on
156 * other archs, we might not have access to the caches directly.
157 */
158
159 /*
160 * scan the scrub rate mapping table for a close or matching bandwidth value to
161 * issue. If requested is too big, then use last maximum value found.
162 */
163 static int __amd64_set_scrub_rate(struct pci_dev *ctl, u32 new_bw, u32 min_rate)
164 {
165 u32 scrubval;
166 int i;
167
168 /*
169 * map the configured rate (new_bw) to a value specific to the AMD64
170 * memory controller and apply to register. Search for the first
171 * bandwidth entry that is greater or equal than the setting requested
172 * and program that. If at last entry, turn off DRAM scrubbing.
173 *
174 * If no suitable bandwidth is found, turn off DRAM scrubbing entirely
175 * by falling back to the last element in scrubrates[].
176 */
177 for (i = 0; i < ARRAY_SIZE(scrubrates) - 1; i++) {
178 /*
179 * skip scrub rates which aren't recommended
180 * (see F10 BKDG, F3x58)
181 */
182 if (scrubrates[i].scrubval < min_rate)
183 continue;
184
185 if (scrubrates[i].bandwidth <= new_bw)
186 break;
187 }
188
189 scrubval = scrubrates[i].scrubval;
190
191 pci_write_bits32(ctl, SCRCTRL, scrubval, 0x001F);
192
193 if (scrubval)
194 return scrubrates[i].bandwidth;
195
196 return 0;
197 }
198
199 static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 bw)
200 {
201 struct amd64_pvt *pvt = mci->pvt_info;
202 u32 min_scrubrate = 0x5;
203
204 if (boot_cpu_data.x86 == 0xf)
205 min_scrubrate = 0x0;
206
207 /* F15h Erratum #505 */
208 if (boot_cpu_data.x86 == 0x15)
209 f15h_select_dct(pvt, 0);
210
211 return __amd64_set_scrub_rate(pvt->F3, bw, min_scrubrate);
212 }
213
214 static int amd64_get_scrub_rate(struct mem_ctl_info *mci)
215 {
216 struct amd64_pvt *pvt = mci->pvt_info;
217 u32 scrubval = 0;
218 int i, retval = -EINVAL;
219
220 /* F15h Erratum #505 */
221 if (boot_cpu_data.x86 == 0x15)
222 f15h_select_dct(pvt, 0);
223
224 amd64_read_pci_cfg(pvt->F3, SCRCTRL, &scrubval);
225
226 scrubval = scrubval & 0x001F;
227
228 for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
229 if (scrubrates[i].scrubval == scrubval) {
230 retval = scrubrates[i].bandwidth;
231 break;
232 }
233 }
234 return retval;
235 }
236
237 /*
238 * returns true if the SysAddr given by sys_addr matches the
239 * DRAM base/limit associated with node_id
240 */
241 static bool amd64_base_limit_match(struct amd64_pvt *pvt, u64 sys_addr,
242 u8 nid)
243 {
244 u64 addr;
245
246 /* The K8 treats this as a 40-bit value. However, bits 63-40 will be
247 * all ones if the most significant implemented address bit is 1.
248 * Here we discard bits 63-40. See section 3.4.2 of AMD publication
249 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
250 * Application Programming.
251 */
252 addr = sys_addr & 0x000000ffffffffffull;
253
254 return ((addr >= get_dram_base(pvt, nid)) &&
255 (addr <= get_dram_limit(pvt, nid)));
256 }
257
258 /*
259 * Attempt to map a SysAddr to a node. On success, return a pointer to the
260 * mem_ctl_info structure for the node that the SysAddr maps to.
261 *
262 * On failure, return NULL.
263 */
264 static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
265 u64 sys_addr)
266 {
267 struct amd64_pvt *pvt;
268 u8 node_id;
269 u32 intlv_en, bits;
270
271 /*
272 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
273 * 3.4.4.2) registers to map the SysAddr to a node ID.
274 */
275 pvt = mci->pvt_info;
276
277 /*
278 * The value of this field should be the same for all DRAM Base
279 * registers. Therefore we arbitrarily choose to read it from the
280 * register for node 0.
281 */
282 intlv_en = dram_intlv_en(pvt, 0);
283
284 if (intlv_en == 0) {
285 for (node_id = 0; node_id < DRAM_RANGES; node_id++) {
286 if (amd64_base_limit_match(pvt, sys_addr, node_id))
287 goto found;
288 }
289 goto err_no_match;
290 }
291
292 if (unlikely((intlv_en != 0x01) &&
293 (intlv_en != 0x03) &&
294 (intlv_en != 0x07))) {
295 amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en);
296 return NULL;
297 }
298
299 bits = (((u32) sys_addr) >> 12) & intlv_en;
300
301 for (node_id = 0; ; ) {
302 if ((dram_intlv_sel(pvt, node_id) & intlv_en) == bits)
303 break; /* intlv_sel field matches */
304
305 if (++node_id >= DRAM_RANGES)
306 goto err_no_match;
307 }
308
309 /* sanity test for sys_addr */
310 if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) {
311 amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address"
312 "range for node %d with node interleaving enabled.\n",
313 __func__, sys_addr, node_id);
314 return NULL;
315 }
316
317 found:
318 return edac_mc_find((int)node_id);
319
320 err_no_match:
321 edac_dbg(2, "sys_addr 0x%lx doesn't match any node\n",
322 (unsigned long)sys_addr);
323
324 return NULL;
325 }
326
327 /*
328 * compute the CS base address of the @csrow on the DRAM controller @dct.
329 * For details see F2x[5C:40] in the processor's BKDG
330 */
331 static void get_cs_base_and_mask(struct amd64_pvt *pvt, int csrow, u8 dct,
332 u64 *base, u64 *mask)
333 {
334 u64 csbase, csmask, base_bits, mask_bits;
335 u8 addr_shift;
336
337 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
338 csbase = pvt->csels[dct].csbases[csrow];
339 csmask = pvt->csels[dct].csmasks[csrow];
340 base_bits = GENMASK(21, 31) | GENMASK(9, 15);
341 mask_bits = GENMASK(21, 29) | GENMASK(9, 15);
342 addr_shift = 4;
343 } else {
344 csbase = pvt->csels[dct].csbases[csrow];
345 csmask = pvt->csels[dct].csmasks[csrow >> 1];
346 addr_shift = 8;
347
348 if (boot_cpu_data.x86 == 0x15)
349 base_bits = mask_bits = GENMASK(19,30) | GENMASK(5,13);
350 else
351 base_bits = mask_bits = GENMASK(19,28) | GENMASK(5,13);
352 }
353
354 *base = (csbase & base_bits) << addr_shift;
355
356 *mask = ~0ULL;
357 /* poke holes for the csmask */
358 *mask &= ~(mask_bits << addr_shift);
359 /* OR them in */
360 *mask |= (csmask & mask_bits) << addr_shift;
361 }
362
363 #define for_each_chip_select(i, dct, pvt) \
364 for (i = 0; i < pvt->csels[dct].b_cnt; i++)
365
366 #define chip_select_base(i, dct, pvt) \
367 pvt->csels[dct].csbases[i]
368
369 #define for_each_chip_select_mask(i, dct, pvt) \
370 for (i = 0; i < pvt->csels[dct].m_cnt; i++)
371
372 /*
373 * @input_addr is an InputAddr associated with the node given by mci. Return the
374 * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
375 */
376 static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
377 {
378 struct amd64_pvt *pvt;
379 int csrow;
380 u64 base, mask;
381
382 pvt = mci->pvt_info;
383
384 for_each_chip_select(csrow, 0, pvt) {
385 if (!csrow_enabled(csrow, 0, pvt))
386 continue;
387
388 get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);
389
390 mask = ~mask;
391
392 if ((input_addr & mask) == (base & mask)) {
393 edac_dbg(2, "InputAddr 0x%lx matches csrow %d (node %d)\n",
394 (unsigned long)input_addr, csrow,
395 pvt->mc_node_id);
396
397 return csrow;
398 }
399 }
400 edac_dbg(2, "no matching csrow for InputAddr 0x%lx (MC node %d)\n",
401 (unsigned long)input_addr, pvt->mc_node_id);
402
403 return -1;
404 }
405
406 /*
407 * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
408 * for the node represented by mci. Info is passed back in *hole_base,
409 * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if
410 * info is invalid. Info may be invalid for either of the following reasons:
411 *
412 * - The revision of the node is not E or greater. In this case, the DRAM Hole
413 * Address Register does not exist.
414 *
415 * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
416 * indicating that its contents are not valid.
417 *
418 * The values passed back in *hole_base, *hole_offset, and *hole_size are
419 * complete 32-bit values despite the fact that the bitfields in the DHAR
420 * only represent bits 31-24 of the base and offset values.
421 */
422 int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
423 u64 *hole_offset, u64 *hole_size)
424 {
425 struct amd64_pvt *pvt = mci->pvt_info;
426
427 /* only revE and later have the DRAM Hole Address Register */
428 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_E) {
429 edac_dbg(1, " revision %d for node %d does not support DHAR\n",
430 pvt->ext_model, pvt->mc_node_id);
431 return 1;
432 }
433
434 /* valid for Fam10h and above */
435 if (boot_cpu_data.x86 >= 0x10 && !dhar_mem_hoist_valid(pvt)) {
436 edac_dbg(1, " Dram Memory Hoisting is DISABLED on this system\n");
437 return 1;
438 }
439
440 if (!dhar_valid(pvt)) {
441 edac_dbg(1, " Dram Memory Hoisting is DISABLED on this node %d\n",
442 pvt->mc_node_id);
443 return 1;
444 }
445
446 /* This node has Memory Hoisting */
447
448 /* +------------------+--------------------+--------------------+-----
449 * | memory | DRAM hole | relocated |
450 * | [0, (x - 1)] | [x, 0xffffffff] | addresses from |
451 * | | | DRAM hole |
452 * | | | [0x100000000, |
453 * | | | (0x100000000+ |
454 * | | | (0xffffffff-x))] |
455 * +------------------+--------------------+--------------------+-----
456 *
457 * Above is a diagram of physical memory showing the DRAM hole and the
458 * relocated addresses from the DRAM hole. As shown, the DRAM hole
459 * starts at address x (the base address) and extends through address
460 * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the
461 * addresses in the hole so that they start at 0x100000000.
462 */
463
464 *hole_base = dhar_base(pvt);
465 *hole_size = (1ULL << 32) - *hole_base;
466
467 if (boot_cpu_data.x86 > 0xf)
468 *hole_offset = f10_dhar_offset(pvt);
469 else
470 *hole_offset = k8_dhar_offset(pvt);
471
472 edac_dbg(1, " DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
473 pvt->mc_node_id, (unsigned long)*hole_base,
474 (unsigned long)*hole_offset, (unsigned long)*hole_size);
475
476 return 0;
477 }
478 EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
479
480 /*
481 * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is
482 * assumed that sys_addr maps to the node given by mci.
483 *
484 * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
485 * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
486 * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
487 * then it is also involved in translating a SysAddr to a DramAddr. Sections
488 * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
489 * These parts of the documentation are unclear. I interpret them as follows:
490 *
491 * When node n receives a SysAddr, it processes the SysAddr as follows:
492 *
493 * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
494 * Limit registers for node n. If the SysAddr is not within the range
495 * specified by the base and limit values, then node n ignores the Sysaddr
496 * (since it does not map to node n). Otherwise continue to step 2 below.
497 *
498 * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
499 * disabled so skip to step 3 below. Otherwise see if the SysAddr is within
500 * the range of relocated addresses (starting at 0x100000000) from the DRAM
501 * hole. If not, skip to step 3 below. Else get the value of the
502 * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
503 * offset defined by this value from the SysAddr.
504 *
505 * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
506 * Base register for node n. To obtain the DramAddr, subtract the base
507 * address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
508 */
509 static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
510 {
511 struct amd64_pvt *pvt = mci->pvt_info;
512 u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
513 int ret;
514
515 dram_base = get_dram_base(pvt, pvt->mc_node_id);
516
517 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
518 &hole_size);
519 if (!ret) {
520 if ((sys_addr >= (1ULL << 32)) &&
521 (sys_addr < ((1ULL << 32) + hole_size))) {
522 /* use DHAR to translate SysAddr to DramAddr */
523 dram_addr = sys_addr - hole_offset;
524
525 edac_dbg(2, "using DHAR to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
526 (unsigned long)sys_addr,
527 (unsigned long)dram_addr);
528
529 return dram_addr;
530 }
531 }
532
533 /*
534 * Translate the SysAddr to a DramAddr as shown near the start of
535 * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8
536 * only deals with 40-bit values. Therefore we discard bits 63-40 of
537 * sys_addr below. If bit 39 of sys_addr is 1 then the bits we
538 * discard are all 1s. Otherwise the bits we discard are all 0s. See
539 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
540 * Programmer's Manual Volume 1 Application Programming.
541 */
542 dram_addr = (sys_addr & GENMASK(0, 39)) - dram_base;
543
544 edac_dbg(2, "using DRAM Base register to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
545 (unsigned long)sys_addr, (unsigned long)dram_addr);
546 return dram_addr;
547 }
548
549 /*
550 * @intlv_en is the value of the IntlvEn field from a DRAM Base register
551 * (section 3.4.4.1). Return the number of bits from a SysAddr that are used
552 * for node interleaving.
553 */
554 static int num_node_interleave_bits(unsigned intlv_en)
555 {
556 static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
557 int n;
558
559 BUG_ON(intlv_en > 7);
560 n = intlv_shift_table[intlv_en];
561 return n;
562 }
563
564 /* Translate the DramAddr given by @dram_addr to an InputAddr. */
565 static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
566 {
567 struct amd64_pvt *pvt;
568 int intlv_shift;
569 u64 input_addr;
570
571 pvt = mci->pvt_info;
572
573 /*
574 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
575 * concerning translating a DramAddr to an InputAddr.
576 */
577 intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
578 input_addr = ((dram_addr >> intlv_shift) & GENMASK(12, 35)) +
579 (dram_addr & 0xfff);
580
581 edac_dbg(2, " Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
582 intlv_shift, (unsigned long)dram_addr,
583 (unsigned long)input_addr);
584
585 return input_addr;
586 }
587
588 /*
589 * Translate the SysAddr represented by @sys_addr to an InputAddr. It is
590 * assumed that @sys_addr maps to the node given by mci.
591 */
592 static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
593 {
594 u64 input_addr;
595
596 input_addr =
597 dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
598
599 edac_dbg(2, "SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
600 (unsigned long)sys_addr, (unsigned long)input_addr);
601
602 return input_addr;
603 }
604
605 /* Map the Error address to a PAGE and PAGE OFFSET. */
606 static inline void error_address_to_page_and_offset(u64 error_address,
607 struct err_info *err)
608 {
609 err->page = (u32) (error_address >> PAGE_SHIFT);
610 err->offset = ((u32) error_address) & ~PAGE_MASK;
611 }
612
613 /*
614 * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
615 * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
616 * of a node that detected an ECC memory error. mci represents the node that
617 * the error address maps to (possibly different from the node that detected
618 * the error). Return the number of the csrow that sys_addr maps to, or -1 on
619 * error.
620 */
621 static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
622 {
623 int csrow;
624
625 csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
626
627 if (csrow == -1)
628 amd64_mc_err(mci, "Failed to translate InputAddr to csrow for "
629 "address 0x%lx\n", (unsigned long)sys_addr);
630 return csrow;
631 }
632
633 static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
634
635 /*
636 * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
637 * are ECC capable.
638 */
639 static unsigned long amd64_determine_edac_cap(struct amd64_pvt *pvt)
640 {
641 u8 bit;
642 unsigned long edac_cap = EDAC_FLAG_NONE;
643
644 bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= K8_REV_F)
645 ? 19
646 : 17;
647
648 if (pvt->dclr0 & BIT(bit))
649 edac_cap = EDAC_FLAG_SECDED;
650
651 return edac_cap;
652 }
653
654 static void amd64_debug_display_dimm_sizes(struct amd64_pvt *, u8);
655
656 static void amd64_dump_dramcfg_low(u32 dclr, int chan)
657 {
658 edac_dbg(1, "F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);
659
660 edac_dbg(1, " DIMM type: %sbuffered; all DIMMs support ECC: %s\n",
661 (dclr & BIT(16)) ? "un" : "",
662 (dclr & BIT(19)) ? "yes" : "no");
663
664 edac_dbg(1, " PAR/ERR parity: %s\n",
665 (dclr & BIT(8)) ? "enabled" : "disabled");
666
667 if (boot_cpu_data.x86 == 0x10)
668 edac_dbg(1, " DCT 128bit mode width: %s\n",
669 (dclr & BIT(11)) ? "128b" : "64b");
670
671 edac_dbg(1, " x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
672 (dclr & BIT(12)) ? "yes" : "no",
673 (dclr & BIT(13)) ? "yes" : "no",
674 (dclr & BIT(14)) ? "yes" : "no",
675 (dclr & BIT(15)) ? "yes" : "no");
676 }
677
678 /* Display and decode various NB registers for debug purposes. */
679 static void dump_misc_regs(struct amd64_pvt *pvt)
680 {
681 edac_dbg(1, "F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);
682
683 edac_dbg(1, " NB two channel DRAM capable: %s\n",
684 (pvt->nbcap & NBCAP_DCT_DUAL) ? "yes" : "no");
685
686 edac_dbg(1, " ECC capable: %s, ChipKill ECC capable: %s\n",
687 (pvt->nbcap & NBCAP_SECDED) ? "yes" : "no",
688 (pvt->nbcap & NBCAP_CHIPKILL) ? "yes" : "no");
689
690 amd64_dump_dramcfg_low(pvt->dclr0, 0);
691
692 edac_dbg(1, "F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
693
694 edac_dbg(1, "F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, offset: 0x%08x\n",
695 pvt->dhar, dhar_base(pvt),
696 (boot_cpu_data.x86 == 0xf) ? k8_dhar_offset(pvt)
697 : f10_dhar_offset(pvt));
698
699 edac_dbg(1, " DramHoleValid: %s\n", dhar_valid(pvt) ? "yes" : "no");
700
701 amd64_debug_display_dimm_sizes(pvt, 0);
702
703 /* everything below this point is Fam10h and above */
704 if (boot_cpu_data.x86 == 0xf)
705 return;
706
707 amd64_debug_display_dimm_sizes(pvt, 1);
708
709 amd64_info("using %s syndromes.\n", ((pvt->ecc_sym_sz == 8) ? "x8" : "x4"));
710
711 /* Only if NOT ganged does dclr1 have valid info */
712 if (!dct_ganging_enabled(pvt))
713 amd64_dump_dramcfg_low(pvt->dclr1, 1);
714 }
715
716 /*
717 * see BKDG, F2x[1,0][5C:40], F2[1,0][6C:60]
718 */
719 static void prep_chip_selects(struct amd64_pvt *pvt)
720 {
721 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
722 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
723 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 8;
724 } else {
725 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
726 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 4;
727 }
728 }
729
730 /*
731 * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask registers
732 */
733 static void read_dct_base_mask(struct amd64_pvt *pvt)
734 {
735 int cs;
736
737 prep_chip_selects(pvt);
738
739 for_each_chip_select(cs, 0, pvt) {
740 int reg0 = DCSB0 + (cs * 4);
741 int reg1 = DCSB1 + (cs * 4);
742 u32 *base0 = &pvt->csels[0].csbases[cs];
743 u32 *base1 = &pvt->csels[1].csbases[cs];
744
745 if (!amd64_read_dct_pci_cfg(pvt, reg0, base0))
746 edac_dbg(0, " DCSB0[%d]=0x%08x reg: F2x%x\n",
747 cs, *base0, reg0);
748
749 if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt))
750 continue;
751
752 if (!amd64_read_dct_pci_cfg(pvt, reg1, base1))
753 edac_dbg(0, " DCSB1[%d]=0x%08x reg: F2x%x\n",
754 cs, *base1, reg1);
755 }
756
757 for_each_chip_select_mask(cs, 0, pvt) {
758 int reg0 = DCSM0 + (cs * 4);
759 int reg1 = DCSM1 + (cs * 4);
760 u32 *mask0 = &pvt->csels[0].csmasks[cs];
761 u32 *mask1 = &pvt->csels[1].csmasks[cs];
762
763 if (!amd64_read_dct_pci_cfg(pvt, reg0, mask0))
764 edac_dbg(0, " DCSM0[%d]=0x%08x reg: F2x%x\n",
765 cs, *mask0, reg0);
766
767 if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt))
768 continue;
769
770 if (!amd64_read_dct_pci_cfg(pvt, reg1, mask1))
771 edac_dbg(0, " DCSM1[%d]=0x%08x reg: F2x%x\n",
772 cs, *mask1, reg1);
773 }
774 }
775
776 static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt, int cs)
777 {
778 enum mem_type type;
779
780 /* F15h supports only DDR3 */
781 if (boot_cpu_data.x86 >= 0x15)
782 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
783 else if (boot_cpu_data.x86 == 0x10 || pvt->ext_model >= K8_REV_F) {
784 if (pvt->dchr0 & DDR3_MODE)
785 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
786 else
787 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
788 } else {
789 type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
790 }
791
792 amd64_info("CS%d: %s\n", cs, edac_mem_types[type]);
793
794 return type;
795 }
796
797 /* Get the number of DCT channels the memory controller is using. */
798 static int k8_early_channel_count(struct amd64_pvt *pvt)
799 {
800 int flag;
801
802 if (pvt->ext_model >= K8_REV_F)
803 /* RevF (NPT) and later */
804 flag = pvt->dclr0 & WIDTH_128;
805 else
806 /* RevE and earlier */
807 flag = pvt->dclr0 & REVE_WIDTH_128;
808
809 /* not used */
810 pvt->dclr1 = 0;
811
812 return (flag) ? 2 : 1;
813 }
814
815 /* On F10h and later ErrAddr is MC4_ADDR[47:1] */
816 static u64 get_error_address(struct mce *m)
817 {
818 struct cpuinfo_x86 *c = &boot_cpu_data;
819 u64 addr;
820 u8 start_bit = 1;
821 u8 end_bit = 47;
822
823 if (c->x86 == 0xf) {
824 start_bit = 3;
825 end_bit = 39;
826 }
827
828 addr = m->addr & GENMASK(start_bit, end_bit);
829
830 /*
831 * Erratum 637 workaround
832 */
833 if (c->x86 == 0x15) {
834 struct amd64_pvt *pvt;
835 u64 cc6_base, tmp_addr;
836 u32 tmp;
837 u16 mce_nid;
838 u8 intlv_en;
839
840 if ((addr & GENMASK(24, 47)) >> 24 != 0x00fdf7)
841 return addr;
842
843 mce_nid = amd_get_nb_id(m->extcpu);
844 pvt = mcis[mce_nid]->pvt_info;
845
846 amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_LIM, &tmp);
847 intlv_en = tmp >> 21 & 0x7;
848
849 /* add [47:27] + 3 trailing bits */
850 cc6_base = (tmp & GENMASK(0, 20)) << 3;
851
852 /* reverse and add DramIntlvEn */
853 cc6_base |= intlv_en ^ 0x7;
854
855 /* pin at [47:24] */
856 cc6_base <<= 24;
857
858 if (!intlv_en)
859 return cc6_base | (addr & GENMASK(0, 23));
860
861 amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_BASE, &tmp);
862
863 /* faster log2 */
864 tmp_addr = (addr & GENMASK(12, 23)) << __fls(intlv_en + 1);
865
866 /* OR DramIntlvSel into bits [14:12] */
867 tmp_addr |= (tmp & GENMASK(21, 23)) >> 9;
868
869 /* add remaining [11:0] bits from original MC4_ADDR */
870 tmp_addr |= addr & GENMASK(0, 11);
871
872 return cc6_base | tmp_addr;
873 }
874
875 return addr;
876 }
877
878 static struct pci_dev *pci_get_related_function(unsigned int vendor,
879 unsigned int device,
880 struct pci_dev *related)
881 {
882 struct pci_dev *dev = NULL;
883
884 while ((dev = pci_get_device(vendor, device, dev))) {
885 if (pci_domain_nr(dev->bus) == pci_domain_nr(related->bus) &&
886 (dev->bus->number == related->bus->number) &&
887 (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
888 break;
889 }
890
891 return dev;
892 }
893
894 static void read_dram_base_limit_regs(struct amd64_pvt *pvt, unsigned range)
895 {
896 struct amd_northbridge *nb;
897 struct pci_dev *misc, *f1 = NULL;
898 struct cpuinfo_x86 *c = &boot_cpu_data;
899 int off = range << 3;
900 u32 llim;
901
902 amd64_read_pci_cfg(pvt->F1, DRAM_BASE_LO + off, &pvt->ranges[range].base.lo);
903 amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_LO + off, &pvt->ranges[range].lim.lo);
904
905 if (c->x86 == 0xf)
906 return;
907
908 if (!dram_rw(pvt, range))
909 return;
910
911 amd64_read_pci_cfg(pvt->F1, DRAM_BASE_HI + off, &pvt->ranges[range].base.hi);
912 amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_HI + off, &pvt->ranges[range].lim.hi);
913
914 /* F15h: factor in CC6 save area by reading dst node's limit reg */
915 if (c->x86 != 0x15)
916 return;
917
918 nb = node_to_amd_nb(dram_dst_node(pvt, range));
919 if (WARN_ON(!nb))
920 return;
921
922 misc = nb->misc;
923 f1 = pci_get_related_function(misc->vendor, PCI_DEVICE_ID_AMD_15H_NB_F1, misc);
924 if (WARN_ON(!f1))
925 return;
926
927 amd64_read_pci_cfg(f1, DRAM_LOCAL_NODE_LIM, &llim);
928
929 pvt->ranges[range].lim.lo &= GENMASK(0, 15);
930
931 /* {[39:27],111b} */
932 pvt->ranges[range].lim.lo |= ((llim & 0x1fff) << 3 | 0x7) << 16;
933
934 pvt->ranges[range].lim.hi &= GENMASK(0, 7);
935
936 /* [47:40] */
937 pvt->ranges[range].lim.hi |= llim >> 13;
938
939 pci_dev_put(f1);
940 }
941
942 static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
943 struct err_info *err)
944 {
945 struct amd64_pvt *pvt = mci->pvt_info;
946
947 error_address_to_page_and_offset(sys_addr, err);
948
949 /*
950 * Find out which node the error address belongs to. This may be
951 * different from the node that detected the error.
952 */
953 err->src_mci = find_mc_by_sys_addr(mci, sys_addr);
954 if (!err->src_mci) {
955 amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n",
956 (unsigned long)sys_addr);
957 err->err_code = ERR_NODE;
958 return;
959 }
960
961 /* Now map the sys_addr to a CSROW */
962 err->csrow = sys_addr_to_csrow(err->src_mci, sys_addr);
963 if (err->csrow < 0) {
964 err->err_code = ERR_CSROW;
965 return;
966 }
967
968 /* CHIPKILL enabled */
969 if (pvt->nbcfg & NBCFG_CHIPKILL) {
970 err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome);
971 if (err->channel < 0) {
972 /*
973 * Syndrome didn't map, so we don't know which of the
974 * 2 DIMMs is in error. So we need to ID 'both' of them
975 * as suspect.
976 */
977 amd64_mc_warn(err->src_mci, "unknown syndrome 0x%04x - "
978 "possible error reporting race\n",
979 err->syndrome);
980 err->err_code = ERR_CHANNEL;
981 return;
982 }
983 } else {
984 /*
985 * non-chipkill ecc mode
986 *
987 * The k8 documentation is unclear about how to determine the
988 * channel number when using non-chipkill memory. This method
989 * was obtained from email communication with someone at AMD.
990 * (Wish the email was placed in this comment - norsk)
991 */
992 err->channel = ((sys_addr & BIT(3)) != 0);
993 }
994 }
995
996 static int ddr2_cs_size(unsigned i, bool dct_width)
997 {
998 unsigned shift = 0;
999
1000 if (i <= 2)
1001 shift = i;
1002 else if (!(i & 0x1))
1003 shift = i >> 1;
1004 else
1005 shift = (i + 1) >> 1;
1006
1007 return 128 << (shift + !!dct_width);
1008 }
1009
1010 static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1011 unsigned cs_mode)
1012 {
1013 u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
1014
1015 if (pvt->ext_model >= K8_REV_F) {
1016 WARN_ON(cs_mode > 11);
1017 return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
1018 }
1019 else if (pvt->ext_model >= K8_REV_D) {
1020 unsigned diff;
1021 WARN_ON(cs_mode > 10);
1022
1023 /*
1024 * the below calculation, besides trying to win an obfuscated C
1025 * contest, maps cs_mode values to DIMM chip select sizes. The
1026 * mappings are:
1027 *
1028 * cs_mode CS size (mb)
1029 * ======= ============
1030 * 0 32
1031 * 1 64
1032 * 2 128
1033 * 3 128
1034 * 4 256
1035 * 5 512
1036 * 6 256
1037 * 7 512
1038 * 8 1024
1039 * 9 1024
1040 * 10 2048
1041 *
1042 * Basically, it calculates a value with which to shift the
1043 * smallest CS size of 32MB.
1044 *
1045 * ddr[23]_cs_size have a similar purpose.
1046 */
1047 diff = cs_mode/3 + (unsigned)(cs_mode > 5);
1048
1049 return 32 << (cs_mode - diff);
1050 }
1051 else {
1052 WARN_ON(cs_mode > 6);
1053 return 32 << cs_mode;
1054 }
1055 }
1056
1057 /*
1058 * Get the number of DCT channels in use.
1059 *
1060 * Return:
1061 * number of Memory Channels in operation
1062 * Pass back:
1063 * contents of the DCL0_LOW register
1064 */
1065 static int f1x_early_channel_count(struct amd64_pvt *pvt)
1066 {
1067 int i, j, channels = 0;
1068
1069 /* On F10h, if we are in 128 bit mode, then we are using 2 channels */
1070 if (boot_cpu_data.x86 == 0x10 && (pvt->dclr0 & WIDTH_128))
1071 return 2;
1072
1073 /*
1074 * Need to check if in unganged mode: In such, there are 2 channels,
1075 * but they are not in 128 bit mode and thus the above 'dclr0' status
1076 * bit will be OFF.
1077 *
1078 * Need to check DCT0[0] and DCT1[0] to see if only one of them has
1079 * their CSEnable bit on. If so, then SINGLE DIMM case.
1080 */
1081 edac_dbg(0, "Data width is not 128 bits - need more decoding\n");
1082
1083 /*
1084 * Check DRAM Bank Address Mapping values for each DIMM to see if there
1085 * is more than just one DIMM present in unganged mode. Need to check
1086 * both controllers since DIMMs can be placed in either one.
1087 */
1088 for (i = 0; i < 2; i++) {
1089 u32 dbam = (i ? pvt->dbam1 : pvt->dbam0);
1090
1091 for (j = 0; j < 4; j++) {
1092 if (DBAM_DIMM(j, dbam) > 0) {
1093 channels++;
1094 break;
1095 }
1096 }
1097 }
1098
1099 if (channels > 2)
1100 channels = 2;
1101
1102 amd64_info("MCT channel count: %d\n", channels);
1103
1104 return channels;
1105 }
1106
1107 static int ddr3_cs_size(unsigned i, bool dct_width)
1108 {
1109 unsigned shift = 0;
1110 int cs_size = 0;
1111
1112 if (i == 0 || i == 3 || i == 4)
1113 cs_size = -1;
1114 else if (i <= 2)
1115 shift = i;
1116 else if (i == 12)
1117 shift = 7;
1118 else if (!(i & 0x1))
1119 shift = i >> 1;
1120 else
1121 shift = (i + 1) >> 1;
1122
1123 if (cs_size != -1)
1124 cs_size = (128 * (1 << !!dct_width)) << shift;
1125
1126 return cs_size;
1127 }
1128
1129 static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1130 unsigned cs_mode)
1131 {
1132 u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
1133
1134 WARN_ON(cs_mode > 11);
1135
1136 if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
1137 return ddr3_cs_size(cs_mode, dclr & WIDTH_128);
1138 else
1139 return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
1140 }
1141
1142 /*
1143 * F15h supports only 64bit DCT interfaces
1144 */
1145 static int f15_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1146 unsigned cs_mode)
1147 {
1148 WARN_ON(cs_mode > 12);
1149
1150 return ddr3_cs_size(cs_mode, false);
1151 }
1152
1153 static void read_dram_ctl_register(struct amd64_pvt *pvt)
1154 {
1155
1156 if (boot_cpu_data.x86 == 0xf)
1157 return;
1158
1159 if (!amd64_read_dct_pci_cfg(pvt, DCT_SEL_LO, &pvt->dct_sel_lo)) {
1160 edac_dbg(0, "F2x110 (DCTSelLow): 0x%08x, High range addrs at: 0x%x\n",
1161 pvt->dct_sel_lo, dct_sel_baseaddr(pvt));
1162
1163 edac_dbg(0, " DCTs operate in %s mode\n",
1164 (dct_ganging_enabled(pvt) ? "ganged" : "unganged"));
1165
1166 if (!dct_ganging_enabled(pvt))
1167 edac_dbg(0, " Address range split per DCT: %s\n",
1168 (dct_high_range_enabled(pvt) ? "yes" : "no"));
1169
1170 edac_dbg(0, " data interleave for ECC: %s, DRAM cleared since last warm reset: %s\n",
1171 (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
1172 (dct_memory_cleared(pvt) ? "yes" : "no"));
1173
1174 edac_dbg(0, " channel interleave: %s, "
1175 "interleave bits selector: 0x%x\n",
1176 (dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
1177 dct_sel_interleave_addr(pvt));
1178 }
1179
1180 amd64_read_dct_pci_cfg(pvt, DCT_SEL_HI, &pvt->dct_sel_hi);
1181 }
1182
1183 /*
1184 * Determine channel (DCT) based on the interleaving mode: F10h BKDG, 2.8.9 Memory
1185 * Interleaving Modes.
1186 */
1187 static u8 f1x_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
1188 bool hi_range_sel, u8 intlv_en)
1189 {
1190 u8 dct_sel_high = (pvt->dct_sel_lo >> 1) & 1;
1191
1192 if (dct_ganging_enabled(pvt))
1193 return 0;
1194
1195 if (hi_range_sel)
1196 return dct_sel_high;
1197
1198 /*
1199 * see F2x110[DctSelIntLvAddr] - channel interleave mode
1200 */
1201 if (dct_interleave_enabled(pvt)) {
1202 u8 intlv_addr = dct_sel_interleave_addr(pvt);
1203
1204 /* return DCT select function: 0=DCT0, 1=DCT1 */
1205 if (!intlv_addr)
1206 return sys_addr >> 6 & 1;
1207
1208 if (intlv_addr & 0x2) {
1209 u8 shift = intlv_addr & 0x1 ? 9 : 6;
1210 u32 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;
1211
1212 return ((sys_addr >> shift) & 1) ^ temp;
1213 }
1214
1215 return (sys_addr >> (12 + hweight8(intlv_en))) & 1;
1216 }
1217
1218 if (dct_high_range_enabled(pvt))
1219 return ~dct_sel_high & 1;
1220
1221 return 0;
1222 }
1223
1224 /* Convert the sys_addr to the normalized DCT address */
1225 static u64 f1x_get_norm_dct_addr(struct amd64_pvt *pvt, u8 range,
1226 u64 sys_addr, bool hi_rng,
1227 u32 dct_sel_base_addr)
1228 {
1229 u64 chan_off;
1230 u64 dram_base = get_dram_base(pvt, range);
1231 u64 hole_off = f10_dhar_offset(pvt);
1232 u64 dct_sel_base_off = (pvt->dct_sel_hi & 0xFFFFFC00) << 16;
1233
1234 if (hi_rng) {
1235 /*
1236 * if
1237 * base address of high range is below 4Gb
1238 * (bits [47:27] at [31:11])
1239 * DRAM address space on this DCT is hoisted above 4Gb &&
1240 * sys_addr > 4Gb
1241 *
1242 * remove hole offset from sys_addr
1243 * else
1244 * remove high range offset from sys_addr
1245 */
1246 if ((!(dct_sel_base_addr >> 16) ||
1247 dct_sel_base_addr < dhar_base(pvt)) &&
1248 dhar_valid(pvt) &&
1249 (sys_addr >= BIT_64(32)))
1250 chan_off = hole_off;
1251 else
1252 chan_off = dct_sel_base_off;
1253 } else {
1254 /*
1255 * if
1256 * we have a valid hole &&
1257 * sys_addr > 4Gb
1258 *
1259 * remove hole
1260 * else
1261 * remove dram base to normalize to DCT address
1262 */
1263 if (dhar_valid(pvt) && (sys_addr >= BIT_64(32)))
1264 chan_off = hole_off;
1265 else
1266 chan_off = dram_base;
1267 }
1268
1269 return (sys_addr & GENMASK(6,47)) - (chan_off & GENMASK(23,47));
1270 }
1271
1272 /*
1273 * checks if the csrow passed in is marked as SPARED, if so returns the new
1274 * spare row
1275 */
1276 static int f10_process_possible_spare(struct amd64_pvt *pvt, u8 dct, int csrow)
1277 {
1278 int tmp_cs;
1279
1280 if (online_spare_swap_done(pvt, dct) &&
1281 csrow == online_spare_bad_dramcs(pvt, dct)) {
1282
1283 for_each_chip_select(tmp_cs, dct, pvt) {
1284 if (chip_select_base(tmp_cs, dct, pvt) & 0x2) {
1285 csrow = tmp_cs;
1286 break;
1287 }
1288 }
1289 }
1290 return csrow;
1291 }
1292
1293 /*
1294 * Iterate over the DRAM DCT "base" and "mask" registers looking for a
1295 * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
1296 *
1297 * Return:
1298 * -EINVAL: NOT FOUND
1299 * 0..csrow = Chip-Select Row
1300 */
1301 static int f1x_lookup_addr_in_dct(u64 in_addr, u8 nid, u8 dct)
1302 {
1303 struct mem_ctl_info *mci;
1304 struct amd64_pvt *pvt;
1305 u64 cs_base, cs_mask;
1306 int cs_found = -EINVAL;
1307 int csrow;
1308
1309 mci = mcis[nid];
1310 if (!mci)
1311 return cs_found;
1312
1313 pvt = mci->pvt_info;
1314
1315 edac_dbg(1, "input addr: 0x%llx, DCT: %d\n", in_addr, dct);
1316
1317 for_each_chip_select(csrow, dct, pvt) {
1318 if (!csrow_enabled(csrow, dct, pvt))
1319 continue;
1320
1321 get_cs_base_and_mask(pvt, csrow, dct, &cs_base, &cs_mask);
1322
1323 edac_dbg(1, " CSROW=%d CSBase=0x%llx CSMask=0x%llx\n",
1324 csrow, cs_base, cs_mask);
1325
1326 cs_mask = ~cs_mask;
1327
1328 edac_dbg(1, " (InputAddr & ~CSMask)=0x%llx (CSBase & ~CSMask)=0x%llx\n",
1329 (in_addr & cs_mask), (cs_base & cs_mask));
1330
1331 if ((in_addr & cs_mask) == (cs_base & cs_mask)) {
1332 cs_found = f10_process_possible_spare(pvt, dct, csrow);
1333
1334 edac_dbg(1, " MATCH csrow=%d\n", cs_found);
1335 break;
1336 }
1337 }
1338 return cs_found;
1339 }
1340
1341 /*
1342 * See F2x10C. Non-interleaved graphics framebuffer memory under the 16G is
1343 * swapped with a region located at the bottom of memory so that the GPU can use
1344 * the interleaved region and thus two channels.
1345 */
1346 static u64 f1x_swap_interleaved_region(struct amd64_pvt *pvt, u64 sys_addr)
1347 {
1348 u32 swap_reg, swap_base, swap_limit, rgn_size, tmp_addr;
1349
1350 if (boot_cpu_data.x86 == 0x10) {
1351 /* only revC3 and revE have that feature */
1352 if (boot_cpu_data.x86_model < 4 ||
1353 (boot_cpu_data.x86_model < 0xa &&
1354 boot_cpu_data.x86_mask < 3))
1355 return sys_addr;
1356 }
1357
1358 amd64_read_dct_pci_cfg(pvt, SWAP_INTLV_REG, &swap_reg);
1359
1360 if (!(swap_reg & 0x1))
1361 return sys_addr;
1362
1363 swap_base = (swap_reg >> 3) & 0x7f;
1364 swap_limit = (swap_reg >> 11) & 0x7f;
1365 rgn_size = (swap_reg >> 20) & 0x7f;
1366 tmp_addr = sys_addr >> 27;
1367
1368 if (!(sys_addr >> 34) &&
1369 (((tmp_addr >= swap_base) &&
1370 (tmp_addr <= swap_limit)) ||
1371 (tmp_addr < rgn_size)))
1372 return sys_addr ^ (u64)swap_base << 27;
1373
1374 return sys_addr;
1375 }
1376
1377 /* For a given @dram_range, check if @sys_addr falls within it. */
1378 static int f1x_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
1379 u64 sys_addr, int *chan_sel)
1380 {
1381 int cs_found = -EINVAL;
1382 u64 chan_addr;
1383 u32 dct_sel_base;
1384 u8 channel;
1385 bool high_range = false;
1386
1387 u8 node_id = dram_dst_node(pvt, range);
1388 u8 intlv_en = dram_intlv_en(pvt, range);
1389 u32 intlv_sel = dram_intlv_sel(pvt, range);
1390
1391 edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
1392 range, sys_addr, get_dram_limit(pvt, range));
1393
1394 if (dhar_valid(pvt) &&
1395 dhar_base(pvt) <= sys_addr &&
1396 sys_addr < BIT_64(32)) {
1397 amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
1398 sys_addr);
1399 return -EINVAL;
1400 }
1401
1402 if (intlv_en && (intlv_sel != ((sys_addr >> 12) & intlv_en)))
1403 return -EINVAL;
1404
1405 sys_addr = f1x_swap_interleaved_region(pvt, sys_addr);
1406
1407 dct_sel_base = dct_sel_baseaddr(pvt);
1408
1409 /*
1410 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
1411 * select between DCT0 and DCT1.
1412 */
1413 if (dct_high_range_enabled(pvt) &&
1414 !dct_ganging_enabled(pvt) &&
1415 ((sys_addr >> 27) >= (dct_sel_base >> 11)))
1416 high_range = true;
1417
1418 channel = f1x_determine_channel(pvt, sys_addr, high_range, intlv_en);
1419
1420 chan_addr = f1x_get_norm_dct_addr(pvt, range, sys_addr,
1421 high_range, dct_sel_base);
1422
1423 /* Remove node interleaving, see F1x120 */
1424 if (intlv_en)
1425 chan_addr = ((chan_addr >> (12 + hweight8(intlv_en))) << 12) |
1426 (chan_addr & 0xfff);
1427
1428 /* remove channel interleave */
1429 if (dct_interleave_enabled(pvt) &&
1430 !dct_high_range_enabled(pvt) &&
1431 !dct_ganging_enabled(pvt)) {
1432
1433 if (dct_sel_interleave_addr(pvt) != 1) {
1434 if (dct_sel_interleave_addr(pvt) == 0x3)
1435 /* hash 9 */
1436 chan_addr = ((chan_addr >> 10) << 9) |
1437 (chan_addr & 0x1ff);
1438 else
1439 /* A[6] or hash 6 */
1440 chan_addr = ((chan_addr >> 7) << 6) |
1441 (chan_addr & 0x3f);
1442 } else
1443 /* A[12] */
1444 chan_addr = ((chan_addr >> 13) << 12) |
1445 (chan_addr & 0xfff);
1446 }
1447
1448 edac_dbg(1, " Normalized DCT addr: 0x%llx\n", chan_addr);
1449
1450 cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, channel);
1451
1452 if (cs_found >= 0)
1453 *chan_sel = channel;
1454
1455 return cs_found;
1456 }
1457
1458 static int f1x_translate_sysaddr_to_cs(struct amd64_pvt *pvt, u64 sys_addr,
1459 int *chan_sel)
1460 {
1461 int cs_found = -EINVAL;
1462 unsigned range;
1463
1464 for (range = 0; range < DRAM_RANGES; range++) {
1465
1466 if (!dram_rw(pvt, range))
1467 continue;
1468
1469 if ((get_dram_base(pvt, range) <= sys_addr) &&
1470 (get_dram_limit(pvt, range) >= sys_addr)) {
1471
1472 cs_found = f1x_match_to_this_node(pvt, range,
1473 sys_addr, chan_sel);
1474 if (cs_found >= 0)
1475 break;
1476 }
1477 }
1478 return cs_found;
1479 }
1480
1481 /*
1482 * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
1483 * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
1484 *
1485 * The @sys_addr is usually an error address received from the hardware
1486 * (MCX_ADDR).
1487 */
1488 static void f1x_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
1489 struct err_info *err)
1490 {
1491 struct amd64_pvt *pvt = mci->pvt_info;
1492
1493 error_address_to_page_and_offset(sys_addr, err);
1494
1495 err->csrow = f1x_translate_sysaddr_to_cs(pvt, sys_addr, &err->channel);
1496 if (err->csrow < 0) {
1497 err->err_code = ERR_CSROW;
1498 return;
1499 }
1500
1501 /*
1502 * We need the syndromes for channel detection only when we're
1503 * ganged. Otherwise @chan should already contain the channel at
1504 * this point.
1505 */
1506 if (dct_ganging_enabled(pvt))
1507 err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome);
1508 }
1509
1510 /*
1511 * debug routine to display the memory sizes of all logical DIMMs and its
1512 * CSROWs
1513 */
1514 static void amd64_debug_display_dimm_sizes(struct amd64_pvt *pvt, u8 ctrl)
1515 {
1516 int dimm, size0, size1;
1517 u32 *dcsb = ctrl ? pvt->csels[1].csbases : pvt->csels[0].csbases;
1518 u32 dbam = ctrl ? pvt->dbam1 : pvt->dbam0;
1519
1520 if (boot_cpu_data.x86 == 0xf) {
1521 /* K8 families < revF not supported yet */
1522 if (pvt->ext_model < K8_REV_F)
1523 return;
1524 else
1525 WARN_ON(ctrl != 0);
1526 }
1527
1528 dbam = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->dbam1 : pvt->dbam0;
1529 dcsb = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->csels[1].csbases
1530 : pvt->csels[0].csbases;
1531
1532 edac_dbg(1, "F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n",
1533 ctrl, dbam);
1534
1535 edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);
1536
1537 /* Dump memory sizes for DIMM and its CSROWs */
1538 for (dimm = 0; dimm < 4; dimm++) {
1539
1540 size0 = 0;
1541 if (dcsb[dimm*2] & DCSB_CS_ENABLE)
1542 size0 = pvt->ops->dbam_to_cs(pvt, ctrl,
1543 DBAM_DIMM(dimm, dbam));
1544
1545 size1 = 0;
1546 if (dcsb[dimm*2 + 1] & DCSB_CS_ENABLE)
1547 size1 = pvt->ops->dbam_to_cs(pvt, ctrl,
1548 DBAM_DIMM(dimm, dbam));
1549
1550 amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
1551 dimm * 2, size0,
1552 dimm * 2 + 1, size1);
1553 }
1554 }
1555
1556 static struct amd64_family_type amd64_family_types[] = {
1557 [K8_CPUS] = {
1558 .ctl_name = "K8",
1559 .f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
1560 .f3_id = PCI_DEVICE_ID_AMD_K8_NB_MISC,
1561 .ops = {
1562 .early_channel_count = k8_early_channel_count,
1563 .map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow,
1564 .dbam_to_cs = k8_dbam_to_chip_select,
1565 .read_dct_pci_cfg = k8_read_dct_pci_cfg,
1566 }
1567 },
1568 [F10_CPUS] = {
1569 .ctl_name = "F10h",
1570 .f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP,
1571 .f3_id = PCI_DEVICE_ID_AMD_10H_NB_MISC,
1572 .ops = {
1573 .early_channel_count = f1x_early_channel_count,
1574 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
1575 .dbam_to_cs = f10_dbam_to_chip_select,
1576 .read_dct_pci_cfg = f10_read_dct_pci_cfg,
1577 }
1578 },
1579 [F15_CPUS] = {
1580 .ctl_name = "F15h",
1581 .f1_id = PCI_DEVICE_ID_AMD_15H_NB_F1,
1582 .f3_id = PCI_DEVICE_ID_AMD_15H_NB_F3,
1583 .ops = {
1584 .early_channel_count = f1x_early_channel_count,
1585 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
1586 .dbam_to_cs = f15_dbam_to_chip_select,
1587 .read_dct_pci_cfg = f15_read_dct_pci_cfg,
1588 }
1589 },
1590 };
1591
1592 /*
1593 * These are tables of eigenvectors (one per line) which can be used for the
1594 * construction of the syndrome tables. The modified syndrome search algorithm
1595 * uses those to find the symbol in error and thus the DIMM.
1596 *
1597 * Algorithm courtesy of Ross LaFetra from AMD.
1598 */
1599 static const u16 x4_vectors[] = {
1600 0x2f57, 0x1afe, 0x66cc, 0xdd88,
1601 0x11eb, 0x3396, 0x7f4c, 0xeac8,
1602 0x0001, 0x0002, 0x0004, 0x0008,
1603 0x1013, 0x3032, 0x4044, 0x8088,
1604 0x106b, 0x30d6, 0x70fc, 0xe0a8,
1605 0x4857, 0xc4fe, 0x13cc, 0x3288,
1606 0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
1607 0x1f39, 0x251e, 0xbd6c, 0x6bd8,
1608 0x15c1, 0x2a42, 0x89ac, 0x4758,
1609 0x2b03, 0x1602, 0x4f0c, 0xca08,
1610 0x1f07, 0x3a0e, 0x6b04, 0xbd08,
1611 0x8ba7, 0x465e, 0x244c, 0x1cc8,
1612 0x2b87, 0x164e, 0x642c, 0xdc18,
1613 0x40b9, 0x80de, 0x1094, 0x20e8,
1614 0x27db, 0x1eb6, 0x9dac, 0x7b58,
1615 0x11c1, 0x2242, 0x84ac, 0x4c58,
1616 0x1be5, 0x2d7a, 0x5e34, 0xa718,
1617 0x4b39, 0x8d1e, 0x14b4, 0x28d8,
1618 0x4c97, 0xc87e, 0x11fc, 0x33a8,
1619 0x8e97, 0x497e, 0x2ffc, 0x1aa8,
1620 0x16b3, 0x3d62, 0x4f34, 0x8518,
1621 0x1e2f, 0x391a, 0x5cac, 0xf858,
1622 0x1d9f, 0x3b7a, 0x572c, 0xfe18,
1623 0x15f5, 0x2a5a, 0x5264, 0xa3b8,
1624 0x1dbb, 0x3b66, 0x715c, 0xe3f8,
1625 0x4397, 0xc27e, 0x17fc, 0x3ea8,
1626 0x1617, 0x3d3e, 0x6464, 0xb8b8,
1627 0x23ff, 0x12aa, 0xab6c, 0x56d8,
1628 0x2dfb, 0x1ba6, 0x913c, 0x7328,
1629 0x185d, 0x2ca6, 0x7914, 0x9e28,
1630 0x171b, 0x3e36, 0x7d7c, 0xebe8,
1631 0x4199, 0x82ee, 0x19f4, 0x2e58,
1632 0x4807, 0xc40e, 0x130c, 0x3208,
1633 0x1905, 0x2e0a, 0x5804, 0xac08,
1634 0x213f, 0x132a, 0xadfc, 0x5ba8,
1635 0x19a9, 0x2efe, 0xb5cc, 0x6f88,
1636 };
1637
1638 static const u16 x8_vectors[] = {
1639 0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
1640 0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
1641 0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
1642 0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
1643 0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
1644 0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
1645 0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
1646 0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
1647 0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
1648 0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
1649 0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
1650 0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
1651 0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
1652 0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
1653 0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
1654 0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
1655 0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
1656 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
1657 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
1658 };
1659
1660 static int decode_syndrome(u16 syndrome, const u16 *vectors, unsigned num_vecs,
1661 unsigned v_dim)
1662 {
1663 unsigned int i, err_sym;
1664
1665 for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
1666 u16 s = syndrome;
1667 unsigned v_idx = err_sym * v_dim;
1668 unsigned v_end = (err_sym + 1) * v_dim;
1669
1670 /* walk over all 16 bits of the syndrome */
1671 for (i = 1; i < (1U << 16); i <<= 1) {
1672
1673 /* if bit is set in that eigenvector... */
1674 if (v_idx < v_end && vectors[v_idx] & i) {
1675 u16 ev_comp = vectors[v_idx++];
1676
1677 /* ... and bit set in the modified syndrome, */
1678 if (s & i) {
1679 /* remove it. */
1680 s ^= ev_comp;
1681
1682 if (!s)
1683 return err_sym;
1684 }
1685
1686 } else if (s & i)
1687 /* can't get to zero, move to next symbol */
1688 break;
1689 }
1690 }
1691
1692 edac_dbg(0, "syndrome(%x) not found\n", syndrome);
1693 return -1;
1694 }
1695
1696 static int map_err_sym_to_channel(int err_sym, int sym_size)
1697 {
1698 if (sym_size == 4)
1699 switch (err_sym) {
1700 case 0x20:
1701 case 0x21:
1702 return 0;
1703 break;
1704 case 0x22:
1705 case 0x23:
1706 return 1;
1707 break;
1708 default:
1709 return err_sym >> 4;
1710 break;
1711 }
1712 /* x8 symbols */
1713 else
1714 switch (err_sym) {
1715 /* imaginary bits not in a DIMM */
1716 case 0x10:
1717 WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
1718 err_sym);
1719 return -1;
1720 break;
1721
1722 case 0x11:
1723 return 0;
1724 break;
1725 case 0x12:
1726 return 1;
1727 break;
1728 default:
1729 return err_sym >> 3;
1730 break;
1731 }
1732 return -1;
1733 }
1734
1735 static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
1736 {
1737 struct amd64_pvt *pvt = mci->pvt_info;
1738 int err_sym = -1;
1739
1740 if (pvt->ecc_sym_sz == 8)
1741 err_sym = decode_syndrome(syndrome, x8_vectors,
1742 ARRAY_SIZE(x8_vectors),
1743 pvt->ecc_sym_sz);
1744 else if (pvt->ecc_sym_sz == 4)
1745 err_sym = decode_syndrome(syndrome, x4_vectors,
1746 ARRAY_SIZE(x4_vectors),
1747 pvt->ecc_sym_sz);
1748 else {
1749 amd64_warn("Illegal syndrome type: %u\n", pvt->ecc_sym_sz);
1750 return err_sym;
1751 }
1752
1753 return map_err_sym_to_channel(err_sym, pvt->ecc_sym_sz);
1754 }
1755
1756 static void __log_bus_error(struct mem_ctl_info *mci, struct err_info *err,
1757 u8 ecc_type)
1758 {
1759 enum hw_event_mc_err_type err_type;
1760 const char *string;
1761
1762 if (ecc_type == 2)
1763 err_type = HW_EVENT_ERR_CORRECTED;
1764 else if (ecc_type == 1)
1765 err_type = HW_EVENT_ERR_UNCORRECTED;
1766 else {
1767 WARN(1, "Something is rotten in the state of Denmark.\n");
1768 return;
1769 }
1770
1771 switch (err->err_code) {
1772 case DECODE_OK:
1773 string = "";
1774 break;
1775 case ERR_NODE:
1776 string = "Failed to map error addr to a node";
1777 break;
1778 case ERR_CSROW:
1779 string = "Failed to map error addr to a csrow";
1780 break;
1781 case ERR_CHANNEL:
1782 string = "unknown syndrome - possible error reporting race";
1783 break;
1784 default:
1785 string = "WTF error";
1786 break;
1787 }
1788
1789 edac_mc_handle_error(err_type, mci, 1,
1790 err->page, err->offset, err->syndrome,
1791 err->csrow, err->channel, -1,
1792 string, "");
1793 }
1794
1795 static inline void __amd64_decode_bus_error(struct mem_ctl_info *mci,
1796 struct mce *m)
1797 {
1798 struct amd64_pvt *pvt = mci->pvt_info;
1799 u8 ecc_type = (m->status >> 45) & 0x3;
1800 u8 xec = XEC(m->status, 0x1f);
1801 u16 ec = EC(m->status);
1802 u64 sys_addr;
1803 struct err_info err;
1804
1805 /* Bail out early if this was an 'observed' error */
1806 if (PP(ec) == NBSL_PP_OBS)
1807 return;
1808
1809 /* Do only ECC errors */
1810 if (xec && xec != F10_NBSL_EXT_ERR_ECC)
1811 return;
1812
1813 memset(&err, 0, sizeof(err));
1814
1815 sys_addr = get_error_address(m);
1816
1817 if (ecc_type == 2)
1818 err.syndrome = extract_syndrome(m->status);
1819
1820 pvt->ops->map_sysaddr_to_csrow(mci, sys_addr, &err);
1821
1822 __log_bus_error(mci, &err, ecc_type);
1823 }
1824
1825 void amd64_decode_bus_error(int node_id, struct mce *m)
1826 {
1827 __amd64_decode_bus_error(mcis[node_id], m);
1828 }
1829
1830 /*
1831 * Use pvt->F2 which contains the F2 CPU PCI device to get the related
1832 * F1 (AddrMap) and F3 (Misc) devices. Return negative value on error.
1833 */
1834 static int reserve_mc_sibling_devs(struct amd64_pvt *pvt, u16 f1_id, u16 f3_id)
1835 {
1836 /* Reserve the ADDRESS MAP Device */
1837 pvt->F1 = pci_get_related_function(pvt->F2->vendor, f1_id, pvt->F2);
1838 if (!pvt->F1) {
1839 amd64_err("error address map device not found: "
1840 "vendor %x device 0x%x (broken BIOS?)\n",
1841 PCI_VENDOR_ID_AMD, f1_id);
1842 return -ENODEV;
1843 }
1844
1845 /* Reserve the MISC Device */
1846 pvt->F3 = pci_get_related_function(pvt->F2->vendor, f3_id, pvt->F2);
1847 if (!pvt->F3) {
1848 pci_dev_put(pvt->F1);
1849 pvt->F1 = NULL;
1850
1851 amd64_err("error F3 device not found: "
1852 "vendor %x device 0x%x (broken BIOS?)\n",
1853 PCI_VENDOR_ID_AMD, f3_id);
1854
1855 return -ENODEV;
1856 }
1857 edac_dbg(1, "F1: %s\n", pci_name(pvt->F1));
1858 edac_dbg(1, "F2: %s\n", pci_name(pvt->F2));
1859 edac_dbg(1, "F3: %s\n", pci_name(pvt->F3));
1860
1861 return 0;
1862 }
1863
1864 static void free_mc_sibling_devs(struct amd64_pvt *pvt)
1865 {
1866 pci_dev_put(pvt->F1);
1867 pci_dev_put(pvt->F3);
1868 }
1869
1870 /*
1871 * Retrieve the hardware registers of the memory controller (this includes the
1872 * 'Address Map' and 'Misc' device regs)
1873 */
1874 static void read_mc_regs(struct amd64_pvt *pvt)
1875 {
1876 struct cpuinfo_x86 *c = &boot_cpu_data;
1877 u64 msr_val;
1878 u32 tmp;
1879 unsigned range;
1880
1881 /*
1882 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
1883 * those are Read-As-Zero
1884 */
1885 rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
1886 edac_dbg(0, " TOP_MEM: 0x%016llx\n", pvt->top_mem);
1887
1888 /* check first whether TOP_MEM2 is enabled */
1889 rdmsrl(MSR_K8_SYSCFG, msr_val);
1890 if (msr_val & (1U << 21)) {
1891 rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
1892 edac_dbg(0, " TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
1893 } else
1894 edac_dbg(0, " TOP_MEM2 disabled\n");
1895
1896 amd64_read_pci_cfg(pvt->F3, NBCAP, &pvt->nbcap);
1897
1898 read_dram_ctl_register(pvt);
1899
1900 for (range = 0; range < DRAM_RANGES; range++) {
1901 u8 rw;
1902
1903 /* read settings for this DRAM range */
1904 read_dram_base_limit_regs(pvt, range);
1905
1906 rw = dram_rw(pvt, range);
1907 if (!rw)
1908 continue;
1909
1910 edac_dbg(1, " DRAM range[%d], base: 0x%016llx; limit: 0x%016llx\n",
1911 range,
1912 get_dram_base(pvt, range),
1913 get_dram_limit(pvt, range));
1914
1915 edac_dbg(1, " IntlvEn=%s; Range access: %s%s IntlvSel=%d DstNode=%d\n",
1916 dram_intlv_en(pvt, range) ? "Enabled" : "Disabled",
1917 (rw & 0x1) ? "R" : "-",
1918 (rw & 0x2) ? "W" : "-",
1919 dram_intlv_sel(pvt, range),
1920 dram_dst_node(pvt, range));
1921 }
1922
1923 read_dct_base_mask(pvt);
1924
1925 amd64_read_pci_cfg(pvt->F1, DHAR, &pvt->dhar);
1926 amd64_read_dct_pci_cfg(pvt, DBAM0, &pvt->dbam0);
1927
1928 amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare);
1929
1930 amd64_read_dct_pci_cfg(pvt, DCLR0, &pvt->dclr0);
1931 amd64_read_dct_pci_cfg(pvt, DCHR0, &pvt->dchr0);
1932
1933 if (!dct_ganging_enabled(pvt)) {
1934 amd64_read_dct_pci_cfg(pvt, DCLR1, &pvt->dclr1);
1935 amd64_read_dct_pci_cfg(pvt, DCHR1, &pvt->dchr1);
1936 }
1937
1938 pvt->ecc_sym_sz = 4;
1939
1940 if (c->x86 >= 0x10) {
1941 amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp);
1942 amd64_read_dct_pci_cfg(pvt, DBAM1, &pvt->dbam1);
1943
1944 /* F10h, revD and later can do x8 ECC too */
1945 if ((c->x86 > 0x10 || c->x86_model > 7) && tmp & BIT(25))
1946 pvt->ecc_sym_sz = 8;
1947 }
1948 dump_misc_regs(pvt);
1949 }
1950
1951 /*
1952 * NOTE: CPU Revision Dependent code
1953 *
1954 * Input:
1955 * @csrow_nr ChipSelect Row Number (0..NUM_CHIPSELECTS-1)
1956 * k8 private pointer to -->
1957 * DRAM Bank Address mapping register
1958 * node_id
1959 * DCL register where dual_channel_active is
1960 *
1961 * The DBAM register consists of 4 sets of 4 bits each definitions:
1962 *
1963 * Bits: CSROWs
1964 * 0-3 CSROWs 0 and 1
1965 * 4-7 CSROWs 2 and 3
1966 * 8-11 CSROWs 4 and 5
1967 * 12-15 CSROWs 6 and 7
1968 *
1969 * Values range from: 0 to 15
1970 * The meaning of the values depends on CPU revision and dual-channel state,
1971 * see relevant BKDG more info.
1972 *
1973 * The memory controller provides for total of only 8 CSROWs in its current
1974 * architecture. Each "pair" of CSROWs normally represents just one DIMM in
1975 * single channel or two (2) DIMMs in dual channel mode.
1976 *
1977 * The following code logic collapses the various tables for CSROW based on CPU
1978 * revision.
1979 *
1980 * Returns:
1981 * The number of PAGE_SIZE pages on the specified CSROW number it
1982 * encompasses
1983 *
1984 */
1985 static u32 amd64_csrow_nr_pages(struct amd64_pvt *pvt, u8 dct, int csrow_nr)
1986 {
1987 u32 cs_mode, nr_pages;
1988 u32 dbam = dct ? pvt->dbam1 : pvt->dbam0;
1989
1990
1991 /*
1992 * The math on this doesn't look right on the surface because x/2*4 can
1993 * be simplified to x*2 but this expression makes use of the fact that
1994 * it is integral math where 1/2=0. This intermediate value becomes the
1995 * number of bits to shift the DBAM register to extract the proper CSROW
1996 * field.
1997 */
1998 cs_mode = DBAM_DIMM(csrow_nr / 2, dbam);
1999
2000 nr_pages = pvt->ops->dbam_to_cs(pvt, dct, cs_mode) << (20 - PAGE_SHIFT);
2001
2002 edac_dbg(0, "csrow: %d, channel: %d, DBAM idx: %d\n",
2003 csrow_nr, dct, cs_mode);
2004 edac_dbg(0, "nr_pages/channel: %u\n", nr_pages);
2005
2006 return nr_pages;
2007 }
2008
2009 /*
2010 * Initialize the array of csrow attribute instances, based on the values
2011 * from pci config hardware registers.
2012 */
2013 static int init_csrows(struct mem_ctl_info *mci)
2014 {
2015 struct amd64_pvt *pvt = mci->pvt_info;
2016 struct csrow_info *csrow;
2017 struct dimm_info *dimm;
2018 enum edac_type edac_mode;
2019 enum mem_type mtype;
2020 int i, j, empty = 1;
2021 int nr_pages = 0;
2022 u32 val;
2023
2024 amd64_read_pci_cfg(pvt->F3, NBCFG, &val);
2025
2026 pvt->nbcfg = val;
2027
2028 edac_dbg(0, "node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
2029 pvt->mc_node_id, val,
2030 !!(val & NBCFG_CHIPKILL), !!(val & NBCFG_ECC_ENABLE));
2031
2032 /*
2033 * We iterate over DCT0 here but we look at DCT1 in parallel, if needed.
2034 */
2035 for_each_chip_select(i, 0, pvt) {
2036 bool row_dct0 = !!csrow_enabled(i, 0, pvt);
2037 bool row_dct1 = false;
2038
2039 if (boot_cpu_data.x86 != 0xf)
2040 row_dct1 = !!csrow_enabled(i, 1, pvt);
2041
2042 if (!row_dct0 && !row_dct1)
2043 continue;
2044
2045 csrow = mci->csrows[i];
2046 empty = 0;
2047
2048 edac_dbg(1, "MC node: %d, csrow: %d\n",
2049 pvt->mc_node_id, i);
2050
2051 if (row_dct0) {
2052 nr_pages = amd64_csrow_nr_pages(pvt, 0, i);
2053 csrow->channels[0]->dimm->nr_pages = nr_pages;
2054 }
2055
2056 /* K8 has only one DCT */
2057 if (boot_cpu_data.x86 != 0xf && row_dct1) {
2058 int row_dct1_pages = amd64_csrow_nr_pages(pvt, 1, i);
2059
2060 csrow->channels[1]->dimm->nr_pages = row_dct1_pages;
2061 nr_pages += row_dct1_pages;
2062 }
2063
2064 mtype = amd64_determine_memory_type(pvt, i);
2065
2066 edac_dbg(1, "Total csrow%d pages: %u\n", i, nr_pages);
2067
2068 /*
2069 * determine whether CHIPKILL or JUST ECC or NO ECC is operating
2070 */
2071 if (pvt->nbcfg & NBCFG_ECC_ENABLE)
2072 edac_mode = (pvt->nbcfg & NBCFG_CHIPKILL) ?
2073 EDAC_S4ECD4ED : EDAC_SECDED;
2074 else
2075 edac_mode = EDAC_NONE;
2076
2077 for (j = 0; j < pvt->channel_count; j++) {
2078 dimm = csrow->channels[j]->dimm;
2079 dimm->mtype = mtype;
2080 dimm->edac_mode = edac_mode;
2081 }
2082 }
2083
2084 return empty;
2085 }
2086
2087 /* get all cores on this DCT */
2088 static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, u16 nid)
2089 {
2090 int cpu;
2091
2092 for_each_online_cpu(cpu)
2093 if (amd_get_nb_id(cpu) == nid)
2094 cpumask_set_cpu(cpu, mask);
2095 }
2096
2097 /* check MCG_CTL on all the cpus on this node */
2098 static bool amd64_nb_mce_bank_enabled_on_node(u16 nid)
2099 {
2100 cpumask_var_t mask;
2101 int cpu, nbe;
2102 bool ret = false;
2103
2104 if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
2105 amd64_warn("%s: Error allocating mask\n", __func__);
2106 return false;
2107 }
2108
2109 get_cpus_on_this_dct_cpumask(mask, nid);
2110
2111 rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);
2112
2113 for_each_cpu(cpu, mask) {
2114 struct msr *reg = per_cpu_ptr(msrs, cpu);
2115 nbe = reg->l & MSR_MCGCTL_NBE;
2116
2117 edac_dbg(0, "core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
2118 cpu, reg->q,
2119 (nbe ? "enabled" : "disabled"));
2120
2121 if (!nbe)
2122 goto out;
2123 }
2124 ret = true;
2125
2126 out:
2127 free_cpumask_var(mask);
2128 return ret;
2129 }
2130
2131 static int toggle_ecc_err_reporting(struct ecc_settings *s, u16 nid, bool on)
2132 {
2133 cpumask_var_t cmask;
2134 int cpu;
2135
2136 if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
2137 amd64_warn("%s: error allocating mask\n", __func__);
2138 return false;
2139 }
2140
2141 get_cpus_on_this_dct_cpumask(cmask, nid);
2142
2143 rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2144
2145 for_each_cpu(cpu, cmask) {
2146
2147 struct msr *reg = per_cpu_ptr(msrs, cpu);
2148
2149 if (on) {
2150 if (reg->l & MSR_MCGCTL_NBE)
2151 s->flags.nb_mce_enable = 1;
2152
2153 reg->l |= MSR_MCGCTL_NBE;
2154 } else {
2155 /*
2156 * Turn off NB MCE reporting only when it was off before
2157 */
2158 if (!s->flags.nb_mce_enable)
2159 reg->l &= ~MSR_MCGCTL_NBE;
2160 }
2161 }
2162 wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2163
2164 free_cpumask_var(cmask);
2165
2166 return 0;
2167 }
2168
2169 static bool enable_ecc_error_reporting(struct ecc_settings *s, u16 nid,
2170 struct pci_dev *F3)
2171 {
2172 bool ret = true;
2173 u32 value, mask = 0x3; /* UECC/CECC enable */
2174
2175 if (toggle_ecc_err_reporting(s, nid, ON)) {
2176 amd64_warn("Error enabling ECC reporting over MCGCTL!\n");
2177 return false;
2178 }
2179
2180 amd64_read_pci_cfg(F3, NBCTL, &value);
2181
2182 s->old_nbctl = value & mask;
2183 s->nbctl_valid = true;
2184
2185 value |= mask;
2186 amd64_write_pci_cfg(F3, NBCTL, value);
2187
2188 amd64_read_pci_cfg(F3, NBCFG, &value);
2189
2190 edac_dbg(0, "1: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
2191 nid, value, !!(value & NBCFG_ECC_ENABLE));
2192
2193 if (!(value & NBCFG_ECC_ENABLE)) {
2194 amd64_warn("DRAM ECC disabled on this node, enabling...\n");
2195
2196 s->flags.nb_ecc_prev = 0;
2197
2198 /* Attempt to turn on DRAM ECC Enable */
2199 value |= NBCFG_ECC_ENABLE;
2200 amd64_write_pci_cfg(F3, NBCFG, value);
2201
2202 amd64_read_pci_cfg(F3, NBCFG, &value);
2203
2204 if (!(value & NBCFG_ECC_ENABLE)) {
2205 amd64_warn("Hardware rejected DRAM ECC enable,"
2206 "check memory DIMM configuration.\n");
2207 ret = false;
2208 } else {
2209 amd64_info("Hardware accepted DRAM ECC Enable\n");
2210 }
2211 } else {
2212 s->flags.nb_ecc_prev = 1;
2213 }
2214
2215 edac_dbg(0, "2: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
2216 nid, value, !!(value & NBCFG_ECC_ENABLE));
2217
2218 return ret;
2219 }
2220
2221 static void restore_ecc_error_reporting(struct ecc_settings *s, u16 nid,
2222 struct pci_dev *F3)
2223 {
2224 u32 value, mask = 0x3; /* UECC/CECC enable */
2225
2226
2227 if (!s->nbctl_valid)
2228 return;
2229
2230 amd64_read_pci_cfg(F3, NBCTL, &value);
2231 value &= ~mask;
2232 value |= s->old_nbctl;
2233
2234 amd64_write_pci_cfg(F3, NBCTL, value);
2235
2236 /* restore previous BIOS DRAM ECC "off" setting we force-enabled */
2237 if (!s->flags.nb_ecc_prev) {
2238 amd64_read_pci_cfg(F3, NBCFG, &value);
2239 value &= ~NBCFG_ECC_ENABLE;
2240 amd64_write_pci_cfg(F3, NBCFG, value);
2241 }
2242
2243 /* restore the NB Enable MCGCTL bit */
2244 if (toggle_ecc_err_reporting(s, nid, OFF))
2245 amd64_warn("Error restoring NB MCGCTL settings!\n");
2246 }
2247
2248 /*
2249 * EDAC requires that the BIOS have ECC enabled before
2250 * taking over the processing of ECC errors. A command line
2251 * option allows to force-enable hardware ECC later in
2252 * enable_ecc_error_reporting().
2253 */
2254 static const char *ecc_msg =
2255 "ECC disabled in the BIOS or no ECC capability, module will not load.\n"
2256 " Either enable ECC checking or force module loading by setting "
2257 "'ecc_enable_override'.\n"
2258 " (Note that use of the override may cause unknown side effects.)\n";
2259
2260 static bool ecc_enabled(struct pci_dev *F3, u16 nid)
2261 {
2262 u32 value;
2263 u8 ecc_en = 0;
2264 bool nb_mce_en = false;
2265
2266 amd64_read_pci_cfg(F3, NBCFG, &value);
2267
2268 ecc_en = !!(value & NBCFG_ECC_ENABLE);
2269 amd64_info("DRAM ECC %s.\n", (ecc_en ? "enabled" : "disabled"));
2270
2271 nb_mce_en = amd64_nb_mce_bank_enabled_on_node(nid);
2272 if (!nb_mce_en)
2273 amd64_notice("NB MCE bank disabled, set MSR "
2274 "0x%08x[4] on node %d to enable.\n",
2275 MSR_IA32_MCG_CTL, nid);
2276
2277 if (!ecc_en || !nb_mce_en) {
2278 amd64_notice("%s", ecc_msg);
2279 return false;
2280 }
2281 return true;
2282 }
2283
2284 static int set_mc_sysfs_attrs(struct mem_ctl_info *mci)
2285 {
2286 int rc;
2287
2288 rc = amd64_create_sysfs_dbg_files(mci);
2289 if (rc < 0)
2290 return rc;
2291
2292 if (boot_cpu_data.x86 >= 0x10) {
2293 rc = amd64_create_sysfs_inject_files(mci);
2294 if (rc < 0)
2295 return rc;
2296 }
2297
2298 return 0;
2299 }
2300
2301 static void del_mc_sysfs_attrs(struct mem_ctl_info *mci)
2302 {
2303 amd64_remove_sysfs_dbg_files(mci);
2304
2305 if (boot_cpu_data.x86 >= 0x10)
2306 amd64_remove_sysfs_inject_files(mci);
2307 }
2308
2309 static void setup_mci_misc_attrs(struct mem_ctl_info *mci,
2310 struct amd64_family_type *fam)
2311 {
2312 struct amd64_pvt *pvt = mci->pvt_info;
2313
2314 mci->mtype_cap = MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
2315 mci->edac_ctl_cap = EDAC_FLAG_NONE;
2316
2317 if (pvt->nbcap & NBCAP_SECDED)
2318 mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
2319
2320 if (pvt->nbcap & NBCAP_CHIPKILL)
2321 mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
2322
2323 mci->edac_cap = amd64_determine_edac_cap(pvt);
2324 mci->mod_name = EDAC_MOD_STR;
2325 mci->mod_ver = EDAC_AMD64_VERSION;
2326 mci->ctl_name = fam->ctl_name;
2327 mci->dev_name = pci_name(pvt->F2);
2328 mci->ctl_page_to_phys = NULL;
2329
2330 /* memory scrubber interface */
2331 mci->set_sdram_scrub_rate = amd64_set_scrub_rate;
2332 mci->get_sdram_scrub_rate = amd64_get_scrub_rate;
2333 }
2334
2335 /*
2336 * returns a pointer to the family descriptor on success, NULL otherwise.
2337 */
2338 static struct amd64_family_type *amd64_per_family_init(struct amd64_pvt *pvt)
2339 {
2340 u8 fam = boot_cpu_data.x86;
2341 struct amd64_family_type *fam_type = NULL;
2342
2343 switch (fam) {
2344 case 0xf:
2345 fam_type = &amd64_family_types[K8_CPUS];
2346 pvt->ops = &amd64_family_types[K8_CPUS].ops;
2347 break;
2348
2349 case 0x10:
2350 fam_type = &amd64_family_types[F10_CPUS];
2351 pvt->ops = &amd64_family_types[F10_CPUS].ops;
2352 break;
2353
2354 case 0x15:
2355 fam_type = &amd64_family_types[F15_CPUS];
2356 pvt->ops = &amd64_family_types[F15_CPUS].ops;
2357 break;
2358
2359 default:
2360 amd64_err("Unsupported family!\n");
2361 return NULL;
2362 }
2363
2364 pvt->ext_model = boot_cpu_data.x86_model >> 4;
2365
2366 amd64_info("%s %sdetected (node %d).\n", fam_type->ctl_name,
2367 (fam == 0xf ?
2368 (pvt->ext_model >= K8_REV_F ? "revF or later "
2369 : "revE or earlier ")
2370 : ""), pvt->mc_node_id);
2371 return fam_type;
2372 }
2373
2374 static int amd64_init_one_instance(struct pci_dev *F2)
2375 {
2376 struct amd64_pvt *pvt = NULL;
2377 struct amd64_family_type *fam_type = NULL;
2378 struct mem_ctl_info *mci = NULL;
2379 struct edac_mc_layer layers[2];
2380 int err = 0, ret;
2381 u16 nid = amd_get_node_id(F2);
2382
2383 ret = -ENOMEM;
2384 pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
2385 if (!pvt)
2386 goto err_ret;
2387
2388 pvt->mc_node_id = nid;
2389 pvt->F2 = F2;
2390
2391 ret = -EINVAL;
2392 fam_type = amd64_per_family_init(pvt);
2393 if (!fam_type)
2394 goto err_free;
2395
2396 ret = -ENODEV;
2397 err = reserve_mc_sibling_devs(pvt, fam_type->f1_id, fam_type->f3_id);
2398 if (err)
2399 goto err_free;
2400
2401 read_mc_regs(pvt);
2402
2403 /*
2404 * We need to determine how many memory channels there are. Then use
2405 * that information for calculating the size of the dynamic instance
2406 * tables in the 'mci' structure.
2407 */
2408 ret = -EINVAL;
2409 pvt->channel_count = pvt->ops->early_channel_count(pvt);
2410 if (pvt->channel_count < 0)
2411 goto err_siblings;
2412
2413 ret = -ENOMEM;
2414 layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
2415 layers[0].size = pvt->csels[0].b_cnt;
2416 layers[0].is_virt_csrow = true;
2417 layers[1].type = EDAC_MC_LAYER_CHANNEL;
2418 layers[1].size = pvt->channel_count;
2419 layers[1].is_virt_csrow = false;
2420 mci = edac_mc_alloc(nid, ARRAY_SIZE(layers), layers, 0);
2421 if (!mci)
2422 goto err_siblings;
2423
2424 mci->pvt_info = pvt;
2425 mci->pdev = &pvt->F2->dev;
2426
2427 setup_mci_misc_attrs(mci, fam_type);
2428
2429 if (init_csrows(mci))
2430 mci->edac_cap = EDAC_FLAG_NONE;
2431
2432 ret = -ENODEV;
2433 if (edac_mc_add_mc(mci)) {
2434 edac_dbg(1, "failed edac_mc_add_mc()\n");
2435 goto err_add_mc;
2436 }
2437 if (set_mc_sysfs_attrs(mci)) {
2438 edac_dbg(1, "failed edac_mc_add_mc()\n");
2439 goto err_add_sysfs;
2440 }
2441
2442 /* register stuff with EDAC MCE */
2443 if (report_gart_errors)
2444 amd_report_gart_errors(true);
2445
2446 amd_register_ecc_decoder(amd64_decode_bus_error);
2447
2448 mcis[nid] = mci;
2449
2450 atomic_inc(&drv_instances);
2451
2452 return 0;
2453
2454 err_add_sysfs:
2455 edac_mc_del_mc(mci->pdev);
2456 err_add_mc:
2457 edac_mc_free(mci);
2458
2459 err_siblings:
2460 free_mc_sibling_devs(pvt);
2461
2462 err_free:
2463 kfree(pvt);
2464
2465 err_ret:
2466 return ret;
2467 }
2468
2469 static int amd64_probe_one_instance(struct pci_dev *pdev,
2470 const struct pci_device_id *mc_type)
2471 {
2472 u16 nid = amd_get_node_id(pdev);
2473 struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
2474 struct ecc_settings *s;
2475 int ret = 0;
2476
2477 ret = pci_enable_device(pdev);
2478 if (ret < 0) {
2479 edac_dbg(0, "ret=%d\n", ret);
2480 return -EIO;
2481 }
2482
2483 ret = -ENOMEM;
2484 s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL);
2485 if (!s)
2486 goto err_out;
2487
2488 ecc_stngs[nid] = s;
2489
2490 if (!ecc_enabled(F3, nid)) {
2491 ret = -ENODEV;
2492
2493 if (!ecc_enable_override)
2494 goto err_enable;
2495
2496 amd64_warn("Forcing ECC on!\n");
2497
2498 if (!enable_ecc_error_reporting(s, nid, F3))
2499 goto err_enable;
2500 }
2501
2502 ret = amd64_init_one_instance(pdev);
2503 if (ret < 0) {
2504 amd64_err("Error probing instance: %d\n", nid);
2505 restore_ecc_error_reporting(s, nid, F3);
2506 }
2507
2508 return ret;
2509
2510 err_enable:
2511 kfree(s);
2512 ecc_stngs[nid] = NULL;
2513
2514 err_out:
2515 return ret;
2516 }
2517
2518 static void amd64_remove_one_instance(struct pci_dev *pdev)
2519 {
2520 struct mem_ctl_info *mci;
2521 struct amd64_pvt *pvt;
2522 u16 nid = amd_get_node_id(pdev);
2523 struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
2524 struct ecc_settings *s = ecc_stngs[nid];
2525
2526 mci = find_mci_by_dev(&pdev->dev);
2527 del_mc_sysfs_attrs(mci);
2528 /* Remove from EDAC CORE tracking list */
2529 mci = edac_mc_del_mc(&pdev->dev);
2530 if (!mci)
2531 return;
2532
2533 pvt = mci->pvt_info;
2534
2535 restore_ecc_error_reporting(s, nid, F3);
2536
2537 free_mc_sibling_devs(pvt);
2538
2539 /* unregister from EDAC MCE */
2540 amd_report_gart_errors(false);
2541 amd_unregister_ecc_decoder(amd64_decode_bus_error);
2542
2543 kfree(ecc_stngs[nid]);
2544 ecc_stngs[nid] = NULL;
2545
2546 /* Free the EDAC CORE resources */
2547 mci->pvt_info = NULL;
2548 mcis[nid] = NULL;
2549
2550 kfree(pvt);
2551 edac_mc_free(mci);
2552 }
2553
2554 /*
2555 * This table is part of the interface for loading drivers for PCI devices. The
2556 * PCI core identifies what devices are on a system during boot, and then
2557 * inquiry this table to see if this driver is for a given device found.
2558 */
2559 static DEFINE_PCI_DEVICE_TABLE(amd64_pci_table) = {
2560 {
2561 .vendor = PCI_VENDOR_ID_AMD,
2562 .device = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
2563 .subvendor = PCI_ANY_ID,
2564 .subdevice = PCI_ANY_ID,
2565 .class = 0,
2566 .class_mask = 0,
2567 },
2568 {
2569 .vendor = PCI_VENDOR_ID_AMD,
2570 .device = PCI_DEVICE_ID_AMD_10H_NB_DRAM,
2571 .subvendor = PCI_ANY_ID,
2572 .subdevice = PCI_ANY_ID,
2573 .class = 0,
2574 .class_mask = 0,
2575 },
2576 {
2577 .vendor = PCI_VENDOR_ID_AMD,
2578 .device = PCI_DEVICE_ID_AMD_15H_NB_F2,
2579 .subvendor = PCI_ANY_ID,
2580 .subdevice = PCI_ANY_ID,
2581 .class = 0,
2582 .class_mask = 0,
2583 },
2584
2585 {0, }
2586 };
2587 MODULE_DEVICE_TABLE(pci, amd64_pci_table);
2588
2589 static struct pci_driver amd64_pci_driver = {
2590 .name = EDAC_MOD_STR,
2591 .probe = amd64_probe_one_instance,
2592 .remove = amd64_remove_one_instance,
2593 .id_table = amd64_pci_table,
2594 };
2595
2596 static void setup_pci_device(void)
2597 {
2598 struct mem_ctl_info *mci;
2599 struct amd64_pvt *pvt;
2600
2601 if (amd64_ctl_pci)
2602 return;
2603
2604 mci = mcis[0];
2605 if (mci) {
2606
2607 pvt = mci->pvt_info;
2608 amd64_ctl_pci =
2609 edac_pci_create_generic_ctl(&pvt->F2->dev, EDAC_MOD_STR);
2610
2611 if (!amd64_ctl_pci) {
2612 pr_warning("%s(): Unable to create PCI control\n",
2613 __func__);
2614
2615 pr_warning("%s(): PCI error report via EDAC not set\n",
2616 __func__);
2617 }
2618 }
2619 }
2620
2621 static int __init amd64_edac_init(void)
2622 {
2623 int err = -ENODEV;
2624
2625 printk(KERN_INFO "AMD64 EDAC driver v%s\n", EDAC_AMD64_VERSION);
2626
2627 opstate_init();
2628
2629 if (amd_cache_northbridges() < 0)
2630 goto err_ret;
2631
2632 err = -ENOMEM;
2633 mcis = kzalloc(amd_nb_num() * sizeof(mcis[0]), GFP_KERNEL);
2634 ecc_stngs = kzalloc(amd_nb_num() * sizeof(ecc_stngs[0]), GFP_KERNEL);
2635 if (!(mcis && ecc_stngs))
2636 goto err_free;
2637
2638 msrs = msrs_alloc();
2639 if (!msrs)
2640 goto err_free;
2641
2642 err = pci_register_driver(&amd64_pci_driver);
2643 if (err)
2644 goto err_pci;
2645
2646 err = -ENODEV;
2647 if (!atomic_read(&drv_instances))
2648 goto err_no_instances;
2649
2650 setup_pci_device();
2651 return 0;
2652
2653 err_no_instances:
2654 pci_unregister_driver(&amd64_pci_driver);
2655
2656 err_pci:
2657 msrs_free(msrs);
2658 msrs = NULL;
2659
2660 err_free:
2661 kfree(mcis);
2662 mcis = NULL;
2663
2664 kfree(ecc_stngs);
2665 ecc_stngs = NULL;
2666
2667 err_ret:
2668 return err;
2669 }
2670
2671 static void __exit amd64_edac_exit(void)
2672 {
2673 if (amd64_ctl_pci)
2674 edac_pci_release_generic_ctl(amd64_ctl_pci);
2675
2676 pci_unregister_driver(&amd64_pci_driver);
2677
2678 kfree(ecc_stngs);
2679 ecc_stngs = NULL;
2680
2681 kfree(mcis);
2682 mcis = NULL;
2683
2684 msrs_free(msrs);
2685 msrs = NULL;
2686 }
2687
2688 module_init(amd64_edac_init);
2689 module_exit(amd64_edac_exit);
2690
2691 MODULE_LICENSE("GPL");
2692 MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
2693 "Dave Peterson, Thayne Harbaugh");
2694 MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
2695 EDAC_AMD64_VERSION);
2696
2697 module_param(edac_op_state, int, 0444);
2698 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");