]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/edac/amd64_edac.c
Merge commit 'v2.6.36-rc1' into HEAD
[mirror_ubuntu-bionic-kernel.git] / drivers / edac / amd64_edac.c
1 #include "amd64_edac.h"
2 #include <asm/k8.h>
3
4 static struct edac_pci_ctl_info *amd64_ctl_pci;
5
6 static int report_gart_errors;
7 module_param(report_gart_errors, int, 0644);
8
9 /*
10 * Set by command line parameter. If BIOS has enabled the ECC, this override is
11 * cleared to prevent re-enabling the hardware by this driver.
12 */
13 static int ecc_enable_override;
14 module_param(ecc_enable_override, int, 0644);
15
16 static struct msr __percpu *msrs;
17
18 /* Lookup table for all possible MC control instances */
19 struct amd64_pvt;
20 static struct mem_ctl_info *mci_lookup[EDAC_MAX_NUMNODES];
21 static struct amd64_pvt *pvt_lookup[EDAC_MAX_NUMNODES];
22
23 /*
24 * Address to DRAM bank mapping: see F2x80 for K8 and F2x[1,0]80 for Fam10 and
25 * later.
26 */
27 static int ddr2_dbam_revCG[] = {
28 [0] = 32,
29 [1] = 64,
30 [2] = 128,
31 [3] = 256,
32 [4] = 512,
33 [5] = 1024,
34 [6] = 2048,
35 };
36
37 static int ddr2_dbam_revD[] = {
38 [0] = 32,
39 [1] = 64,
40 [2 ... 3] = 128,
41 [4] = 256,
42 [5] = 512,
43 [6] = 256,
44 [7] = 512,
45 [8 ... 9] = 1024,
46 [10] = 2048,
47 };
48
49 static int ddr2_dbam[] = { [0] = 128,
50 [1] = 256,
51 [2 ... 4] = 512,
52 [5 ... 6] = 1024,
53 [7 ... 8] = 2048,
54 [9 ... 10] = 4096,
55 [11] = 8192,
56 };
57
58 static int ddr3_dbam[] = { [0] = -1,
59 [1] = 256,
60 [2] = 512,
61 [3 ... 4] = -1,
62 [5 ... 6] = 1024,
63 [7 ... 8] = 2048,
64 [9 ... 10] = 4096,
65 [11] = 8192,
66 };
67
68 /*
69 * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
70 * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
71 * or higher value'.
72 *
73 *FIXME: Produce a better mapping/linearisation.
74 */
75
76 struct scrubrate scrubrates[] = {
77 { 0x01, 1600000000UL},
78 { 0x02, 800000000UL},
79 { 0x03, 400000000UL},
80 { 0x04, 200000000UL},
81 { 0x05, 100000000UL},
82 { 0x06, 50000000UL},
83 { 0x07, 25000000UL},
84 { 0x08, 12284069UL},
85 { 0x09, 6274509UL},
86 { 0x0A, 3121951UL},
87 { 0x0B, 1560975UL},
88 { 0x0C, 781440UL},
89 { 0x0D, 390720UL},
90 { 0x0E, 195300UL},
91 { 0x0F, 97650UL},
92 { 0x10, 48854UL},
93 { 0x11, 24427UL},
94 { 0x12, 12213UL},
95 { 0x13, 6101UL},
96 { 0x14, 3051UL},
97 { 0x15, 1523UL},
98 { 0x16, 761UL},
99 { 0x00, 0UL}, /* scrubbing off */
100 };
101
102 /*
103 * Memory scrubber control interface. For K8, memory scrubbing is handled by
104 * hardware and can involve L2 cache, dcache as well as the main memory. With
105 * F10, this is extended to L3 cache scrubbing on CPU models sporting that
106 * functionality.
107 *
108 * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
109 * (dram) over to cache lines. This is nasty, so we will use bandwidth in
110 * bytes/sec for the setting.
111 *
112 * Currently, we only do dram scrubbing. If the scrubbing is done in software on
113 * other archs, we might not have access to the caches directly.
114 */
115
116 /*
117 * scan the scrub rate mapping table for a close or matching bandwidth value to
118 * issue. If requested is too big, then use last maximum value found.
119 */
120 static int amd64_search_set_scrub_rate(struct pci_dev *ctl, u32 new_bw,
121 u32 min_scrubrate)
122 {
123 u32 scrubval;
124 int i;
125
126 /*
127 * map the configured rate (new_bw) to a value specific to the AMD64
128 * memory controller and apply to register. Search for the first
129 * bandwidth entry that is greater or equal than the setting requested
130 * and program that. If at last entry, turn off DRAM scrubbing.
131 */
132 for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
133 /*
134 * skip scrub rates which aren't recommended
135 * (see F10 BKDG, F3x58)
136 */
137 if (scrubrates[i].scrubval < min_scrubrate)
138 continue;
139
140 if (scrubrates[i].bandwidth <= new_bw)
141 break;
142
143 /*
144 * if no suitable bandwidth found, turn off DRAM scrubbing
145 * entirely by falling back to the last element in the
146 * scrubrates array.
147 */
148 }
149
150 scrubval = scrubrates[i].scrubval;
151 if (scrubval)
152 edac_printk(KERN_DEBUG, EDAC_MC,
153 "Setting scrub rate bandwidth: %u\n",
154 scrubrates[i].bandwidth);
155 else
156 edac_printk(KERN_DEBUG, EDAC_MC, "Turning scrubbing off.\n");
157
158 pci_write_bits32(ctl, K8_SCRCTRL, scrubval, 0x001F);
159
160 return 0;
161 }
162
163 static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 bandwidth)
164 {
165 struct amd64_pvt *pvt = mci->pvt_info;
166 u32 min_scrubrate = 0x0;
167
168 switch (boot_cpu_data.x86) {
169 case 0xf:
170 min_scrubrate = K8_MIN_SCRUB_RATE_BITS;
171 break;
172 case 0x10:
173 min_scrubrate = F10_MIN_SCRUB_RATE_BITS;
174 break;
175 case 0x11:
176 min_scrubrate = F11_MIN_SCRUB_RATE_BITS;
177 break;
178
179 default:
180 amd64_printk(KERN_ERR, "Unsupported family!\n");
181 return -EINVAL;
182 }
183 return amd64_search_set_scrub_rate(pvt->misc_f3_ctl, bandwidth,
184 min_scrubrate);
185 }
186
187 static int amd64_get_scrub_rate(struct mem_ctl_info *mci, u32 *bw)
188 {
189 struct amd64_pvt *pvt = mci->pvt_info;
190 u32 scrubval = 0;
191 int status = -1, i;
192
193 amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_SCRCTRL, &scrubval);
194
195 scrubval = scrubval & 0x001F;
196
197 edac_printk(KERN_DEBUG, EDAC_MC,
198 "pci-read, sdram scrub control value: %d \n", scrubval);
199
200 for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
201 if (scrubrates[i].scrubval == scrubval) {
202 *bw = scrubrates[i].bandwidth;
203 status = 0;
204 break;
205 }
206 }
207
208 return status;
209 }
210
211 /* Map from a CSROW entry to the mask entry that operates on it */
212 static inline u32 amd64_map_to_dcs_mask(struct amd64_pvt *pvt, int csrow)
213 {
214 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F)
215 return csrow;
216 else
217 return csrow >> 1;
218 }
219
220 /* return the 'base' address the i'th CS entry of the 'dct' DRAM controller */
221 static u32 amd64_get_dct_base(struct amd64_pvt *pvt, int dct, int csrow)
222 {
223 if (dct == 0)
224 return pvt->dcsb0[csrow];
225 else
226 return pvt->dcsb1[csrow];
227 }
228
229 /*
230 * Return the 'mask' address the i'th CS entry. This function is needed because
231 * there number of DCSM registers on Rev E and prior vs Rev F and later is
232 * different.
233 */
234 static u32 amd64_get_dct_mask(struct amd64_pvt *pvt, int dct, int csrow)
235 {
236 if (dct == 0)
237 return pvt->dcsm0[amd64_map_to_dcs_mask(pvt, csrow)];
238 else
239 return pvt->dcsm1[amd64_map_to_dcs_mask(pvt, csrow)];
240 }
241
242
243 /*
244 * In *base and *limit, pass back the full 40-bit base and limit physical
245 * addresses for the node given by node_id. This information is obtained from
246 * DRAM Base (section 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers. The
247 * base and limit addresses are of type SysAddr, as defined at the start of
248 * section 3.4.4 (p. 70). They are the lowest and highest physical addresses
249 * in the address range they represent.
250 */
251 static void amd64_get_base_and_limit(struct amd64_pvt *pvt, int node_id,
252 u64 *base, u64 *limit)
253 {
254 *base = pvt->dram_base[node_id];
255 *limit = pvt->dram_limit[node_id];
256 }
257
258 /*
259 * Return 1 if the SysAddr given by sys_addr matches the base/limit associated
260 * with node_id
261 */
262 static int amd64_base_limit_match(struct amd64_pvt *pvt,
263 u64 sys_addr, int node_id)
264 {
265 u64 base, limit, addr;
266
267 amd64_get_base_and_limit(pvt, node_id, &base, &limit);
268
269 /* The K8 treats this as a 40-bit value. However, bits 63-40 will be
270 * all ones if the most significant implemented address bit is 1.
271 * Here we discard bits 63-40. See section 3.4.2 of AMD publication
272 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
273 * Application Programming.
274 */
275 addr = sys_addr & 0x000000ffffffffffull;
276
277 return (addr >= base) && (addr <= limit);
278 }
279
280 /*
281 * Attempt to map a SysAddr to a node. On success, return a pointer to the
282 * mem_ctl_info structure for the node that the SysAddr maps to.
283 *
284 * On failure, return NULL.
285 */
286 static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
287 u64 sys_addr)
288 {
289 struct amd64_pvt *pvt;
290 int node_id;
291 u32 intlv_en, bits;
292
293 /*
294 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
295 * 3.4.4.2) registers to map the SysAddr to a node ID.
296 */
297 pvt = mci->pvt_info;
298
299 /*
300 * The value of this field should be the same for all DRAM Base
301 * registers. Therefore we arbitrarily choose to read it from the
302 * register for node 0.
303 */
304 intlv_en = pvt->dram_IntlvEn[0];
305
306 if (intlv_en == 0) {
307 for (node_id = 0; node_id < DRAM_REG_COUNT; node_id++) {
308 if (amd64_base_limit_match(pvt, sys_addr, node_id))
309 goto found;
310 }
311 goto err_no_match;
312 }
313
314 if (unlikely((intlv_en != 0x01) &&
315 (intlv_en != 0x03) &&
316 (intlv_en != 0x07))) {
317 amd64_printk(KERN_WARNING, "junk value of 0x%x extracted from "
318 "IntlvEn field of DRAM Base Register for node 0: "
319 "this probably indicates a BIOS bug.\n", intlv_en);
320 return NULL;
321 }
322
323 bits = (((u32) sys_addr) >> 12) & intlv_en;
324
325 for (node_id = 0; ; ) {
326 if ((pvt->dram_IntlvSel[node_id] & intlv_en) == bits)
327 break; /* intlv_sel field matches */
328
329 if (++node_id >= DRAM_REG_COUNT)
330 goto err_no_match;
331 }
332
333 /* sanity test for sys_addr */
334 if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) {
335 amd64_printk(KERN_WARNING,
336 "%s(): sys_addr 0x%llx falls outside base/limit "
337 "address range for node %d with node interleaving "
338 "enabled.\n",
339 __func__, sys_addr, node_id);
340 return NULL;
341 }
342
343 found:
344 return edac_mc_find(node_id);
345
346 err_no_match:
347 debugf2("sys_addr 0x%lx doesn't match any node\n",
348 (unsigned long)sys_addr);
349
350 return NULL;
351 }
352
353 /*
354 * Extract the DRAM CS base address from selected csrow register.
355 */
356 static u64 base_from_dct_base(struct amd64_pvt *pvt, int csrow)
357 {
358 return ((u64) (amd64_get_dct_base(pvt, 0, csrow) & pvt->dcsb_base)) <<
359 pvt->dcs_shift;
360 }
361
362 /*
363 * Extract the mask from the dcsb0[csrow] entry in a CPU revision-specific way.
364 */
365 static u64 mask_from_dct_mask(struct amd64_pvt *pvt, int csrow)
366 {
367 u64 dcsm_bits, other_bits;
368 u64 mask;
369
370 /* Extract bits from DRAM CS Mask. */
371 dcsm_bits = amd64_get_dct_mask(pvt, 0, csrow) & pvt->dcsm_mask;
372
373 other_bits = pvt->dcsm_mask;
374 other_bits = ~(other_bits << pvt->dcs_shift);
375
376 /*
377 * The extracted bits from DCSM belong in the spaces represented by
378 * the cleared bits in other_bits.
379 */
380 mask = (dcsm_bits << pvt->dcs_shift) | other_bits;
381
382 return mask;
383 }
384
385 /*
386 * @input_addr is an InputAddr associated with the node given by mci. Return the
387 * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
388 */
389 static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
390 {
391 struct amd64_pvt *pvt;
392 int csrow;
393 u64 base, mask;
394
395 pvt = mci->pvt_info;
396
397 /*
398 * Here we use the DRAM CS Base and DRAM CS Mask registers. For each CS
399 * base/mask register pair, test the condition shown near the start of
400 * section 3.5.4 (p. 84, BKDG #26094, K8, revA-E).
401 */
402 for (csrow = 0; csrow < pvt->cs_count; csrow++) {
403
404 /* This DRAM chip select is disabled on this node */
405 if ((pvt->dcsb0[csrow] & K8_DCSB_CS_ENABLE) == 0)
406 continue;
407
408 base = base_from_dct_base(pvt, csrow);
409 mask = ~mask_from_dct_mask(pvt, csrow);
410
411 if ((input_addr & mask) == (base & mask)) {
412 debugf2("InputAddr 0x%lx matches csrow %d (node %d)\n",
413 (unsigned long)input_addr, csrow,
414 pvt->mc_node_id);
415
416 return csrow;
417 }
418 }
419
420 debugf2("no matching csrow for InputAddr 0x%lx (MC node %d)\n",
421 (unsigned long)input_addr, pvt->mc_node_id);
422
423 return -1;
424 }
425
426 /*
427 * Return the base value defined by the DRAM Base register for the node
428 * represented by mci. This function returns the full 40-bit value despite the
429 * fact that the register only stores bits 39-24 of the value. See section
430 * 3.4.4.1 (BKDG #26094, K8, revA-E)
431 */
432 static inline u64 get_dram_base(struct mem_ctl_info *mci)
433 {
434 struct amd64_pvt *pvt = mci->pvt_info;
435
436 return pvt->dram_base[pvt->mc_node_id];
437 }
438
439 /*
440 * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
441 * for the node represented by mci. Info is passed back in *hole_base,
442 * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if
443 * info is invalid. Info may be invalid for either of the following reasons:
444 *
445 * - The revision of the node is not E or greater. In this case, the DRAM Hole
446 * Address Register does not exist.
447 *
448 * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
449 * indicating that its contents are not valid.
450 *
451 * The values passed back in *hole_base, *hole_offset, and *hole_size are
452 * complete 32-bit values despite the fact that the bitfields in the DHAR
453 * only represent bits 31-24 of the base and offset values.
454 */
455 int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
456 u64 *hole_offset, u64 *hole_size)
457 {
458 struct amd64_pvt *pvt = mci->pvt_info;
459 u64 base;
460
461 /* only revE and later have the DRAM Hole Address Register */
462 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_E) {
463 debugf1(" revision %d for node %d does not support DHAR\n",
464 pvt->ext_model, pvt->mc_node_id);
465 return 1;
466 }
467
468 /* only valid for Fam10h */
469 if (boot_cpu_data.x86 == 0x10 &&
470 (pvt->dhar & F10_DRAM_MEM_HOIST_VALID) == 0) {
471 debugf1(" Dram Memory Hoisting is DISABLED on this system\n");
472 return 1;
473 }
474
475 if ((pvt->dhar & DHAR_VALID) == 0) {
476 debugf1(" Dram Memory Hoisting is DISABLED on this node %d\n",
477 pvt->mc_node_id);
478 return 1;
479 }
480
481 /* This node has Memory Hoisting */
482
483 /* +------------------+--------------------+--------------------+-----
484 * | memory | DRAM hole | relocated |
485 * | [0, (x - 1)] | [x, 0xffffffff] | addresses from |
486 * | | | DRAM hole |
487 * | | | [0x100000000, |
488 * | | | (0x100000000+ |
489 * | | | (0xffffffff-x))] |
490 * +------------------+--------------------+--------------------+-----
491 *
492 * Above is a diagram of physical memory showing the DRAM hole and the
493 * relocated addresses from the DRAM hole. As shown, the DRAM hole
494 * starts at address x (the base address) and extends through address
495 * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the
496 * addresses in the hole so that they start at 0x100000000.
497 */
498
499 base = dhar_base(pvt->dhar);
500
501 *hole_base = base;
502 *hole_size = (0x1ull << 32) - base;
503
504 if (boot_cpu_data.x86 > 0xf)
505 *hole_offset = f10_dhar_offset(pvt->dhar);
506 else
507 *hole_offset = k8_dhar_offset(pvt->dhar);
508
509 debugf1(" DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
510 pvt->mc_node_id, (unsigned long)*hole_base,
511 (unsigned long)*hole_offset, (unsigned long)*hole_size);
512
513 return 0;
514 }
515 EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
516
517 /*
518 * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is
519 * assumed that sys_addr maps to the node given by mci.
520 *
521 * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
522 * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
523 * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
524 * then it is also involved in translating a SysAddr to a DramAddr. Sections
525 * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
526 * These parts of the documentation are unclear. I interpret them as follows:
527 *
528 * When node n receives a SysAddr, it processes the SysAddr as follows:
529 *
530 * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
531 * Limit registers for node n. If the SysAddr is not within the range
532 * specified by the base and limit values, then node n ignores the Sysaddr
533 * (since it does not map to node n). Otherwise continue to step 2 below.
534 *
535 * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
536 * disabled so skip to step 3 below. Otherwise see if the SysAddr is within
537 * the range of relocated addresses (starting at 0x100000000) from the DRAM
538 * hole. If not, skip to step 3 below. Else get the value of the
539 * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
540 * offset defined by this value from the SysAddr.
541 *
542 * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
543 * Base register for node n. To obtain the DramAddr, subtract the base
544 * address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
545 */
546 static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
547 {
548 u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
549 int ret = 0;
550
551 dram_base = get_dram_base(mci);
552
553 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
554 &hole_size);
555 if (!ret) {
556 if ((sys_addr >= (1ull << 32)) &&
557 (sys_addr < ((1ull << 32) + hole_size))) {
558 /* use DHAR to translate SysAddr to DramAddr */
559 dram_addr = sys_addr - hole_offset;
560
561 debugf2("using DHAR to translate SysAddr 0x%lx to "
562 "DramAddr 0x%lx\n",
563 (unsigned long)sys_addr,
564 (unsigned long)dram_addr);
565
566 return dram_addr;
567 }
568 }
569
570 /*
571 * Translate the SysAddr to a DramAddr as shown near the start of
572 * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8
573 * only deals with 40-bit values. Therefore we discard bits 63-40 of
574 * sys_addr below. If bit 39 of sys_addr is 1 then the bits we
575 * discard are all 1s. Otherwise the bits we discard are all 0s. See
576 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
577 * Programmer's Manual Volume 1 Application Programming.
578 */
579 dram_addr = (sys_addr & 0xffffffffffull) - dram_base;
580
581 debugf2("using DRAM Base register to translate SysAddr 0x%lx to "
582 "DramAddr 0x%lx\n", (unsigned long)sys_addr,
583 (unsigned long)dram_addr);
584 return dram_addr;
585 }
586
587 /*
588 * @intlv_en is the value of the IntlvEn field from a DRAM Base register
589 * (section 3.4.4.1). Return the number of bits from a SysAddr that are used
590 * for node interleaving.
591 */
592 static int num_node_interleave_bits(unsigned intlv_en)
593 {
594 static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
595 int n;
596
597 BUG_ON(intlv_en > 7);
598 n = intlv_shift_table[intlv_en];
599 return n;
600 }
601
602 /* Translate the DramAddr given by @dram_addr to an InputAddr. */
603 static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
604 {
605 struct amd64_pvt *pvt;
606 int intlv_shift;
607 u64 input_addr;
608
609 pvt = mci->pvt_info;
610
611 /*
612 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
613 * concerning translating a DramAddr to an InputAddr.
614 */
615 intlv_shift = num_node_interleave_bits(pvt->dram_IntlvEn[0]);
616 input_addr = ((dram_addr >> intlv_shift) & 0xffffff000ull) +
617 (dram_addr & 0xfff);
618
619 debugf2(" Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
620 intlv_shift, (unsigned long)dram_addr,
621 (unsigned long)input_addr);
622
623 return input_addr;
624 }
625
626 /*
627 * Translate the SysAddr represented by @sys_addr to an InputAddr. It is
628 * assumed that @sys_addr maps to the node given by mci.
629 */
630 static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
631 {
632 u64 input_addr;
633
634 input_addr =
635 dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
636
637 debugf2("SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
638 (unsigned long)sys_addr, (unsigned long)input_addr);
639
640 return input_addr;
641 }
642
643
644 /*
645 * @input_addr is an InputAddr associated with the node represented by mci.
646 * Translate @input_addr to a DramAddr and return the result.
647 */
648 static u64 input_addr_to_dram_addr(struct mem_ctl_info *mci, u64 input_addr)
649 {
650 struct amd64_pvt *pvt;
651 int node_id, intlv_shift;
652 u64 bits, dram_addr;
653 u32 intlv_sel;
654
655 /*
656 * Near the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
657 * shows how to translate a DramAddr to an InputAddr. Here we reverse
658 * this procedure. When translating from a DramAddr to an InputAddr, the
659 * bits used for node interleaving are discarded. Here we recover these
660 * bits from the IntlvSel field of the DRAM Limit register (section
661 * 3.4.4.2) for the node that input_addr is associated with.
662 */
663 pvt = mci->pvt_info;
664 node_id = pvt->mc_node_id;
665 BUG_ON((node_id < 0) || (node_id > 7));
666
667 intlv_shift = num_node_interleave_bits(pvt->dram_IntlvEn[0]);
668
669 if (intlv_shift == 0) {
670 debugf1(" InputAddr 0x%lx translates to DramAddr of "
671 "same value\n", (unsigned long)input_addr);
672
673 return input_addr;
674 }
675
676 bits = ((input_addr & 0xffffff000ull) << intlv_shift) +
677 (input_addr & 0xfff);
678
679 intlv_sel = pvt->dram_IntlvSel[node_id] & ((1 << intlv_shift) - 1);
680 dram_addr = bits + (intlv_sel << 12);
681
682 debugf1("InputAddr 0x%lx translates to DramAddr 0x%lx "
683 "(%d node interleave bits)\n", (unsigned long)input_addr,
684 (unsigned long)dram_addr, intlv_shift);
685
686 return dram_addr;
687 }
688
689 /*
690 * @dram_addr is a DramAddr that maps to the node represented by mci. Convert
691 * @dram_addr to a SysAddr.
692 */
693 static u64 dram_addr_to_sys_addr(struct mem_ctl_info *mci, u64 dram_addr)
694 {
695 struct amd64_pvt *pvt = mci->pvt_info;
696 u64 hole_base, hole_offset, hole_size, base, limit, sys_addr;
697 int ret = 0;
698
699 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
700 &hole_size);
701 if (!ret) {
702 if ((dram_addr >= hole_base) &&
703 (dram_addr < (hole_base + hole_size))) {
704 sys_addr = dram_addr + hole_offset;
705
706 debugf1("using DHAR to translate DramAddr 0x%lx to "
707 "SysAddr 0x%lx\n", (unsigned long)dram_addr,
708 (unsigned long)sys_addr);
709
710 return sys_addr;
711 }
712 }
713
714 amd64_get_base_and_limit(pvt, pvt->mc_node_id, &base, &limit);
715 sys_addr = dram_addr + base;
716
717 /*
718 * The sys_addr we have computed up to this point is a 40-bit value
719 * because the k8 deals with 40-bit values. However, the value we are
720 * supposed to return is a full 64-bit physical address. The AMD
721 * x86-64 architecture specifies that the most significant implemented
722 * address bit through bit 63 of a physical address must be either all
723 * 0s or all 1s. Therefore we sign-extend the 40-bit sys_addr to a
724 * 64-bit value below. See section 3.4.2 of AMD publication 24592:
725 * AMD x86-64 Architecture Programmer's Manual Volume 1 Application
726 * Programming.
727 */
728 sys_addr |= ~((sys_addr & (1ull << 39)) - 1);
729
730 debugf1(" Node %d, DramAddr 0x%lx to SysAddr 0x%lx\n",
731 pvt->mc_node_id, (unsigned long)dram_addr,
732 (unsigned long)sys_addr);
733
734 return sys_addr;
735 }
736
737 /*
738 * @input_addr is an InputAddr associated with the node given by mci. Translate
739 * @input_addr to a SysAddr.
740 */
741 static inline u64 input_addr_to_sys_addr(struct mem_ctl_info *mci,
742 u64 input_addr)
743 {
744 return dram_addr_to_sys_addr(mci,
745 input_addr_to_dram_addr(mci, input_addr));
746 }
747
748 /*
749 * Find the minimum and maximum InputAddr values that map to the given @csrow.
750 * Pass back these values in *input_addr_min and *input_addr_max.
751 */
752 static void find_csrow_limits(struct mem_ctl_info *mci, int csrow,
753 u64 *input_addr_min, u64 *input_addr_max)
754 {
755 struct amd64_pvt *pvt;
756 u64 base, mask;
757
758 pvt = mci->pvt_info;
759 BUG_ON((csrow < 0) || (csrow >= pvt->cs_count));
760
761 base = base_from_dct_base(pvt, csrow);
762 mask = mask_from_dct_mask(pvt, csrow);
763
764 *input_addr_min = base & ~mask;
765 *input_addr_max = base | mask | pvt->dcs_mask_notused;
766 }
767
768 /* Map the Error address to a PAGE and PAGE OFFSET. */
769 static inline void error_address_to_page_and_offset(u64 error_address,
770 u32 *page, u32 *offset)
771 {
772 *page = (u32) (error_address >> PAGE_SHIFT);
773 *offset = ((u32) error_address) & ~PAGE_MASK;
774 }
775
776 /*
777 * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
778 * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
779 * of a node that detected an ECC memory error. mci represents the node that
780 * the error address maps to (possibly different from the node that detected
781 * the error). Return the number of the csrow that sys_addr maps to, or -1 on
782 * error.
783 */
784 static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
785 {
786 int csrow;
787
788 csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
789
790 if (csrow == -1)
791 amd64_mc_printk(mci, KERN_ERR,
792 "Failed to translate InputAddr to csrow for "
793 "address 0x%lx\n", (unsigned long)sys_addr);
794 return csrow;
795 }
796
797 static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
798
799 static u16 extract_syndrome(struct err_regs *err)
800 {
801 return ((err->nbsh >> 15) & 0xff) | ((err->nbsl >> 16) & 0xff00);
802 }
803
804 static void amd64_cpu_display_info(struct amd64_pvt *pvt)
805 {
806 if (boot_cpu_data.x86 == 0x11)
807 edac_printk(KERN_DEBUG, EDAC_MC, "F11h CPU detected\n");
808 else if (boot_cpu_data.x86 == 0x10)
809 edac_printk(KERN_DEBUG, EDAC_MC, "F10h CPU detected\n");
810 else if (boot_cpu_data.x86 == 0xf)
811 edac_printk(KERN_DEBUG, EDAC_MC, "%s detected\n",
812 (pvt->ext_model >= K8_REV_F) ?
813 "Rev F or later" : "Rev E or earlier");
814 else
815 /* we'll hardly ever ever get here */
816 edac_printk(KERN_ERR, EDAC_MC, "Unknown cpu!\n");
817 }
818
819 /*
820 * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
821 * are ECC capable.
822 */
823 static enum edac_type amd64_determine_edac_cap(struct amd64_pvt *pvt)
824 {
825 int bit;
826 enum dev_type edac_cap = EDAC_FLAG_NONE;
827
828 bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= K8_REV_F)
829 ? 19
830 : 17;
831
832 if (pvt->dclr0 & BIT(bit))
833 edac_cap = EDAC_FLAG_SECDED;
834
835 return edac_cap;
836 }
837
838
839 static void amd64_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt);
840
841 static void amd64_dump_dramcfg_low(u32 dclr, int chan)
842 {
843 debugf1("F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);
844
845 debugf1(" DIMM type: %sbuffered; all DIMMs support ECC: %s\n",
846 (dclr & BIT(16)) ? "un" : "",
847 (dclr & BIT(19)) ? "yes" : "no");
848
849 debugf1(" PAR/ERR parity: %s\n",
850 (dclr & BIT(8)) ? "enabled" : "disabled");
851
852 debugf1(" DCT 128bit mode width: %s\n",
853 (dclr & BIT(11)) ? "128b" : "64b");
854
855 debugf1(" x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
856 (dclr & BIT(12)) ? "yes" : "no",
857 (dclr & BIT(13)) ? "yes" : "no",
858 (dclr & BIT(14)) ? "yes" : "no",
859 (dclr & BIT(15)) ? "yes" : "no");
860 }
861
862 /* Display and decode various NB registers for debug purposes. */
863 static void amd64_dump_misc_regs(struct amd64_pvt *pvt)
864 {
865 int ganged;
866
867 debugf1("F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);
868
869 debugf1(" NB two channel DRAM capable: %s\n",
870 (pvt->nbcap & K8_NBCAP_DCT_DUAL) ? "yes" : "no");
871
872 debugf1(" ECC capable: %s, ChipKill ECC capable: %s\n",
873 (pvt->nbcap & K8_NBCAP_SECDED) ? "yes" : "no",
874 (pvt->nbcap & K8_NBCAP_CHIPKILL) ? "yes" : "no");
875
876 amd64_dump_dramcfg_low(pvt->dclr0, 0);
877
878 debugf1("F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
879
880 debugf1("F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, "
881 "offset: 0x%08x\n",
882 pvt->dhar,
883 dhar_base(pvt->dhar),
884 (boot_cpu_data.x86 == 0xf) ? k8_dhar_offset(pvt->dhar)
885 : f10_dhar_offset(pvt->dhar));
886
887 debugf1(" DramHoleValid: %s\n",
888 (pvt->dhar & DHAR_VALID) ? "yes" : "no");
889
890 /* everything below this point is Fam10h and above */
891 if (boot_cpu_data.x86 == 0xf) {
892 amd64_debug_display_dimm_sizes(0, pvt);
893 return;
894 }
895
896 amd64_printk(KERN_INFO, "using %s syndromes.\n",
897 ((pvt->syn_type == 8) ? "x8" : "x4"));
898
899 /* Only if NOT ganged does dclr1 have valid info */
900 if (!dct_ganging_enabled(pvt))
901 amd64_dump_dramcfg_low(pvt->dclr1, 1);
902
903 /*
904 * Determine if ganged and then dump memory sizes for first controller,
905 * and if NOT ganged dump info for 2nd controller.
906 */
907 ganged = dct_ganging_enabled(pvt);
908
909 amd64_debug_display_dimm_sizes(0, pvt);
910
911 if (!ganged)
912 amd64_debug_display_dimm_sizes(1, pvt);
913 }
914
915 /* Read in both of DBAM registers */
916 static void amd64_read_dbam_reg(struct amd64_pvt *pvt)
917 {
918 amd64_read_pci_cfg(pvt->dram_f2_ctl, DBAM0, &pvt->dbam0);
919
920 if (boot_cpu_data.x86 >= 0x10)
921 amd64_read_pci_cfg(pvt->dram_f2_ctl, DBAM1, &pvt->dbam1);
922 }
923
924 /*
925 * NOTE: CPU Revision Dependent code: Rev E and Rev F
926 *
927 * Set the DCSB and DCSM mask values depending on the CPU revision value. Also
928 * set the shift factor for the DCSB and DCSM values.
929 *
930 * ->dcs_mask_notused, RevE:
931 *
932 * To find the max InputAddr for the csrow, start with the base address and set
933 * all bits that are "don't care" bits in the test at the start of section
934 * 3.5.4 (p. 84).
935 *
936 * The "don't care" bits are all set bits in the mask and all bits in the gaps
937 * between bit ranges [35:25] and [19:13]. The value REV_E_DCS_NOTUSED_BITS
938 * represents bits [24:20] and [12:0], which are all bits in the above-mentioned
939 * gaps.
940 *
941 * ->dcs_mask_notused, RevF and later:
942 *
943 * To find the max InputAddr for the csrow, start with the base address and set
944 * all bits that are "don't care" bits in the test at the start of NPT section
945 * 4.5.4 (p. 87).
946 *
947 * The "don't care" bits are all set bits in the mask and all bits in the gaps
948 * between bit ranges [36:27] and [21:13].
949 *
950 * The value REV_F_F1Xh_DCS_NOTUSED_BITS represents bits [26:22] and [12:0],
951 * which are all bits in the above-mentioned gaps.
952 */
953 static void amd64_set_dct_base_and_mask(struct amd64_pvt *pvt)
954 {
955
956 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
957 pvt->dcsb_base = REV_E_DCSB_BASE_BITS;
958 pvt->dcsm_mask = REV_E_DCSM_MASK_BITS;
959 pvt->dcs_mask_notused = REV_E_DCS_NOTUSED_BITS;
960 pvt->dcs_shift = REV_E_DCS_SHIFT;
961 pvt->cs_count = 8;
962 pvt->num_dcsm = 8;
963 } else {
964 pvt->dcsb_base = REV_F_F1Xh_DCSB_BASE_BITS;
965 pvt->dcsm_mask = REV_F_F1Xh_DCSM_MASK_BITS;
966 pvt->dcs_mask_notused = REV_F_F1Xh_DCS_NOTUSED_BITS;
967 pvt->dcs_shift = REV_F_F1Xh_DCS_SHIFT;
968
969 if (boot_cpu_data.x86 == 0x11) {
970 pvt->cs_count = 4;
971 pvt->num_dcsm = 2;
972 } else {
973 pvt->cs_count = 8;
974 pvt->num_dcsm = 4;
975 }
976 }
977 }
978
979 /*
980 * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask hw registers
981 */
982 static void amd64_read_dct_base_mask(struct amd64_pvt *pvt)
983 {
984 int cs, reg;
985
986 amd64_set_dct_base_and_mask(pvt);
987
988 for (cs = 0; cs < pvt->cs_count; cs++) {
989 reg = K8_DCSB0 + (cs * 4);
990 if (!amd64_read_pci_cfg(pvt->dram_f2_ctl, reg, &pvt->dcsb0[cs]))
991 debugf0(" DCSB0[%d]=0x%08x reg: F2x%x\n",
992 cs, pvt->dcsb0[cs], reg);
993
994 /* If DCT are NOT ganged, then read in DCT1's base */
995 if (boot_cpu_data.x86 >= 0x10 && !dct_ganging_enabled(pvt)) {
996 reg = F10_DCSB1 + (cs * 4);
997 if (!amd64_read_pci_cfg(pvt->dram_f2_ctl, reg,
998 &pvt->dcsb1[cs]))
999 debugf0(" DCSB1[%d]=0x%08x reg: F2x%x\n",
1000 cs, pvt->dcsb1[cs], reg);
1001 } else {
1002 pvt->dcsb1[cs] = 0;
1003 }
1004 }
1005
1006 for (cs = 0; cs < pvt->num_dcsm; cs++) {
1007 reg = K8_DCSM0 + (cs * 4);
1008 if (!amd64_read_pci_cfg(pvt->dram_f2_ctl, reg, &pvt->dcsm0[cs]))
1009 debugf0(" DCSM0[%d]=0x%08x reg: F2x%x\n",
1010 cs, pvt->dcsm0[cs], reg);
1011
1012 /* If DCT are NOT ganged, then read in DCT1's mask */
1013 if (boot_cpu_data.x86 >= 0x10 && !dct_ganging_enabled(pvt)) {
1014 reg = F10_DCSM1 + (cs * 4);
1015 if (!amd64_read_pci_cfg(pvt->dram_f2_ctl, reg,
1016 &pvt->dcsm1[cs]))
1017 debugf0(" DCSM1[%d]=0x%08x reg: F2x%x\n",
1018 cs, pvt->dcsm1[cs], reg);
1019 } else {
1020 pvt->dcsm1[cs] = 0;
1021 }
1022 }
1023 }
1024
1025 static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt)
1026 {
1027 enum mem_type type;
1028
1029 if (boot_cpu_data.x86 >= 0x10 || pvt->ext_model >= K8_REV_F) {
1030 if (pvt->dchr0 & DDR3_MODE)
1031 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
1032 else
1033 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
1034 } else {
1035 type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
1036 }
1037
1038 debugf1(" Memory type is: %s\n", edac_mem_types[type]);
1039
1040 return type;
1041 }
1042
1043 /*
1044 * Read the DRAM Configuration Low register. It differs between CG, D & E revs
1045 * and the later RevF memory controllers (DDR vs DDR2)
1046 *
1047 * Return:
1048 * number of memory channels in operation
1049 * Pass back:
1050 * contents of the DCL0_LOW register
1051 */
1052 static int k8_early_channel_count(struct amd64_pvt *pvt)
1053 {
1054 int flag, err = 0;
1055
1056 err = amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCLR_0, &pvt->dclr0);
1057 if (err)
1058 return err;
1059
1060 if ((boot_cpu_data.x86_model >> 4) >= K8_REV_F) {
1061 /* RevF (NPT) and later */
1062 flag = pvt->dclr0 & F10_WIDTH_128;
1063 } else {
1064 /* RevE and earlier */
1065 flag = pvt->dclr0 & REVE_WIDTH_128;
1066 }
1067
1068 /* not used */
1069 pvt->dclr1 = 0;
1070
1071 return (flag) ? 2 : 1;
1072 }
1073
1074 /* extract the ERROR ADDRESS for the K8 CPUs */
1075 static u64 k8_get_error_address(struct mem_ctl_info *mci,
1076 struct err_regs *info)
1077 {
1078 return (((u64) (info->nbeah & 0xff)) << 32) +
1079 (info->nbeal & ~0x03);
1080 }
1081
1082 /*
1083 * Read the Base and Limit registers for K8 based Memory controllers; extract
1084 * fields from the 'raw' reg into separate data fields
1085 *
1086 * Isolates: BASE, LIMIT, IntlvEn, IntlvSel, RW_EN
1087 */
1088 static void k8_read_dram_base_limit(struct amd64_pvt *pvt, int dram)
1089 {
1090 u32 low;
1091 u32 off = dram << 3; /* 8 bytes between DRAM entries */
1092
1093 amd64_read_pci_cfg(pvt->addr_f1_ctl, K8_DRAM_BASE_LOW + off, &low);
1094
1095 /* Extract parts into separate data entries */
1096 pvt->dram_base[dram] = ((u64) low & 0xFFFF0000) << 8;
1097 pvt->dram_IntlvEn[dram] = (low >> 8) & 0x7;
1098 pvt->dram_rw_en[dram] = (low & 0x3);
1099
1100 amd64_read_pci_cfg(pvt->addr_f1_ctl, K8_DRAM_LIMIT_LOW + off, &low);
1101
1102 /*
1103 * Extract parts into separate data entries. Limit is the HIGHEST memory
1104 * location of the region, so lower 24 bits need to be all ones
1105 */
1106 pvt->dram_limit[dram] = (((u64) low & 0xFFFF0000) << 8) | 0x00FFFFFF;
1107 pvt->dram_IntlvSel[dram] = (low >> 8) & 0x7;
1108 pvt->dram_DstNode[dram] = (low & 0x7);
1109 }
1110
1111 static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
1112 struct err_regs *err_info, u64 sys_addr)
1113 {
1114 struct mem_ctl_info *src_mci;
1115 int channel, csrow;
1116 u32 page, offset;
1117 u16 syndrome;
1118
1119 syndrome = extract_syndrome(err_info);
1120
1121 /* CHIPKILL enabled */
1122 if (err_info->nbcfg & K8_NBCFG_CHIPKILL) {
1123 channel = get_channel_from_ecc_syndrome(mci, syndrome);
1124 if (channel < 0) {
1125 /*
1126 * Syndrome didn't map, so we don't know which of the
1127 * 2 DIMMs is in error. So we need to ID 'both' of them
1128 * as suspect.
1129 */
1130 amd64_mc_printk(mci, KERN_WARNING,
1131 "unknown syndrome 0x%04x - possible "
1132 "error reporting race\n", syndrome);
1133 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1134 return;
1135 }
1136 } else {
1137 /*
1138 * non-chipkill ecc mode
1139 *
1140 * The k8 documentation is unclear about how to determine the
1141 * channel number when using non-chipkill memory. This method
1142 * was obtained from email communication with someone at AMD.
1143 * (Wish the email was placed in this comment - norsk)
1144 */
1145 channel = ((sys_addr & BIT(3)) != 0);
1146 }
1147
1148 /*
1149 * Find out which node the error address belongs to. This may be
1150 * different from the node that detected the error.
1151 */
1152 src_mci = find_mc_by_sys_addr(mci, sys_addr);
1153 if (!src_mci) {
1154 amd64_mc_printk(mci, KERN_ERR,
1155 "failed to map error address 0x%lx to a node\n",
1156 (unsigned long)sys_addr);
1157 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1158 return;
1159 }
1160
1161 /* Now map the sys_addr to a CSROW */
1162 csrow = sys_addr_to_csrow(src_mci, sys_addr);
1163 if (csrow < 0) {
1164 edac_mc_handle_ce_no_info(src_mci, EDAC_MOD_STR);
1165 } else {
1166 error_address_to_page_and_offset(sys_addr, &page, &offset);
1167
1168 edac_mc_handle_ce(src_mci, page, offset, syndrome, csrow,
1169 channel, EDAC_MOD_STR);
1170 }
1171 }
1172
1173 static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, int cs_mode)
1174 {
1175 int *dbam_map;
1176
1177 if (pvt->ext_model >= K8_REV_F)
1178 dbam_map = ddr2_dbam;
1179 else if (pvt->ext_model >= K8_REV_D)
1180 dbam_map = ddr2_dbam_revD;
1181 else
1182 dbam_map = ddr2_dbam_revCG;
1183
1184 return dbam_map[cs_mode];
1185 }
1186
1187 /*
1188 * Get the number of DCT channels in use.
1189 *
1190 * Return:
1191 * number of Memory Channels in operation
1192 * Pass back:
1193 * contents of the DCL0_LOW register
1194 */
1195 static int f10_early_channel_count(struct amd64_pvt *pvt)
1196 {
1197 int dbams[] = { DBAM0, DBAM1 };
1198 int i, j, channels = 0;
1199 u32 dbam;
1200
1201 /* If we are in 128 bit mode, then we are using 2 channels */
1202 if (pvt->dclr0 & F10_WIDTH_128) {
1203 channels = 2;
1204 return channels;
1205 }
1206
1207 /*
1208 * Need to check if in unganged mode: In such, there are 2 channels,
1209 * but they are not in 128 bit mode and thus the above 'dclr0' status
1210 * bit will be OFF.
1211 *
1212 * Need to check DCT0[0] and DCT1[0] to see if only one of them has
1213 * their CSEnable bit on. If so, then SINGLE DIMM case.
1214 */
1215 debugf0("Data width is not 128 bits - need more decoding\n");
1216
1217 /*
1218 * Check DRAM Bank Address Mapping values for each DIMM to see if there
1219 * is more than just one DIMM present in unganged mode. Need to check
1220 * both controllers since DIMMs can be placed in either one.
1221 */
1222 for (i = 0; i < ARRAY_SIZE(dbams); i++) {
1223 if (amd64_read_pci_cfg(pvt->dram_f2_ctl, dbams[i], &dbam))
1224 goto err_reg;
1225
1226 for (j = 0; j < 4; j++) {
1227 if (DBAM_DIMM(j, dbam) > 0) {
1228 channels++;
1229 break;
1230 }
1231 }
1232 }
1233
1234 if (channels > 2)
1235 channels = 2;
1236
1237 debugf0("MCT channel count: %d\n", channels);
1238
1239 return channels;
1240
1241 err_reg:
1242 return -1;
1243
1244 }
1245
1246 static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, int cs_mode)
1247 {
1248 int *dbam_map;
1249
1250 if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
1251 dbam_map = ddr3_dbam;
1252 else
1253 dbam_map = ddr2_dbam;
1254
1255 return dbam_map[cs_mode];
1256 }
1257
1258 /* Enable extended configuration access via 0xCF8 feature */
1259 static void amd64_setup(struct amd64_pvt *pvt)
1260 {
1261 u32 reg;
1262
1263 amd64_read_pci_cfg(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, &reg);
1264
1265 pvt->flags.cf8_extcfg = !!(reg & F10_NB_CFG_LOW_ENABLE_EXT_CFG);
1266 reg |= F10_NB_CFG_LOW_ENABLE_EXT_CFG;
1267 pci_write_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, reg);
1268 }
1269
1270 /* Restore the extended configuration access via 0xCF8 feature */
1271 static void amd64_teardown(struct amd64_pvt *pvt)
1272 {
1273 u32 reg;
1274
1275 amd64_read_pci_cfg(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, &reg);
1276
1277 reg &= ~F10_NB_CFG_LOW_ENABLE_EXT_CFG;
1278 if (pvt->flags.cf8_extcfg)
1279 reg |= F10_NB_CFG_LOW_ENABLE_EXT_CFG;
1280 pci_write_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, reg);
1281 }
1282
1283 static u64 f10_get_error_address(struct mem_ctl_info *mci,
1284 struct err_regs *info)
1285 {
1286 return (((u64) (info->nbeah & 0xffff)) << 32) +
1287 (info->nbeal & ~0x01);
1288 }
1289
1290 /*
1291 * Read the Base and Limit registers for F10 based Memory controllers. Extract
1292 * fields from the 'raw' reg into separate data fields.
1293 *
1294 * Isolates: BASE, LIMIT, IntlvEn, IntlvSel, RW_EN.
1295 */
1296 static void f10_read_dram_base_limit(struct amd64_pvt *pvt, int dram)
1297 {
1298 u32 high_offset, low_offset, high_base, low_base, high_limit, low_limit;
1299
1300 low_offset = K8_DRAM_BASE_LOW + (dram << 3);
1301 high_offset = F10_DRAM_BASE_HIGH + (dram << 3);
1302
1303 /* read the 'raw' DRAM BASE Address register */
1304 amd64_read_pci_cfg(pvt->addr_f1_ctl, low_offset, &low_base);
1305
1306 /* Read from the ECS data register */
1307 amd64_read_pci_cfg(pvt->addr_f1_ctl, high_offset, &high_base);
1308
1309 /* Extract parts into separate data entries */
1310 pvt->dram_rw_en[dram] = (low_base & 0x3);
1311
1312 if (pvt->dram_rw_en[dram] == 0)
1313 return;
1314
1315 pvt->dram_IntlvEn[dram] = (low_base >> 8) & 0x7;
1316
1317 pvt->dram_base[dram] = (((u64)high_base & 0x000000FF) << 40) |
1318 (((u64)low_base & 0xFFFF0000) << 8);
1319
1320 low_offset = K8_DRAM_LIMIT_LOW + (dram << 3);
1321 high_offset = F10_DRAM_LIMIT_HIGH + (dram << 3);
1322
1323 /* read the 'raw' LIMIT registers */
1324 amd64_read_pci_cfg(pvt->addr_f1_ctl, low_offset, &low_limit);
1325
1326 /* Read from the ECS data register for the HIGH portion */
1327 amd64_read_pci_cfg(pvt->addr_f1_ctl, high_offset, &high_limit);
1328
1329 pvt->dram_DstNode[dram] = (low_limit & 0x7);
1330 pvt->dram_IntlvSel[dram] = (low_limit >> 8) & 0x7;
1331
1332 /*
1333 * Extract address values and form a LIMIT address. Limit is the HIGHEST
1334 * memory location of the region, so low 24 bits need to be all ones.
1335 */
1336 pvt->dram_limit[dram] = (((u64)high_limit & 0x000000FF) << 40) |
1337 (((u64) low_limit & 0xFFFF0000) << 8) |
1338 0x00FFFFFF;
1339 }
1340
1341 static void f10_read_dram_ctl_register(struct amd64_pvt *pvt)
1342 {
1343
1344 if (!amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCTL_SEL_LOW,
1345 &pvt->dram_ctl_select_low)) {
1346 debugf0("F2x110 (DCTL Sel. Low): 0x%08x, "
1347 "High range addresses at: 0x%x\n",
1348 pvt->dram_ctl_select_low,
1349 dct_sel_baseaddr(pvt));
1350
1351 debugf0(" DCT mode: %s, All DCTs on: %s\n",
1352 (dct_ganging_enabled(pvt) ? "ganged" : "unganged"),
1353 (dct_dram_enabled(pvt) ? "yes" : "no"));
1354
1355 if (!dct_ganging_enabled(pvt))
1356 debugf0(" Address range split per DCT: %s\n",
1357 (dct_high_range_enabled(pvt) ? "yes" : "no"));
1358
1359 debugf0(" DCT data interleave for ECC: %s, "
1360 "DRAM cleared since last warm reset: %s\n",
1361 (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
1362 (dct_memory_cleared(pvt) ? "yes" : "no"));
1363
1364 debugf0(" DCT channel interleave: %s, "
1365 "DCT interleave bits selector: 0x%x\n",
1366 (dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
1367 dct_sel_interleave_addr(pvt));
1368 }
1369
1370 amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCTL_SEL_HIGH,
1371 &pvt->dram_ctl_select_high);
1372 }
1373
1374 /*
1375 * determine channel based on the interleaving mode: F10h BKDG, 2.8.9 Memory
1376 * Interleaving Modes.
1377 */
1378 static u32 f10_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
1379 int hi_range_sel, u32 intlv_en)
1380 {
1381 u32 cs, temp, dct_sel_high = (pvt->dram_ctl_select_low >> 1) & 1;
1382
1383 if (dct_ganging_enabled(pvt))
1384 cs = 0;
1385 else if (hi_range_sel)
1386 cs = dct_sel_high;
1387 else if (dct_interleave_enabled(pvt)) {
1388 /*
1389 * see F2x110[DctSelIntLvAddr] - channel interleave mode
1390 */
1391 if (dct_sel_interleave_addr(pvt) == 0)
1392 cs = sys_addr >> 6 & 1;
1393 else if ((dct_sel_interleave_addr(pvt) >> 1) & 1) {
1394 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;
1395
1396 if (dct_sel_interleave_addr(pvt) & 1)
1397 cs = (sys_addr >> 9 & 1) ^ temp;
1398 else
1399 cs = (sys_addr >> 6 & 1) ^ temp;
1400 } else if (intlv_en & 4)
1401 cs = sys_addr >> 15 & 1;
1402 else if (intlv_en & 2)
1403 cs = sys_addr >> 14 & 1;
1404 else if (intlv_en & 1)
1405 cs = sys_addr >> 13 & 1;
1406 else
1407 cs = sys_addr >> 12 & 1;
1408 } else if (dct_high_range_enabled(pvt) && !dct_ganging_enabled(pvt))
1409 cs = ~dct_sel_high & 1;
1410 else
1411 cs = 0;
1412
1413 return cs;
1414 }
1415
1416 static inline u32 f10_map_intlv_en_to_shift(u32 intlv_en)
1417 {
1418 if (intlv_en == 1)
1419 return 1;
1420 else if (intlv_en == 3)
1421 return 2;
1422 else if (intlv_en == 7)
1423 return 3;
1424
1425 return 0;
1426 }
1427
1428 /* See F10h BKDG, 2.8.10.2 DctSelBaseOffset Programming */
1429 static inline u64 f10_get_base_addr_offset(u64 sys_addr, int hi_range_sel,
1430 u32 dct_sel_base_addr,
1431 u64 dct_sel_base_off,
1432 u32 hole_valid, u32 hole_off,
1433 u64 dram_base)
1434 {
1435 u64 chan_off;
1436
1437 if (hi_range_sel) {
1438 if (!(dct_sel_base_addr & 0xFFFF0000) &&
1439 hole_valid && (sys_addr >= 0x100000000ULL))
1440 chan_off = hole_off << 16;
1441 else
1442 chan_off = dct_sel_base_off;
1443 } else {
1444 if (hole_valid && (sys_addr >= 0x100000000ULL))
1445 chan_off = hole_off << 16;
1446 else
1447 chan_off = dram_base & 0xFFFFF8000000ULL;
1448 }
1449
1450 return (sys_addr & 0x0000FFFFFFFFFFC0ULL) -
1451 (chan_off & 0x0000FFFFFF800000ULL);
1452 }
1453
1454 /* Hack for the time being - Can we get this from BIOS?? */
1455 #define CH0SPARE_RANK 0
1456 #define CH1SPARE_RANK 1
1457
1458 /*
1459 * checks if the csrow passed in is marked as SPARED, if so returns the new
1460 * spare row
1461 */
1462 static inline int f10_process_possible_spare(int csrow,
1463 u32 cs, struct amd64_pvt *pvt)
1464 {
1465 u32 swap_done;
1466 u32 bad_dram_cs;
1467
1468 /* Depending on channel, isolate respective SPARING info */
1469 if (cs) {
1470 swap_done = F10_ONLINE_SPARE_SWAPDONE1(pvt->online_spare);
1471 bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS1(pvt->online_spare);
1472 if (swap_done && (csrow == bad_dram_cs))
1473 csrow = CH1SPARE_RANK;
1474 } else {
1475 swap_done = F10_ONLINE_SPARE_SWAPDONE0(pvt->online_spare);
1476 bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS0(pvt->online_spare);
1477 if (swap_done && (csrow == bad_dram_cs))
1478 csrow = CH0SPARE_RANK;
1479 }
1480 return csrow;
1481 }
1482
1483 /*
1484 * Iterate over the DRAM DCT "base" and "mask" registers looking for a
1485 * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
1486 *
1487 * Return:
1488 * -EINVAL: NOT FOUND
1489 * 0..csrow = Chip-Select Row
1490 */
1491 static int f10_lookup_addr_in_dct(u32 in_addr, u32 nid, u32 cs)
1492 {
1493 struct mem_ctl_info *mci;
1494 struct amd64_pvt *pvt;
1495 u32 cs_base, cs_mask;
1496 int cs_found = -EINVAL;
1497 int csrow;
1498
1499 mci = mci_lookup[nid];
1500 if (!mci)
1501 return cs_found;
1502
1503 pvt = mci->pvt_info;
1504
1505 debugf1("InputAddr=0x%x channelselect=%d\n", in_addr, cs);
1506
1507 for (csrow = 0; csrow < pvt->cs_count; csrow++) {
1508
1509 cs_base = amd64_get_dct_base(pvt, cs, csrow);
1510 if (!(cs_base & K8_DCSB_CS_ENABLE))
1511 continue;
1512
1513 /*
1514 * We have an ENABLED CSROW, Isolate just the MASK bits of the
1515 * target: [28:19] and [13:5], which map to [36:27] and [21:13]
1516 * of the actual address.
1517 */
1518 cs_base &= REV_F_F1Xh_DCSB_BASE_BITS;
1519
1520 /*
1521 * Get the DCT Mask, and ENABLE the reserved bits: [18:16] and
1522 * [4:0] to become ON. Then mask off bits [28:0] ([36:8])
1523 */
1524 cs_mask = amd64_get_dct_mask(pvt, cs, csrow);
1525
1526 debugf1(" CSROW=%d CSBase=0x%x RAW CSMask=0x%x\n",
1527 csrow, cs_base, cs_mask);
1528
1529 cs_mask = (cs_mask | 0x0007C01F) & 0x1FFFFFFF;
1530
1531 debugf1(" Final CSMask=0x%x\n", cs_mask);
1532 debugf1(" (InputAddr & ~CSMask)=0x%x "
1533 "(CSBase & ~CSMask)=0x%x\n",
1534 (in_addr & ~cs_mask), (cs_base & ~cs_mask));
1535
1536 if ((in_addr & ~cs_mask) == (cs_base & ~cs_mask)) {
1537 cs_found = f10_process_possible_spare(csrow, cs, pvt);
1538
1539 debugf1(" MATCH csrow=%d\n", cs_found);
1540 break;
1541 }
1542 }
1543 return cs_found;
1544 }
1545
1546 /* For a given @dram_range, check if @sys_addr falls within it. */
1547 static int f10_match_to_this_node(struct amd64_pvt *pvt, int dram_range,
1548 u64 sys_addr, int *nid, int *chan_sel)
1549 {
1550 int node_id, cs_found = -EINVAL, high_range = 0;
1551 u32 intlv_en, intlv_sel, intlv_shift, hole_off;
1552 u32 hole_valid, tmp, dct_sel_base, channel;
1553 u64 dram_base, chan_addr, dct_sel_base_off;
1554
1555 dram_base = pvt->dram_base[dram_range];
1556 intlv_en = pvt->dram_IntlvEn[dram_range];
1557
1558 node_id = pvt->dram_DstNode[dram_range];
1559 intlv_sel = pvt->dram_IntlvSel[dram_range];
1560
1561 debugf1("(dram=%d) Base=0x%llx SystemAddr= 0x%llx Limit=0x%llx\n",
1562 dram_range, dram_base, sys_addr, pvt->dram_limit[dram_range]);
1563
1564 /*
1565 * This assumes that one node's DHAR is the same as all the other
1566 * nodes' DHAR.
1567 */
1568 hole_off = (pvt->dhar & 0x0000FF80);
1569 hole_valid = (pvt->dhar & 0x1);
1570 dct_sel_base_off = (pvt->dram_ctl_select_high & 0xFFFFFC00) << 16;
1571
1572 debugf1(" HoleOffset=0x%x HoleValid=0x%x IntlvSel=0x%x\n",
1573 hole_off, hole_valid, intlv_sel);
1574
1575 if (intlv_en ||
1576 (intlv_sel != ((sys_addr >> 12) & intlv_en)))
1577 return -EINVAL;
1578
1579 dct_sel_base = dct_sel_baseaddr(pvt);
1580
1581 /*
1582 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
1583 * select between DCT0 and DCT1.
1584 */
1585 if (dct_high_range_enabled(pvt) &&
1586 !dct_ganging_enabled(pvt) &&
1587 ((sys_addr >> 27) >= (dct_sel_base >> 11)))
1588 high_range = 1;
1589
1590 channel = f10_determine_channel(pvt, sys_addr, high_range, intlv_en);
1591
1592 chan_addr = f10_get_base_addr_offset(sys_addr, high_range, dct_sel_base,
1593 dct_sel_base_off, hole_valid,
1594 hole_off, dram_base);
1595
1596 intlv_shift = f10_map_intlv_en_to_shift(intlv_en);
1597
1598 /* remove Node ID (in case of memory interleaving) */
1599 tmp = chan_addr & 0xFC0;
1600
1601 chan_addr = ((chan_addr >> intlv_shift) & 0xFFFFFFFFF000ULL) | tmp;
1602
1603 /* remove channel interleave and hash */
1604 if (dct_interleave_enabled(pvt) &&
1605 !dct_high_range_enabled(pvt) &&
1606 !dct_ganging_enabled(pvt)) {
1607 if (dct_sel_interleave_addr(pvt) != 1)
1608 chan_addr = (chan_addr >> 1) & 0xFFFFFFFFFFFFFFC0ULL;
1609 else {
1610 tmp = chan_addr & 0xFC0;
1611 chan_addr = ((chan_addr & 0xFFFFFFFFFFFFC000ULL) >> 1)
1612 | tmp;
1613 }
1614 }
1615
1616 debugf1(" (ChannelAddrLong=0x%llx) >> 8 becomes InputAddr=0x%x\n",
1617 chan_addr, (u32)(chan_addr >> 8));
1618
1619 cs_found = f10_lookup_addr_in_dct(chan_addr >> 8, node_id, channel);
1620
1621 if (cs_found >= 0) {
1622 *nid = node_id;
1623 *chan_sel = channel;
1624 }
1625 return cs_found;
1626 }
1627
1628 static int f10_translate_sysaddr_to_cs(struct amd64_pvt *pvt, u64 sys_addr,
1629 int *node, int *chan_sel)
1630 {
1631 int dram_range, cs_found = -EINVAL;
1632 u64 dram_base, dram_limit;
1633
1634 for (dram_range = 0; dram_range < DRAM_REG_COUNT; dram_range++) {
1635
1636 if (!pvt->dram_rw_en[dram_range])
1637 continue;
1638
1639 dram_base = pvt->dram_base[dram_range];
1640 dram_limit = pvt->dram_limit[dram_range];
1641
1642 if ((dram_base <= sys_addr) && (sys_addr <= dram_limit)) {
1643
1644 cs_found = f10_match_to_this_node(pvt, dram_range,
1645 sys_addr, node,
1646 chan_sel);
1647 if (cs_found >= 0)
1648 break;
1649 }
1650 }
1651 return cs_found;
1652 }
1653
1654 /*
1655 * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
1656 * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
1657 *
1658 * The @sys_addr is usually an error address received from the hardware
1659 * (MCX_ADDR).
1660 */
1661 static void f10_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
1662 struct err_regs *err_info,
1663 u64 sys_addr)
1664 {
1665 struct amd64_pvt *pvt = mci->pvt_info;
1666 u32 page, offset;
1667 int nid, csrow, chan = 0;
1668 u16 syndrome;
1669
1670 csrow = f10_translate_sysaddr_to_cs(pvt, sys_addr, &nid, &chan);
1671
1672 if (csrow < 0) {
1673 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1674 return;
1675 }
1676
1677 error_address_to_page_and_offset(sys_addr, &page, &offset);
1678
1679 syndrome = extract_syndrome(err_info);
1680
1681 /*
1682 * We need the syndromes for channel detection only when we're
1683 * ganged. Otherwise @chan should already contain the channel at
1684 * this point.
1685 */
1686 if (dct_ganging_enabled(pvt) && (pvt->nbcfg & K8_NBCFG_CHIPKILL))
1687 chan = get_channel_from_ecc_syndrome(mci, syndrome);
1688
1689 if (chan >= 0)
1690 edac_mc_handle_ce(mci, page, offset, syndrome, csrow, chan,
1691 EDAC_MOD_STR);
1692 else
1693 /*
1694 * Channel unknown, report all channels on this CSROW as failed.
1695 */
1696 for (chan = 0; chan < mci->csrows[csrow].nr_channels; chan++)
1697 edac_mc_handle_ce(mci, page, offset, syndrome,
1698 csrow, chan, EDAC_MOD_STR);
1699 }
1700
1701 /*
1702 * debug routine to display the memory sizes of all logical DIMMs and its
1703 * CSROWs as well
1704 */
1705 static void amd64_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt)
1706 {
1707 int dimm, size0, size1, factor = 0;
1708 u32 dbam;
1709 u32 *dcsb;
1710
1711 if (boot_cpu_data.x86 == 0xf) {
1712 if (pvt->dclr0 & F10_WIDTH_128)
1713 factor = 1;
1714
1715 /* K8 families < revF not supported yet */
1716 if (pvt->ext_model < K8_REV_F)
1717 return;
1718 else
1719 WARN_ON(ctrl != 0);
1720 }
1721
1722 debugf1("F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n",
1723 ctrl, ctrl ? pvt->dbam1 : pvt->dbam0);
1724
1725 dbam = ctrl ? pvt->dbam1 : pvt->dbam0;
1726 dcsb = ctrl ? pvt->dcsb1 : pvt->dcsb0;
1727
1728 edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);
1729
1730 /* Dump memory sizes for DIMM and its CSROWs */
1731 for (dimm = 0; dimm < 4; dimm++) {
1732
1733 size0 = 0;
1734 if (dcsb[dimm*2] & K8_DCSB_CS_ENABLE)
1735 size0 = pvt->ops->dbam_to_cs(pvt, DBAM_DIMM(dimm, dbam));
1736
1737 size1 = 0;
1738 if (dcsb[dimm*2 + 1] & K8_DCSB_CS_ENABLE)
1739 size1 = pvt->ops->dbam_to_cs(pvt, DBAM_DIMM(dimm, dbam));
1740
1741 edac_printk(KERN_DEBUG, EDAC_MC, " %d: %5dMB %d: %5dMB\n",
1742 dimm * 2, size0 << factor,
1743 dimm * 2 + 1, size1 << factor);
1744 }
1745 }
1746
1747 /*
1748 * There currently are 3 types type of MC devices for AMD Athlon/Opterons
1749 * (as per PCI DEVICE_IDs):
1750 *
1751 * Family K8: That is the Athlon64 and Opteron CPUs. They all have the same PCI
1752 * DEVICE ID, even though there is differences between the different Revisions
1753 * (CG,D,E,F).
1754 *
1755 * Family F10h and F11h.
1756 *
1757 */
1758 static struct amd64_family_type amd64_family_types[] = {
1759 [K8_CPUS] = {
1760 .ctl_name = "RevF",
1761 .addr_f1_ctl = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
1762 .misc_f3_ctl = PCI_DEVICE_ID_AMD_K8_NB_MISC,
1763 .ops = {
1764 .early_channel_count = k8_early_channel_count,
1765 .get_error_address = k8_get_error_address,
1766 .read_dram_base_limit = k8_read_dram_base_limit,
1767 .map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow,
1768 .dbam_to_cs = k8_dbam_to_chip_select,
1769 }
1770 },
1771 [F10_CPUS] = {
1772 .ctl_name = "Family 10h",
1773 .addr_f1_ctl = PCI_DEVICE_ID_AMD_10H_NB_MAP,
1774 .misc_f3_ctl = PCI_DEVICE_ID_AMD_10H_NB_MISC,
1775 .ops = {
1776 .early_channel_count = f10_early_channel_count,
1777 .get_error_address = f10_get_error_address,
1778 .read_dram_base_limit = f10_read_dram_base_limit,
1779 .read_dram_ctl_register = f10_read_dram_ctl_register,
1780 .map_sysaddr_to_csrow = f10_map_sysaddr_to_csrow,
1781 .dbam_to_cs = f10_dbam_to_chip_select,
1782 }
1783 },
1784 [F11_CPUS] = {
1785 .ctl_name = "Family 11h",
1786 .addr_f1_ctl = PCI_DEVICE_ID_AMD_11H_NB_MAP,
1787 .misc_f3_ctl = PCI_DEVICE_ID_AMD_11H_NB_MISC,
1788 .ops = {
1789 .early_channel_count = f10_early_channel_count,
1790 .get_error_address = f10_get_error_address,
1791 .read_dram_base_limit = f10_read_dram_base_limit,
1792 .read_dram_ctl_register = f10_read_dram_ctl_register,
1793 .map_sysaddr_to_csrow = f10_map_sysaddr_to_csrow,
1794 .dbam_to_cs = f10_dbam_to_chip_select,
1795 }
1796 },
1797 };
1798
1799 static struct pci_dev *pci_get_related_function(unsigned int vendor,
1800 unsigned int device,
1801 struct pci_dev *related)
1802 {
1803 struct pci_dev *dev = NULL;
1804
1805 dev = pci_get_device(vendor, device, dev);
1806 while (dev) {
1807 if ((dev->bus->number == related->bus->number) &&
1808 (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
1809 break;
1810 dev = pci_get_device(vendor, device, dev);
1811 }
1812
1813 return dev;
1814 }
1815
1816 /*
1817 * These are tables of eigenvectors (one per line) which can be used for the
1818 * construction of the syndrome tables. The modified syndrome search algorithm
1819 * uses those to find the symbol in error and thus the DIMM.
1820 *
1821 * Algorithm courtesy of Ross LaFetra from AMD.
1822 */
1823 static u16 x4_vectors[] = {
1824 0x2f57, 0x1afe, 0x66cc, 0xdd88,
1825 0x11eb, 0x3396, 0x7f4c, 0xeac8,
1826 0x0001, 0x0002, 0x0004, 0x0008,
1827 0x1013, 0x3032, 0x4044, 0x8088,
1828 0x106b, 0x30d6, 0x70fc, 0xe0a8,
1829 0x4857, 0xc4fe, 0x13cc, 0x3288,
1830 0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
1831 0x1f39, 0x251e, 0xbd6c, 0x6bd8,
1832 0x15c1, 0x2a42, 0x89ac, 0x4758,
1833 0x2b03, 0x1602, 0x4f0c, 0xca08,
1834 0x1f07, 0x3a0e, 0x6b04, 0xbd08,
1835 0x8ba7, 0x465e, 0x244c, 0x1cc8,
1836 0x2b87, 0x164e, 0x642c, 0xdc18,
1837 0x40b9, 0x80de, 0x1094, 0x20e8,
1838 0x27db, 0x1eb6, 0x9dac, 0x7b58,
1839 0x11c1, 0x2242, 0x84ac, 0x4c58,
1840 0x1be5, 0x2d7a, 0x5e34, 0xa718,
1841 0x4b39, 0x8d1e, 0x14b4, 0x28d8,
1842 0x4c97, 0xc87e, 0x11fc, 0x33a8,
1843 0x8e97, 0x497e, 0x2ffc, 0x1aa8,
1844 0x16b3, 0x3d62, 0x4f34, 0x8518,
1845 0x1e2f, 0x391a, 0x5cac, 0xf858,
1846 0x1d9f, 0x3b7a, 0x572c, 0xfe18,
1847 0x15f5, 0x2a5a, 0x5264, 0xa3b8,
1848 0x1dbb, 0x3b66, 0x715c, 0xe3f8,
1849 0x4397, 0xc27e, 0x17fc, 0x3ea8,
1850 0x1617, 0x3d3e, 0x6464, 0xb8b8,
1851 0x23ff, 0x12aa, 0xab6c, 0x56d8,
1852 0x2dfb, 0x1ba6, 0x913c, 0x7328,
1853 0x185d, 0x2ca6, 0x7914, 0x9e28,
1854 0x171b, 0x3e36, 0x7d7c, 0xebe8,
1855 0x4199, 0x82ee, 0x19f4, 0x2e58,
1856 0x4807, 0xc40e, 0x130c, 0x3208,
1857 0x1905, 0x2e0a, 0x5804, 0xac08,
1858 0x213f, 0x132a, 0xadfc, 0x5ba8,
1859 0x19a9, 0x2efe, 0xb5cc, 0x6f88,
1860 };
1861
1862 static u16 x8_vectors[] = {
1863 0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
1864 0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
1865 0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
1866 0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
1867 0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
1868 0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
1869 0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
1870 0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
1871 0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
1872 0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
1873 0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
1874 0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
1875 0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
1876 0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
1877 0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
1878 0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
1879 0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
1880 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
1881 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
1882 };
1883
1884 static int decode_syndrome(u16 syndrome, u16 *vectors, int num_vecs,
1885 int v_dim)
1886 {
1887 unsigned int i, err_sym;
1888
1889 for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
1890 u16 s = syndrome;
1891 int v_idx = err_sym * v_dim;
1892 int v_end = (err_sym + 1) * v_dim;
1893
1894 /* walk over all 16 bits of the syndrome */
1895 for (i = 1; i < (1U << 16); i <<= 1) {
1896
1897 /* if bit is set in that eigenvector... */
1898 if (v_idx < v_end && vectors[v_idx] & i) {
1899 u16 ev_comp = vectors[v_idx++];
1900
1901 /* ... and bit set in the modified syndrome, */
1902 if (s & i) {
1903 /* remove it. */
1904 s ^= ev_comp;
1905
1906 if (!s)
1907 return err_sym;
1908 }
1909
1910 } else if (s & i)
1911 /* can't get to zero, move to next symbol */
1912 break;
1913 }
1914 }
1915
1916 debugf0("syndrome(%x) not found\n", syndrome);
1917 return -1;
1918 }
1919
1920 static int map_err_sym_to_channel(int err_sym, int sym_size)
1921 {
1922 if (sym_size == 4)
1923 switch (err_sym) {
1924 case 0x20:
1925 case 0x21:
1926 return 0;
1927 break;
1928 case 0x22:
1929 case 0x23:
1930 return 1;
1931 break;
1932 default:
1933 return err_sym >> 4;
1934 break;
1935 }
1936 /* x8 symbols */
1937 else
1938 switch (err_sym) {
1939 /* imaginary bits not in a DIMM */
1940 case 0x10:
1941 WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
1942 err_sym);
1943 return -1;
1944 break;
1945
1946 case 0x11:
1947 return 0;
1948 break;
1949 case 0x12:
1950 return 1;
1951 break;
1952 default:
1953 return err_sym >> 3;
1954 break;
1955 }
1956 return -1;
1957 }
1958
1959 static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
1960 {
1961 struct amd64_pvt *pvt = mci->pvt_info;
1962 int err_sym = -1;
1963
1964 if (pvt->syn_type == 8)
1965 err_sym = decode_syndrome(syndrome, x8_vectors,
1966 ARRAY_SIZE(x8_vectors),
1967 pvt->syn_type);
1968 else if (pvt->syn_type == 4)
1969 err_sym = decode_syndrome(syndrome, x4_vectors,
1970 ARRAY_SIZE(x4_vectors),
1971 pvt->syn_type);
1972 else {
1973 amd64_printk(KERN_WARNING, "%s: Illegal syndrome type: %u\n",
1974 __func__, pvt->syn_type);
1975 return err_sym;
1976 }
1977
1978 return map_err_sym_to_channel(err_sym, pvt->syn_type);
1979 }
1980
1981 /*
1982 * Handle any Correctable Errors (CEs) that have occurred. Check for valid ERROR
1983 * ADDRESS and process.
1984 */
1985 static void amd64_handle_ce(struct mem_ctl_info *mci,
1986 struct err_regs *info)
1987 {
1988 struct amd64_pvt *pvt = mci->pvt_info;
1989 u64 sys_addr;
1990
1991 /* Ensure that the Error Address is VALID */
1992 if ((info->nbsh & K8_NBSH_VALID_ERROR_ADDR) == 0) {
1993 amd64_mc_printk(mci, KERN_ERR,
1994 "HW has no ERROR_ADDRESS available\n");
1995 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1996 return;
1997 }
1998
1999 sys_addr = pvt->ops->get_error_address(mci, info);
2000
2001 amd64_mc_printk(mci, KERN_ERR,
2002 "CE ERROR_ADDRESS= 0x%llx\n", sys_addr);
2003
2004 pvt->ops->map_sysaddr_to_csrow(mci, info, sys_addr);
2005 }
2006
2007 /* Handle any Un-correctable Errors (UEs) */
2008 static void amd64_handle_ue(struct mem_ctl_info *mci,
2009 struct err_regs *info)
2010 {
2011 struct amd64_pvt *pvt = mci->pvt_info;
2012 struct mem_ctl_info *log_mci, *src_mci = NULL;
2013 int csrow;
2014 u64 sys_addr;
2015 u32 page, offset;
2016
2017 log_mci = mci;
2018
2019 if ((info->nbsh & K8_NBSH_VALID_ERROR_ADDR) == 0) {
2020 amd64_mc_printk(mci, KERN_CRIT,
2021 "HW has no ERROR_ADDRESS available\n");
2022 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
2023 return;
2024 }
2025
2026 sys_addr = pvt->ops->get_error_address(mci, info);
2027
2028 /*
2029 * Find out which node the error address belongs to. This may be
2030 * different from the node that detected the error.
2031 */
2032 src_mci = find_mc_by_sys_addr(mci, sys_addr);
2033 if (!src_mci) {
2034 amd64_mc_printk(mci, KERN_CRIT,
2035 "ERROR ADDRESS (0x%lx) value NOT mapped to a MC\n",
2036 (unsigned long)sys_addr);
2037 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
2038 return;
2039 }
2040
2041 log_mci = src_mci;
2042
2043 csrow = sys_addr_to_csrow(log_mci, sys_addr);
2044 if (csrow < 0) {
2045 amd64_mc_printk(mci, KERN_CRIT,
2046 "ERROR_ADDRESS (0x%lx) value NOT mapped to 'csrow'\n",
2047 (unsigned long)sys_addr);
2048 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
2049 } else {
2050 error_address_to_page_and_offset(sys_addr, &page, &offset);
2051 edac_mc_handle_ue(log_mci, page, offset, csrow, EDAC_MOD_STR);
2052 }
2053 }
2054
2055 static inline void __amd64_decode_bus_error(struct mem_ctl_info *mci,
2056 struct err_regs *info)
2057 {
2058 u32 ec = ERROR_CODE(info->nbsl);
2059 u32 xec = EXT_ERROR_CODE(info->nbsl);
2060 int ecc_type = (info->nbsh >> 13) & 0x3;
2061
2062 /* Bail early out if this was an 'observed' error */
2063 if (PP(ec) == K8_NBSL_PP_OBS)
2064 return;
2065
2066 /* Do only ECC errors */
2067 if (xec && xec != F10_NBSL_EXT_ERR_ECC)
2068 return;
2069
2070 if (ecc_type == 2)
2071 amd64_handle_ce(mci, info);
2072 else if (ecc_type == 1)
2073 amd64_handle_ue(mci, info);
2074
2075 /*
2076 * If main error is CE then overflow must be CE. If main error is UE
2077 * then overflow is unknown. We'll call the overflow a CE - if
2078 * panic_on_ue is set then we're already panic'ed and won't arrive
2079 * here. Else, then apparently someone doesn't think that UE's are
2080 * catastrophic.
2081 */
2082 if (info->nbsh & K8_NBSH_OVERFLOW)
2083 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR " Error Overflow");
2084 }
2085
2086 void amd64_decode_bus_error(int node_id, struct err_regs *regs)
2087 {
2088 struct mem_ctl_info *mci = mci_lookup[node_id];
2089
2090 __amd64_decode_bus_error(mci, regs);
2091
2092 /*
2093 * Check the UE bit of the NB status high register, if set generate some
2094 * logs. If NOT a GART error, then process the event as a NO-INFO event.
2095 * If it was a GART error, skip that process.
2096 *
2097 * FIXME: this should go somewhere else, if at all.
2098 */
2099 if (regs->nbsh & K8_NBSH_UC_ERR && !report_gart_errors)
2100 edac_mc_handle_ue_no_info(mci, "UE bit is set");
2101
2102 }
2103
2104 /*
2105 * Input:
2106 * 1) struct amd64_pvt which contains pvt->dram_f2_ctl pointer
2107 * 2) AMD Family index value
2108 *
2109 * Ouput:
2110 * Upon return of 0, the following filled in:
2111 *
2112 * struct pvt->addr_f1_ctl
2113 * struct pvt->misc_f3_ctl
2114 *
2115 * Filled in with related device funcitions of 'dram_f2_ctl'
2116 * These devices are "reserved" via the pci_get_device()
2117 *
2118 * Upon return of 1 (error status):
2119 *
2120 * Nothing reserved
2121 */
2122 static int amd64_reserve_mc_sibling_devices(struct amd64_pvt *pvt, int mc_idx)
2123 {
2124 const struct amd64_family_type *amd64_dev = &amd64_family_types[mc_idx];
2125
2126 /* Reserve the ADDRESS MAP Device */
2127 pvt->addr_f1_ctl = pci_get_related_function(pvt->dram_f2_ctl->vendor,
2128 amd64_dev->addr_f1_ctl,
2129 pvt->dram_f2_ctl);
2130
2131 if (!pvt->addr_f1_ctl) {
2132 amd64_printk(KERN_ERR, "error address map device not found: "
2133 "vendor %x device 0x%x (broken BIOS?)\n",
2134 PCI_VENDOR_ID_AMD, amd64_dev->addr_f1_ctl);
2135 return 1;
2136 }
2137
2138 /* Reserve the MISC Device */
2139 pvt->misc_f3_ctl = pci_get_related_function(pvt->dram_f2_ctl->vendor,
2140 amd64_dev->misc_f3_ctl,
2141 pvt->dram_f2_ctl);
2142
2143 if (!pvt->misc_f3_ctl) {
2144 pci_dev_put(pvt->addr_f1_ctl);
2145 pvt->addr_f1_ctl = NULL;
2146
2147 amd64_printk(KERN_ERR, "error miscellaneous device not found: "
2148 "vendor %x device 0x%x (broken BIOS?)\n",
2149 PCI_VENDOR_ID_AMD, amd64_dev->misc_f3_ctl);
2150 return 1;
2151 }
2152
2153 debugf1(" Addr Map device PCI Bus ID:\t%s\n",
2154 pci_name(pvt->addr_f1_ctl));
2155 debugf1(" DRAM MEM-CTL PCI Bus ID:\t%s\n",
2156 pci_name(pvt->dram_f2_ctl));
2157 debugf1(" Misc device PCI Bus ID:\t%s\n",
2158 pci_name(pvt->misc_f3_ctl));
2159
2160 return 0;
2161 }
2162
2163 static void amd64_free_mc_sibling_devices(struct amd64_pvt *pvt)
2164 {
2165 pci_dev_put(pvt->addr_f1_ctl);
2166 pci_dev_put(pvt->misc_f3_ctl);
2167 }
2168
2169 /*
2170 * Retrieve the hardware registers of the memory controller (this includes the
2171 * 'Address Map' and 'Misc' device regs)
2172 */
2173 static void amd64_read_mc_registers(struct amd64_pvt *pvt)
2174 {
2175 u64 msr_val;
2176 u32 tmp;
2177 int dram;
2178
2179 /*
2180 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
2181 * those are Read-As-Zero
2182 */
2183 rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
2184 debugf0(" TOP_MEM: 0x%016llx\n", pvt->top_mem);
2185
2186 /* check first whether TOP_MEM2 is enabled */
2187 rdmsrl(MSR_K8_SYSCFG, msr_val);
2188 if (msr_val & (1U << 21)) {
2189 rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
2190 debugf0(" TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
2191 } else
2192 debugf0(" TOP_MEM2 disabled.\n");
2193
2194 amd64_cpu_display_info(pvt);
2195
2196 amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCAP, &pvt->nbcap);
2197
2198 if (pvt->ops->read_dram_ctl_register)
2199 pvt->ops->read_dram_ctl_register(pvt);
2200
2201 for (dram = 0; dram < DRAM_REG_COUNT; dram++) {
2202 /*
2203 * Call CPU specific READ function to get the DRAM Base and
2204 * Limit values from the DCT.
2205 */
2206 pvt->ops->read_dram_base_limit(pvt, dram);
2207
2208 /*
2209 * Only print out debug info on rows with both R and W Enabled.
2210 * Normal processing, compiler should optimize this whole 'if'
2211 * debug output block away.
2212 */
2213 if (pvt->dram_rw_en[dram] != 0) {
2214 debugf1(" DRAM-BASE[%d]: 0x%016llx "
2215 "DRAM-LIMIT: 0x%016llx\n",
2216 dram,
2217 pvt->dram_base[dram],
2218 pvt->dram_limit[dram]);
2219
2220 debugf1(" IntlvEn=%s %s %s "
2221 "IntlvSel=%d DstNode=%d\n",
2222 pvt->dram_IntlvEn[dram] ?
2223 "Enabled" : "Disabled",
2224 (pvt->dram_rw_en[dram] & 0x2) ? "W" : "!W",
2225 (pvt->dram_rw_en[dram] & 0x1) ? "R" : "!R",
2226 pvt->dram_IntlvSel[dram],
2227 pvt->dram_DstNode[dram]);
2228 }
2229 }
2230
2231 amd64_read_dct_base_mask(pvt);
2232
2233 amd64_read_pci_cfg(pvt->addr_f1_ctl, K8_DHAR, &pvt->dhar);
2234 amd64_read_dbam_reg(pvt);
2235
2236 amd64_read_pci_cfg(pvt->misc_f3_ctl,
2237 F10_ONLINE_SPARE, &pvt->online_spare);
2238
2239 amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCLR_0, &pvt->dclr0);
2240 amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCHR_0, &pvt->dchr0);
2241
2242 if (boot_cpu_data.x86 >= 0x10) {
2243 if (!dct_ganging_enabled(pvt)) {
2244 amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCLR_1, &pvt->dclr1);
2245 amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCHR_1, &pvt->dchr1);
2246 }
2247 amd64_read_pci_cfg(pvt->misc_f3_ctl, EXT_NB_MCA_CFG, &tmp);
2248 }
2249
2250 if (boot_cpu_data.x86 == 0x10 &&
2251 boot_cpu_data.x86_model > 7 &&
2252 /* F3x180[EccSymbolSize]=1 => x8 symbols */
2253 tmp & BIT(25))
2254 pvt->syn_type = 8;
2255 else
2256 pvt->syn_type = 4;
2257
2258 amd64_dump_misc_regs(pvt);
2259 }
2260
2261 /*
2262 * NOTE: CPU Revision Dependent code
2263 *
2264 * Input:
2265 * @csrow_nr ChipSelect Row Number (0..pvt->cs_count-1)
2266 * k8 private pointer to -->
2267 * DRAM Bank Address mapping register
2268 * node_id
2269 * DCL register where dual_channel_active is
2270 *
2271 * The DBAM register consists of 4 sets of 4 bits each definitions:
2272 *
2273 * Bits: CSROWs
2274 * 0-3 CSROWs 0 and 1
2275 * 4-7 CSROWs 2 and 3
2276 * 8-11 CSROWs 4 and 5
2277 * 12-15 CSROWs 6 and 7
2278 *
2279 * Values range from: 0 to 15
2280 * The meaning of the values depends on CPU revision and dual-channel state,
2281 * see relevant BKDG more info.
2282 *
2283 * The memory controller provides for total of only 8 CSROWs in its current
2284 * architecture. Each "pair" of CSROWs normally represents just one DIMM in
2285 * single channel or two (2) DIMMs in dual channel mode.
2286 *
2287 * The following code logic collapses the various tables for CSROW based on CPU
2288 * revision.
2289 *
2290 * Returns:
2291 * The number of PAGE_SIZE pages on the specified CSROW number it
2292 * encompasses
2293 *
2294 */
2295 static u32 amd64_csrow_nr_pages(int csrow_nr, struct amd64_pvt *pvt)
2296 {
2297 u32 cs_mode, nr_pages;
2298
2299 /*
2300 * The math on this doesn't look right on the surface because x/2*4 can
2301 * be simplified to x*2 but this expression makes use of the fact that
2302 * it is integral math where 1/2=0. This intermediate value becomes the
2303 * number of bits to shift the DBAM register to extract the proper CSROW
2304 * field.
2305 */
2306 cs_mode = (pvt->dbam0 >> ((csrow_nr / 2) * 4)) & 0xF;
2307
2308 nr_pages = pvt->ops->dbam_to_cs(pvt, cs_mode) << (20 - PAGE_SHIFT);
2309
2310 /*
2311 * If dual channel then double the memory size of single channel.
2312 * Channel count is 1 or 2
2313 */
2314 nr_pages <<= (pvt->channel_count - 1);
2315
2316 debugf0(" (csrow=%d) DBAM map index= %d\n", csrow_nr, cs_mode);
2317 debugf0(" nr_pages= %u channel-count = %d\n",
2318 nr_pages, pvt->channel_count);
2319
2320 return nr_pages;
2321 }
2322
2323 /*
2324 * Initialize the array of csrow attribute instances, based on the values
2325 * from pci config hardware registers.
2326 */
2327 static int amd64_init_csrows(struct mem_ctl_info *mci)
2328 {
2329 struct csrow_info *csrow;
2330 struct amd64_pvt *pvt;
2331 u64 input_addr_min, input_addr_max, sys_addr;
2332 int i, empty = 1;
2333
2334 pvt = mci->pvt_info;
2335
2336 amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCFG, &pvt->nbcfg);
2337
2338 debugf0("NBCFG= 0x%x CHIPKILL= %s DRAM ECC= %s\n", pvt->nbcfg,
2339 (pvt->nbcfg & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled",
2340 (pvt->nbcfg & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled"
2341 );
2342
2343 for (i = 0; i < pvt->cs_count; i++) {
2344 csrow = &mci->csrows[i];
2345
2346 if ((pvt->dcsb0[i] & K8_DCSB_CS_ENABLE) == 0) {
2347 debugf1("----CSROW %d EMPTY for node %d\n", i,
2348 pvt->mc_node_id);
2349 continue;
2350 }
2351
2352 debugf1("----CSROW %d VALID for MC node %d\n",
2353 i, pvt->mc_node_id);
2354
2355 empty = 0;
2356 csrow->nr_pages = amd64_csrow_nr_pages(i, pvt);
2357 find_csrow_limits(mci, i, &input_addr_min, &input_addr_max);
2358 sys_addr = input_addr_to_sys_addr(mci, input_addr_min);
2359 csrow->first_page = (u32) (sys_addr >> PAGE_SHIFT);
2360 sys_addr = input_addr_to_sys_addr(mci, input_addr_max);
2361 csrow->last_page = (u32) (sys_addr >> PAGE_SHIFT);
2362 csrow->page_mask = ~mask_from_dct_mask(pvt, i);
2363 /* 8 bytes of resolution */
2364
2365 csrow->mtype = amd64_determine_memory_type(pvt);
2366
2367 debugf1(" for MC node %d csrow %d:\n", pvt->mc_node_id, i);
2368 debugf1(" input_addr_min: 0x%lx input_addr_max: 0x%lx\n",
2369 (unsigned long)input_addr_min,
2370 (unsigned long)input_addr_max);
2371 debugf1(" sys_addr: 0x%lx page_mask: 0x%lx\n",
2372 (unsigned long)sys_addr, csrow->page_mask);
2373 debugf1(" nr_pages: %u first_page: 0x%lx "
2374 "last_page: 0x%lx\n",
2375 (unsigned)csrow->nr_pages,
2376 csrow->first_page, csrow->last_page);
2377
2378 /*
2379 * determine whether CHIPKILL or JUST ECC or NO ECC is operating
2380 */
2381 if (pvt->nbcfg & K8_NBCFG_ECC_ENABLE)
2382 csrow->edac_mode =
2383 (pvt->nbcfg & K8_NBCFG_CHIPKILL) ?
2384 EDAC_S4ECD4ED : EDAC_SECDED;
2385 else
2386 csrow->edac_mode = EDAC_NONE;
2387 }
2388
2389 return empty;
2390 }
2391
2392 /* get all cores on this DCT */
2393 static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, int nid)
2394 {
2395 int cpu;
2396
2397 for_each_online_cpu(cpu)
2398 if (amd_get_nb_id(cpu) == nid)
2399 cpumask_set_cpu(cpu, mask);
2400 }
2401
2402 /* check MCG_CTL on all the cpus on this node */
2403 static bool amd64_nb_mce_bank_enabled_on_node(int nid)
2404 {
2405 cpumask_var_t mask;
2406 int cpu, nbe;
2407 bool ret = false;
2408
2409 if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
2410 amd64_printk(KERN_WARNING, "%s: error allocating mask\n",
2411 __func__);
2412 return false;
2413 }
2414
2415 get_cpus_on_this_dct_cpumask(mask, nid);
2416
2417 rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);
2418
2419 for_each_cpu(cpu, mask) {
2420 struct msr *reg = per_cpu_ptr(msrs, cpu);
2421 nbe = reg->l & K8_MSR_MCGCTL_NBE;
2422
2423 debugf0("core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
2424 cpu, reg->q,
2425 (nbe ? "enabled" : "disabled"));
2426
2427 if (!nbe)
2428 goto out;
2429 }
2430 ret = true;
2431
2432 out:
2433 free_cpumask_var(mask);
2434 return ret;
2435 }
2436
2437 static int amd64_toggle_ecc_err_reporting(struct amd64_pvt *pvt, bool on)
2438 {
2439 cpumask_var_t cmask;
2440 int cpu;
2441
2442 if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
2443 amd64_printk(KERN_WARNING, "%s: error allocating mask\n",
2444 __func__);
2445 return false;
2446 }
2447
2448 get_cpus_on_this_dct_cpumask(cmask, pvt->mc_node_id);
2449
2450 rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2451
2452 for_each_cpu(cpu, cmask) {
2453
2454 struct msr *reg = per_cpu_ptr(msrs, cpu);
2455
2456 if (on) {
2457 if (reg->l & K8_MSR_MCGCTL_NBE)
2458 pvt->flags.nb_mce_enable = 1;
2459
2460 reg->l |= K8_MSR_MCGCTL_NBE;
2461 } else {
2462 /*
2463 * Turn off NB MCE reporting only when it was off before
2464 */
2465 if (!pvt->flags.nb_mce_enable)
2466 reg->l &= ~K8_MSR_MCGCTL_NBE;
2467 }
2468 }
2469 wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2470
2471 free_cpumask_var(cmask);
2472
2473 return 0;
2474 }
2475
2476 static void amd64_enable_ecc_error_reporting(struct mem_ctl_info *mci)
2477 {
2478 struct amd64_pvt *pvt = mci->pvt_info;
2479 u32 value, mask = K8_NBCTL_CECCEn | K8_NBCTL_UECCEn;
2480
2481 amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCTL, &value);
2482
2483 /* turn on UECCn and CECCEn bits */
2484 pvt->old_nbctl = value & mask;
2485 pvt->nbctl_mcgctl_saved = 1;
2486
2487 value |= mask;
2488 pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCTL, value);
2489
2490 if (amd64_toggle_ecc_err_reporting(pvt, ON))
2491 amd64_printk(KERN_WARNING, "Error enabling ECC reporting over "
2492 "MCGCTL!\n");
2493
2494 amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCFG, &value);
2495
2496 debugf0("NBCFG(1)= 0x%x CHIPKILL= %s ECC_ENABLE= %s\n", value,
2497 (value & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled",
2498 (value & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled");
2499
2500 if (!(value & K8_NBCFG_ECC_ENABLE)) {
2501 amd64_printk(KERN_WARNING,
2502 "This node reports that DRAM ECC is "
2503 "currently Disabled; ENABLING now\n");
2504
2505 pvt->flags.nb_ecc_prev = 0;
2506
2507 /* Attempt to turn on DRAM ECC Enable */
2508 value |= K8_NBCFG_ECC_ENABLE;
2509 pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCFG, value);
2510
2511 amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCFG, &value);
2512
2513 if (!(value & K8_NBCFG_ECC_ENABLE)) {
2514 amd64_printk(KERN_WARNING,
2515 "Hardware rejects Enabling DRAM ECC checking\n"
2516 "Check memory DIMM configuration\n");
2517 } else {
2518 amd64_printk(KERN_DEBUG,
2519 "Hardware accepted DRAM ECC Enable\n");
2520 }
2521 } else {
2522 pvt->flags.nb_ecc_prev = 1;
2523 }
2524
2525 debugf0("NBCFG(2)= 0x%x CHIPKILL= %s ECC_ENABLE= %s\n", value,
2526 (value & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled",
2527 (value & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled");
2528
2529 pvt->ctl_error_info.nbcfg = value;
2530 }
2531
2532 static void amd64_restore_ecc_error_reporting(struct amd64_pvt *pvt)
2533 {
2534 u32 value, mask = K8_NBCTL_CECCEn | K8_NBCTL_UECCEn;
2535
2536 if (!pvt->nbctl_mcgctl_saved)
2537 return;
2538
2539 amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCTL, &value);
2540 value &= ~mask;
2541 value |= pvt->old_nbctl;
2542
2543 pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCTL, value);
2544
2545 /* restore previous BIOS DRAM ECC "off" setting which we force-enabled */
2546 if (!pvt->flags.nb_ecc_prev) {
2547 amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCFG, &value);
2548 value &= ~K8_NBCFG_ECC_ENABLE;
2549 pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCFG, value);
2550 }
2551
2552 /* restore the NB Enable MCGCTL bit */
2553 if (amd64_toggle_ecc_err_reporting(pvt, OFF))
2554 amd64_printk(KERN_WARNING, "Error restoring NB MCGCTL settings!\n");
2555 }
2556
2557 /*
2558 * EDAC requires that the BIOS have ECC enabled before taking over the
2559 * processing of ECC errors. This is because the BIOS can properly initialize
2560 * the memory system completely. A command line option allows to force-enable
2561 * hardware ECC later in amd64_enable_ecc_error_reporting().
2562 */
2563 static const char *ecc_msg =
2564 "ECC disabled in the BIOS or no ECC capability, module will not load.\n"
2565 " Either enable ECC checking or force module loading by setting "
2566 "'ecc_enable_override'.\n"
2567 " (Note that use of the override may cause unknown side effects.)\n";
2568
2569 static int amd64_check_ecc_enabled(struct amd64_pvt *pvt)
2570 {
2571 u32 value;
2572 u8 ecc_enabled = 0;
2573 bool nb_mce_en = false;
2574
2575 amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCFG, &value);
2576
2577 ecc_enabled = !!(value & K8_NBCFG_ECC_ENABLE);
2578 if (!ecc_enabled)
2579 amd64_printk(KERN_NOTICE, "This node reports that Memory ECC "
2580 "is currently disabled, set F3x%x[22] (%s).\n",
2581 K8_NBCFG, pci_name(pvt->misc_f3_ctl));
2582 else
2583 amd64_printk(KERN_INFO, "ECC is enabled by BIOS.\n");
2584
2585 nb_mce_en = amd64_nb_mce_bank_enabled_on_node(pvt->mc_node_id);
2586 if (!nb_mce_en)
2587 amd64_printk(KERN_NOTICE, "NB MCE bank disabled, set MSR "
2588 "0x%08x[4] on node %d to enable.\n",
2589 MSR_IA32_MCG_CTL, pvt->mc_node_id);
2590
2591 if (!ecc_enabled || !nb_mce_en) {
2592 if (!ecc_enable_override) {
2593 amd64_printk(KERN_NOTICE, "%s", ecc_msg);
2594 return -ENODEV;
2595 } else {
2596 amd64_printk(KERN_WARNING, "Forcing ECC checking on!\n");
2597 }
2598 }
2599
2600 return 0;
2601 }
2602
2603 struct mcidev_sysfs_attribute sysfs_attrs[ARRAY_SIZE(amd64_dbg_attrs) +
2604 ARRAY_SIZE(amd64_inj_attrs) +
2605 1];
2606
2607 struct mcidev_sysfs_attribute terminator = { .attr = { .name = NULL } };
2608
2609 static void amd64_set_mc_sysfs_attributes(struct mem_ctl_info *mci)
2610 {
2611 unsigned int i = 0, j = 0;
2612
2613 for (; i < ARRAY_SIZE(amd64_dbg_attrs); i++)
2614 sysfs_attrs[i] = amd64_dbg_attrs[i];
2615
2616 for (j = 0; j < ARRAY_SIZE(amd64_inj_attrs); j++, i++)
2617 sysfs_attrs[i] = amd64_inj_attrs[j];
2618
2619 sysfs_attrs[i] = terminator;
2620
2621 mci->mc_driver_sysfs_attributes = sysfs_attrs;
2622 }
2623
2624 static void amd64_setup_mci_misc_attributes(struct mem_ctl_info *mci)
2625 {
2626 struct amd64_pvt *pvt = mci->pvt_info;
2627
2628 mci->mtype_cap = MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
2629 mci->edac_ctl_cap = EDAC_FLAG_NONE;
2630
2631 if (pvt->nbcap & K8_NBCAP_SECDED)
2632 mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
2633
2634 if (pvt->nbcap & K8_NBCAP_CHIPKILL)
2635 mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
2636
2637 mci->edac_cap = amd64_determine_edac_cap(pvt);
2638 mci->mod_name = EDAC_MOD_STR;
2639 mci->mod_ver = EDAC_AMD64_VERSION;
2640 mci->ctl_name = get_amd_family_name(pvt->mc_type_index);
2641 mci->dev_name = pci_name(pvt->dram_f2_ctl);
2642 mci->ctl_page_to_phys = NULL;
2643
2644 /* memory scrubber interface */
2645 mci->set_sdram_scrub_rate = amd64_set_scrub_rate;
2646 mci->get_sdram_scrub_rate = amd64_get_scrub_rate;
2647 }
2648
2649 /*
2650 * Init stuff for this DRAM Controller device.
2651 *
2652 * Due to a hardware feature on Fam10h CPUs, the Enable Extended Configuration
2653 * Space feature MUST be enabled on ALL Processors prior to actually reading
2654 * from the ECS registers. Since the loading of the module can occur on any
2655 * 'core', and cores don't 'see' all the other processors ECS data when the
2656 * others are NOT enabled. Our solution is to first enable ECS access in this
2657 * routine on all processors, gather some data in a amd64_pvt structure and
2658 * later come back in a finish-setup function to perform that final
2659 * initialization. See also amd64_init_2nd_stage() for that.
2660 */
2661 static int amd64_probe_one_instance(struct pci_dev *dram_f2_ctl,
2662 int mc_type_index)
2663 {
2664 struct amd64_pvt *pvt = NULL;
2665 int err = 0, ret;
2666
2667 ret = -ENOMEM;
2668 pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
2669 if (!pvt)
2670 goto err_exit;
2671
2672 pvt->mc_node_id = get_node_id(dram_f2_ctl);
2673
2674 pvt->dram_f2_ctl = dram_f2_ctl;
2675 pvt->ext_model = boot_cpu_data.x86_model >> 4;
2676 pvt->mc_type_index = mc_type_index;
2677 pvt->ops = family_ops(mc_type_index);
2678
2679 /*
2680 * We have the dram_f2_ctl device as an argument, now go reserve its
2681 * sibling devices from the PCI system.
2682 */
2683 ret = -ENODEV;
2684 err = amd64_reserve_mc_sibling_devices(pvt, mc_type_index);
2685 if (err)
2686 goto err_free;
2687
2688 ret = -EINVAL;
2689 err = amd64_check_ecc_enabled(pvt);
2690 if (err)
2691 goto err_put;
2692
2693 /*
2694 * Key operation here: setup of HW prior to performing ops on it. Some
2695 * setup is required to access ECS data. After this is performed, the
2696 * 'teardown' function must be called upon error and normal exit paths.
2697 */
2698 if (boot_cpu_data.x86 >= 0x10)
2699 amd64_setup(pvt);
2700
2701 /*
2702 * Save the pointer to the private data for use in 2nd initialization
2703 * stage
2704 */
2705 pvt_lookup[pvt->mc_node_id] = pvt;
2706
2707 return 0;
2708
2709 err_put:
2710 amd64_free_mc_sibling_devices(pvt);
2711
2712 err_free:
2713 kfree(pvt);
2714
2715 err_exit:
2716 return ret;
2717 }
2718
2719 /*
2720 * This is the finishing stage of the init code. Needs to be performed after all
2721 * MCs' hardware have been prepped for accessing extended config space.
2722 */
2723 static int amd64_init_2nd_stage(struct amd64_pvt *pvt)
2724 {
2725 int node_id = pvt->mc_node_id;
2726 struct mem_ctl_info *mci;
2727 int ret = -ENODEV;
2728
2729 amd64_read_mc_registers(pvt);
2730
2731 /*
2732 * We need to determine how many memory channels there are. Then use
2733 * that information for calculating the size of the dynamic instance
2734 * tables in the 'mci' structure
2735 */
2736 pvt->channel_count = pvt->ops->early_channel_count(pvt);
2737 if (pvt->channel_count < 0)
2738 goto err_exit;
2739
2740 ret = -ENOMEM;
2741 mci = edac_mc_alloc(0, pvt->cs_count, pvt->channel_count, node_id);
2742 if (!mci)
2743 goto err_exit;
2744
2745 mci->pvt_info = pvt;
2746
2747 mci->dev = &pvt->dram_f2_ctl->dev;
2748 amd64_setup_mci_misc_attributes(mci);
2749
2750 if (amd64_init_csrows(mci))
2751 mci->edac_cap = EDAC_FLAG_NONE;
2752
2753 amd64_enable_ecc_error_reporting(mci);
2754 amd64_set_mc_sysfs_attributes(mci);
2755
2756 ret = -ENODEV;
2757 if (edac_mc_add_mc(mci)) {
2758 debugf1("failed edac_mc_add_mc()\n");
2759 goto err_add_mc;
2760 }
2761
2762 mci_lookup[node_id] = mci;
2763 pvt_lookup[node_id] = NULL;
2764
2765 /* register stuff with EDAC MCE */
2766 if (report_gart_errors)
2767 amd_report_gart_errors(true);
2768
2769 amd_register_ecc_decoder(amd64_decode_bus_error);
2770
2771 return 0;
2772
2773 err_add_mc:
2774 edac_mc_free(mci);
2775
2776 err_exit:
2777 debugf0("failure to init 2nd stage: ret=%d\n", ret);
2778
2779 amd64_restore_ecc_error_reporting(pvt);
2780
2781 if (boot_cpu_data.x86 > 0xf)
2782 amd64_teardown(pvt);
2783
2784 amd64_free_mc_sibling_devices(pvt);
2785
2786 kfree(pvt_lookup[pvt->mc_node_id]);
2787 pvt_lookup[node_id] = NULL;
2788
2789 return ret;
2790 }
2791
2792
2793 static int __devinit amd64_init_one_instance(struct pci_dev *pdev,
2794 const struct pci_device_id *mc_type)
2795 {
2796 int ret = 0;
2797
2798 debugf0("(MC node=%d,mc_type='%s')\n", get_node_id(pdev),
2799 get_amd_family_name(mc_type->driver_data));
2800
2801 ret = pci_enable_device(pdev);
2802 if (ret < 0)
2803 ret = -EIO;
2804 else
2805 ret = amd64_probe_one_instance(pdev, mc_type->driver_data);
2806
2807 if (ret < 0)
2808 debugf0("ret=%d\n", ret);
2809
2810 return ret;
2811 }
2812
2813 static void __devexit amd64_remove_one_instance(struct pci_dev *pdev)
2814 {
2815 struct mem_ctl_info *mci;
2816 struct amd64_pvt *pvt;
2817
2818 /* Remove from EDAC CORE tracking list */
2819 mci = edac_mc_del_mc(&pdev->dev);
2820 if (!mci)
2821 return;
2822
2823 pvt = mci->pvt_info;
2824
2825 amd64_restore_ecc_error_reporting(pvt);
2826
2827 if (boot_cpu_data.x86 > 0xf)
2828 amd64_teardown(pvt);
2829
2830 amd64_free_mc_sibling_devices(pvt);
2831
2832 /* unregister from EDAC MCE */
2833 amd_report_gart_errors(false);
2834 amd_unregister_ecc_decoder(amd64_decode_bus_error);
2835
2836 /* Free the EDAC CORE resources */
2837 mci->pvt_info = NULL;
2838 mci_lookup[pvt->mc_node_id] = NULL;
2839
2840 kfree(pvt);
2841 edac_mc_free(mci);
2842 }
2843
2844 /*
2845 * This table is part of the interface for loading drivers for PCI devices. The
2846 * PCI core identifies what devices are on a system during boot, and then
2847 * inquiry this table to see if this driver is for a given device found.
2848 */
2849 static const struct pci_device_id amd64_pci_table[] __devinitdata = {
2850 {
2851 .vendor = PCI_VENDOR_ID_AMD,
2852 .device = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
2853 .subvendor = PCI_ANY_ID,
2854 .subdevice = PCI_ANY_ID,
2855 .class = 0,
2856 .class_mask = 0,
2857 .driver_data = K8_CPUS
2858 },
2859 {
2860 .vendor = PCI_VENDOR_ID_AMD,
2861 .device = PCI_DEVICE_ID_AMD_10H_NB_DRAM,
2862 .subvendor = PCI_ANY_ID,
2863 .subdevice = PCI_ANY_ID,
2864 .class = 0,
2865 .class_mask = 0,
2866 .driver_data = F10_CPUS
2867 },
2868 {
2869 .vendor = PCI_VENDOR_ID_AMD,
2870 .device = PCI_DEVICE_ID_AMD_11H_NB_DRAM,
2871 .subvendor = PCI_ANY_ID,
2872 .subdevice = PCI_ANY_ID,
2873 .class = 0,
2874 .class_mask = 0,
2875 .driver_data = F11_CPUS
2876 },
2877 {0, }
2878 };
2879 MODULE_DEVICE_TABLE(pci, amd64_pci_table);
2880
2881 static struct pci_driver amd64_pci_driver = {
2882 .name = EDAC_MOD_STR,
2883 .probe = amd64_init_one_instance,
2884 .remove = __devexit_p(amd64_remove_one_instance),
2885 .id_table = amd64_pci_table,
2886 };
2887
2888 static void amd64_setup_pci_device(void)
2889 {
2890 struct mem_ctl_info *mci;
2891 struct amd64_pvt *pvt;
2892
2893 if (amd64_ctl_pci)
2894 return;
2895
2896 mci = mci_lookup[0];
2897 if (mci) {
2898
2899 pvt = mci->pvt_info;
2900 amd64_ctl_pci =
2901 edac_pci_create_generic_ctl(&pvt->dram_f2_ctl->dev,
2902 EDAC_MOD_STR);
2903
2904 if (!amd64_ctl_pci) {
2905 pr_warning("%s(): Unable to create PCI control\n",
2906 __func__);
2907
2908 pr_warning("%s(): PCI error report via EDAC not set\n",
2909 __func__);
2910 }
2911 }
2912 }
2913
2914 static int __init amd64_edac_init(void)
2915 {
2916 int nb, err = -ENODEV;
2917 bool load_ok = false;
2918
2919 edac_printk(KERN_INFO, EDAC_MOD_STR, EDAC_AMD64_VERSION "\n");
2920
2921 opstate_init();
2922
2923 if (cache_k8_northbridges() < 0)
2924 goto err_ret;
2925
2926 msrs = msrs_alloc();
2927 if (!msrs)
2928 goto err_ret;
2929
2930 err = pci_register_driver(&amd64_pci_driver);
2931 if (err)
2932 goto err_pci;
2933
2934 /*
2935 * At this point, the array 'pvt_lookup[]' contains pointers to alloc'd
2936 * amd64_pvt structs. These will be used in the 2nd stage init function
2937 * to finish initialization of the MC instances.
2938 */
2939 err = -ENODEV;
2940 for (nb = 0; nb < num_k8_northbridges; nb++) {
2941 if (!pvt_lookup[nb])
2942 continue;
2943
2944 err = amd64_init_2nd_stage(pvt_lookup[nb]);
2945 if (err)
2946 goto err_2nd_stage;
2947
2948 load_ok = true;
2949 }
2950
2951 if (load_ok) {
2952 amd64_setup_pci_device();
2953 return 0;
2954 }
2955
2956 err_2nd_stage:
2957 pci_unregister_driver(&amd64_pci_driver);
2958 err_pci:
2959 msrs_free(msrs);
2960 msrs = NULL;
2961 err_ret:
2962 return err;
2963 }
2964
2965 static void __exit amd64_edac_exit(void)
2966 {
2967 if (amd64_ctl_pci)
2968 edac_pci_release_generic_ctl(amd64_ctl_pci);
2969
2970 pci_unregister_driver(&amd64_pci_driver);
2971
2972 msrs_free(msrs);
2973 msrs = NULL;
2974 }
2975
2976 module_init(amd64_edac_init);
2977 module_exit(amd64_edac_exit);
2978
2979 MODULE_LICENSE("GPL");
2980 MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
2981 "Dave Peterson, Thayne Harbaugh");
2982 MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
2983 EDAC_AMD64_VERSION);
2984
2985 module_param(edac_op_state, int, 0444);
2986 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");