]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/edac/edac_mc.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/mchehab/linux-edac
[mirror_ubuntu-artful-kernel.git] / drivers / edac / edac_mc.c
1 /*
2 * edac_mc kernel module
3 * (C) 2005, 2006 Linux Networx (http://lnxi.com)
4 * This file may be distributed under the terms of the
5 * GNU General Public License.
6 *
7 * Written by Thayne Harbaugh
8 * Based on work by Dan Hollis <goemon at anime dot net> and others.
9 * http://www.anime.net/~goemon/linux-ecc/
10 *
11 * Modified by Dave Peterson and Doug Thompson
12 *
13 */
14
15 #include <linux/module.h>
16 #include <linux/proc_fs.h>
17 #include <linux/kernel.h>
18 #include <linux/types.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/sysctl.h>
22 #include <linux/highmem.h>
23 #include <linux/timer.h>
24 #include <linux/slab.h>
25 #include <linux/jiffies.h>
26 #include <linux/spinlock.h>
27 #include <linux/list.h>
28 #include <linux/ctype.h>
29 #include <linux/edac.h>
30 #include <linux/bitops.h>
31 #include <asm/uaccess.h>
32 #include <asm/page.h>
33 #include <asm/edac.h>
34 #include "edac_core.h"
35 #include "edac_module.h"
36
37 #define CREATE_TRACE_POINTS
38 #define TRACE_INCLUDE_PATH ../../include/ras
39 #include <ras/ras_event.h>
40
41 /* lock to memory controller's control array */
42 static DEFINE_MUTEX(mem_ctls_mutex);
43 static LIST_HEAD(mc_devices);
44
45 unsigned edac_dimm_info_location(struct dimm_info *dimm, char *buf,
46 unsigned len)
47 {
48 struct mem_ctl_info *mci = dimm->mci;
49 int i, n, count = 0;
50 char *p = buf;
51
52 for (i = 0; i < mci->n_layers; i++) {
53 n = snprintf(p, len, "%s %d ",
54 edac_layer_name[mci->layers[i].type],
55 dimm->location[i]);
56 p += n;
57 len -= n;
58 count += n;
59 if (!len)
60 break;
61 }
62
63 return count;
64 }
65
66 #ifdef CONFIG_EDAC_DEBUG
67
68 static void edac_mc_dump_channel(struct rank_info *chan)
69 {
70 edac_dbg(4, " channel->chan_idx = %d\n", chan->chan_idx);
71 edac_dbg(4, " channel = %p\n", chan);
72 edac_dbg(4, " channel->csrow = %p\n", chan->csrow);
73 edac_dbg(4, " channel->dimm = %p\n", chan->dimm);
74 }
75
76 static void edac_mc_dump_dimm(struct dimm_info *dimm, int number)
77 {
78 char location[80];
79
80 edac_dimm_info_location(dimm, location, sizeof(location));
81
82 edac_dbg(4, "%s%i: %smapped as virtual row %d, chan %d\n",
83 dimm->mci->mem_is_per_rank ? "rank" : "dimm",
84 number, location, dimm->csrow, dimm->cschannel);
85 edac_dbg(4, " dimm = %p\n", dimm);
86 edac_dbg(4, " dimm->label = '%s'\n", dimm->label);
87 edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm->nr_pages);
88 edac_dbg(4, " dimm->grain = %d\n", dimm->grain);
89 edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm->nr_pages);
90 }
91
92 static void edac_mc_dump_csrow(struct csrow_info *csrow)
93 {
94 edac_dbg(4, "csrow->csrow_idx = %d\n", csrow->csrow_idx);
95 edac_dbg(4, " csrow = %p\n", csrow);
96 edac_dbg(4, " csrow->first_page = 0x%lx\n", csrow->first_page);
97 edac_dbg(4, " csrow->last_page = 0x%lx\n", csrow->last_page);
98 edac_dbg(4, " csrow->page_mask = 0x%lx\n", csrow->page_mask);
99 edac_dbg(4, " csrow->nr_channels = %d\n", csrow->nr_channels);
100 edac_dbg(4, " csrow->channels = %p\n", csrow->channels);
101 edac_dbg(4, " csrow->mci = %p\n", csrow->mci);
102 }
103
104 static void edac_mc_dump_mci(struct mem_ctl_info *mci)
105 {
106 edac_dbg(3, "\tmci = %p\n", mci);
107 edac_dbg(3, "\tmci->mtype_cap = %lx\n", mci->mtype_cap);
108 edac_dbg(3, "\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap);
109 edac_dbg(3, "\tmci->edac_cap = %lx\n", mci->edac_cap);
110 edac_dbg(4, "\tmci->edac_check = %p\n", mci->edac_check);
111 edac_dbg(3, "\tmci->nr_csrows = %d, csrows = %p\n",
112 mci->nr_csrows, mci->csrows);
113 edac_dbg(3, "\tmci->nr_dimms = %d, dimms = %p\n",
114 mci->tot_dimms, mci->dimms);
115 edac_dbg(3, "\tdev = %p\n", mci->pdev);
116 edac_dbg(3, "\tmod_name:ctl_name = %s:%s\n",
117 mci->mod_name, mci->ctl_name);
118 edac_dbg(3, "\tpvt_info = %p\n\n", mci->pvt_info);
119 }
120
121 #endif /* CONFIG_EDAC_DEBUG */
122
123 /*
124 * keep those in sync with the enum mem_type
125 */
126 const char *edac_mem_types[] = {
127 "Empty csrow",
128 "Reserved csrow type",
129 "Unknown csrow type",
130 "Fast page mode RAM",
131 "Extended data out RAM",
132 "Burst Extended data out RAM",
133 "Single data rate SDRAM",
134 "Registered single data rate SDRAM",
135 "Double data rate SDRAM",
136 "Registered Double data rate SDRAM",
137 "Rambus DRAM",
138 "Unbuffered DDR2 RAM",
139 "Fully buffered DDR2",
140 "Registered DDR2 RAM",
141 "Rambus XDR",
142 "Unbuffered DDR3 RAM",
143 "Registered DDR3 RAM",
144 };
145 EXPORT_SYMBOL_GPL(edac_mem_types);
146
147 /**
148 * edac_align_ptr - Prepares the pointer offsets for a single-shot allocation
149 * @p: pointer to a pointer with the memory offset to be used. At
150 * return, this will be incremented to point to the next offset
151 * @size: Size of the data structure to be reserved
152 * @n_elems: Number of elements that should be reserved
153 *
154 * If 'size' is a constant, the compiler will optimize this whole function
155 * down to either a no-op or the addition of a constant to the value of '*p'.
156 *
157 * The 'p' pointer is absolutely needed to keep the proper advancing
158 * further in memory to the proper offsets when allocating the struct along
159 * with its embedded structs, as edac_device_alloc_ctl_info() does it
160 * above, for example.
161 *
162 * At return, the pointer 'p' will be incremented to be used on a next call
163 * to this function.
164 */
165 void *edac_align_ptr(void **p, unsigned size, int n_elems)
166 {
167 unsigned align, r;
168 void *ptr = *p;
169
170 *p += size * n_elems;
171
172 /*
173 * 'p' can possibly be an unaligned item X such that sizeof(X) is
174 * 'size'. Adjust 'p' so that its alignment is at least as
175 * stringent as what the compiler would provide for X and return
176 * the aligned result.
177 * Here we assume that the alignment of a "long long" is the most
178 * stringent alignment that the compiler will ever provide by default.
179 * As far as I know, this is a reasonable assumption.
180 */
181 if (size > sizeof(long))
182 align = sizeof(long long);
183 else if (size > sizeof(int))
184 align = sizeof(long);
185 else if (size > sizeof(short))
186 align = sizeof(int);
187 else if (size > sizeof(char))
188 align = sizeof(short);
189 else
190 return (char *)ptr;
191
192 r = (unsigned long)p % align;
193
194 if (r == 0)
195 return (char *)ptr;
196
197 *p += align - r;
198
199 return (void *)(((unsigned long)ptr) + align - r);
200 }
201
202 static void _edac_mc_free(struct mem_ctl_info *mci)
203 {
204 int i, chn, row;
205 struct csrow_info *csr;
206 const unsigned int tot_dimms = mci->tot_dimms;
207 const unsigned int tot_channels = mci->num_cschannel;
208 const unsigned int tot_csrows = mci->nr_csrows;
209
210 if (mci->dimms) {
211 for (i = 0; i < tot_dimms; i++)
212 kfree(mci->dimms[i]);
213 kfree(mci->dimms);
214 }
215 if (mci->csrows) {
216 for (row = 0; row < tot_csrows; row++) {
217 csr = mci->csrows[row];
218 if (csr) {
219 if (csr->channels) {
220 for (chn = 0; chn < tot_channels; chn++)
221 kfree(csr->channels[chn]);
222 kfree(csr->channels);
223 }
224 kfree(csr);
225 }
226 }
227 kfree(mci->csrows);
228 }
229 kfree(mci);
230 }
231
232 /**
233 * edac_mc_alloc: Allocate and partially fill a struct mem_ctl_info structure
234 * @mc_num: Memory controller number
235 * @n_layers: Number of MC hierarchy layers
236 * layers: Describes each layer as seen by the Memory Controller
237 * @size_pvt: size of private storage needed
238 *
239 *
240 * Everything is kmalloc'ed as one big chunk - more efficient.
241 * Only can be used if all structures have the same lifetime - otherwise
242 * you have to allocate and initialize your own structures.
243 *
244 * Use edac_mc_free() to free mc structures allocated by this function.
245 *
246 * NOTE: drivers handle multi-rank memories in different ways: in some
247 * drivers, one multi-rank memory stick is mapped as one entry, while, in
248 * others, a single multi-rank memory stick would be mapped into several
249 * entries. Currently, this function will allocate multiple struct dimm_info
250 * on such scenarios, as grouping the multiple ranks require drivers change.
251 *
252 * Returns:
253 * On failure: NULL
254 * On success: struct mem_ctl_info pointer
255 */
256 struct mem_ctl_info *edac_mc_alloc(unsigned mc_num,
257 unsigned n_layers,
258 struct edac_mc_layer *layers,
259 unsigned sz_pvt)
260 {
261 struct mem_ctl_info *mci;
262 struct edac_mc_layer *layer;
263 struct csrow_info *csr;
264 struct rank_info *chan;
265 struct dimm_info *dimm;
266 u32 *ce_per_layer[EDAC_MAX_LAYERS], *ue_per_layer[EDAC_MAX_LAYERS];
267 unsigned pos[EDAC_MAX_LAYERS];
268 unsigned size, tot_dimms = 1, count = 1;
269 unsigned tot_csrows = 1, tot_channels = 1, tot_errcount = 0;
270 void *pvt, *p, *ptr = NULL;
271 int i, j, row, chn, n, len, off;
272 bool per_rank = false;
273
274 BUG_ON(n_layers > EDAC_MAX_LAYERS || n_layers == 0);
275 /*
276 * Calculate the total amount of dimms and csrows/cschannels while
277 * in the old API emulation mode
278 */
279 for (i = 0; i < n_layers; i++) {
280 tot_dimms *= layers[i].size;
281 if (layers[i].is_virt_csrow)
282 tot_csrows *= layers[i].size;
283 else
284 tot_channels *= layers[i].size;
285
286 if (layers[i].type == EDAC_MC_LAYER_CHIP_SELECT)
287 per_rank = true;
288 }
289
290 /* Figure out the offsets of the various items from the start of an mc
291 * structure. We want the alignment of each item to be at least as
292 * stringent as what the compiler would provide if we could simply
293 * hardcode everything into a single struct.
294 */
295 mci = edac_align_ptr(&ptr, sizeof(*mci), 1);
296 layer = edac_align_ptr(&ptr, sizeof(*layer), n_layers);
297 for (i = 0; i < n_layers; i++) {
298 count *= layers[i].size;
299 edac_dbg(4, "errcount layer %d size %d\n", i, count);
300 ce_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count);
301 ue_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count);
302 tot_errcount += 2 * count;
303 }
304
305 edac_dbg(4, "allocating %d error counters\n", tot_errcount);
306 pvt = edac_align_ptr(&ptr, sz_pvt, 1);
307 size = ((unsigned long)pvt) + sz_pvt;
308
309 edac_dbg(1, "allocating %u bytes for mci data (%d %s, %d csrows/channels)\n",
310 size,
311 tot_dimms,
312 per_rank ? "ranks" : "dimms",
313 tot_csrows * tot_channels);
314
315 mci = kzalloc(size, GFP_KERNEL);
316 if (mci == NULL)
317 return NULL;
318
319 /* Adjust pointers so they point within the memory we just allocated
320 * rather than an imaginary chunk of memory located at address 0.
321 */
322 layer = (struct edac_mc_layer *)(((char *)mci) + ((unsigned long)layer));
323 for (i = 0; i < n_layers; i++) {
324 mci->ce_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ce_per_layer[i]));
325 mci->ue_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ue_per_layer[i]));
326 }
327 pvt = sz_pvt ? (((char *)mci) + ((unsigned long)pvt)) : NULL;
328
329 /* setup index and various internal pointers */
330 mci->mc_idx = mc_num;
331 mci->tot_dimms = tot_dimms;
332 mci->pvt_info = pvt;
333 mci->n_layers = n_layers;
334 mci->layers = layer;
335 memcpy(mci->layers, layers, sizeof(*layer) * n_layers);
336 mci->nr_csrows = tot_csrows;
337 mci->num_cschannel = tot_channels;
338 mci->mem_is_per_rank = per_rank;
339
340 /*
341 * Alocate and fill the csrow/channels structs
342 */
343 mci->csrows = kcalloc(sizeof(*mci->csrows), tot_csrows, GFP_KERNEL);
344 if (!mci->csrows)
345 goto error;
346 for (row = 0; row < tot_csrows; row++) {
347 csr = kzalloc(sizeof(**mci->csrows), GFP_KERNEL);
348 if (!csr)
349 goto error;
350 mci->csrows[row] = csr;
351 csr->csrow_idx = row;
352 csr->mci = mci;
353 csr->nr_channels = tot_channels;
354 csr->channels = kcalloc(sizeof(*csr->channels), tot_channels,
355 GFP_KERNEL);
356 if (!csr->channels)
357 goto error;
358
359 for (chn = 0; chn < tot_channels; chn++) {
360 chan = kzalloc(sizeof(**csr->channels), GFP_KERNEL);
361 if (!chan)
362 goto error;
363 csr->channels[chn] = chan;
364 chan->chan_idx = chn;
365 chan->csrow = csr;
366 }
367 }
368
369 /*
370 * Allocate and fill the dimm structs
371 */
372 mci->dimms = kcalloc(sizeof(*mci->dimms), tot_dimms, GFP_KERNEL);
373 if (!mci->dimms)
374 goto error;
375
376 memset(&pos, 0, sizeof(pos));
377 row = 0;
378 chn = 0;
379 for (i = 0; i < tot_dimms; i++) {
380 chan = mci->csrows[row]->channels[chn];
381 off = EDAC_DIMM_OFF(layer, n_layers, pos[0], pos[1], pos[2]);
382 if (off < 0 || off >= tot_dimms) {
383 edac_mc_printk(mci, KERN_ERR, "EDAC core bug: EDAC_DIMM_OFF is trying to do an illegal data access\n");
384 goto error;
385 }
386
387 dimm = kzalloc(sizeof(**mci->dimms), GFP_KERNEL);
388 if (!dimm)
389 goto error;
390 mci->dimms[off] = dimm;
391 dimm->mci = mci;
392
393 /*
394 * Copy DIMM location and initialize it.
395 */
396 len = sizeof(dimm->label);
397 p = dimm->label;
398 n = snprintf(p, len, "mc#%u", mc_num);
399 p += n;
400 len -= n;
401 for (j = 0; j < n_layers; j++) {
402 n = snprintf(p, len, "%s#%u",
403 edac_layer_name[layers[j].type],
404 pos[j]);
405 p += n;
406 len -= n;
407 dimm->location[j] = pos[j];
408
409 if (len <= 0)
410 break;
411 }
412
413 /* Link it to the csrows old API data */
414 chan->dimm = dimm;
415 dimm->csrow = row;
416 dimm->cschannel = chn;
417
418 /* Increment csrow location */
419 if (layers[0].is_virt_csrow) {
420 chn++;
421 if (chn == tot_channels) {
422 chn = 0;
423 row++;
424 }
425 } else {
426 row++;
427 if (row == tot_csrows) {
428 row = 0;
429 chn++;
430 }
431 }
432
433 /* Increment dimm location */
434 for (j = n_layers - 1; j >= 0; j--) {
435 pos[j]++;
436 if (pos[j] < layers[j].size)
437 break;
438 pos[j] = 0;
439 }
440 }
441
442 mci->op_state = OP_ALLOC;
443
444 /* at this point, the root kobj is valid, and in order to
445 * 'free' the object, then the function:
446 * edac_mc_unregister_sysfs_main_kobj() must be called
447 * which will perform kobj unregistration and the actual free
448 * will occur during the kobject callback operation
449 */
450
451 return mci;
452
453 error:
454 _edac_mc_free(mci);
455
456 return NULL;
457 }
458 EXPORT_SYMBOL_GPL(edac_mc_alloc);
459
460 /**
461 * edac_mc_free
462 * 'Free' a previously allocated 'mci' structure
463 * @mci: pointer to a struct mem_ctl_info structure
464 */
465 void edac_mc_free(struct mem_ctl_info *mci)
466 {
467 edac_dbg(1, "\n");
468
469 /* If we're not yet registered with sysfs free only what was allocated
470 * in edac_mc_alloc().
471 */
472 if (!device_is_registered(&mci->dev)) {
473 _edac_mc_free(mci);
474 return;
475 }
476
477 /* the mci instance is freed here, when the sysfs object is dropped */
478 edac_unregister_sysfs(mci);
479 }
480 EXPORT_SYMBOL_GPL(edac_mc_free);
481
482
483 /**
484 * find_mci_by_dev
485 *
486 * scan list of controllers looking for the one that manages
487 * the 'dev' device
488 * @dev: pointer to a struct device related with the MCI
489 */
490 struct mem_ctl_info *find_mci_by_dev(struct device *dev)
491 {
492 struct mem_ctl_info *mci;
493 struct list_head *item;
494
495 edac_dbg(3, "\n");
496
497 list_for_each(item, &mc_devices) {
498 mci = list_entry(item, struct mem_ctl_info, link);
499
500 if (mci->pdev == dev)
501 return mci;
502 }
503
504 return NULL;
505 }
506 EXPORT_SYMBOL_GPL(find_mci_by_dev);
507
508 /*
509 * handler for EDAC to check if NMI type handler has asserted interrupt
510 */
511 static int edac_mc_assert_error_check_and_clear(void)
512 {
513 int old_state;
514
515 if (edac_op_state == EDAC_OPSTATE_POLL)
516 return 1;
517
518 old_state = edac_err_assert;
519 edac_err_assert = 0;
520
521 return old_state;
522 }
523
524 /*
525 * edac_mc_workq_function
526 * performs the operation scheduled by a workq request
527 */
528 static void edac_mc_workq_function(struct work_struct *work_req)
529 {
530 struct delayed_work *d_work = to_delayed_work(work_req);
531 struct mem_ctl_info *mci = to_edac_mem_ctl_work(d_work);
532
533 mutex_lock(&mem_ctls_mutex);
534
535 /* if this control struct has movd to offline state, we are done */
536 if (mci->op_state == OP_OFFLINE) {
537 mutex_unlock(&mem_ctls_mutex);
538 return;
539 }
540
541 /* Only poll controllers that are running polled and have a check */
542 if (edac_mc_assert_error_check_and_clear() && (mci->edac_check != NULL))
543 mci->edac_check(mci);
544
545 mutex_unlock(&mem_ctls_mutex);
546
547 /* Reschedule */
548 queue_delayed_work(edac_workqueue, &mci->work,
549 msecs_to_jiffies(edac_mc_get_poll_msec()));
550 }
551
552 /*
553 * edac_mc_workq_setup
554 * initialize a workq item for this mci
555 * passing in the new delay period in msec
556 *
557 * locking model:
558 *
559 * called with the mem_ctls_mutex held
560 */
561 static void edac_mc_workq_setup(struct mem_ctl_info *mci, unsigned msec)
562 {
563 edac_dbg(0, "\n");
564
565 /* if this instance is not in the POLL state, then simply return */
566 if (mci->op_state != OP_RUNNING_POLL)
567 return;
568
569 INIT_DELAYED_WORK(&mci->work, edac_mc_workq_function);
570 mod_delayed_work(edac_workqueue, &mci->work, msecs_to_jiffies(msec));
571 }
572
573 /*
574 * edac_mc_workq_teardown
575 * stop the workq processing on this mci
576 *
577 * locking model:
578 *
579 * called WITHOUT lock held
580 */
581 static void edac_mc_workq_teardown(struct mem_ctl_info *mci)
582 {
583 int status;
584
585 if (mci->op_state != OP_RUNNING_POLL)
586 return;
587
588 status = cancel_delayed_work(&mci->work);
589 if (status == 0) {
590 edac_dbg(0, "not canceled, flush the queue\n");
591
592 /* workq instance might be running, wait for it */
593 flush_workqueue(edac_workqueue);
594 }
595 }
596
597 /*
598 * edac_mc_reset_delay_period(unsigned long value)
599 *
600 * user space has updated our poll period value, need to
601 * reset our workq delays
602 */
603 void edac_mc_reset_delay_period(int value)
604 {
605 struct mem_ctl_info *mci;
606 struct list_head *item;
607
608 mutex_lock(&mem_ctls_mutex);
609
610 list_for_each(item, &mc_devices) {
611 mci = list_entry(item, struct mem_ctl_info, link);
612
613 edac_mc_workq_setup(mci, (unsigned long) value);
614 }
615
616 mutex_unlock(&mem_ctls_mutex);
617 }
618
619
620
621 /* Return 0 on success, 1 on failure.
622 * Before calling this function, caller must
623 * assign a unique value to mci->mc_idx.
624 *
625 * locking model:
626 *
627 * called with the mem_ctls_mutex lock held
628 */
629 static int add_mc_to_global_list(struct mem_ctl_info *mci)
630 {
631 struct list_head *item, *insert_before;
632 struct mem_ctl_info *p;
633
634 insert_before = &mc_devices;
635
636 p = find_mci_by_dev(mci->pdev);
637 if (unlikely(p != NULL))
638 goto fail0;
639
640 list_for_each(item, &mc_devices) {
641 p = list_entry(item, struct mem_ctl_info, link);
642
643 if (p->mc_idx >= mci->mc_idx) {
644 if (unlikely(p->mc_idx == mci->mc_idx))
645 goto fail1;
646
647 insert_before = item;
648 break;
649 }
650 }
651
652 list_add_tail_rcu(&mci->link, insert_before);
653 atomic_inc(&edac_handlers);
654 return 0;
655
656 fail0:
657 edac_printk(KERN_WARNING, EDAC_MC,
658 "%s (%s) %s %s already assigned %d\n", dev_name(p->pdev),
659 edac_dev_name(mci), p->mod_name, p->ctl_name, p->mc_idx);
660 return 1;
661
662 fail1:
663 edac_printk(KERN_WARNING, EDAC_MC,
664 "bug in low-level driver: attempt to assign\n"
665 " duplicate mc_idx %d in %s()\n", p->mc_idx, __func__);
666 return 1;
667 }
668
669 static void del_mc_from_global_list(struct mem_ctl_info *mci)
670 {
671 atomic_dec(&edac_handlers);
672 list_del_rcu(&mci->link);
673
674 /* these are for safe removal of devices from global list while
675 * NMI handlers may be traversing list
676 */
677 synchronize_rcu();
678 INIT_LIST_HEAD(&mci->link);
679 }
680
681 /**
682 * edac_mc_find: Search for a mem_ctl_info structure whose index is 'idx'.
683 *
684 * If found, return a pointer to the structure.
685 * Else return NULL.
686 *
687 * Caller must hold mem_ctls_mutex.
688 */
689 struct mem_ctl_info *edac_mc_find(int idx)
690 {
691 struct list_head *item;
692 struct mem_ctl_info *mci;
693
694 list_for_each(item, &mc_devices) {
695 mci = list_entry(item, struct mem_ctl_info, link);
696
697 if (mci->mc_idx >= idx) {
698 if (mci->mc_idx == idx)
699 return mci;
700
701 break;
702 }
703 }
704
705 return NULL;
706 }
707 EXPORT_SYMBOL(edac_mc_find);
708
709 /**
710 * edac_mc_add_mc: Insert the 'mci' structure into the mci global list and
711 * create sysfs entries associated with mci structure
712 * @mci: pointer to the mci structure to be added to the list
713 *
714 * Return:
715 * 0 Success
716 * !0 Failure
717 */
718
719 /* FIXME - should a warning be printed if no error detection? correction? */
720 int edac_mc_add_mc(struct mem_ctl_info *mci)
721 {
722 edac_dbg(0, "\n");
723
724 #ifdef CONFIG_EDAC_DEBUG
725 if (edac_debug_level >= 3)
726 edac_mc_dump_mci(mci);
727
728 if (edac_debug_level >= 4) {
729 int i;
730
731 for (i = 0; i < mci->nr_csrows; i++) {
732 struct csrow_info *csrow = mci->csrows[i];
733 u32 nr_pages = 0;
734 int j;
735
736 for (j = 0; j < csrow->nr_channels; j++)
737 nr_pages += csrow->channels[j]->dimm->nr_pages;
738 if (!nr_pages)
739 continue;
740 edac_mc_dump_csrow(csrow);
741 for (j = 0; j < csrow->nr_channels; j++)
742 if (csrow->channels[j]->dimm->nr_pages)
743 edac_mc_dump_channel(csrow->channels[j]);
744 }
745 for (i = 0; i < mci->tot_dimms; i++)
746 if (mci->dimms[i]->nr_pages)
747 edac_mc_dump_dimm(mci->dimms[i], i);
748 }
749 #endif
750 mutex_lock(&mem_ctls_mutex);
751
752 if (add_mc_to_global_list(mci))
753 goto fail0;
754
755 /* set load time so that error rate can be tracked */
756 mci->start_time = jiffies;
757
758 if (edac_create_sysfs_mci_device(mci)) {
759 edac_mc_printk(mci, KERN_WARNING,
760 "failed to create sysfs device\n");
761 goto fail1;
762 }
763
764 /* If there IS a check routine, then we are running POLLED */
765 if (mci->edac_check != NULL) {
766 /* This instance is NOW RUNNING */
767 mci->op_state = OP_RUNNING_POLL;
768
769 edac_mc_workq_setup(mci, edac_mc_get_poll_msec());
770 } else {
771 mci->op_state = OP_RUNNING_INTERRUPT;
772 }
773
774 /* Report action taken */
775 edac_mc_printk(mci, KERN_INFO, "Giving out device to '%s' '%s':"
776 " DEV %s\n", mci->mod_name, mci->ctl_name, edac_dev_name(mci));
777
778 mutex_unlock(&mem_ctls_mutex);
779 return 0;
780
781 fail1:
782 del_mc_from_global_list(mci);
783
784 fail0:
785 mutex_unlock(&mem_ctls_mutex);
786 return 1;
787 }
788 EXPORT_SYMBOL_GPL(edac_mc_add_mc);
789
790 /**
791 * edac_mc_del_mc: Remove sysfs entries for specified mci structure and
792 * remove mci structure from global list
793 * @pdev: Pointer to 'struct device' representing mci structure to remove.
794 *
795 * Return pointer to removed mci structure, or NULL if device not found.
796 */
797 struct mem_ctl_info *edac_mc_del_mc(struct device *dev)
798 {
799 struct mem_ctl_info *mci;
800
801 edac_dbg(0, "\n");
802
803 mutex_lock(&mem_ctls_mutex);
804
805 /* find the requested mci struct in the global list */
806 mci = find_mci_by_dev(dev);
807 if (mci == NULL) {
808 mutex_unlock(&mem_ctls_mutex);
809 return NULL;
810 }
811
812 del_mc_from_global_list(mci);
813 mutex_unlock(&mem_ctls_mutex);
814
815 /* flush workq processes */
816 edac_mc_workq_teardown(mci);
817
818 /* marking MCI offline */
819 mci->op_state = OP_OFFLINE;
820
821 /* remove from sysfs */
822 edac_remove_sysfs_mci_device(mci);
823
824 edac_printk(KERN_INFO, EDAC_MC,
825 "Removed device %d for %s %s: DEV %s\n", mci->mc_idx,
826 mci->mod_name, mci->ctl_name, edac_dev_name(mci));
827
828 return mci;
829 }
830 EXPORT_SYMBOL_GPL(edac_mc_del_mc);
831
832 static void edac_mc_scrub_block(unsigned long page, unsigned long offset,
833 u32 size)
834 {
835 struct page *pg;
836 void *virt_addr;
837 unsigned long flags = 0;
838
839 edac_dbg(3, "\n");
840
841 /* ECC error page was not in our memory. Ignore it. */
842 if (!pfn_valid(page))
843 return;
844
845 /* Find the actual page structure then map it and fix */
846 pg = pfn_to_page(page);
847
848 if (PageHighMem(pg))
849 local_irq_save(flags);
850
851 virt_addr = kmap_atomic(pg);
852
853 /* Perform architecture specific atomic scrub operation */
854 atomic_scrub(virt_addr + offset, size);
855
856 /* Unmap and complete */
857 kunmap_atomic(virt_addr);
858
859 if (PageHighMem(pg))
860 local_irq_restore(flags);
861 }
862
863 /* FIXME - should return -1 */
864 int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci, unsigned long page)
865 {
866 struct csrow_info **csrows = mci->csrows;
867 int row, i, j, n;
868
869 edac_dbg(1, "MC%d: 0x%lx\n", mci->mc_idx, page);
870 row = -1;
871
872 for (i = 0; i < mci->nr_csrows; i++) {
873 struct csrow_info *csrow = csrows[i];
874 n = 0;
875 for (j = 0; j < csrow->nr_channels; j++) {
876 struct dimm_info *dimm = csrow->channels[j]->dimm;
877 n += dimm->nr_pages;
878 }
879 if (n == 0)
880 continue;
881
882 edac_dbg(3, "MC%d: first(0x%lx) page(0x%lx) last(0x%lx) mask(0x%lx)\n",
883 mci->mc_idx,
884 csrow->first_page, page, csrow->last_page,
885 csrow->page_mask);
886
887 if ((page >= csrow->first_page) &&
888 (page <= csrow->last_page) &&
889 ((page & csrow->page_mask) ==
890 (csrow->first_page & csrow->page_mask))) {
891 row = i;
892 break;
893 }
894 }
895
896 if (row == -1)
897 edac_mc_printk(mci, KERN_ERR,
898 "could not look up page error address %lx\n",
899 (unsigned long)page);
900
901 return row;
902 }
903 EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page);
904
905 const char *edac_layer_name[] = {
906 [EDAC_MC_LAYER_BRANCH] = "branch",
907 [EDAC_MC_LAYER_CHANNEL] = "channel",
908 [EDAC_MC_LAYER_SLOT] = "slot",
909 [EDAC_MC_LAYER_CHIP_SELECT] = "csrow",
910 };
911 EXPORT_SYMBOL_GPL(edac_layer_name);
912
913 static void edac_inc_ce_error(struct mem_ctl_info *mci,
914 bool enable_per_layer_report,
915 const int pos[EDAC_MAX_LAYERS],
916 const u16 count)
917 {
918 int i, index = 0;
919
920 mci->ce_mc += count;
921
922 if (!enable_per_layer_report) {
923 mci->ce_noinfo_count += count;
924 return;
925 }
926
927 for (i = 0; i < mci->n_layers; i++) {
928 if (pos[i] < 0)
929 break;
930 index += pos[i];
931 mci->ce_per_layer[i][index] += count;
932
933 if (i < mci->n_layers - 1)
934 index *= mci->layers[i + 1].size;
935 }
936 }
937
938 static void edac_inc_ue_error(struct mem_ctl_info *mci,
939 bool enable_per_layer_report,
940 const int pos[EDAC_MAX_LAYERS],
941 const u16 count)
942 {
943 int i, index = 0;
944
945 mci->ue_mc += count;
946
947 if (!enable_per_layer_report) {
948 mci->ce_noinfo_count += count;
949 return;
950 }
951
952 for (i = 0; i < mci->n_layers; i++) {
953 if (pos[i] < 0)
954 break;
955 index += pos[i];
956 mci->ue_per_layer[i][index] += count;
957
958 if (i < mci->n_layers - 1)
959 index *= mci->layers[i + 1].size;
960 }
961 }
962
963 static void edac_ce_error(struct mem_ctl_info *mci,
964 const u16 error_count,
965 const int pos[EDAC_MAX_LAYERS],
966 const char *msg,
967 const char *location,
968 const char *label,
969 const char *detail,
970 const char *other_detail,
971 const bool enable_per_layer_report,
972 const unsigned long page_frame_number,
973 const unsigned long offset_in_page,
974 long grain)
975 {
976 unsigned long remapped_page;
977
978 if (edac_mc_get_log_ce()) {
979 if (other_detail && *other_detail)
980 edac_mc_printk(mci, KERN_WARNING,
981 "%d CE %s on %s (%s %s - %s)\n",
982 error_count,
983 msg, label, location,
984 detail, other_detail);
985 else
986 edac_mc_printk(mci, KERN_WARNING,
987 "%d CE %s on %s (%s %s)\n",
988 error_count,
989 msg, label, location,
990 detail);
991 }
992 edac_inc_ce_error(mci, enable_per_layer_report, pos, error_count);
993
994 if (mci->scrub_mode & SCRUB_SW_SRC) {
995 /*
996 * Some memory controllers (called MCs below) can remap
997 * memory so that it is still available at a different
998 * address when PCI devices map into memory.
999 * MC's that can't do this, lose the memory where PCI
1000 * devices are mapped. This mapping is MC-dependent
1001 * and so we call back into the MC driver for it to
1002 * map the MC page to a physical (CPU) page which can
1003 * then be mapped to a virtual page - which can then
1004 * be scrubbed.
1005 */
1006 remapped_page = mci->ctl_page_to_phys ?
1007 mci->ctl_page_to_phys(mci, page_frame_number) :
1008 page_frame_number;
1009
1010 edac_mc_scrub_block(remapped_page,
1011 offset_in_page, grain);
1012 }
1013 }
1014
1015 static void edac_ue_error(struct mem_ctl_info *mci,
1016 const u16 error_count,
1017 const int pos[EDAC_MAX_LAYERS],
1018 const char *msg,
1019 const char *location,
1020 const char *label,
1021 const char *detail,
1022 const char *other_detail,
1023 const bool enable_per_layer_report)
1024 {
1025 if (edac_mc_get_log_ue()) {
1026 if (other_detail && *other_detail)
1027 edac_mc_printk(mci, KERN_WARNING,
1028 "%d UE %s on %s (%s %s - %s)\n",
1029 error_count,
1030 msg, label, location, detail,
1031 other_detail);
1032 else
1033 edac_mc_printk(mci, KERN_WARNING,
1034 "%d UE %s on %s (%s %s)\n",
1035 error_count,
1036 msg, label, location, detail);
1037 }
1038
1039 if (edac_mc_get_panic_on_ue()) {
1040 if (other_detail && *other_detail)
1041 panic("UE %s on %s (%s%s - %s)\n",
1042 msg, label, location, detail, other_detail);
1043 else
1044 panic("UE %s on %s (%s%s)\n",
1045 msg, label, location, detail);
1046 }
1047
1048 edac_inc_ue_error(mci, enable_per_layer_report, pos, error_count);
1049 }
1050
1051 #define OTHER_LABEL " or "
1052
1053 /**
1054 * edac_mc_handle_error - reports a memory event to userspace
1055 *
1056 * @type: severity of the error (CE/UE/Fatal)
1057 * @mci: a struct mem_ctl_info pointer
1058 * @error_count: Number of errors of the same type
1059 * @page_frame_number: mem page where the error occurred
1060 * @offset_in_page: offset of the error inside the page
1061 * @syndrome: ECC syndrome
1062 * @top_layer: Memory layer[0] position
1063 * @mid_layer: Memory layer[1] position
1064 * @low_layer: Memory layer[2] position
1065 * @msg: Message meaningful to the end users that
1066 * explains the event
1067 * @other_detail: Technical details about the event that
1068 * may help hardware manufacturers and
1069 * EDAC developers to analyse the event
1070 */
1071 void edac_mc_handle_error(const enum hw_event_mc_err_type type,
1072 struct mem_ctl_info *mci,
1073 const u16 error_count,
1074 const unsigned long page_frame_number,
1075 const unsigned long offset_in_page,
1076 const unsigned long syndrome,
1077 const int top_layer,
1078 const int mid_layer,
1079 const int low_layer,
1080 const char *msg,
1081 const char *other_detail)
1082 {
1083 /* FIXME: too much for stack: move it to some pre-alocated area */
1084 char detail[80], location[80];
1085 char label[(EDAC_MC_LABEL_LEN + 1 + sizeof(OTHER_LABEL)) * mci->tot_dimms];
1086 char *p;
1087 int row = -1, chan = -1;
1088 int pos[EDAC_MAX_LAYERS] = { top_layer, mid_layer, low_layer };
1089 int i;
1090 long grain;
1091 bool enable_per_layer_report = false;
1092 u8 grain_bits;
1093
1094 edac_dbg(3, "MC%d\n", mci->mc_idx);
1095
1096 /*
1097 * Check if the event report is consistent and if the memory
1098 * location is known. If it is known, enable_per_layer_report will be
1099 * true, the DIMM(s) label info will be filled and the per-layer
1100 * error counters will be incremented.
1101 */
1102 for (i = 0; i < mci->n_layers; i++) {
1103 if (pos[i] >= (int)mci->layers[i].size) {
1104 if (type == HW_EVENT_ERR_CORRECTED)
1105 p = "CE";
1106 else
1107 p = "UE";
1108
1109 edac_mc_printk(mci, KERN_ERR,
1110 "INTERNAL ERROR: %s value is out of range (%d >= %d)\n",
1111 edac_layer_name[mci->layers[i].type],
1112 pos[i], mci->layers[i].size);
1113 /*
1114 * Instead of just returning it, let's use what's
1115 * known about the error. The increment routines and
1116 * the DIMM filter logic will do the right thing by
1117 * pointing the likely damaged DIMMs.
1118 */
1119 pos[i] = -1;
1120 }
1121 if (pos[i] >= 0)
1122 enable_per_layer_report = true;
1123 }
1124
1125 /*
1126 * Get the dimm label/grain that applies to the match criteria.
1127 * As the error algorithm may not be able to point to just one memory
1128 * stick, the logic here will get all possible labels that could
1129 * pottentially be affected by the error.
1130 * On FB-DIMM memory controllers, for uncorrected errors, it is common
1131 * to have only the MC channel and the MC dimm (also called "branch")
1132 * but the channel is not known, as the memory is arranged in pairs,
1133 * where each memory belongs to a separate channel within the same
1134 * branch.
1135 */
1136 grain = 0;
1137 p = label;
1138 *p = '\0';
1139 for (i = 0; i < mci->tot_dimms; i++) {
1140 struct dimm_info *dimm = mci->dimms[i];
1141
1142 if (top_layer >= 0 && top_layer != dimm->location[0])
1143 continue;
1144 if (mid_layer >= 0 && mid_layer != dimm->location[1])
1145 continue;
1146 if (low_layer >= 0 && low_layer != dimm->location[2])
1147 continue;
1148
1149 /* get the max grain, over the error match range */
1150 if (dimm->grain > grain)
1151 grain = dimm->grain;
1152
1153 /*
1154 * If the error is memory-controller wide, there's no need to
1155 * seek for the affected DIMMs because the whole
1156 * channel/memory controller/... may be affected.
1157 * Also, don't show errors for empty DIMM slots.
1158 */
1159 if (enable_per_layer_report && dimm->nr_pages) {
1160 if (p != label) {
1161 strcpy(p, OTHER_LABEL);
1162 p += strlen(OTHER_LABEL);
1163 }
1164 strcpy(p, dimm->label);
1165 p += strlen(p);
1166 *p = '\0';
1167
1168 /*
1169 * get csrow/channel of the DIMM, in order to allow
1170 * incrementing the compat API counters
1171 */
1172 edac_dbg(4, "%s csrows map: (%d,%d)\n",
1173 mci->mem_is_per_rank ? "rank" : "dimm",
1174 dimm->csrow, dimm->cschannel);
1175 if (row == -1)
1176 row = dimm->csrow;
1177 else if (row >= 0 && row != dimm->csrow)
1178 row = -2;
1179
1180 if (chan == -1)
1181 chan = dimm->cschannel;
1182 else if (chan >= 0 && chan != dimm->cschannel)
1183 chan = -2;
1184 }
1185 }
1186
1187 if (!enable_per_layer_report) {
1188 strcpy(label, "any memory");
1189 } else {
1190 edac_dbg(4, "csrow/channel to increment: (%d,%d)\n", row, chan);
1191 if (p == label)
1192 strcpy(label, "unknown memory");
1193 if (type == HW_EVENT_ERR_CORRECTED) {
1194 if (row >= 0) {
1195 mci->csrows[row]->ce_count += error_count;
1196 if (chan >= 0)
1197 mci->csrows[row]->channels[chan]->ce_count += error_count;
1198 }
1199 } else
1200 if (row >= 0)
1201 mci->csrows[row]->ue_count += error_count;
1202 }
1203
1204 /* Fill the RAM location data */
1205 p = location;
1206 for (i = 0; i < mci->n_layers; i++) {
1207 if (pos[i] < 0)
1208 continue;
1209
1210 p += sprintf(p, "%s:%d ",
1211 edac_layer_name[mci->layers[i].type],
1212 pos[i]);
1213 }
1214 if (p > location)
1215 *(p - 1) = '\0';
1216
1217 /* Report the error via the trace interface */
1218
1219 grain_bits = fls_long(grain) + 1;
1220 trace_mc_event(type, msg, label, error_count,
1221 mci->mc_idx, top_layer, mid_layer, low_layer,
1222 PAGES_TO_MiB(page_frame_number) | offset_in_page,
1223 grain_bits, syndrome, other_detail);
1224
1225 /* Memory type dependent details about the error */
1226 if (type == HW_EVENT_ERR_CORRECTED) {
1227 snprintf(detail, sizeof(detail),
1228 "page:0x%lx offset:0x%lx grain:%ld syndrome:0x%lx",
1229 page_frame_number, offset_in_page,
1230 grain, syndrome);
1231 edac_ce_error(mci, error_count, pos, msg, location, label,
1232 detail, other_detail, enable_per_layer_report,
1233 page_frame_number, offset_in_page, grain);
1234 } else {
1235 snprintf(detail, sizeof(detail),
1236 "page:0x%lx offset:0x%lx grain:%ld",
1237 page_frame_number, offset_in_page, grain);
1238
1239 edac_ue_error(mci, error_count, pos, msg, location, label,
1240 detail, other_detail, enable_per_layer_report);
1241 }
1242 }
1243 EXPORT_SYMBOL_GPL(edac_mc_handle_error);