]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/edac/edac_mc.c
workqueue: use mod_delayed_work() instead of cancel + queue
[mirror_ubuntu-bionic-kernel.git] / drivers / edac / edac_mc.c
1 /*
2 * edac_mc kernel module
3 * (C) 2005, 2006 Linux Networx (http://lnxi.com)
4 * This file may be distributed under the terms of the
5 * GNU General Public License.
6 *
7 * Written by Thayne Harbaugh
8 * Based on work by Dan Hollis <goemon at anime dot net> and others.
9 * http://www.anime.net/~goemon/linux-ecc/
10 *
11 * Modified by Dave Peterson and Doug Thompson
12 *
13 */
14
15 #include <linux/module.h>
16 #include <linux/proc_fs.h>
17 #include <linux/kernel.h>
18 #include <linux/types.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/sysctl.h>
22 #include <linux/highmem.h>
23 #include <linux/timer.h>
24 #include <linux/slab.h>
25 #include <linux/jiffies.h>
26 #include <linux/spinlock.h>
27 #include <linux/list.h>
28 #include <linux/ctype.h>
29 #include <linux/edac.h>
30 #include <linux/bitops.h>
31 #include <asm/uaccess.h>
32 #include <asm/page.h>
33 #include <asm/edac.h>
34 #include "edac_core.h"
35 #include "edac_module.h"
36
37 #define CREATE_TRACE_POINTS
38 #define TRACE_INCLUDE_PATH ../../include/ras
39 #include <ras/ras_event.h>
40
41 /* lock to memory controller's control array */
42 static DEFINE_MUTEX(mem_ctls_mutex);
43 static LIST_HEAD(mc_devices);
44
45 unsigned edac_dimm_info_location(struct dimm_info *dimm, char *buf,
46 unsigned len)
47 {
48 struct mem_ctl_info *mci = dimm->mci;
49 int i, n, count = 0;
50 char *p = buf;
51
52 for (i = 0; i < mci->n_layers; i++) {
53 n = snprintf(p, len, "%s %d ",
54 edac_layer_name[mci->layers[i].type],
55 dimm->location[i]);
56 p += n;
57 len -= n;
58 count += n;
59 if (!len)
60 break;
61 }
62
63 return count;
64 }
65
66 #ifdef CONFIG_EDAC_DEBUG
67
68 static void edac_mc_dump_channel(struct rank_info *chan)
69 {
70 edac_dbg(4, " channel->chan_idx = %d\n", chan->chan_idx);
71 edac_dbg(4, " channel = %p\n", chan);
72 edac_dbg(4, " channel->csrow = %p\n", chan->csrow);
73 edac_dbg(4, " channel->dimm = %p\n", chan->dimm);
74 }
75
76 static void edac_mc_dump_dimm(struct dimm_info *dimm, int number)
77 {
78 char location[80];
79
80 edac_dimm_info_location(dimm, location, sizeof(location));
81
82 edac_dbg(4, "%s%i: %smapped as virtual row %d, chan %d\n",
83 dimm->mci->mem_is_per_rank ? "rank" : "dimm",
84 number, location, dimm->csrow, dimm->cschannel);
85 edac_dbg(4, " dimm = %p\n", dimm);
86 edac_dbg(4, " dimm->label = '%s'\n", dimm->label);
87 edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm->nr_pages);
88 edac_dbg(4, " dimm->grain = %d\n", dimm->grain);
89 edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm->nr_pages);
90 }
91
92 static void edac_mc_dump_csrow(struct csrow_info *csrow)
93 {
94 edac_dbg(4, "csrow->csrow_idx = %d\n", csrow->csrow_idx);
95 edac_dbg(4, " csrow = %p\n", csrow);
96 edac_dbg(4, " csrow->first_page = 0x%lx\n", csrow->first_page);
97 edac_dbg(4, " csrow->last_page = 0x%lx\n", csrow->last_page);
98 edac_dbg(4, " csrow->page_mask = 0x%lx\n", csrow->page_mask);
99 edac_dbg(4, " csrow->nr_channels = %d\n", csrow->nr_channels);
100 edac_dbg(4, " csrow->channels = %p\n", csrow->channels);
101 edac_dbg(4, " csrow->mci = %p\n", csrow->mci);
102 }
103
104 static void edac_mc_dump_mci(struct mem_ctl_info *mci)
105 {
106 edac_dbg(3, "\tmci = %p\n", mci);
107 edac_dbg(3, "\tmci->mtype_cap = %lx\n", mci->mtype_cap);
108 edac_dbg(3, "\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap);
109 edac_dbg(3, "\tmci->edac_cap = %lx\n", mci->edac_cap);
110 edac_dbg(4, "\tmci->edac_check = %p\n", mci->edac_check);
111 edac_dbg(3, "\tmci->nr_csrows = %d, csrows = %p\n",
112 mci->nr_csrows, mci->csrows);
113 edac_dbg(3, "\tmci->nr_dimms = %d, dimms = %p\n",
114 mci->tot_dimms, mci->dimms);
115 edac_dbg(3, "\tdev = %p\n", mci->pdev);
116 edac_dbg(3, "\tmod_name:ctl_name = %s:%s\n",
117 mci->mod_name, mci->ctl_name);
118 edac_dbg(3, "\tpvt_info = %p\n\n", mci->pvt_info);
119 }
120
121 #endif /* CONFIG_EDAC_DEBUG */
122
123 /*
124 * keep those in sync with the enum mem_type
125 */
126 const char *edac_mem_types[] = {
127 "Empty csrow",
128 "Reserved csrow type",
129 "Unknown csrow type",
130 "Fast page mode RAM",
131 "Extended data out RAM",
132 "Burst Extended data out RAM",
133 "Single data rate SDRAM",
134 "Registered single data rate SDRAM",
135 "Double data rate SDRAM",
136 "Registered Double data rate SDRAM",
137 "Rambus DRAM",
138 "Unbuffered DDR2 RAM",
139 "Fully buffered DDR2",
140 "Registered DDR2 RAM",
141 "Rambus XDR",
142 "Unbuffered DDR3 RAM",
143 "Registered DDR3 RAM",
144 };
145 EXPORT_SYMBOL_GPL(edac_mem_types);
146
147 /**
148 * edac_align_ptr - Prepares the pointer offsets for a single-shot allocation
149 * @p: pointer to a pointer with the memory offset to be used. At
150 * return, this will be incremented to point to the next offset
151 * @size: Size of the data structure to be reserved
152 * @n_elems: Number of elements that should be reserved
153 *
154 * If 'size' is a constant, the compiler will optimize this whole function
155 * down to either a no-op or the addition of a constant to the value of '*p'.
156 *
157 * The 'p' pointer is absolutely needed to keep the proper advancing
158 * further in memory to the proper offsets when allocating the struct along
159 * with its embedded structs, as edac_device_alloc_ctl_info() does it
160 * above, for example.
161 *
162 * At return, the pointer 'p' will be incremented to be used on a next call
163 * to this function.
164 */
165 void *edac_align_ptr(void **p, unsigned size, int n_elems)
166 {
167 unsigned align, r;
168 void *ptr = *p;
169
170 *p += size * n_elems;
171
172 /*
173 * 'p' can possibly be an unaligned item X such that sizeof(X) is
174 * 'size'. Adjust 'p' so that its alignment is at least as
175 * stringent as what the compiler would provide for X and return
176 * the aligned result.
177 * Here we assume that the alignment of a "long long" is the most
178 * stringent alignment that the compiler will ever provide by default.
179 * As far as I know, this is a reasonable assumption.
180 */
181 if (size > sizeof(long))
182 align = sizeof(long long);
183 else if (size > sizeof(int))
184 align = sizeof(long);
185 else if (size > sizeof(short))
186 align = sizeof(int);
187 else if (size > sizeof(char))
188 align = sizeof(short);
189 else
190 return (char *)ptr;
191
192 r = (unsigned long)p % align;
193
194 if (r == 0)
195 return (char *)ptr;
196
197 *p += align - r;
198
199 return (void *)(((unsigned long)ptr) + align - r);
200 }
201
202 /**
203 * edac_mc_alloc: Allocate and partially fill a struct mem_ctl_info structure
204 * @mc_num: Memory controller number
205 * @n_layers: Number of MC hierarchy layers
206 * layers: Describes each layer as seen by the Memory Controller
207 * @size_pvt: size of private storage needed
208 *
209 *
210 * Everything is kmalloc'ed as one big chunk - more efficient.
211 * Only can be used if all structures have the same lifetime - otherwise
212 * you have to allocate and initialize your own structures.
213 *
214 * Use edac_mc_free() to free mc structures allocated by this function.
215 *
216 * NOTE: drivers handle multi-rank memories in different ways: in some
217 * drivers, one multi-rank memory stick is mapped as one entry, while, in
218 * others, a single multi-rank memory stick would be mapped into several
219 * entries. Currently, this function will allocate multiple struct dimm_info
220 * on such scenarios, as grouping the multiple ranks require drivers change.
221 *
222 * Returns:
223 * On failure: NULL
224 * On success: struct mem_ctl_info pointer
225 */
226 struct mem_ctl_info *edac_mc_alloc(unsigned mc_num,
227 unsigned n_layers,
228 struct edac_mc_layer *layers,
229 unsigned sz_pvt)
230 {
231 struct mem_ctl_info *mci;
232 struct edac_mc_layer *layer;
233 struct csrow_info *csr;
234 struct rank_info *chan;
235 struct dimm_info *dimm;
236 u32 *ce_per_layer[EDAC_MAX_LAYERS], *ue_per_layer[EDAC_MAX_LAYERS];
237 unsigned pos[EDAC_MAX_LAYERS];
238 unsigned size, tot_dimms = 1, count = 1;
239 unsigned tot_csrows = 1, tot_channels = 1, tot_errcount = 0;
240 void *pvt, *p, *ptr = NULL;
241 int i, j, row, chn, n, len, off;
242 bool per_rank = false;
243
244 BUG_ON(n_layers > EDAC_MAX_LAYERS || n_layers == 0);
245 /*
246 * Calculate the total amount of dimms and csrows/cschannels while
247 * in the old API emulation mode
248 */
249 for (i = 0; i < n_layers; i++) {
250 tot_dimms *= layers[i].size;
251 if (layers[i].is_virt_csrow)
252 tot_csrows *= layers[i].size;
253 else
254 tot_channels *= layers[i].size;
255
256 if (layers[i].type == EDAC_MC_LAYER_CHIP_SELECT)
257 per_rank = true;
258 }
259
260 /* Figure out the offsets of the various items from the start of an mc
261 * structure. We want the alignment of each item to be at least as
262 * stringent as what the compiler would provide if we could simply
263 * hardcode everything into a single struct.
264 */
265 mci = edac_align_ptr(&ptr, sizeof(*mci), 1);
266 layer = edac_align_ptr(&ptr, sizeof(*layer), n_layers);
267 for (i = 0; i < n_layers; i++) {
268 count *= layers[i].size;
269 edac_dbg(4, "errcount layer %d size %d\n", i, count);
270 ce_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count);
271 ue_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count);
272 tot_errcount += 2 * count;
273 }
274
275 edac_dbg(4, "allocating %d error counters\n", tot_errcount);
276 pvt = edac_align_ptr(&ptr, sz_pvt, 1);
277 size = ((unsigned long)pvt) + sz_pvt;
278
279 edac_dbg(1, "allocating %u bytes for mci data (%d %s, %d csrows/channels)\n",
280 size,
281 tot_dimms,
282 per_rank ? "ranks" : "dimms",
283 tot_csrows * tot_channels);
284
285 mci = kzalloc(size, GFP_KERNEL);
286 if (mci == NULL)
287 return NULL;
288
289 /* Adjust pointers so they point within the memory we just allocated
290 * rather than an imaginary chunk of memory located at address 0.
291 */
292 layer = (struct edac_mc_layer *)(((char *)mci) + ((unsigned long)layer));
293 for (i = 0; i < n_layers; i++) {
294 mci->ce_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ce_per_layer[i]));
295 mci->ue_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ue_per_layer[i]));
296 }
297 pvt = sz_pvt ? (((char *)mci) + ((unsigned long)pvt)) : NULL;
298
299 /* setup index and various internal pointers */
300 mci->mc_idx = mc_num;
301 mci->tot_dimms = tot_dimms;
302 mci->pvt_info = pvt;
303 mci->n_layers = n_layers;
304 mci->layers = layer;
305 memcpy(mci->layers, layers, sizeof(*layer) * n_layers);
306 mci->nr_csrows = tot_csrows;
307 mci->num_cschannel = tot_channels;
308 mci->mem_is_per_rank = per_rank;
309
310 /*
311 * Alocate and fill the csrow/channels structs
312 */
313 mci->csrows = kcalloc(sizeof(*mci->csrows), tot_csrows, GFP_KERNEL);
314 if (!mci->csrows)
315 goto error;
316 for (row = 0; row < tot_csrows; row++) {
317 csr = kzalloc(sizeof(**mci->csrows), GFP_KERNEL);
318 if (!csr)
319 goto error;
320 mci->csrows[row] = csr;
321 csr->csrow_idx = row;
322 csr->mci = mci;
323 csr->nr_channels = tot_channels;
324 csr->channels = kcalloc(sizeof(*csr->channels), tot_channels,
325 GFP_KERNEL);
326 if (!csr->channels)
327 goto error;
328
329 for (chn = 0; chn < tot_channels; chn++) {
330 chan = kzalloc(sizeof(**csr->channels), GFP_KERNEL);
331 if (!chan)
332 goto error;
333 csr->channels[chn] = chan;
334 chan->chan_idx = chn;
335 chan->csrow = csr;
336 }
337 }
338
339 /*
340 * Allocate and fill the dimm structs
341 */
342 mci->dimms = kcalloc(sizeof(*mci->dimms), tot_dimms, GFP_KERNEL);
343 if (!mci->dimms)
344 goto error;
345
346 memset(&pos, 0, sizeof(pos));
347 row = 0;
348 chn = 0;
349 for (i = 0; i < tot_dimms; i++) {
350 chan = mci->csrows[row]->channels[chn];
351 off = EDAC_DIMM_OFF(layer, n_layers, pos[0], pos[1], pos[2]);
352 if (off < 0 || off >= tot_dimms) {
353 edac_mc_printk(mci, KERN_ERR, "EDAC core bug: EDAC_DIMM_OFF is trying to do an illegal data access\n");
354 goto error;
355 }
356
357 dimm = kzalloc(sizeof(**mci->dimms), GFP_KERNEL);
358 if (!dimm)
359 goto error;
360 mci->dimms[off] = dimm;
361 dimm->mci = mci;
362
363 /*
364 * Copy DIMM location and initialize it.
365 */
366 len = sizeof(dimm->label);
367 p = dimm->label;
368 n = snprintf(p, len, "mc#%u", mc_num);
369 p += n;
370 len -= n;
371 for (j = 0; j < n_layers; j++) {
372 n = snprintf(p, len, "%s#%u",
373 edac_layer_name[layers[j].type],
374 pos[j]);
375 p += n;
376 len -= n;
377 dimm->location[j] = pos[j];
378
379 if (len <= 0)
380 break;
381 }
382
383 /* Link it to the csrows old API data */
384 chan->dimm = dimm;
385 dimm->csrow = row;
386 dimm->cschannel = chn;
387
388 /* Increment csrow location */
389 row++;
390 if (row == tot_csrows) {
391 row = 0;
392 chn++;
393 }
394
395 /* Increment dimm location */
396 for (j = n_layers - 1; j >= 0; j--) {
397 pos[j]++;
398 if (pos[j] < layers[j].size)
399 break;
400 pos[j] = 0;
401 }
402 }
403
404 mci->op_state = OP_ALLOC;
405
406 /* at this point, the root kobj is valid, and in order to
407 * 'free' the object, then the function:
408 * edac_mc_unregister_sysfs_main_kobj() must be called
409 * which will perform kobj unregistration and the actual free
410 * will occur during the kobject callback operation
411 */
412
413 return mci;
414
415 error:
416 if (mci->dimms) {
417 for (i = 0; i < tot_dimms; i++)
418 kfree(mci->dimms[i]);
419 kfree(mci->dimms);
420 }
421 if (mci->csrows) {
422 for (chn = 0; chn < tot_channels; chn++) {
423 csr = mci->csrows[chn];
424 if (csr) {
425 for (chn = 0; chn < tot_channels; chn++)
426 kfree(csr->channels[chn]);
427 kfree(csr);
428 }
429 kfree(mci->csrows[i]);
430 }
431 kfree(mci->csrows);
432 }
433 kfree(mci);
434
435 return NULL;
436 }
437 EXPORT_SYMBOL_GPL(edac_mc_alloc);
438
439 /**
440 * edac_mc_free
441 * 'Free' a previously allocated 'mci' structure
442 * @mci: pointer to a struct mem_ctl_info structure
443 */
444 void edac_mc_free(struct mem_ctl_info *mci)
445 {
446 edac_dbg(1, "\n");
447
448 /* the mci instance is freed here, when the sysfs object is dropped */
449 edac_unregister_sysfs(mci);
450 }
451 EXPORT_SYMBOL_GPL(edac_mc_free);
452
453
454 /**
455 * find_mci_by_dev
456 *
457 * scan list of controllers looking for the one that manages
458 * the 'dev' device
459 * @dev: pointer to a struct device related with the MCI
460 */
461 struct mem_ctl_info *find_mci_by_dev(struct device *dev)
462 {
463 struct mem_ctl_info *mci;
464 struct list_head *item;
465
466 edac_dbg(3, "\n");
467
468 list_for_each(item, &mc_devices) {
469 mci = list_entry(item, struct mem_ctl_info, link);
470
471 if (mci->pdev == dev)
472 return mci;
473 }
474
475 return NULL;
476 }
477 EXPORT_SYMBOL_GPL(find_mci_by_dev);
478
479 /*
480 * handler for EDAC to check if NMI type handler has asserted interrupt
481 */
482 static int edac_mc_assert_error_check_and_clear(void)
483 {
484 int old_state;
485
486 if (edac_op_state == EDAC_OPSTATE_POLL)
487 return 1;
488
489 old_state = edac_err_assert;
490 edac_err_assert = 0;
491
492 return old_state;
493 }
494
495 /*
496 * edac_mc_workq_function
497 * performs the operation scheduled by a workq request
498 */
499 static void edac_mc_workq_function(struct work_struct *work_req)
500 {
501 struct delayed_work *d_work = to_delayed_work(work_req);
502 struct mem_ctl_info *mci = to_edac_mem_ctl_work(d_work);
503
504 mutex_lock(&mem_ctls_mutex);
505
506 /* if this control struct has movd to offline state, we are done */
507 if (mci->op_state == OP_OFFLINE) {
508 mutex_unlock(&mem_ctls_mutex);
509 return;
510 }
511
512 /* Only poll controllers that are running polled and have a check */
513 if (edac_mc_assert_error_check_and_clear() && (mci->edac_check != NULL))
514 mci->edac_check(mci);
515
516 mutex_unlock(&mem_ctls_mutex);
517
518 /* Reschedule */
519 queue_delayed_work(edac_workqueue, &mci->work,
520 msecs_to_jiffies(edac_mc_get_poll_msec()));
521 }
522
523 /*
524 * edac_mc_workq_setup
525 * initialize a workq item for this mci
526 * passing in the new delay period in msec
527 *
528 * locking model:
529 *
530 * called with the mem_ctls_mutex held
531 */
532 static void edac_mc_workq_setup(struct mem_ctl_info *mci, unsigned msec)
533 {
534 edac_dbg(0, "\n");
535
536 /* if this instance is not in the POLL state, then simply return */
537 if (mci->op_state != OP_RUNNING_POLL)
538 return;
539
540 INIT_DELAYED_WORK(&mci->work, edac_mc_workq_function);
541 mod_delayed_work(edac_workqueue, &mci->work, msecs_to_jiffies(msec));
542 }
543
544 /*
545 * edac_mc_workq_teardown
546 * stop the workq processing on this mci
547 *
548 * locking model:
549 *
550 * called WITHOUT lock held
551 */
552 static void edac_mc_workq_teardown(struct mem_ctl_info *mci)
553 {
554 int status;
555
556 if (mci->op_state != OP_RUNNING_POLL)
557 return;
558
559 status = cancel_delayed_work(&mci->work);
560 if (status == 0) {
561 edac_dbg(0, "not canceled, flush the queue\n");
562
563 /* workq instance might be running, wait for it */
564 flush_workqueue(edac_workqueue);
565 }
566 }
567
568 /*
569 * edac_mc_reset_delay_period(unsigned long value)
570 *
571 * user space has updated our poll period value, need to
572 * reset our workq delays
573 */
574 void edac_mc_reset_delay_period(int value)
575 {
576 struct mem_ctl_info *mci;
577 struct list_head *item;
578
579 mutex_lock(&mem_ctls_mutex);
580
581 list_for_each(item, &mc_devices) {
582 mci = list_entry(item, struct mem_ctl_info, link);
583
584 edac_mc_workq_setup(mci, (unsigned long) value);
585 }
586
587 mutex_unlock(&mem_ctls_mutex);
588 }
589
590
591
592 /* Return 0 on success, 1 on failure.
593 * Before calling this function, caller must
594 * assign a unique value to mci->mc_idx.
595 *
596 * locking model:
597 *
598 * called with the mem_ctls_mutex lock held
599 */
600 static int add_mc_to_global_list(struct mem_ctl_info *mci)
601 {
602 struct list_head *item, *insert_before;
603 struct mem_ctl_info *p;
604
605 insert_before = &mc_devices;
606
607 p = find_mci_by_dev(mci->pdev);
608 if (unlikely(p != NULL))
609 goto fail0;
610
611 list_for_each(item, &mc_devices) {
612 p = list_entry(item, struct mem_ctl_info, link);
613
614 if (p->mc_idx >= mci->mc_idx) {
615 if (unlikely(p->mc_idx == mci->mc_idx))
616 goto fail1;
617
618 insert_before = item;
619 break;
620 }
621 }
622
623 list_add_tail_rcu(&mci->link, insert_before);
624 atomic_inc(&edac_handlers);
625 return 0;
626
627 fail0:
628 edac_printk(KERN_WARNING, EDAC_MC,
629 "%s (%s) %s %s already assigned %d\n", dev_name(p->pdev),
630 edac_dev_name(mci), p->mod_name, p->ctl_name, p->mc_idx);
631 return 1;
632
633 fail1:
634 edac_printk(KERN_WARNING, EDAC_MC,
635 "bug in low-level driver: attempt to assign\n"
636 " duplicate mc_idx %d in %s()\n", p->mc_idx, __func__);
637 return 1;
638 }
639
640 static void del_mc_from_global_list(struct mem_ctl_info *mci)
641 {
642 atomic_dec(&edac_handlers);
643 list_del_rcu(&mci->link);
644
645 /* these are for safe removal of devices from global list while
646 * NMI handlers may be traversing list
647 */
648 synchronize_rcu();
649 INIT_LIST_HEAD(&mci->link);
650 }
651
652 /**
653 * edac_mc_find: Search for a mem_ctl_info structure whose index is 'idx'.
654 *
655 * If found, return a pointer to the structure.
656 * Else return NULL.
657 *
658 * Caller must hold mem_ctls_mutex.
659 */
660 struct mem_ctl_info *edac_mc_find(int idx)
661 {
662 struct list_head *item;
663 struct mem_ctl_info *mci;
664
665 list_for_each(item, &mc_devices) {
666 mci = list_entry(item, struct mem_ctl_info, link);
667
668 if (mci->mc_idx >= idx) {
669 if (mci->mc_idx == idx)
670 return mci;
671
672 break;
673 }
674 }
675
676 return NULL;
677 }
678 EXPORT_SYMBOL(edac_mc_find);
679
680 /**
681 * edac_mc_add_mc: Insert the 'mci' structure into the mci global list and
682 * create sysfs entries associated with mci structure
683 * @mci: pointer to the mci structure to be added to the list
684 *
685 * Return:
686 * 0 Success
687 * !0 Failure
688 */
689
690 /* FIXME - should a warning be printed if no error detection? correction? */
691 int edac_mc_add_mc(struct mem_ctl_info *mci)
692 {
693 edac_dbg(0, "\n");
694
695 #ifdef CONFIG_EDAC_DEBUG
696 if (edac_debug_level >= 3)
697 edac_mc_dump_mci(mci);
698
699 if (edac_debug_level >= 4) {
700 int i;
701
702 for (i = 0; i < mci->nr_csrows; i++) {
703 struct csrow_info *csrow = mci->csrows[i];
704 u32 nr_pages = 0;
705 int j;
706
707 for (j = 0; j < csrow->nr_channels; j++)
708 nr_pages += csrow->channels[j]->dimm->nr_pages;
709 if (!nr_pages)
710 continue;
711 edac_mc_dump_csrow(csrow);
712 for (j = 0; j < csrow->nr_channels; j++)
713 if (csrow->channels[j]->dimm->nr_pages)
714 edac_mc_dump_channel(csrow->channels[j]);
715 }
716 for (i = 0; i < mci->tot_dimms; i++)
717 if (mci->dimms[i]->nr_pages)
718 edac_mc_dump_dimm(mci->dimms[i], i);
719 }
720 #endif
721 mutex_lock(&mem_ctls_mutex);
722
723 if (add_mc_to_global_list(mci))
724 goto fail0;
725
726 /* set load time so that error rate can be tracked */
727 mci->start_time = jiffies;
728
729 if (edac_create_sysfs_mci_device(mci)) {
730 edac_mc_printk(mci, KERN_WARNING,
731 "failed to create sysfs device\n");
732 goto fail1;
733 }
734
735 /* If there IS a check routine, then we are running POLLED */
736 if (mci->edac_check != NULL) {
737 /* This instance is NOW RUNNING */
738 mci->op_state = OP_RUNNING_POLL;
739
740 edac_mc_workq_setup(mci, edac_mc_get_poll_msec());
741 } else {
742 mci->op_state = OP_RUNNING_INTERRUPT;
743 }
744
745 /* Report action taken */
746 edac_mc_printk(mci, KERN_INFO, "Giving out device to '%s' '%s':"
747 " DEV %s\n", mci->mod_name, mci->ctl_name, edac_dev_name(mci));
748
749 mutex_unlock(&mem_ctls_mutex);
750 return 0;
751
752 fail1:
753 del_mc_from_global_list(mci);
754
755 fail0:
756 mutex_unlock(&mem_ctls_mutex);
757 return 1;
758 }
759 EXPORT_SYMBOL_GPL(edac_mc_add_mc);
760
761 /**
762 * edac_mc_del_mc: Remove sysfs entries for specified mci structure and
763 * remove mci structure from global list
764 * @pdev: Pointer to 'struct device' representing mci structure to remove.
765 *
766 * Return pointer to removed mci structure, or NULL if device not found.
767 */
768 struct mem_ctl_info *edac_mc_del_mc(struct device *dev)
769 {
770 struct mem_ctl_info *mci;
771
772 edac_dbg(0, "\n");
773
774 mutex_lock(&mem_ctls_mutex);
775
776 /* find the requested mci struct in the global list */
777 mci = find_mci_by_dev(dev);
778 if (mci == NULL) {
779 mutex_unlock(&mem_ctls_mutex);
780 return NULL;
781 }
782
783 del_mc_from_global_list(mci);
784 mutex_unlock(&mem_ctls_mutex);
785
786 /* flush workq processes */
787 edac_mc_workq_teardown(mci);
788
789 /* marking MCI offline */
790 mci->op_state = OP_OFFLINE;
791
792 /* remove from sysfs */
793 edac_remove_sysfs_mci_device(mci);
794
795 edac_printk(KERN_INFO, EDAC_MC,
796 "Removed device %d for %s %s: DEV %s\n", mci->mc_idx,
797 mci->mod_name, mci->ctl_name, edac_dev_name(mci));
798
799 return mci;
800 }
801 EXPORT_SYMBOL_GPL(edac_mc_del_mc);
802
803 static void edac_mc_scrub_block(unsigned long page, unsigned long offset,
804 u32 size)
805 {
806 struct page *pg;
807 void *virt_addr;
808 unsigned long flags = 0;
809
810 edac_dbg(3, "\n");
811
812 /* ECC error page was not in our memory. Ignore it. */
813 if (!pfn_valid(page))
814 return;
815
816 /* Find the actual page structure then map it and fix */
817 pg = pfn_to_page(page);
818
819 if (PageHighMem(pg))
820 local_irq_save(flags);
821
822 virt_addr = kmap_atomic(pg);
823
824 /* Perform architecture specific atomic scrub operation */
825 atomic_scrub(virt_addr + offset, size);
826
827 /* Unmap and complete */
828 kunmap_atomic(virt_addr);
829
830 if (PageHighMem(pg))
831 local_irq_restore(flags);
832 }
833
834 /* FIXME - should return -1 */
835 int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci, unsigned long page)
836 {
837 struct csrow_info **csrows = mci->csrows;
838 int row, i, j, n;
839
840 edac_dbg(1, "MC%d: 0x%lx\n", mci->mc_idx, page);
841 row = -1;
842
843 for (i = 0; i < mci->nr_csrows; i++) {
844 struct csrow_info *csrow = csrows[i];
845 n = 0;
846 for (j = 0; j < csrow->nr_channels; j++) {
847 struct dimm_info *dimm = csrow->channels[j]->dimm;
848 n += dimm->nr_pages;
849 }
850 if (n == 0)
851 continue;
852
853 edac_dbg(3, "MC%d: first(0x%lx) page(0x%lx) last(0x%lx) mask(0x%lx)\n",
854 mci->mc_idx,
855 csrow->first_page, page, csrow->last_page,
856 csrow->page_mask);
857
858 if ((page >= csrow->first_page) &&
859 (page <= csrow->last_page) &&
860 ((page & csrow->page_mask) ==
861 (csrow->first_page & csrow->page_mask))) {
862 row = i;
863 break;
864 }
865 }
866
867 if (row == -1)
868 edac_mc_printk(mci, KERN_ERR,
869 "could not look up page error address %lx\n",
870 (unsigned long)page);
871
872 return row;
873 }
874 EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page);
875
876 const char *edac_layer_name[] = {
877 [EDAC_MC_LAYER_BRANCH] = "branch",
878 [EDAC_MC_LAYER_CHANNEL] = "channel",
879 [EDAC_MC_LAYER_SLOT] = "slot",
880 [EDAC_MC_LAYER_CHIP_SELECT] = "csrow",
881 };
882 EXPORT_SYMBOL_GPL(edac_layer_name);
883
884 static void edac_inc_ce_error(struct mem_ctl_info *mci,
885 bool enable_per_layer_report,
886 const int pos[EDAC_MAX_LAYERS],
887 const u16 count)
888 {
889 int i, index = 0;
890
891 mci->ce_mc += count;
892
893 if (!enable_per_layer_report) {
894 mci->ce_noinfo_count += count;
895 return;
896 }
897
898 for (i = 0; i < mci->n_layers; i++) {
899 if (pos[i] < 0)
900 break;
901 index += pos[i];
902 mci->ce_per_layer[i][index] += count;
903
904 if (i < mci->n_layers - 1)
905 index *= mci->layers[i + 1].size;
906 }
907 }
908
909 static void edac_inc_ue_error(struct mem_ctl_info *mci,
910 bool enable_per_layer_report,
911 const int pos[EDAC_MAX_LAYERS],
912 const u16 count)
913 {
914 int i, index = 0;
915
916 mci->ue_mc += count;
917
918 if (!enable_per_layer_report) {
919 mci->ce_noinfo_count += count;
920 return;
921 }
922
923 for (i = 0; i < mci->n_layers; i++) {
924 if (pos[i] < 0)
925 break;
926 index += pos[i];
927 mci->ue_per_layer[i][index] += count;
928
929 if (i < mci->n_layers - 1)
930 index *= mci->layers[i + 1].size;
931 }
932 }
933
934 static void edac_ce_error(struct mem_ctl_info *mci,
935 const u16 error_count,
936 const int pos[EDAC_MAX_LAYERS],
937 const char *msg,
938 const char *location,
939 const char *label,
940 const char *detail,
941 const char *other_detail,
942 const bool enable_per_layer_report,
943 const unsigned long page_frame_number,
944 const unsigned long offset_in_page,
945 long grain)
946 {
947 unsigned long remapped_page;
948
949 if (edac_mc_get_log_ce()) {
950 if (other_detail && *other_detail)
951 edac_mc_printk(mci, KERN_WARNING,
952 "%d CE %s on %s (%s %s - %s)\n",
953 error_count,
954 msg, label, location,
955 detail, other_detail);
956 else
957 edac_mc_printk(mci, KERN_WARNING,
958 "%d CE %s on %s (%s %s)\n",
959 error_count,
960 msg, label, location,
961 detail);
962 }
963 edac_inc_ce_error(mci, enable_per_layer_report, pos, error_count);
964
965 if (mci->scrub_mode & SCRUB_SW_SRC) {
966 /*
967 * Some memory controllers (called MCs below) can remap
968 * memory so that it is still available at a different
969 * address when PCI devices map into memory.
970 * MC's that can't do this, lose the memory where PCI
971 * devices are mapped. This mapping is MC-dependent
972 * and so we call back into the MC driver for it to
973 * map the MC page to a physical (CPU) page which can
974 * then be mapped to a virtual page - which can then
975 * be scrubbed.
976 */
977 remapped_page = mci->ctl_page_to_phys ?
978 mci->ctl_page_to_phys(mci, page_frame_number) :
979 page_frame_number;
980
981 edac_mc_scrub_block(remapped_page,
982 offset_in_page, grain);
983 }
984 }
985
986 static void edac_ue_error(struct mem_ctl_info *mci,
987 const u16 error_count,
988 const int pos[EDAC_MAX_LAYERS],
989 const char *msg,
990 const char *location,
991 const char *label,
992 const char *detail,
993 const char *other_detail,
994 const bool enable_per_layer_report)
995 {
996 if (edac_mc_get_log_ue()) {
997 if (other_detail && *other_detail)
998 edac_mc_printk(mci, KERN_WARNING,
999 "%d UE %s on %s (%s %s - %s)\n",
1000 error_count,
1001 msg, label, location, detail,
1002 other_detail);
1003 else
1004 edac_mc_printk(mci, KERN_WARNING,
1005 "%d UE %s on %s (%s %s)\n",
1006 error_count,
1007 msg, label, location, detail);
1008 }
1009
1010 if (edac_mc_get_panic_on_ue()) {
1011 if (other_detail && *other_detail)
1012 panic("UE %s on %s (%s%s - %s)\n",
1013 msg, label, location, detail, other_detail);
1014 else
1015 panic("UE %s on %s (%s%s)\n",
1016 msg, label, location, detail);
1017 }
1018
1019 edac_inc_ue_error(mci, enable_per_layer_report, pos, error_count);
1020 }
1021
1022 #define OTHER_LABEL " or "
1023
1024 /**
1025 * edac_mc_handle_error - reports a memory event to userspace
1026 *
1027 * @type: severity of the error (CE/UE/Fatal)
1028 * @mci: a struct mem_ctl_info pointer
1029 * @error_count: Number of errors of the same type
1030 * @page_frame_number: mem page where the error occurred
1031 * @offset_in_page: offset of the error inside the page
1032 * @syndrome: ECC syndrome
1033 * @top_layer: Memory layer[0] position
1034 * @mid_layer: Memory layer[1] position
1035 * @low_layer: Memory layer[2] position
1036 * @msg: Message meaningful to the end users that
1037 * explains the event
1038 * @other_detail: Technical details about the event that
1039 * may help hardware manufacturers and
1040 * EDAC developers to analyse the event
1041 */
1042 void edac_mc_handle_error(const enum hw_event_mc_err_type type,
1043 struct mem_ctl_info *mci,
1044 const u16 error_count,
1045 const unsigned long page_frame_number,
1046 const unsigned long offset_in_page,
1047 const unsigned long syndrome,
1048 const int top_layer,
1049 const int mid_layer,
1050 const int low_layer,
1051 const char *msg,
1052 const char *other_detail)
1053 {
1054 /* FIXME: too much for stack: move it to some pre-alocated area */
1055 char detail[80], location[80];
1056 char label[(EDAC_MC_LABEL_LEN + 1 + sizeof(OTHER_LABEL)) * mci->tot_dimms];
1057 char *p;
1058 int row = -1, chan = -1;
1059 int pos[EDAC_MAX_LAYERS] = { top_layer, mid_layer, low_layer };
1060 int i;
1061 long grain;
1062 bool enable_per_layer_report = false;
1063 u8 grain_bits;
1064
1065 edac_dbg(3, "MC%d\n", mci->mc_idx);
1066
1067 /*
1068 * Check if the event report is consistent and if the memory
1069 * location is known. If it is known, enable_per_layer_report will be
1070 * true, the DIMM(s) label info will be filled and the per-layer
1071 * error counters will be incremented.
1072 */
1073 for (i = 0; i < mci->n_layers; i++) {
1074 if (pos[i] >= (int)mci->layers[i].size) {
1075 if (type == HW_EVENT_ERR_CORRECTED)
1076 p = "CE";
1077 else
1078 p = "UE";
1079
1080 edac_mc_printk(mci, KERN_ERR,
1081 "INTERNAL ERROR: %s value is out of range (%d >= %d)\n",
1082 edac_layer_name[mci->layers[i].type],
1083 pos[i], mci->layers[i].size);
1084 /*
1085 * Instead of just returning it, let's use what's
1086 * known about the error. The increment routines and
1087 * the DIMM filter logic will do the right thing by
1088 * pointing the likely damaged DIMMs.
1089 */
1090 pos[i] = -1;
1091 }
1092 if (pos[i] >= 0)
1093 enable_per_layer_report = true;
1094 }
1095
1096 /*
1097 * Get the dimm label/grain that applies to the match criteria.
1098 * As the error algorithm may not be able to point to just one memory
1099 * stick, the logic here will get all possible labels that could
1100 * pottentially be affected by the error.
1101 * On FB-DIMM memory controllers, for uncorrected errors, it is common
1102 * to have only the MC channel and the MC dimm (also called "branch")
1103 * but the channel is not known, as the memory is arranged in pairs,
1104 * where each memory belongs to a separate channel within the same
1105 * branch.
1106 */
1107 grain = 0;
1108 p = label;
1109 *p = '\0';
1110 for (i = 0; i < mci->tot_dimms; i++) {
1111 struct dimm_info *dimm = mci->dimms[i];
1112
1113 if (top_layer >= 0 && top_layer != dimm->location[0])
1114 continue;
1115 if (mid_layer >= 0 && mid_layer != dimm->location[1])
1116 continue;
1117 if (low_layer >= 0 && low_layer != dimm->location[2])
1118 continue;
1119
1120 /* get the max grain, over the error match range */
1121 if (dimm->grain > grain)
1122 grain = dimm->grain;
1123
1124 /*
1125 * If the error is memory-controller wide, there's no need to
1126 * seek for the affected DIMMs because the whole
1127 * channel/memory controller/... may be affected.
1128 * Also, don't show errors for empty DIMM slots.
1129 */
1130 if (enable_per_layer_report && dimm->nr_pages) {
1131 if (p != label) {
1132 strcpy(p, OTHER_LABEL);
1133 p += strlen(OTHER_LABEL);
1134 }
1135 strcpy(p, dimm->label);
1136 p += strlen(p);
1137 *p = '\0';
1138
1139 /*
1140 * get csrow/channel of the DIMM, in order to allow
1141 * incrementing the compat API counters
1142 */
1143 edac_dbg(4, "%s csrows map: (%d,%d)\n",
1144 mci->mem_is_per_rank ? "rank" : "dimm",
1145 dimm->csrow, dimm->cschannel);
1146 if (row == -1)
1147 row = dimm->csrow;
1148 else if (row >= 0 && row != dimm->csrow)
1149 row = -2;
1150
1151 if (chan == -1)
1152 chan = dimm->cschannel;
1153 else if (chan >= 0 && chan != dimm->cschannel)
1154 chan = -2;
1155 }
1156 }
1157
1158 if (!enable_per_layer_report) {
1159 strcpy(label, "any memory");
1160 } else {
1161 edac_dbg(4, "csrow/channel to increment: (%d,%d)\n", row, chan);
1162 if (p == label)
1163 strcpy(label, "unknown memory");
1164 if (type == HW_EVENT_ERR_CORRECTED) {
1165 if (row >= 0) {
1166 mci->csrows[row]->ce_count += error_count;
1167 if (chan >= 0)
1168 mci->csrows[row]->channels[chan]->ce_count += error_count;
1169 }
1170 } else
1171 if (row >= 0)
1172 mci->csrows[row]->ue_count += error_count;
1173 }
1174
1175 /* Fill the RAM location data */
1176 p = location;
1177 for (i = 0; i < mci->n_layers; i++) {
1178 if (pos[i] < 0)
1179 continue;
1180
1181 p += sprintf(p, "%s:%d ",
1182 edac_layer_name[mci->layers[i].type],
1183 pos[i]);
1184 }
1185 if (p > location)
1186 *(p - 1) = '\0';
1187
1188 /* Report the error via the trace interface */
1189
1190 grain_bits = fls_long(grain) + 1;
1191 trace_mc_event(type, msg, label, error_count,
1192 mci->mc_idx, top_layer, mid_layer, low_layer,
1193 PAGES_TO_MiB(page_frame_number) | offset_in_page,
1194 grain_bits, syndrome, other_detail);
1195
1196 /* Memory type dependent details about the error */
1197 if (type == HW_EVENT_ERR_CORRECTED) {
1198 snprintf(detail, sizeof(detail),
1199 "page:0x%lx offset:0x%lx grain:%ld syndrome:0x%lx",
1200 page_frame_number, offset_in_page,
1201 grain, syndrome);
1202 edac_ce_error(mci, error_count, pos, msg, location, label,
1203 detail, other_detail, enable_per_layer_report,
1204 page_frame_number, offset_in_page, grain);
1205 } else {
1206 snprintf(detail, sizeof(detail),
1207 "page:0x%lx offset:0x%lx grain:%ld",
1208 page_frame_number, offset_in_page, grain);
1209
1210 edac_ue_error(mci, error_count, pos, msg, location, label,
1211 detail, other_detail, enable_per_layer_report);
1212 }
1213 }
1214 EXPORT_SYMBOL_GPL(edac_mc_handle_error);