]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - drivers/edac/edac_mc.c
Merge tag 'integrity-v5.16' of git://git.kernel.org/pub/scm/linux/kernel/git/zohar...
[mirror_ubuntu-kernels.git] / drivers / edac / edac_mc.c
1 /*
2 * edac_mc kernel module
3 * (C) 2005, 2006 Linux Networx (http://lnxi.com)
4 * This file may be distributed under the terms of the
5 * GNU General Public License.
6 *
7 * Written by Thayne Harbaugh
8 * Based on work by Dan Hollis <goemon at anime dot net> and others.
9 * http://www.anime.net/~goemon/linux-ecc/
10 *
11 * Modified by Dave Peterson and Doug Thompson
12 *
13 */
14
15 #include <linux/module.h>
16 #include <linux/proc_fs.h>
17 #include <linux/kernel.h>
18 #include <linux/types.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/sysctl.h>
22 #include <linux/highmem.h>
23 #include <linux/timer.h>
24 #include <linux/slab.h>
25 #include <linux/jiffies.h>
26 #include <linux/spinlock.h>
27 #include <linux/list.h>
28 #include <linux/ctype.h>
29 #include <linux/edac.h>
30 #include <linux/bitops.h>
31 #include <linux/uaccess.h>
32 #include <asm/page.h>
33 #include "edac_mc.h"
34 #include "edac_module.h"
35 #include <ras/ras_event.h>
36
37 #ifdef CONFIG_EDAC_ATOMIC_SCRUB
38 #include <asm/edac.h>
39 #else
40 #define edac_atomic_scrub(va, size) do { } while (0)
41 #endif
42
43 int edac_op_state = EDAC_OPSTATE_INVAL;
44 EXPORT_SYMBOL_GPL(edac_op_state);
45
46 /* lock to memory controller's control array */
47 static DEFINE_MUTEX(mem_ctls_mutex);
48 static LIST_HEAD(mc_devices);
49
50 /*
51 * Used to lock EDAC MC to just one module, avoiding two drivers e. g.
52 * apei/ghes and i7core_edac to be used at the same time.
53 */
54 static const char *edac_mc_owner;
55
56 static struct mem_ctl_info *error_desc_to_mci(struct edac_raw_error_desc *e)
57 {
58 return container_of(e, struct mem_ctl_info, error_desc);
59 }
60
61 unsigned int edac_dimm_info_location(struct dimm_info *dimm, char *buf,
62 unsigned int len)
63 {
64 struct mem_ctl_info *mci = dimm->mci;
65 int i, n, count = 0;
66 char *p = buf;
67
68 for (i = 0; i < mci->n_layers; i++) {
69 n = scnprintf(p, len, "%s %d ",
70 edac_layer_name[mci->layers[i].type],
71 dimm->location[i]);
72 p += n;
73 len -= n;
74 count += n;
75 }
76
77 return count;
78 }
79
80 #ifdef CONFIG_EDAC_DEBUG
81
82 static void edac_mc_dump_channel(struct rank_info *chan)
83 {
84 edac_dbg(4, " channel->chan_idx = %d\n", chan->chan_idx);
85 edac_dbg(4, " channel = %p\n", chan);
86 edac_dbg(4, " channel->csrow = %p\n", chan->csrow);
87 edac_dbg(4, " channel->dimm = %p\n", chan->dimm);
88 }
89
90 static void edac_mc_dump_dimm(struct dimm_info *dimm)
91 {
92 char location[80];
93
94 if (!dimm->nr_pages)
95 return;
96
97 edac_dimm_info_location(dimm, location, sizeof(location));
98
99 edac_dbg(4, "%s%i: %smapped as virtual row %d, chan %d\n",
100 dimm->mci->csbased ? "rank" : "dimm",
101 dimm->idx, location, dimm->csrow, dimm->cschannel);
102 edac_dbg(4, " dimm = %p\n", dimm);
103 edac_dbg(4, " dimm->label = '%s'\n", dimm->label);
104 edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm->nr_pages);
105 edac_dbg(4, " dimm->grain = %d\n", dimm->grain);
106 edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm->nr_pages);
107 }
108
109 static void edac_mc_dump_csrow(struct csrow_info *csrow)
110 {
111 edac_dbg(4, "csrow->csrow_idx = %d\n", csrow->csrow_idx);
112 edac_dbg(4, " csrow = %p\n", csrow);
113 edac_dbg(4, " csrow->first_page = 0x%lx\n", csrow->first_page);
114 edac_dbg(4, " csrow->last_page = 0x%lx\n", csrow->last_page);
115 edac_dbg(4, " csrow->page_mask = 0x%lx\n", csrow->page_mask);
116 edac_dbg(4, " csrow->nr_channels = %d\n", csrow->nr_channels);
117 edac_dbg(4, " csrow->channels = %p\n", csrow->channels);
118 edac_dbg(4, " csrow->mci = %p\n", csrow->mci);
119 }
120
121 static void edac_mc_dump_mci(struct mem_ctl_info *mci)
122 {
123 edac_dbg(3, "\tmci = %p\n", mci);
124 edac_dbg(3, "\tmci->mtype_cap = %lx\n", mci->mtype_cap);
125 edac_dbg(3, "\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap);
126 edac_dbg(3, "\tmci->edac_cap = %lx\n", mci->edac_cap);
127 edac_dbg(4, "\tmci->edac_check = %p\n", mci->edac_check);
128 edac_dbg(3, "\tmci->nr_csrows = %d, csrows = %p\n",
129 mci->nr_csrows, mci->csrows);
130 edac_dbg(3, "\tmci->nr_dimms = %d, dimms = %p\n",
131 mci->tot_dimms, mci->dimms);
132 edac_dbg(3, "\tdev = %p\n", mci->pdev);
133 edac_dbg(3, "\tmod_name:ctl_name = %s:%s\n",
134 mci->mod_name, mci->ctl_name);
135 edac_dbg(3, "\tpvt_info = %p\n\n", mci->pvt_info);
136 }
137
138 #endif /* CONFIG_EDAC_DEBUG */
139
140 const char * const edac_mem_types[] = {
141 [MEM_EMPTY] = "Empty",
142 [MEM_RESERVED] = "Reserved",
143 [MEM_UNKNOWN] = "Unknown",
144 [MEM_FPM] = "FPM",
145 [MEM_EDO] = "EDO",
146 [MEM_BEDO] = "BEDO",
147 [MEM_SDR] = "Unbuffered-SDR",
148 [MEM_RDR] = "Registered-SDR",
149 [MEM_DDR] = "Unbuffered-DDR",
150 [MEM_RDDR] = "Registered-DDR",
151 [MEM_RMBS] = "RMBS",
152 [MEM_DDR2] = "Unbuffered-DDR2",
153 [MEM_FB_DDR2] = "FullyBuffered-DDR2",
154 [MEM_RDDR2] = "Registered-DDR2",
155 [MEM_XDR] = "XDR",
156 [MEM_DDR3] = "Unbuffered-DDR3",
157 [MEM_RDDR3] = "Registered-DDR3",
158 [MEM_LRDDR3] = "Load-Reduced-DDR3-RAM",
159 [MEM_LPDDR3] = "Low-Power-DDR3-RAM",
160 [MEM_DDR4] = "Unbuffered-DDR4",
161 [MEM_RDDR4] = "Registered-DDR4",
162 [MEM_LPDDR4] = "Low-Power-DDR4-RAM",
163 [MEM_LRDDR4] = "Load-Reduced-DDR4-RAM",
164 [MEM_DDR5] = "Unbuffered-DDR5",
165 [MEM_NVDIMM] = "Non-volatile-RAM",
166 [MEM_WIO2] = "Wide-IO-2",
167 [MEM_HBM2] = "High-bandwidth-memory-Gen2",
168 };
169 EXPORT_SYMBOL_GPL(edac_mem_types);
170
171 /**
172 * edac_align_ptr - Prepares the pointer offsets for a single-shot allocation
173 * @p: pointer to a pointer with the memory offset to be used. At
174 * return, this will be incremented to point to the next offset
175 * @size: Size of the data structure to be reserved
176 * @n_elems: Number of elements that should be reserved
177 *
178 * If 'size' is a constant, the compiler will optimize this whole function
179 * down to either a no-op or the addition of a constant to the value of '*p'.
180 *
181 * The 'p' pointer is absolutely needed to keep the proper advancing
182 * further in memory to the proper offsets when allocating the struct along
183 * with its embedded structs, as edac_device_alloc_ctl_info() does it
184 * above, for example.
185 *
186 * At return, the pointer 'p' will be incremented to be used on a next call
187 * to this function.
188 */
189 void *edac_align_ptr(void **p, unsigned int size, int n_elems)
190 {
191 unsigned int align, r;
192 void *ptr = *p;
193
194 *p += size * n_elems;
195
196 /*
197 * 'p' can possibly be an unaligned item X such that sizeof(X) is
198 * 'size'. Adjust 'p' so that its alignment is at least as
199 * stringent as what the compiler would provide for X and return
200 * the aligned result.
201 * Here we assume that the alignment of a "long long" is the most
202 * stringent alignment that the compiler will ever provide by default.
203 * As far as I know, this is a reasonable assumption.
204 */
205 if (size > sizeof(long))
206 align = sizeof(long long);
207 else if (size > sizeof(int))
208 align = sizeof(long);
209 else if (size > sizeof(short))
210 align = sizeof(int);
211 else if (size > sizeof(char))
212 align = sizeof(short);
213 else
214 return (char *)ptr;
215
216 r = (unsigned long)p % align;
217
218 if (r == 0)
219 return (char *)ptr;
220
221 *p += align - r;
222
223 return (void *)(((unsigned long)ptr) + align - r);
224 }
225
226 static void _edac_mc_free(struct mem_ctl_info *mci)
227 {
228 put_device(&mci->dev);
229 }
230
231 static void mci_release(struct device *dev)
232 {
233 struct mem_ctl_info *mci = container_of(dev, struct mem_ctl_info, dev);
234 struct csrow_info *csr;
235 int i, chn, row;
236
237 if (mci->dimms) {
238 for (i = 0; i < mci->tot_dimms; i++)
239 kfree(mci->dimms[i]);
240 kfree(mci->dimms);
241 }
242
243 if (mci->csrows) {
244 for (row = 0; row < mci->nr_csrows; row++) {
245 csr = mci->csrows[row];
246 if (!csr)
247 continue;
248
249 if (csr->channels) {
250 for (chn = 0; chn < mci->num_cschannel; chn++)
251 kfree(csr->channels[chn]);
252 kfree(csr->channels);
253 }
254 kfree(csr);
255 }
256 kfree(mci->csrows);
257 }
258 kfree(mci);
259 }
260
261 static int edac_mc_alloc_csrows(struct mem_ctl_info *mci)
262 {
263 unsigned int tot_channels = mci->num_cschannel;
264 unsigned int tot_csrows = mci->nr_csrows;
265 unsigned int row, chn;
266
267 /*
268 * Alocate and fill the csrow/channels structs
269 */
270 mci->csrows = kcalloc(tot_csrows, sizeof(*mci->csrows), GFP_KERNEL);
271 if (!mci->csrows)
272 return -ENOMEM;
273
274 for (row = 0; row < tot_csrows; row++) {
275 struct csrow_info *csr;
276
277 csr = kzalloc(sizeof(**mci->csrows), GFP_KERNEL);
278 if (!csr)
279 return -ENOMEM;
280
281 mci->csrows[row] = csr;
282 csr->csrow_idx = row;
283 csr->mci = mci;
284 csr->nr_channels = tot_channels;
285 csr->channels = kcalloc(tot_channels, sizeof(*csr->channels),
286 GFP_KERNEL);
287 if (!csr->channels)
288 return -ENOMEM;
289
290 for (chn = 0; chn < tot_channels; chn++) {
291 struct rank_info *chan;
292
293 chan = kzalloc(sizeof(**csr->channels), GFP_KERNEL);
294 if (!chan)
295 return -ENOMEM;
296
297 csr->channels[chn] = chan;
298 chan->chan_idx = chn;
299 chan->csrow = csr;
300 }
301 }
302
303 return 0;
304 }
305
306 static int edac_mc_alloc_dimms(struct mem_ctl_info *mci)
307 {
308 unsigned int pos[EDAC_MAX_LAYERS];
309 unsigned int row, chn, idx;
310 int layer;
311 void *p;
312
313 /*
314 * Allocate and fill the dimm structs
315 */
316 mci->dimms = kcalloc(mci->tot_dimms, sizeof(*mci->dimms), GFP_KERNEL);
317 if (!mci->dimms)
318 return -ENOMEM;
319
320 memset(&pos, 0, sizeof(pos));
321 row = 0;
322 chn = 0;
323 for (idx = 0; idx < mci->tot_dimms; idx++) {
324 struct dimm_info *dimm;
325 struct rank_info *chan;
326 int n, len;
327
328 chan = mci->csrows[row]->channels[chn];
329
330 dimm = kzalloc(sizeof(**mci->dimms), GFP_KERNEL);
331 if (!dimm)
332 return -ENOMEM;
333 mci->dimms[idx] = dimm;
334 dimm->mci = mci;
335 dimm->idx = idx;
336
337 /*
338 * Copy DIMM location and initialize it.
339 */
340 len = sizeof(dimm->label);
341 p = dimm->label;
342 n = scnprintf(p, len, "mc#%u", mci->mc_idx);
343 p += n;
344 len -= n;
345 for (layer = 0; layer < mci->n_layers; layer++) {
346 n = scnprintf(p, len, "%s#%u",
347 edac_layer_name[mci->layers[layer].type],
348 pos[layer]);
349 p += n;
350 len -= n;
351 dimm->location[layer] = pos[layer];
352 }
353
354 /* Link it to the csrows old API data */
355 chan->dimm = dimm;
356 dimm->csrow = row;
357 dimm->cschannel = chn;
358
359 /* Increment csrow location */
360 if (mci->layers[0].is_virt_csrow) {
361 chn++;
362 if (chn == mci->num_cschannel) {
363 chn = 0;
364 row++;
365 }
366 } else {
367 row++;
368 if (row == mci->nr_csrows) {
369 row = 0;
370 chn++;
371 }
372 }
373
374 /* Increment dimm location */
375 for (layer = mci->n_layers - 1; layer >= 0; layer--) {
376 pos[layer]++;
377 if (pos[layer] < mci->layers[layer].size)
378 break;
379 pos[layer] = 0;
380 }
381 }
382
383 return 0;
384 }
385
386 struct mem_ctl_info *edac_mc_alloc(unsigned int mc_num,
387 unsigned int n_layers,
388 struct edac_mc_layer *layers,
389 unsigned int sz_pvt)
390 {
391 struct mem_ctl_info *mci;
392 struct edac_mc_layer *layer;
393 unsigned int idx, size, tot_dimms = 1;
394 unsigned int tot_csrows = 1, tot_channels = 1;
395 void *pvt, *ptr = NULL;
396 bool per_rank = false;
397
398 if (WARN_ON(n_layers > EDAC_MAX_LAYERS || n_layers == 0))
399 return NULL;
400
401 /*
402 * Calculate the total amount of dimms and csrows/cschannels while
403 * in the old API emulation mode
404 */
405 for (idx = 0; idx < n_layers; idx++) {
406 tot_dimms *= layers[idx].size;
407
408 if (layers[idx].is_virt_csrow)
409 tot_csrows *= layers[idx].size;
410 else
411 tot_channels *= layers[idx].size;
412
413 if (layers[idx].type == EDAC_MC_LAYER_CHIP_SELECT)
414 per_rank = true;
415 }
416
417 /* Figure out the offsets of the various items from the start of an mc
418 * structure. We want the alignment of each item to be at least as
419 * stringent as what the compiler would provide if we could simply
420 * hardcode everything into a single struct.
421 */
422 mci = edac_align_ptr(&ptr, sizeof(*mci), 1);
423 layer = edac_align_ptr(&ptr, sizeof(*layer), n_layers);
424 pvt = edac_align_ptr(&ptr, sz_pvt, 1);
425 size = ((unsigned long)pvt) + sz_pvt;
426
427 edac_dbg(1, "allocating %u bytes for mci data (%d %s, %d csrows/channels)\n",
428 size,
429 tot_dimms,
430 per_rank ? "ranks" : "dimms",
431 tot_csrows * tot_channels);
432
433 mci = kzalloc(size, GFP_KERNEL);
434 if (mci == NULL)
435 return NULL;
436
437 mci->dev.release = mci_release;
438 device_initialize(&mci->dev);
439
440 /* Adjust pointers so they point within the memory we just allocated
441 * rather than an imaginary chunk of memory located at address 0.
442 */
443 layer = (struct edac_mc_layer *)(((char *)mci) + ((unsigned long)layer));
444 pvt = sz_pvt ? (((char *)mci) + ((unsigned long)pvt)) : NULL;
445
446 /* setup index and various internal pointers */
447 mci->mc_idx = mc_num;
448 mci->tot_dimms = tot_dimms;
449 mci->pvt_info = pvt;
450 mci->n_layers = n_layers;
451 mci->layers = layer;
452 memcpy(mci->layers, layers, sizeof(*layer) * n_layers);
453 mci->nr_csrows = tot_csrows;
454 mci->num_cschannel = tot_channels;
455 mci->csbased = per_rank;
456
457 if (edac_mc_alloc_csrows(mci))
458 goto error;
459
460 if (edac_mc_alloc_dimms(mci))
461 goto error;
462
463 mci->op_state = OP_ALLOC;
464
465 return mci;
466
467 error:
468 _edac_mc_free(mci);
469
470 return NULL;
471 }
472 EXPORT_SYMBOL_GPL(edac_mc_alloc);
473
474 void edac_mc_free(struct mem_ctl_info *mci)
475 {
476 edac_dbg(1, "\n");
477
478 _edac_mc_free(mci);
479 }
480 EXPORT_SYMBOL_GPL(edac_mc_free);
481
482 bool edac_has_mcs(void)
483 {
484 bool ret;
485
486 mutex_lock(&mem_ctls_mutex);
487
488 ret = list_empty(&mc_devices);
489
490 mutex_unlock(&mem_ctls_mutex);
491
492 return !ret;
493 }
494 EXPORT_SYMBOL_GPL(edac_has_mcs);
495
496 /* Caller must hold mem_ctls_mutex */
497 static struct mem_ctl_info *__find_mci_by_dev(struct device *dev)
498 {
499 struct mem_ctl_info *mci;
500 struct list_head *item;
501
502 edac_dbg(3, "\n");
503
504 list_for_each(item, &mc_devices) {
505 mci = list_entry(item, struct mem_ctl_info, link);
506
507 if (mci->pdev == dev)
508 return mci;
509 }
510
511 return NULL;
512 }
513
514 /**
515 * find_mci_by_dev
516 *
517 * scan list of controllers looking for the one that manages
518 * the 'dev' device
519 * @dev: pointer to a struct device related with the MCI
520 */
521 struct mem_ctl_info *find_mci_by_dev(struct device *dev)
522 {
523 struct mem_ctl_info *ret;
524
525 mutex_lock(&mem_ctls_mutex);
526 ret = __find_mci_by_dev(dev);
527 mutex_unlock(&mem_ctls_mutex);
528
529 return ret;
530 }
531 EXPORT_SYMBOL_GPL(find_mci_by_dev);
532
533 /*
534 * edac_mc_workq_function
535 * performs the operation scheduled by a workq request
536 */
537 static void edac_mc_workq_function(struct work_struct *work_req)
538 {
539 struct delayed_work *d_work = to_delayed_work(work_req);
540 struct mem_ctl_info *mci = to_edac_mem_ctl_work(d_work);
541
542 mutex_lock(&mem_ctls_mutex);
543
544 if (mci->op_state != OP_RUNNING_POLL) {
545 mutex_unlock(&mem_ctls_mutex);
546 return;
547 }
548
549 if (edac_op_state == EDAC_OPSTATE_POLL)
550 mci->edac_check(mci);
551
552 mutex_unlock(&mem_ctls_mutex);
553
554 /* Queue ourselves again. */
555 edac_queue_work(&mci->work, msecs_to_jiffies(edac_mc_get_poll_msec()));
556 }
557
558 /*
559 * edac_mc_reset_delay_period(unsigned long value)
560 *
561 * user space has updated our poll period value, need to
562 * reset our workq delays
563 */
564 void edac_mc_reset_delay_period(unsigned long value)
565 {
566 struct mem_ctl_info *mci;
567 struct list_head *item;
568
569 mutex_lock(&mem_ctls_mutex);
570
571 list_for_each(item, &mc_devices) {
572 mci = list_entry(item, struct mem_ctl_info, link);
573
574 if (mci->op_state == OP_RUNNING_POLL)
575 edac_mod_work(&mci->work, value);
576 }
577 mutex_unlock(&mem_ctls_mutex);
578 }
579
580
581
582 /* Return 0 on success, 1 on failure.
583 * Before calling this function, caller must
584 * assign a unique value to mci->mc_idx.
585 *
586 * locking model:
587 *
588 * called with the mem_ctls_mutex lock held
589 */
590 static int add_mc_to_global_list(struct mem_ctl_info *mci)
591 {
592 struct list_head *item, *insert_before;
593 struct mem_ctl_info *p;
594
595 insert_before = &mc_devices;
596
597 p = __find_mci_by_dev(mci->pdev);
598 if (unlikely(p != NULL))
599 goto fail0;
600
601 list_for_each(item, &mc_devices) {
602 p = list_entry(item, struct mem_ctl_info, link);
603
604 if (p->mc_idx >= mci->mc_idx) {
605 if (unlikely(p->mc_idx == mci->mc_idx))
606 goto fail1;
607
608 insert_before = item;
609 break;
610 }
611 }
612
613 list_add_tail_rcu(&mci->link, insert_before);
614 return 0;
615
616 fail0:
617 edac_printk(KERN_WARNING, EDAC_MC,
618 "%s (%s) %s %s already assigned %d\n", dev_name(p->pdev),
619 edac_dev_name(mci), p->mod_name, p->ctl_name, p->mc_idx);
620 return 1;
621
622 fail1:
623 edac_printk(KERN_WARNING, EDAC_MC,
624 "bug in low-level driver: attempt to assign\n"
625 " duplicate mc_idx %d in %s()\n", p->mc_idx, __func__);
626 return 1;
627 }
628
629 static int del_mc_from_global_list(struct mem_ctl_info *mci)
630 {
631 list_del_rcu(&mci->link);
632
633 /* these are for safe removal of devices from global list while
634 * NMI handlers may be traversing list
635 */
636 synchronize_rcu();
637 INIT_LIST_HEAD(&mci->link);
638
639 return list_empty(&mc_devices);
640 }
641
642 struct mem_ctl_info *edac_mc_find(int idx)
643 {
644 struct mem_ctl_info *mci;
645 struct list_head *item;
646
647 mutex_lock(&mem_ctls_mutex);
648
649 list_for_each(item, &mc_devices) {
650 mci = list_entry(item, struct mem_ctl_info, link);
651 if (mci->mc_idx == idx)
652 goto unlock;
653 }
654
655 mci = NULL;
656 unlock:
657 mutex_unlock(&mem_ctls_mutex);
658 return mci;
659 }
660 EXPORT_SYMBOL(edac_mc_find);
661
662 const char *edac_get_owner(void)
663 {
664 return edac_mc_owner;
665 }
666 EXPORT_SYMBOL_GPL(edac_get_owner);
667
668 /* FIXME - should a warning be printed if no error detection? correction? */
669 int edac_mc_add_mc_with_groups(struct mem_ctl_info *mci,
670 const struct attribute_group **groups)
671 {
672 int ret = -EINVAL;
673 edac_dbg(0, "\n");
674
675 #ifdef CONFIG_EDAC_DEBUG
676 if (edac_debug_level >= 3)
677 edac_mc_dump_mci(mci);
678
679 if (edac_debug_level >= 4) {
680 struct dimm_info *dimm;
681 int i;
682
683 for (i = 0; i < mci->nr_csrows; i++) {
684 struct csrow_info *csrow = mci->csrows[i];
685 u32 nr_pages = 0;
686 int j;
687
688 for (j = 0; j < csrow->nr_channels; j++)
689 nr_pages += csrow->channels[j]->dimm->nr_pages;
690 if (!nr_pages)
691 continue;
692 edac_mc_dump_csrow(csrow);
693 for (j = 0; j < csrow->nr_channels; j++)
694 if (csrow->channels[j]->dimm->nr_pages)
695 edac_mc_dump_channel(csrow->channels[j]);
696 }
697
698 mci_for_each_dimm(mci, dimm)
699 edac_mc_dump_dimm(dimm);
700 }
701 #endif
702 mutex_lock(&mem_ctls_mutex);
703
704 if (edac_mc_owner && edac_mc_owner != mci->mod_name) {
705 ret = -EPERM;
706 goto fail0;
707 }
708
709 if (add_mc_to_global_list(mci))
710 goto fail0;
711
712 /* set load time so that error rate can be tracked */
713 mci->start_time = jiffies;
714
715 mci->bus = edac_get_sysfs_subsys();
716
717 if (edac_create_sysfs_mci_device(mci, groups)) {
718 edac_mc_printk(mci, KERN_WARNING,
719 "failed to create sysfs device\n");
720 goto fail1;
721 }
722
723 if (mci->edac_check) {
724 mci->op_state = OP_RUNNING_POLL;
725
726 INIT_DELAYED_WORK(&mci->work, edac_mc_workq_function);
727 edac_queue_work(&mci->work, msecs_to_jiffies(edac_mc_get_poll_msec()));
728
729 } else {
730 mci->op_state = OP_RUNNING_INTERRUPT;
731 }
732
733 /* Report action taken */
734 edac_mc_printk(mci, KERN_INFO,
735 "Giving out device to module %s controller %s: DEV %s (%s)\n",
736 mci->mod_name, mci->ctl_name, mci->dev_name,
737 edac_op_state_to_string(mci->op_state));
738
739 edac_mc_owner = mci->mod_name;
740
741 mutex_unlock(&mem_ctls_mutex);
742 return 0;
743
744 fail1:
745 del_mc_from_global_list(mci);
746
747 fail0:
748 mutex_unlock(&mem_ctls_mutex);
749 return ret;
750 }
751 EXPORT_SYMBOL_GPL(edac_mc_add_mc_with_groups);
752
753 struct mem_ctl_info *edac_mc_del_mc(struct device *dev)
754 {
755 struct mem_ctl_info *mci;
756
757 edac_dbg(0, "\n");
758
759 mutex_lock(&mem_ctls_mutex);
760
761 /* find the requested mci struct in the global list */
762 mci = __find_mci_by_dev(dev);
763 if (mci == NULL) {
764 mutex_unlock(&mem_ctls_mutex);
765 return NULL;
766 }
767
768 /* mark MCI offline: */
769 mci->op_state = OP_OFFLINE;
770
771 if (del_mc_from_global_list(mci))
772 edac_mc_owner = NULL;
773
774 mutex_unlock(&mem_ctls_mutex);
775
776 if (mci->edac_check)
777 edac_stop_work(&mci->work);
778
779 /* remove from sysfs */
780 edac_remove_sysfs_mci_device(mci);
781
782 edac_printk(KERN_INFO, EDAC_MC,
783 "Removed device %d for %s %s: DEV %s\n", mci->mc_idx,
784 mci->mod_name, mci->ctl_name, edac_dev_name(mci));
785
786 return mci;
787 }
788 EXPORT_SYMBOL_GPL(edac_mc_del_mc);
789
790 static void edac_mc_scrub_block(unsigned long page, unsigned long offset,
791 u32 size)
792 {
793 struct page *pg;
794 void *virt_addr;
795 unsigned long flags = 0;
796
797 edac_dbg(3, "\n");
798
799 /* ECC error page was not in our memory. Ignore it. */
800 if (!pfn_valid(page))
801 return;
802
803 /* Find the actual page structure then map it and fix */
804 pg = pfn_to_page(page);
805
806 if (PageHighMem(pg))
807 local_irq_save(flags);
808
809 virt_addr = kmap_atomic(pg);
810
811 /* Perform architecture specific atomic scrub operation */
812 edac_atomic_scrub(virt_addr + offset, size);
813
814 /* Unmap and complete */
815 kunmap_atomic(virt_addr);
816
817 if (PageHighMem(pg))
818 local_irq_restore(flags);
819 }
820
821 /* FIXME - should return -1 */
822 int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci, unsigned long page)
823 {
824 struct csrow_info **csrows = mci->csrows;
825 int row, i, j, n;
826
827 edac_dbg(1, "MC%d: 0x%lx\n", mci->mc_idx, page);
828 row = -1;
829
830 for (i = 0; i < mci->nr_csrows; i++) {
831 struct csrow_info *csrow = csrows[i];
832 n = 0;
833 for (j = 0; j < csrow->nr_channels; j++) {
834 struct dimm_info *dimm = csrow->channels[j]->dimm;
835 n += dimm->nr_pages;
836 }
837 if (n == 0)
838 continue;
839
840 edac_dbg(3, "MC%d: first(0x%lx) page(0x%lx) last(0x%lx) mask(0x%lx)\n",
841 mci->mc_idx,
842 csrow->first_page, page, csrow->last_page,
843 csrow->page_mask);
844
845 if ((page >= csrow->first_page) &&
846 (page <= csrow->last_page) &&
847 ((page & csrow->page_mask) ==
848 (csrow->first_page & csrow->page_mask))) {
849 row = i;
850 break;
851 }
852 }
853
854 if (row == -1)
855 edac_mc_printk(mci, KERN_ERR,
856 "could not look up page error address %lx\n",
857 (unsigned long)page);
858
859 return row;
860 }
861 EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page);
862
863 const char *edac_layer_name[] = {
864 [EDAC_MC_LAYER_BRANCH] = "branch",
865 [EDAC_MC_LAYER_CHANNEL] = "channel",
866 [EDAC_MC_LAYER_SLOT] = "slot",
867 [EDAC_MC_LAYER_CHIP_SELECT] = "csrow",
868 [EDAC_MC_LAYER_ALL_MEM] = "memory",
869 };
870 EXPORT_SYMBOL_GPL(edac_layer_name);
871
872 static void edac_inc_ce_error(struct edac_raw_error_desc *e)
873 {
874 int pos[EDAC_MAX_LAYERS] = { e->top_layer, e->mid_layer, e->low_layer };
875 struct mem_ctl_info *mci = error_desc_to_mci(e);
876 struct dimm_info *dimm = edac_get_dimm(mci, pos[0], pos[1], pos[2]);
877
878 mci->ce_mc += e->error_count;
879
880 if (dimm)
881 dimm->ce_count += e->error_count;
882 else
883 mci->ce_noinfo_count += e->error_count;
884 }
885
886 static void edac_inc_ue_error(struct edac_raw_error_desc *e)
887 {
888 int pos[EDAC_MAX_LAYERS] = { e->top_layer, e->mid_layer, e->low_layer };
889 struct mem_ctl_info *mci = error_desc_to_mci(e);
890 struct dimm_info *dimm = edac_get_dimm(mci, pos[0], pos[1], pos[2]);
891
892 mci->ue_mc += e->error_count;
893
894 if (dimm)
895 dimm->ue_count += e->error_count;
896 else
897 mci->ue_noinfo_count += e->error_count;
898 }
899
900 static void edac_ce_error(struct edac_raw_error_desc *e)
901 {
902 struct mem_ctl_info *mci = error_desc_to_mci(e);
903 unsigned long remapped_page;
904
905 if (edac_mc_get_log_ce()) {
906 edac_mc_printk(mci, KERN_WARNING,
907 "%d CE %s%son %s (%s page:0x%lx offset:0x%lx grain:%ld syndrome:0x%lx%s%s)\n",
908 e->error_count, e->msg,
909 *e->msg ? " " : "",
910 e->label, e->location, e->page_frame_number, e->offset_in_page,
911 e->grain, e->syndrome,
912 *e->other_detail ? " - " : "",
913 e->other_detail);
914 }
915
916 edac_inc_ce_error(e);
917
918 if (mci->scrub_mode == SCRUB_SW_SRC) {
919 /*
920 * Some memory controllers (called MCs below) can remap
921 * memory so that it is still available at a different
922 * address when PCI devices map into memory.
923 * MC's that can't do this, lose the memory where PCI
924 * devices are mapped. This mapping is MC-dependent
925 * and so we call back into the MC driver for it to
926 * map the MC page to a physical (CPU) page which can
927 * then be mapped to a virtual page - which can then
928 * be scrubbed.
929 */
930 remapped_page = mci->ctl_page_to_phys ?
931 mci->ctl_page_to_phys(mci, e->page_frame_number) :
932 e->page_frame_number;
933
934 edac_mc_scrub_block(remapped_page, e->offset_in_page, e->grain);
935 }
936 }
937
938 static void edac_ue_error(struct edac_raw_error_desc *e)
939 {
940 struct mem_ctl_info *mci = error_desc_to_mci(e);
941
942 if (edac_mc_get_log_ue()) {
943 edac_mc_printk(mci, KERN_WARNING,
944 "%d UE %s%son %s (%s page:0x%lx offset:0x%lx grain:%ld%s%s)\n",
945 e->error_count, e->msg,
946 *e->msg ? " " : "",
947 e->label, e->location, e->page_frame_number, e->offset_in_page,
948 e->grain,
949 *e->other_detail ? " - " : "",
950 e->other_detail);
951 }
952
953 edac_inc_ue_error(e);
954
955 if (edac_mc_get_panic_on_ue()) {
956 panic("UE %s%son %s (%s page:0x%lx offset:0x%lx grain:%ld%s%s)\n",
957 e->msg,
958 *e->msg ? " " : "",
959 e->label, e->location, e->page_frame_number, e->offset_in_page,
960 e->grain,
961 *e->other_detail ? " - " : "",
962 e->other_detail);
963 }
964 }
965
966 static void edac_inc_csrow(struct edac_raw_error_desc *e, int row, int chan)
967 {
968 struct mem_ctl_info *mci = error_desc_to_mci(e);
969 enum hw_event_mc_err_type type = e->type;
970 u16 count = e->error_count;
971
972 if (row < 0)
973 return;
974
975 edac_dbg(4, "csrow/channel to increment: (%d,%d)\n", row, chan);
976
977 if (type == HW_EVENT_ERR_CORRECTED) {
978 mci->csrows[row]->ce_count += count;
979 if (chan >= 0)
980 mci->csrows[row]->channels[chan]->ce_count += count;
981 } else {
982 mci->csrows[row]->ue_count += count;
983 }
984 }
985
986 void edac_raw_mc_handle_error(struct edac_raw_error_desc *e)
987 {
988 struct mem_ctl_info *mci = error_desc_to_mci(e);
989 u8 grain_bits;
990
991 /* Sanity-check driver-supplied grain value. */
992 if (WARN_ON_ONCE(!e->grain))
993 e->grain = 1;
994
995 grain_bits = fls_long(e->grain - 1);
996
997 /* Report the error via the trace interface */
998 if (IS_ENABLED(CONFIG_RAS))
999 trace_mc_event(e->type, e->msg, e->label, e->error_count,
1000 mci->mc_idx, e->top_layer, e->mid_layer,
1001 e->low_layer,
1002 (e->page_frame_number << PAGE_SHIFT) | e->offset_in_page,
1003 grain_bits, e->syndrome, e->other_detail);
1004
1005 if (e->type == HW_EVENT_ERR_CORRECTED)
1006 edac_ce_error(e);
1007 else
1008 edac_ue_error(e);
1009 }
1010 EXPORT_SYMBOL_GPL(edac_raw_mc_handle_error);
1011
1012 void edac_mc_handle_error(const enum hw_event_mc_err_type type,
1013 struct mem_ctl_info *mci,
1014 const u16 error_count,
1015 const unsigned long page_frame_number,
1016 const unsigned long offset_in_page,
1017 const unsigned long syndrome,
1018 const int top_layer,
1019 const int mid_layer,
1020 const int low_layer,
1021 const char *msg,
1022 const char *other_detail)
1023 {
1024 struct dimm_info *dimm;
1025 char *p, *end;
1026 int row = -1, chan = -1;
1027 int pos[EDAC_MAX_LAYERS] = { top_layer, mid_layer, low_layer };
1028 int i, n_labels = 0;
1029 struct edac_raw_error_desc *e = &mci->error_desc;
1030 bool any_memory = true;
1031 const char *prefix;
1032
1033 edac_dbg(3, "MC%d\n", mci->mc_idx);
1034
1035 /* Fills the error report buffer */
1036 memset(e, 0, sizeof (*e));
1037 e->error_count = error_count;
1038 e->type = type;
1039 e->top_layer = top_layer;
1040 e->mid_layer = mid_layer;
1041 e->low_layer = low_layer;
1042 e->page_frame_number = page_frame_number;
1043 e->offset_in_page = offset_in_page;
1044 e->syndrome = syndrome;
1045 /* need valid strings here for both: */
1046 e->msg = msg ?: "";
1047 e->other_detail = other_detail ?: "";
1048
1049 /*
1050 * Check if the event report is consistent and if the memory location is
1051 * known. If it is, the DIMM(s) label info will be filled and the DIMM's
1052 * error counters will be incremented.
1053 */
1054 for (i = 0; i < mci->n_layers; i++) {
1055 if (pos[i] >= (int)mci->layers[i].size) {
1056
1057 edac_mc_printk(mci, KERN_ERR,
1058 "INTERNAL ERROR: %s value is out of range (%d >= %d)\n",
1059 edac_layer_name[mci->layers[i].type],
1060 pos[i], mci->layers[i].size);
1061 /*
1062 * Instead of just returning it, let's use what's
1063 * known about the error. The increment routines and
1064 * the DIMM filter logic will do the right thing by
1065 * pointing the likely damaged DIMMs.
1066 */
1067 pos[i] = -1;
1068 }
1069 if (pos[i] >= 0)
1070 any_memory = false;
1071 }
1072
1073 /*
1074 * Get the dimm label/grain that applies to the match criteria.
1075 * As the error algorithm may not be able to point to just one memory
1076 * stick, the logic here will get all possible labels that could
1077 * pottentially be affected by the error.
1078 * On FB-DIMM memory controllers, for uncorrected errors, it is common
1079 * to have only the MC channel and the MC dimm (also called "branch")
1080 * but the channel is not known, as the memory is arranged in pairs,
1081 * where each memory belongs to a separate channel within the same
1082 * branch.
1083 */
1084 p = e->label;
1085 *p = '\0';
1086 end = p + sizeof(e->label);
1087 prefix = "";
1088
1089 mci_for_each_dimm(mci, dimm) {
1090 if (top_layer >= 0 && top_layer != dimm->location[0])
1091 continue;
1092 if (mid_layer >= 0 && mid_layer != dimm->location[1])
1093 continue;
1094 if (low_layer >= 0 && low_layer != dimm->location[2])
1095 continue;
1096
1097 /* get the max grain, over the error match range */
1098 if (dimm->grain > e->grain)
1099 e->grain = dimm->grain;
1100
1101 /*
1102 * If the error is memory-controller wide, there's no need to
1103 * seek for the affected DIMMs because the whole channel/memory
1104 * controller/... may be affected. Also, don't show errors for
1105 * empty DIMM slots.
1106 */
1107 if (!dimm->nr_pages)
1108 continue;
1109
1110 n_labels++;
1111 if (n_labels > EDAC_MAX_LABELS) {
1112 p = e->label;
1113 *p = '\0';
1114 } else {
1115 p += scnprintf(p, end - p, "%s%s", prefix, dimm->label);
1116 prefix = OTHER_LABEL;
1117 }
1118
1119 /*
1120 * get csrow/channel of the DIMM, in order to allow
1121 * incrementing the compat API counters
1122 */
1123 edac_dbg(4, "%s csrows map: (%d,%d)\n",
1124 mci->csbased ? "rank" : "dimm",
1125 dimm->csrow, dimm->cschannel);
1126 if (row == -1)
1127 row = dimm->csrow;
1128 else if (row >= 0 && row != dimm->csrow)
1129 row = -2;
1130
1131 if (chan == -1)
1132 chan = dimm->cschannel;
1133 else if (chan >= 0 && chan != dimm->cschannel)
1134 chan = -2;
1135 }
1136
1137 if (any_memory)
1138 strscpy(e->label, "any memory", sizeof(e->label));
1139 else if (!*e->label)
1140 strscpy(e->label, "unknown memory", sizeof(e->label));
1141
1142 edac_inc_csrow(e, row, chan);
1143
1144 /* Fill the RAM location data */
1145 p = e->location;
1146 end = p + sizeof(e->location);
1147 prefix = "";
1148
1149 for (i = 0; i < mci->n_layers; i++) {
1150 if (pos[i] < 0)
1151 continue;
1152
1153 p += scnprintf(p, end - p, "%s%s:%d", prefix,
1154 edac_layer_name[mci->layers[i].type], pos[i]);
1155 prefix = " ";
1156 }
1157
1158 edac_raw_mc_handle_error(e);
1159 }
1160 EXPORT_SYMBOL_GPL(edac_mc_handle_error);