]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/edac/edac_mc.c
pinctrl: sh-pfc: sh7734: Fix duplicate TCLK1_B
[mirror_ubuntu-bionic-kernel.git] / drivers / edac / edac_mc.c
1 /*
2 * edac_mc kernel module
3 * (C) 2005, 2006 Linux Networx (http://lnxi.com)
4 * This file may be distributed under the terms of the
5 * GNU General Public License.
6 *
7 * Written by Thayne Harbaugh
8 * Based on work by Dan Hollis <goemon at anime dot net> and others.
9 * http://www.anime.net/~goemon/linux-ecc/
10 *
11 * Modified by Dave Peterson and Doug Thompson
12 *
13 */
14
15 #include <linux/module.h>
16 #include <linux/proc_fs.h>
17 #include <linux/kernel.h>
18 #include <linux/types.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/sysctl.h>
22 #include <linux/highmem.h>
23 #include <linux/timer.h>
24 #include <linux/slab.h>
25 #include <linux/jiffies.h>
26 #include <linux/spinlock.h>
27 #include <linux/list.h>
28 #include <linux/ctype.h>
29 #include <linux/edac.h>
30 #include <linux/bitops.h>
31 #include <linux/uaccess.h>
32 #include <asm/page.h>
33 #include "edac_mc.h"
34 #include "edac_module.h"
35 #include <ras/ras_event.h>
36
37 #ifdef CONFIG_EDAC_ATOMIC_SCRUB
38 #include <asm/edac.h>
39 #else
40 #define edac_atomic_scrub(va, size) do { } while (0)
41 #endif
42
43 int edac_op_state = EDAC_OPSTATE_INVAL;
44 EXPORT_SYMBOL_GPL(edac_op_state);
45
46 static int edac_report = EDAC_REPORTING_ENABLED;
47
48 /* lock to memory controller's control array */
49 static DEFINE_MUTEX(mem_ctls_mutex);
50 static LIST_HEAD(mc_devices);
51
52 /*
53 * Used to lock EDAC MC to just one module, avoiding two drivers e. g.
54 * apei/ghes and i7core_edac to be used at the same time.
55 */
56 static const char *edac_mc_owner;
57
58 static struct bus_type mc_bus[EDAC_MAX_MCS];
59
60 int edac_get_report_status(void)
61 {
62 return edac_report;
63 }
64 EXPORT_SYMBOL_GPL(edac_get_report_status);
65
66 void edac_set_report_status(int new)
67 {
68 if (new == EDAC_REPORTING_ENABLED ||
69 new == EDAC_REPORTING_DISABLED ||
70 new == EDAC_REPORTING_FORCE)
71 edac_report = new;
72 }
73 EXPORT_SYMBOL_GPL(edac_set_report_status);
74
75 static int edac_report_set(const char *str, const struct kernel_param *kp)
76 {
77 if (!str)
78 return -EINVAL;
79
80 if (!strncmp(str, "on", 2))
81 edac_report = EDAC_REPORTING_ENABLED;
82 else if (!strncmp(str, "off", 3))
83 edac_report = EDAC_REPORTING_DISABLED;
84 else if (!strncmp(str, "force", 5))
85 edac_report = EDAC_REPORTING_FORCE;
86
87 return 0;
88 }
89
90 static int edac_report_get(char *buffer, const struct kernel_param *kp)
91 {
92 int ret = 0;
93
94 switch (edac_report) {
95 case EDAC_REPORTING_ENABLED:
96 ret = sprintf(buffer, "on");
97 break;
98 case EDAC_REPORTING_DISABLED:
99 ret = sprintf(buffer, "off");
100 break;
101 case EDAC_REPORTING_FORCE:
102 ret = sprintf(buffer, "force");
103 break;
104 default:
105 ret = -EINVAL;
106 break;
107 }
108
109 return ret;
110 }
111
112 static const struct kernel_param_ops edac_report_ops = {
113 .set = edac_report_set,
114 .get = edac_report_get,
115 };
116
117 module_param_cb(edac_report, &edac_report_ops, &edac_report, 0644);
118
119 unsigned edac_dimm_info_location(struct dimm_info *dimm, char *buf,
120 unsigned len)
121 {
122 struct mem_ctl_info *mci = dimm->mci;
123 int i, n, count = 0;
124 char *p = buf;
125
126 for (i = 0; i < mci->n_layers; i++) {
127 n = snprintf(p, len, "%s %d ",
128 edac_layer_name[mci->layers[i].type],
129 dimm->location[i]);
130 p += n;
131 len -= n;
132 count += n;
133 if (!len)
134 break;
135 }
136
137 return count;
138 }
139
140 #ifdef CONFIG_EDAC_DEBUG
141
142 static void edac_mc_dump_channel(struct rank_info *chan)
143 {
144 edac_dbg(4, " channel->chan_idx = %d\n", chan->chan_idx);
145 edac_dbg(4, " channel = %p\n", chan);
146 edac_dbg(4, " channel->csrow = %p\n", chan->csrow);
147 edac_dbg(4, " channel->dimm = %p\n", chan->dimm);
148 }
149
150 static void edac_mc_dump_dimm(struct dimm_info *dimm, int number)
151 {
152 char location[80];
153
154 edac_dimm_info_location(dimm, location, sizeof(location));
155
156 edac_dbg(4, "%s%i: %smapped as virtual row %d, chan %d\n",
157 dimm->mci->csbased ? "rank" : "dimm",
158 number, location, dimm->csrow, dimm->cschannel);
159 edac_dbg(4, " dimm = %p\n", dimm);
160 edac_dbg(4, " dimm->label = '%s'\n", dimm->label);
161 edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm->nr_pages);
162 edac_dbg(4, " dimm->grain = %d\n", dimm->grain);
163 edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm->nr_pages);
164 }
165
166 static void edac_mc_dump_csrow(struct csrow_info *csrow)
167 {
168 edac_dbg(4, "csrow->csrow_idx = %d\n", csrow->csrow_idx);
169 edac_dbg(4, " csrow = %p\n", csrow);
170 edac_dbg(4, " csrow->first_page = 0x%lx\n", csrow->first_page);
171 edac_dbg(4, " csrow->last_page = 0x%lx\n", csrow->last_page);
172 edac_dbg(4, " csrow->page_mask = 0x%lx\n", csrow->page_mask);
173 edac_dbg(4, " csrow->nr_channels = %d\n", csrow->nr_channels);
174 edac_dbg(4, " csrow->channels = %p\n", csrow->channels);
175 edac_dbg(4, " csrow->mci = %p\n", csrow->mci);
176 }
177
178 static void edac_mc_dump_mci(struct mem_ctl_info *mci)
179 {
180 edac_dbg(3, "\tmci = %p\n", mci);
181 edac_dbg(3, "\tmci->mtype_cap = %lx\n", mci->mtype_cap);
182 edac_dbg(3, "\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap);
183 edac_dbg(3, "\tmci->edac_cap = %lx\n", mci->edac_cap);
184 edac_dbg(4, "\tmci->edac_check = %p\n", mci->edac_check);
185 edac_dbg(3, "\tmci->nr_csrows = %d, csrows = %p\n",
186 mci->nr_csrows, mci->csrows);
187 edac_dbg(3, "\tmci->nr_dimms = %d, dimms = %p\n",
188 mci->tot_dimms, mci->dimms);
189 edac_dbg(3, "\tdev = %p\n", mci->pdev);
190 edac_dbg(3, "\tmod_name:ctl_name = %s:%s\n",
191 mci->mod_name, mci->ctl_name);
192 edac_dbg(3, "\tpvt_info = %p\n\n", mci->pvt_info);
193 }
194
195 #endif /* CONFIG_EDAC_DEBUG */
196
197 const char * const edac_mem_types[] = {
198 [MEM_EMPTY] = "Empty csrow",
199 [MEM_RESERVED] = "Reserved csrow type",
200 [MEM_UNKNOWN] = "Unknown csrow type",
201 [MEM_FPM] = "Fast page mode RAM",
202 [MEM_EDO] = "Extended data out RAM",
203 [MEM_BEDO] = "Burst Extended data out RAM",
204 [MEM_SDR] = "Single data rate SDRAM",
205 [MEM_RDR] = "Registered single data rate SDRAM",
206 [MEM_DDR] = "Double data rate SDRAM",
207 [MEM_RDDR] = "Registered Double data rate SDRAM",
208 [MEM_RMBS] = "Rambus DRAM",
209 [MEM_DDR2] = "Unbuffered DDR2 RAM",
210 [MEM_FB_DDR2] = "Fully buffered DDR2",
211 [MEM_RDDR2] = "Registered DDR2 RAM",
212 [MEM_XDR] = "Rambus XDR",
213 [MEM_DDR3] = "Unbuffered DDR3 RAM",
214 [MEM_RDDR3] = "Registered DDR3 RAM",
215 [MEM_LRDDR3] = "Load-Reduced DDR3 RAM",
216 [MEM_DDR4] = "Unbuffered DDR4 RAM",
217 [MEM_RDDR4] = "Registered DDR4 RAM",
218 [MEM_LRDDR4] = "Load-Reduced-DDR4-RAM",
219 };
220 EXPORT_SYMBOL_GPL(edac_mem_types);
221
222 /**
223 * edac_align_ptr - Prepares the pointer offsets for a single-shot allocation
224 * @p: pointer to a pointer with the memory offset to be used. At
225 * return, this will be incremented to point to the next offset
226 * @size: Size of the data structure to be reserved
227 * @n_elems: Number of elements that should be reserved
228 *
229 * If 'size' is a constant, the compiler will optimize this whole function
230 * down to either a no-op or the addition of a constant to the value of '*p'.
231 *
232 * The 'p' pointer is absolutely needed to keep the proper advancing
233 * further in memory to the proper offsets when allocating the struct along
234 * with its embedded structs, as edac_device_alloc_ctl_info() does it
235 * above, for example.
236 *
237 * At return, the pointer 'p' will be incremented to be used on a next call
238 * to this function.
239 */
240 void *edac_align_ptr(void **p, unsigned size, int n_elems)
241 {
242 unsigned align, r;
243 void *ptr = *p;
244
245 *p += size * n_elems;
246
247 /*
248 * 'p' can possibly be an unaligned item X such that sizeof(X) is
249 * 'size'. Adjust 'p' so that its alignment is at least as
250 * stringent as what the compiler would provide for X and return
251 * the aligned result.
252 * Here we assume that the alignment of a "long long" is the most
253 * stringent alignment that the compiler will ever provide by default.
254 * As far as I know, this is a reasonable assumption.
255 */
256 if (size > sizeof(long))
257 align = sizeof(long long);
258 else if (size > sizeof(int))
259 align = sizeof(long);
260 else if (size > sizeof(short))
261 align = sizeof(int);
262 else if (size > sizeof(char))
263 align = sizeof(short);
264 else
265 return (char *)ptr;
266
267 r = (unsigned long)p % align;
268
269 if (r == 0)
270 return (char *)ptr;
271
272 *p += align - r;
273
274 return (void *)(((unsigned long)ptr) + align - r);
275 }
276
277 static void _edac_mc_free(struct mem_ctl_info *mci)
278 {
279 int i, chn, row;
280 struct csrow_info *csr;
281 const unsigned int tot_dimms = mci->tot_dimms;
282 const unsigned int tot_channels = mci->num_cschannel;
283 const unsigned int tot_csrows = mci->nr_csrows;
284
285 if (mci->dimms) {
286 for (i = 0; i < tot_dimms; i++)
287 kfree(mci->dimms[i]);
288 kfree(mci->dimms);
289 }
290 if (mci->csrows) {
291 for (row = 0; row < tot_csrows; row++) {
292 csr = mci->csrows[row];
293 if (csr) {
294 if (csr->channels) {
295 for (chn = 0; chn < tot_channels; chn++)
296 kfree(csr->channels[chn]);
297 kfree(csr->channels);
298 }
299 kfree(csr);
300 }
301 }
302 kfree(mci->csrows);
303 }
304 kfree(mci);
305 }
306
307 struct mem_ctl_info *edac_mc_alloc(unsigned mc_num,
308 unsigned n_layers,
309 struct edac_mc_layer *layers,
310 unsigned sz_pvt)
311 {
312 struct mem_ctl_info *mci;
313 struct edac_mc_layer *layer;
314 struct csrow_info *csr;
315 struct rank_info *chan;
316 struct dimm_info *dimm;
317 u32 *ce_per_layer[EDAC_MAX_LAYERS], *ue_per_layer[EDAC_MAX_LAYERS];
318 unsigned pos[EDAC_MAX_LAYERS];
319 unsigned size, tot_dimms = 1, count = 1;
320 unsigned tot_csrows = 1, tot_channels = 1, tot_errcount = 0;
321 void *pvt, *p, *ptr = NULL;
322 int i, j, row, chn, n, len, off;
323 bool per_rank = false;
324
325 BUG_ON(n_layers > EDAC_MAX_LAYERS || n_layers == 0);
326 /*
327 * Calculate the total amount of dimms and csrows/cschannels while
328 * in the old API emulation mode
329 */
330 for (i = 0; i < n_layers; i++) {
331 tot_dimms *= layers[i].size;
332 if (layers[i].is_virt_csrow)
333 tot_csrows *= layers[i].size;
334 else
335 tot_channels *= layers[i].size;
336
337 if (layers[i].type == EDAC_MC_LAYER_CHIP_SELECT)
338 per_rank = true;
339 }
340
341 /* Figure out the offsets of the various items from the start of an mc
342 * structure. We want the alignment of each item to be at least as
343 * stringent as what the compiler would provide if we could simply
344 * hardcode everything into a single struct.
345 */
346 mci = edac_align_ptr(&ptr, sizeof(*mci), 1);
347 layer = edac_align_ptr(&ptr, sizeof(*layer), n_layers);
348 for (i = 0; i < n_layers; i++) {
349 count *= layers[i].size;
350 edac_dbg(4, "errcount layer %d size %d\n", i, count);
351 ce_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count);
352 ue_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count);
353 tot_errcount += 2 * count;
354 }
355
356 edac_dbg(4, "allocating %d error counters\n", tot_errcount);
357 pvt = edac_align_ptr(&ptr, sz_pvt, 1);
358 size = ((unsigned long)pvt) + sz_pvt;
359
360 edac_dbg(1, "allocating %u bytes for mci data (%d %s, %d csrows/channels)\n",
361 size,
362 tot_dimms,
363 per_rank ? "ranks" : "dimms",
364 tot_csrows * tot_channels);
365
366 mci = kzalloc(size, GFP_KERNEL);
367 if (mci == NULL)
368 return NULL;
369
370 /* Adjust pointers so they point within the memory we just allocated
371 * rather than an imaginary chunk of memory located at address 0.
372 */
373 layer = (struct edac_mc_layer *)(((char *)mci) + ((unsigned long)layer));
374 for (i = 0; i < n_layers; i++) {
375 mci->ce_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ce_per_layer[i]));
376 mci->ue_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ue_per_layer[i]));
377 }
378 pvt = sz_pvt ? (((char *)mci) + ((unsigned long)pvt)) : NULL;
379
380 /* setup index and various internal pointers */
381 mci->mc_idx = mc_num;
382 mci->tot_dimms = tot_dimms;
383 mci->pvt_info = pvt;
384 mci->n_layers = n_layers;
385 mci->layers = layer;
386 memcpy(mci->layers, layers, sizeof(*layer) * n_layers);
387 mci->nr_csrows = tot_csrows;
388 mci->num_cschannel = tot_channels;
389 mci->csbased = per_rank;
390
391 /*
392 * Alocate and fill the csrow/channels structs
393 */
394 mci->csrows = kcalloc(tot_csrows, sizeof(*mci->csrows), GFP_KERNEL);
395 if (!mci->csrows)
396 goto error;
397 for (row = 0; row < tot_csrows; row++) {
398 csr = kzalloc(sizeof(**mci->csrows), GFP_KERNEL);
399 if (!csr)
400 goto error;
401 mci->csrows[row] = csr;
402 csr->csrow_idx = row;
403 csr->mci = mci;
404 csr->nr_channels = tot_channels;
405 csr->channels = kcalloc(tot_channels, sizeof(*csr->channels),
406 GFP_KERNEL);
407 if (!csr->channels)
408 goto error;
409
410 for (chn = 0; chn < tot_channels; chn++) {
411 chan = kzalloc(sizeof(**csr->channels), GFP_KERNEL);
412 if (!chan)
413 goto error;
414 csr->channels[chn] = chan;
415 chan->chan_idx = chn;
416 chan->csrow = csr;
417 }
418 }
419
420 /*
421 * Allocate and fill the dimm structs
422 */
423 mci->dimms = kcalloc(tot_dimms, sizeof(*mci->dimms), GFP_KERNEL);
424 if (!mci->dimms)
425 goto error;
426
427 memset(&pos, 0, sizeof(pos));
428 row = 0;
429 chn = 0;
430 for (i = 0; i < tot_dimms; i++) {
431 chan = mci->csrows[row]->channels[chn];
432 off = EDAC_DIMM_OFF(layer, n_layers, pos[0], pos[1], pos[2]);
433 if (off < 0 || off >= tot_dimms) {
434 edac_mc_printk(mci, KERN_ERR, "EDAC core bug: EDAC_DIMM_OFF is trying to do an illegal data access\n");
435 goto error;
436 }
437
438 dimm = kzalloc(sizeof(**mci->dimms), GFP_KERNEL);
439 if (!dimm)
440 goto error;
441 mci->dimms[off] = dimm;
442 dimm->mci = mci;
443
444 /*
445 * Copy DIMM location and initialize it.
446 */
447 len = sizeof(dimm->label);
448 p = dimm->label;
449 n = snprintf(p, len, "mc#%u", mc_num);
450 p += n;
451 len -= n;
452 for (j = 0; j < n_layers; j++) {
453 n = snprintf(p, len, "%s#%u",
454 edac_layer_name[layers[j].type],
455 pos[j]);
456 p += n;
457 len -= n;
458 dimm->location[j] = pos[j];
459
460 if (len <= 0)
461 break;
462 }
463
464 /* Link it to the csrows old API data */
465 chan->dimm = dimm;
466 dimm->csrow = row;
467 dimm->cschannel = chn;
468
469 /* Increment csrow location */
470 if (layers[0].is_virt_csrow) {
471 chn++;
472 if (chn == tot_channels) {
473 chn = 0;
474 row++;
475 }
476 } else {
477 row++;
478 if (row == tot_csrows) {
479 row = 0;
480 chn++;
481 }
482 }
483
484 /* Increment dimm location */
485 for (j = n_layers - 1; j >= 0; j--) {
486 pos[j]++;
487 if (pos[j] < layers[j].size)
488 break;
489 pos[j] = 0;
490 }
491 }
492
493 mci->op_state = OP_ALLOC;
494
495 return mci;
496
497 error:
498 _edac_mc_free(mci);
499
500 return NULL;
501 }
502 EXPORT_SYMBOL_GPL(edac_mc_alloc);
503
504 void edac_mc_free(struct mem_ctl_info *mci)
505 {
506 edac_dbg(1, "\n");
507
508 /* If we're not yet registered with sysfs free only what was allocated
509 * in edac_mc_alloc().
510 */
511 if (!device_is_registered(&mci->dev)) {
512 _edac_mc_free(mci);
513 return;
514 }
515
516 /* the mci instance is freed here, when the sysfs object is dropped */
517 edac_unregister_sysfs(mci);
518 }
519 EXPORT_SYMBOL_GPL(edac_mc_free);
520
521 bool edac_has_mcs(void)
522 {
523 bool ret;
524
525 mutex_lock(&mem_ctls_mutex);
526
527 ret = list_empty(&mc_devices);
528
529 mutex_unlock(&mem_ctls_mutex);
530
531 return !ret;
532 }
533 EXPORT_SYMBOL_GPL(edac_has_mcs);
534
535 /* Caller must hold mem_ctls_mutex */
536 static struct mem_ctl_info *__find_mci_by_dev(struct device *dev)
537 {
538 struct mem_ctl_info *mci;
539 struct list_head *item;
540
541 edac_dbg(3, "\n");
542
543 list_for_each(item, &mc_devices) {
544 mci = list_entry(item, struct mem_ctl_info, link);
545
546 if (mci->pdev == dev)
547 return mci;
548 }
549
550 return NULL;
551 }
552
553 /**
554 * find_mci_by_dev
555 *
556 * scan list of controllers looking for the one that manages
557 * the 'dev' device
558 * @dev: pointer to a struct device related with the MCI
559 */
560 struct mem_ctl_info *find_mci_by_dev(struct device *dev)
561 {
562 struct mem_ctl_info *ret;
563
564 mutex_lock(&mem_ctls_mutex);
565 ret = __find_mci_by_dev(dev);
566 mutex_unlock(&mem_ctls_mutex);
567
568 return ret;
569 }
570 EXPORT_SYMBOL_GPL(find_mci_by_dev);
571
572 /*
573 * edac_mc_workq_function
574 * performs the operation scheduled by a workq request
575 */
576 static void edac_mc_workq_function(struct work_struct *work_req)
577 {
578 struct delayed_work *d_work = to_delayed_work(work_req);
579 struct mem_ctl_info *mci = to_edac_mem_ctl_work(d_work);
580
581 mutex_lock(&mem_ctls_mutex);
582
583 if (mci->op_state != OP_RUNNING_POLL) {
584 mutex_unlock(&mem_ctls_mutex);
585 return;
586 }
587
588 if (edac_op_state == EDAC_OPSTATE_POLL)
589 mci->edac_check(mci);
590
591 mutex_unlock(&mem_ctls_mutex);
592
593 /* Queue ourselves again. */
594 edac_queue_work(&mci->work, msecs_to_jiffies(edac_mc_get_poll_msec()));
595 }
596
597 /*
598 * edac_mc_reset_delay_period(unsigned long value)
599 *
600 * user space has updated our poll period value, need to
601 * reset our workq delays
602 */
603 void edac_mc_reset_delay_period(unsigned long value)
604 {
605 struct mem_ctl_info *mci;
606 struct list_head *item;
607
608 mutex_lock(&mem_ctls_mutex);
609
610 list_for_each(item, &mc_devices) {
611 mci = list_entry(item, struct mem_ctl_info, link);
612
613 if (mci->op_state == OP_RUNNING_POLL)
614 edac_mod_work(&mci->work, value);
615 }
616 mutex_unlock(&mem_ctls_mutex);
617 }
618
619
620
621 /* Return 0 on success, 1 on failure.
622 * Before calling this function, caller must
623 * assign a unique value to mci->mc_idx.
624 *
625 * locking model:
626 *
627 * called with the mem_ctls_mutex lock held
628 */
629 static int add_mc_to_global_list(struct mem_ctl_info *mci)
630 {
631 struct list_head *item, *insert_before;
632 struct mem_ctl_info *p;
633
634 insert_before = &mc_devices;
635
636 p = __find_mci_by_dev(mci->pdev);
637 if (unlikely(p != NULL))
638 goto fail0;
639
640 list_for_each(item, &mc_devices) {
641 p = list_entry(item, struct mem_ctl_info, link);
642
643 if (p->mc_idx >= mci->mc_idx) {
644 if (unlikely(p->mc_idx == mci->mc_idx))
645 goto fail1;
646
647 insert_before = item;
648 break;
649 }
650 }
651
652 list_add_tail_rcu(&mci->link, insert_before);
653 return 0;
654
655 fail0:
656 edac_printk(KERN_WARNING, EDAC_MC,
657 "%s (%s) %s %s already assigned %d\n", dev_name(p->pdev),
658 edac_dev_name(mci), p->mod_name, p->ctl_name, p->mc_idx);
659 return 1;
660
661 fail1:
662 edac_printk(KERN_WARNING, EDAC_MC,
663 "bug in low-level driver: attempt to assign\n"
664 " duplicate mc_idx %d in %s()\n", p->mc_idx, __func__);
665 return 1;
666 }
667
668 static int del_mc_from_global_list(struct mem_ctl_info *mci)
669 {
670 list_del_rcu(&mci->link);
671
672 /* these are for safe removal of devices from global list while
673 * NMI handlers may be traversing list
674 */
675 synchronize_rcu();
676 INIT_LIST_HEAD(&mci->link);
677
678 return list_empty(&mc_devices);
679 }
680
681 struct mem_ctl_info *edac_mc_find(int idx)
682 {
683 struct mem_ctl_info *mci = NULL;
684 struct list_head *item;
685
686 mutex_lock(&mem_ctls_mutex);
687
688 list_for_each(item, &mc_devices) {
689 mci = list_entry(item, struct mem_ctl_info, link);
690
691 if (mci->mc_idx >= idx) {
692 if (mci->mc_idx == idx) {
693 goto unlock;
694 }
695 break;
696 }
697 }
698
699 unlock:
700 mutex_unlock(&mem_ctls_mutex);
701 return mci;
702 }
703 EXPORT_SYMBOL(edac_mc_find);
704
705 const char *edac_get_owner(void)
706 {
707 return edac_mc_owner;
708 }
709 EXPORT_SYMBOL_GPL(edac_get_owner);
710
711 /* FIXME - should a warning be printed if no error detection? correction? */
712 int edac_mc_add_mc_with_groups(struct mem_ctl_info *mci,
713 const struct attribute_group **groups)
714 {
715 int ret = -EINVAL;
716 edac_dbg(0, "\n");
717
718 if (mci->mc_idx >= EDAC_MAX_MCS) {
719 pr_warn_once("Too many memory controllers: %d\n", mci->mc_idx);
720 return -ENODEV;
721 }
722
723 #ifdef CONFIG_EDAC_DEBUG
724 if (edac_debug_level >= 3)
725 edac_mc_dump_mci(mci);
726
727 if (edac_debug_level >= 4) {
728 int i;
729
730 for (i = 0; i < mci->nr_csrows; i++) {
731 struct csrow_info *csrow = mci->csrows[i];
732 u32 nr_pages = 0;
733 int j;
734
735 for (j = 0; j < csrow->nr_channels; j++)
736 nr_pages += csrow->channels[j]->dimm->nr_pages;
737 if (!nr_pages)
738 continue;
739 edac_mc_dump_csrow(csrow);
740 for (j = 0; j < csrow->nr_channels; j++)
741 if (csrow->channels[j]->dimm->nr_pages)
742 edac_mc_dump_channel(csrow->channels[j]);
743 }
744 for (i = 0; i < mci->tot_dimms; i++)
745 if (mci->dimms[i]->nr_pages)
746 edac_mc_dump_dimm(mci->dimms[i], i);
747 }
748 #endif
749 mutex_lock(&mem_ctls_mutex);
750
751 if (edac_mc_owner && edac_mc_owner != mci->mod_name) {
752 ret = -EPERM;
753 goto fail0;
754 }
755
756 if (add_mc_to_global_list(mci))
757 goto fail0;
758
759 /* set load time so that error rate can be tracked */
760 mci->start_time = jiffies;
761
762 mci->bus = &mc_bus[mci->mc_idx];
763
764 if (edac_create_sysfs_mci_device(mci, groups)) {
765 edac_mc_printk(mci, KERN_WARNING,
766 "failed to create sysfs device\n");
767 goto fail1;
768 }
769
770 if (mci->edac_check) {
771 mci->op_state = OP_RUNNING_POLL;
772
773 INIT_DELAYED_WORK(&mci->work, edac_mc_workq_function);
774 edac_queue_work(&mci->work, msecs_to_jiffies(edac_mc_get_poll_msec()));
775
776 } else {
777 mci->op_state = OP_RUNNING_INTERRUPT;
778 }
779
780 /* Report action taken */
781 edac_mc_printk(mci, KERN_INFO,
782 "Giving out device to module %s controller %s: DEV %s (%s)\n",
783 mci->mod_name, mci->ctl_name, mci->dev_name,
784 edac_op_state_to_string(mci->op_state));
785
786 edac_mc_owner = mci->mod_name;
787
788 mutex_unlock(&mem_ctls_mutex);
789 return 0;
790
791 fail1:
792 del_mc_from_global_list(mci);
793
794 fail0:
795 mutex_unlock(&mem_ctls_mutex);
796 return ret;
797 }
798 EXPORT_SYMBOL_GPL(edac_mc_add_mc_with_groups);
799
800 struct mem_ctl_info *edac_mc_del_mc(struct device *dev)
801 {
802 struct mem_ctl_info *mci;
803
804 edac_dbg(0, "\n");
805
806 mutex_lock(&mem_ctls_mutex);
807
808 /* find the requested mci struct in the global list */
809 mci = __find_mci_by_dev(dev);
810 if (mci == NULL) {
811 mutex_unlock(&mem_ctls_mutex);
812 return NULL;
813 }
814
815 /* mark MCI offline: */
816 mci->op_state = OP_OFFLINE;
817
818 if (del_mc_from_global_list(mci))
819 edac_mc_owner = NULL;
820
821 mutex_unlock(&mem_ctls_mutex);
822
823 if (mci->edac_check)
824 edac_stop_work(&mci->work);
825
826 /* remove from sysfs */
827 edac_remove_sysfs_mci_device(mci);
828
829 edac_printk(KERN_INFO, EDAC_MC,
830 "Removed device %d for %s %s: DEV %s\n", mci->mc_idx,
831 mci->mod_name, mci->ctl_name, edac_dev_name(mci));
832
833 return mci;
834 }
835 EXPORT_SYMBOL_GPL(edac_mc_del_mc);
836
837 static void edac_mc_scrub_block(unsigned long page, unsigned long offset,
838 u32 size)
839 {
840 struct page *pg;
841 void *virt_addr;
842 unsigned long flags = 0;
843
844 edac_dbg(3, "\n");
845
846 /* ECC error page was not in our memory. Ignore it. */
847 if (!pfn_valid(page))
848 return;
849
850 /* Find the actual page structure then map it and fix */
851 pg = pfn_to_page(page);
852
853 if (PageHighMem(pg))
854 local_irq_save(flags);
855
856 virt_addr = kmap_atomic(pg);
857
858 /* Perform architecture specific atomic scrub operation */
859 edac_atomic_scrub(virt_addr + offset, size);
860
861 /* Unmap and complete */
862 kunmap_atomic(virt_addr);
863
864 if (PageHighMem(pg))
865 local_irq_restore(flags);
866 }
867
868 /* FIXME - should return -1 */
869 int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci, unsigned long page)
870 {
871 struct csrow_info **csrows = mci->csrows;
872 int row, i, j, n;
873
874 edac_dbg(1, "MC%d: 0x%lx\n", mci->mc_idx, page);
875 row = -1;
876
877 for (i = 0; i < mci->nr_csrows; i++) {
878 struct csrow_info *csrow = csrows[i];
879 n = 0;
880 for (j = 0; j < csrow->nr_channels; j++) {
881 struct dimm_info *dimm = csrow->channels[j]->dimm;
882 n += dimm->nr_pages;
883 }
884 if (n == 0)
885 continue;
886
887 edac_dbg(3, "MC%d: first(0x%lx) page(0x%lx) last(0x%lx) mask(0x%lx)\n",
888 mci->mc_idx,
889 csrow->first_page, page, csrow->last_page,
890 csrow->page_mask);
891
892 if ((page >= csrow->first_page) &&
893 (page <= csrow->last_page) &&
894 ((page & csrow->page_mask) ==
895 (csrow->first_page & csrow->page_mask))) {
896 row = i;
897 break;
898 }
899 }
900
901 if (row == -1)
902 edac_mc_printk(mci, KERN_ERR,
903 "could not look up page error address %lx\n",
904 (unsigned long)page);
905
906 return row;
907 }
908 EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page);
909
910 const char *edac_layer_name[] = {
911 [EDAC_MC_LAYER_BRANCH] = "branch",
912 [EDAC_MC_LAYER_CHANNEL] = "channel",
913 [EDAC_MC_LAYER_SLOT] = "slot",
914 [EDAC_MC_LAYER_CHIP_SELECT] = "csrow",
915 [EDAC_MC_LAYER_ALL_MEM] = "memory",
916 };
917 EXPORT_SYMBOL_GPL(edac_layer_name);
918
919 static void edac_inc_ce_error(struct mem_ctl_info *mci,
920 bool enable_per_layer_report,
921 const int pos[EDAC_MAX_LAYERS],
922 const u16 count)
923 {
924 int i, index = 0;
925
926 mci->ce_mc += count;
927
928 if (!enable_per_layer_report) {
929 mci->ce_noinfo_count += count;
930 return;
931 }
932
933 for (i = 0; i < mci->n_layers; i++) {
934 if (pos[i] < 0)
935 break;
936 index += pos[i];
937 mci->ce_per_layer[i][index] += count;
938
939 if (i < mci->n_layers - 1)
940 index *= mci->layers[i + 1].size;
941 }
942 }
943
944 static void edac_inc_ue_error(struct mem_ctl_info *mci,
945 bool enable_per_layer_report,
946 const int pos[EDAC_MAX_LAYERS],
947 const u16 count)
948 {
949 int i, index = 0;
950
951 mci->ue_mc += count;
952
953 if (!enable_per_layer_report) {
954 mci->ue_noinfo_count += count;
955 return;
956 }
957
958 for (i = 0; i < mci->n_layers; i++) {
959 if (pos[i] < 0)
960 break;
961 index += pos[i];
962 mci->ue_per_layer[i][index] += count;
963
964 if (i < mci->n_layers - 1)
965 index *= mci->layers[i + 1].size;
966 }
967 }
968
969 static void edac_ce_error(struct mem_ctl_info *mci,
970 const u16 error_count,
971 const int pos[EDAC_MAX_LAYERS],
972 const char *msg,
973 const char *location,
974 const char *label,
975 const char *detail,
976 const char *other_detail,
977 const bool enable_per_layer_report,
978 const unsigned long page_frame_number,
979 const unsigned long offset_in_page,
980 long grain)
981 {
982 unsigned long remapped_page;
983 char *msg_aux = "";
984
985 if (*msg)
986 msg_aux = " ";
987
988 if (edac_mc_get_log_ce()) {
989 if (other_detail && *other_detail)
990 edac_mc_printk(mci, KERN_WARNING,
991 "%d CE %s%son %s (%s %s - %s)\n",
992 error_count, msg, msg_aux, label,
993 location, detail, other_detail);
994 else
995 edac_mc_printk(mci, KERN_WARNING,
996 "%d CE %s%son %s (%s %s)\n",
997 error_count, msg, msg_aux, label,
998 location, detail);
999 }
1000 edac_inc_ce_error(mci, enable_per_layer_report, pos, error_count);
1001
1002 if (mci->scrub_mode == SCRUB_SW_SRC) {
1003 /*
1004 * Some memory controllers (called MCs below) can remap
1005 * memory so that it is still available at a different
1006 * address when PCI devices map into memory.
1007 * MC's that can't do this, lose the memory where PCI
1008 * devices are mapped. This mapping is MC-dependent
1009 * and so we call back into the MC driver for it to
1010 * map the MC page to a physical (CPU) page which can
1011 * then be mapped to a virtual page - which can then
1012 * be scrubbed.
1013 */
1014 remapped_page = mci->ctl_page_to_phys ?
1015 mci->ctl_page_to_phys(mci, page_frame_number) :
1016 page_frame_number;
1017
1018 edac_mc_scrub_block(remapped_page,
1019 offset_in_page, grain);
1020 }
1021 }
1022
1023 static void edac_ue_error(struct mem_ctl_info *mci,
1024 const u16 error_count,
1025 const int pos[EDAC_MAX_LAYERS],
1026 const char *msg,
1027 const char *location,
1028 const char *label,
1029 const char *detail,
1030 const char *other_detail,
1031 const bool enable_per_layer_report)
1032 {
1033 char *msg_aux = "";
1034
1035 if (*msg)
1036 msg_aux = " ";
1037
1038 if (edac_mc_get_log_ue()) {
1039 if (other_detail && *other_detail)
1040 edac_mc_printk(mci, KERN_WARNING,
1041 "%d UE %s%son %s (%s %s - %s)\n",
1042 error_count, msg, msg_aux, label,
1043 location, detail, other_detail);
1044 else
1045 edac_mc_printk(mci, KERN_WARNING,
1046 "%d UE %s%son %s (%s %s)\n",
1047 error_count, msg, msg_aux, label,
1048 location, detail);
1049 }
1050
1051 if (edac_mc_get_panic_on_ue()) {
1052 if (other_detail && *other_detail)
1053 panic("UE %s%son %s (%s%s - %s)\n",
1054 msg, msg_aux, label, location, detail, other_detail);
1055 else
1056 panic("UE %s%son %s (%s%s)\n",
1057 msg, msg_aux, label, location, detail);
1058 }
1059
1060 edac_inc_ue_error(mci, enable_per_layer_report, pos, error_count);
1061 }
1062
1063 void edac_raw_mc_handle_error(const enum hw_event_mc_err_type type,
1064 struct mem_ctl_info *mci,
1065 struct edac_raw_error_desc *e)
1066 {
1067 char detail[80];
1068 int pos[EDAC_MAX_LAYERS] = { e->top_layer, e->mid_layer, e->low_layer };
1069
1070 /* Memory type dependent details about the error */
1071 if (type == HW_EVENT_ERR_CORRECTED) {
1072 snprintf(detail, sizeof(detail),
1073 "page:0x%lx offset:0x%lx grain:%ld syndrome:0x%lx",
1074 e->page_frame_number, e->offset_in_page,
1075 e->grain, e->syndrome);
1076 edac_ce_error(mci, e->error_count, pos, e->msg, e->location, e->label,
1077 detail, e->other_detail, e->enable_per_layer_report,
1078 e->page_frame_number, e->offset_in_page, e->grain);
1079 } else {
1080 snprintf(detail, sizeof(detail),
1081 "page:0x%lx offset:0x%lx grain:%ld",
1082 e->page_frame_number, e->offset_in_page, e->grain);
1083
1084 edac_ue_error(mci, e->error_count, pos, e->msg, e->location, e->label,
1085 detail, e->other_detail, e->enable_per_layer_report);
1086 }
1087
1088
1089 }
1090 EXPORT_SYMBOL_GPL(edac_raw_mc_handle_error);
1091
1092 void edac_mc_handle_error(const enum hw_event_mc_err_type type,
1093 struct mem_ctl_info *mci,
1094 const u16 error_count,
1095 const unsigned long page_frame_number,
1096 const unsigned long offset_in_page,
1097 const unsigned long syndrome,
1098 const int top_layer,
1099 const int mid_layer,
1100 const int low_layer,
1101 const char *msg,
1102 const char *other_detail)
1103 {
1104 char *p;
1105 int row = -1, chan = -1;
1106 int pos[EDAC_MAX_LAYERS] = { top_layer, mid_layer, low_layer };
1107 int i, n_labels = 0;
1108 u8 grain_bits;
1109 struct edac_raw_error_desc *e = &mci->error_desc;
1110
1111 edac_dbg(3, "MC%d\n", mci->mc_idx);
1112
1113 /* Fills the error report buffer */
1114 memset(e, 0, sizeof (*e));
1115 e->error_count = error_count;
1116 e->top_layer = top_layer;
1117 e->mid_layer = mid_layer;
1118 e->low_layer = low_layer;
1119 e->page_frame_number = page_frame_number;
1120 e->offset_in_page = offset_in_page;
1121 e->syndrome = syndrome;
1122 e->msg = msg;
1123 e->other_detail = other_detail;
1124
1125 /*
1126 * Check if the event report is consistent and if the memory
1127 * location is known. If it is known, enable_per_layer_report will be
1128 * true, the DIMM(s) label info will be filled and the per-layer
1129 * error counters will be incremented.
1130 */
1131 for (i = 0; i < mci->n_layers; i++) {
1132 if (pos[i] >= (int)mci->layers[i].size) {
1133
1134 edac_mc_printk(mci, KERN_ERR,
1135 "INTERNAL ERROR: %s value is out of range (%d >= %d)\n",
1136 edac_layer_name[mci->layers[i].type],
1137 pos[i], mci->layers[i].size);
1138 /*
1139 * Instead of just returning it, let's use what's
1140 * known about the error. The increment routines and
1141 * the DIMM filter logic will do the right thing by
1142 * pointing the likely damaged DIMMs.
1143 */
1144 pos[i] = -1;
1145 }
1146 if (pos[i] >= 0)
1147 e->enable_per_layer_report = true;
1148 }
1149
1150 /*
1151 * Get the dimm label/grain that applies to the match criteria.
1152 * As the error algorithm may not be able to point to just one memory
1153 * stick, the logic here will get all possible labels that could
1154 * pottentially be affected by the error.
1155 * On FB-DIMM memory controllers, for uncorrected errors, it is common
1156 * to have only the MC channel and the MC dimm (also called "branch")
1157 * but the channel is not known, as the memory is arranged in pairs,
1158 * where each memory belongs to a separate channel within the same
1159 * branch.
1160 */
1161 p = e->label;
1162 *p = '\0';
1163
1164 for (i = 0; i < mci->tot_dimms; i++) {
1165 struct dimm_info *dimm = mci->dimms[i];
1166
1167 if (top_layer >= 0 && top_layer != dimm->location[0])
1168 continue;
1169 if (mid_layer >= 0 && mid_layer != dimm->location[1])
1170 continue;
1171 if (low_layer >= 0 && low_layer != dimm->location[2])
1172 continue;
1173
1174 /* get the max grain, over the error match range */
1175 if (dimm->grain > e->grain)
1176 e->grain = dimm->grain;
1177
1178 /*
1179 * If the error is memory-controller wide, there's no need to
1180 * seek for the affected DIMMs because the whole
1181 * channel/memory controller/... may be affected.
1182 * Also, don't show errors for empty DIMM slots.
1183 */
1184 if (e->enable_per_layer_report && dimm->nr_pages) {
1185 if (n_labels >= EDAC_MAX_LABELS) {
1186 e->enable_per_layer_report = false;
1187 break;
1188 }
1189 n_labels++;
1190 if (p != e->label) {
1191 strcpy(p, OTHER_LABEL);
1192 p += strlen(OTHER_LABEL);
1193 }
1194 strcpy(p, dimm->label);
1195 p += strlen(p);
1196 *p = '\0';
1197
1198 /*
1199 * get csrow/channel of the DIMM, in order to allow
1200 * incrementing the compat API counters
1201 */
1202 edac_dbg(4, "%s csrows map: (%d,%d)\n",
1203 mci->csbased ? "rank" : "dimm",
1204 dimm->csrow, dimm->cschannel);
1205 if (row == -1)
1206 row = dimm->csrow;
1207 else if (row >= 0 && row != dimm->csrow)
1208 row = -2;
1209
1210 if (chan == -1)
1211 chan = dimm->cschannel;
1212 else if (chan >= 0 && chan != dimm->cschannel)
1213 chan = -2;
1214 }
1215 }
1216
1217 if (!e->enable_per_layer_report) {
1218 strcpy(e->label, "any memory");
1219 } else {
1220 edac_dbg(4, "csrow/channel to increment: (%d,%d)\n", row, chan);
1221 if (p == e->label)
1222 strcpy(e->label, "unknown memory");
1223 if (type == HW_EVENT_ERR_CORRECTED) {
1224 if (row >= 0) {
1225 mci->csrows[row]->ce_count += error_count;
1226 if (chan >= 0)
1227 mci->csrows[row]->channels[chan]->ce_count += error_count;
1228 }
1229 } else
1230 if (row >= 0)
1231 mci->csrows[row]->ue_count += error_count;
1232 }
1233
1234 /* Fill the RAM location data */
1235 p = e->location;
1236
1237 for (i = 0; i < mci->n_layers; i++) {
1238 if (pos[i] < 0)
1239 continue;
1240
1241 p += sprintf(p, "%s:%d ",
1242 edac_layer_name[mci->layers[i].type],
1243 pos[i]);
1244 }
1245 if (p > e->location)
1246 *(p - 1) = '\0';
1247
1248 /* Sanity-check driver-supplied grain value. */
1249 if (WARN_ON_ONCE(!e->grain))
1250 e->grain = 1;
1251
1252 grain_bits = fls_long(e->grain - 1);
1253
1254 /* Report the error via the trace interface */
1255 if (IS_ENABLED(CONFIG_RAS))
1256 trace_mc_event(type, e->msg, e->label, e->error_count,
1257 mci->mc_idx, e->top_layer, e->mid_layer,
1258 e->low_layer,
1259 (e->page_frame_number << PAGE_SHIFT) | e->offset_in_page,
1260 grain_bits, e->syndrome, e->other_detail);
1261
1262 edac_raw_mc_handle_error(type, mci, e);
1263 }
1264 EXPORT_SYMBOL_GPL(edac_mc_handle_error);