]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/edac/edac_mc.c
hwmon: (coretemp) Don't use threshold registers for tempX_max
[mirror_ubuntu-artful-kernel.git] / drivers / edac / edac_mc.c
1 /*
2 * edac_mc kernel module
3 * (C) 2005, 2006 Linux Networx (http://lnxi.com)
4 * This file may be distributed under the terms of the
5 * GNU General Public License.
6 *
7 * Written by Thayne Harbaugh
8 * Based on work by Dan Hollis <goemon at anime dot net> and others.
9 * http://www.anime.net/~goemon/linux-ecc/
10 *
11 * Modified by Dave Peterson and Doug Thompson
12 *
13 */
14
15 #include <linux/module.h>
16 #include <linux/proc_fs.h>
17 #include <linux/kernel.h>
18 #include <linux/types.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/sysctl.h>
22 #include <linux/highmem.h>
23 #include <linux/timer.h>
24 #include <linux/slab.h>
25 #include <linux/jiffies.h>
26 #include <linux/spinlock.h>
27 #include <linux/list.h>
28 #include <linux/sysdev.h>
29 #include <linux/ctype.h>
30 #include <linux/edac.h>
31 #include <asm/uaccess.h>
32 #include <asm/page.h>
33 #include <asm/edac.h>
34 #include "edac_core.h"
35 #include "edac_module.h"
36
37 /* lock to memory controller's control array */
38 static DEFINE_MUTEX(mem_ctls_mutex);
39 static LIST_HEAD(mc_devices);
40
41 #ifdef CONFIG_EDAC_DEBUG
42
43 static void edac_mc_dump_channel(struct channel_info *chan)
44 {
45 debugf4("\tchannel = %p\n", chan);
46 debugf4("\tchannel->chan_idx = %d\n", chan->chan_idx);
47 debugf4("\tchannel->ce_count = %d\n", chan->ce_count);
48 debugf4("\tchannel->label = '%s'\n", chan->label);
49 debugf4("\tchannel->csrow = %p\n\n", chan->csrow);
50 }
51
52 static void edac_mc_dump_csrow(struct csrow_info *csrow)
53 {
54 debugf4("\tcsrow = %p\n", csrow);
55 debugf4("\tcsrow->csrow_idx = %d\n", csrow->csrow_idx);
56 debugf4("\tcsrow->first_page = 0x%lx\n", csrow->first_page);
57 debugf4("\tcsrow->last_page = 0x%lx\n", csrow->last_page);
58 debugf4("\tcsrow->page_mask = 0x%lx\n", csrow->page_mask);
59 debugf4("\tcsrow->nr_pages = 0x%x\n", csrow->nr_pages);
60 debugf4("\tcsrow->nr_channels = %d\n", csrow->nr_channels);
61 debugf4("\tcsrow->channels = %p\n", csrow->channels);
62 debugf4("\tcsrow->mci = %p\n\n", csrow->mci);
63 }
64
65 static void edac_mc_dump_mci(struct mem_ctl_info *mci)
66 {
67 debugf3("\tmci = %p\n", mci);
68 debugf3("\tmci->mtype_cap = %lx\n", mci->mtype_cap);
69 debugf3("\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap);
70 debugf3("\tmci->edac_cap = %lx\n", mci->edac_cap);
71 debugf4("\tmci->edac_check = %p\n", mci->edac_check);
72 debugf3("\tmci->nr_csrows = %d, csrows = %p\n",
73 mci->nr_csrows, mci->csrows);
74 debugf3("\tdev = %p\n", mci->dev);
75 debugf3("\tmod_name:ctl_name = %s:%s\n", mci->mod_name, mci->ctl_name);
76 debugf3("\tpvt_info = %p\n\n", mci->pvt_info);
77 }
78
79 #endif /* CONFIG_EDAC_DEBUG */
80
81 /*
82 * keep those in sync with the enum mem_type
83 */
84 const char *edac_mem_types[] = {
85 "Empty csrow",
86 "Reserved csrow type",
87 "Unknown csrow type",
88 "Fast page mode RAM",
89 "Extended data out RAM",
90 "Burst Extended data out RAM",
91 "Single data rate SDRAM",
92 "Registered single data rate SDRAM",
93 "Double data rate SDRAM",
94 "Registered Double data rate SDRAM",
95 "Rambus DRAM",
96 "Unbuffered DDR2 RAM",
97 "Fully buffered DDR2",
98 "Registered DDR2 RAM",
99 "Rambus XDR",
100 "Unbuffered DDR3 RAM",
101 "Registered DDR3 RAM",
102 };
103 EXPORT_SYMBOL_GPL(edac_mem_types);
104
105 /* 'ptr' points to a possibly unaligned item X such that sizeof(X) is 'size'.
106 * Adjust 'ptr' so that its alignment is at least as stringent as what the
107 * compiler would provide for X and return the aligned result.
108 *
109 * If 'size' is a constant, the compiler will optimize this whole function
110 * down to either a no-op or the addition of a constant to the value of 'ptr'.
111 */
112 void *edac_align_ptr(void *ptr, unsigned size)
113 {
114 unsigned align, r;
115
116 /* Here we assume that the alignment of a "long long" is the most
117 * stringent alignment that the compiler will ever provide by default.
118 * As far as I know, this is a reasonable assumption.
119 */
120 if (size > sizeof(long))
121 align = sizeof(long long);
122 else if (size > sizeof(int))
123 align = sizeof(long);
124 else if (size > sizeof(short))
125 align = sizeof(int);
126 else if (size > sizeof(char))
127 align = sizeof(short);
128 else
129 return (char *)ptr;
130
131 r = size % align;
132
133 if (r == 0)
134 return (char *)ptr;
135
136 return (void *)(((unsigned long)ptr) + align - r);
137 }
138
139 /**
140 * edac_mc_alloc: Allocate a struct mem_ctl_info structure
141 * @size_pvt: size of private storage needed
142 * @nr_csrows: Number of CWROWS needed for this MC
143 * @nr_chans: Number of channels for the MC
144 *
145 * Everything is kmalloc'ed as one big chunk - more efficient.
146 * Only can be used if all structures have the same lifetime - otherwise
147 * you have to allocate and initialize your own structures.
148 *
149 * Use edac_mc_free() to free mc structures allocated by this function.
150 *
151 * Returns:
152 * NULL allocation failed
153 * struct mem_ctl_info pointer
154 */
155 struct mem_ctl_info *edac_mc_alloc(unsigned sz_pvt, unsigned nr_csrows,
156 unsigned nr_chans, int edac_index)
157 {
158 struct mem_ctl_info *mci;
159 struct csrow_info *csi, *csrow;
160 struct channel_info *chi, *chp, *chan;
161 void *pvt;
162 unsigned size;
163 int row, chn;
164 int err;
165
166 /* Figure out the offsets of the various items from the start of an mc
167 * structure. We want the alignment of each item to be at least as
168 * stringent as what the compiler would provide if we could simply
169 * hardcode everything into a single struct.
170 */
171 mci = (struct mem_ctl_info *)0;
172 csi = edac_align_ptr(&mci[1], sizeof(*csi));
173 chi = edac_align_ptr(&csi[nr_csrows], sizeof(*chi));
174 pvt = edac_align_ptr(&chi[nr_chans * nr_csrows], sz_pvt);
175 size = ((unsigned long)pvt) + sz_pvt;
176
177 mci = kzalloc(size, GFP_KERNEL);
178 if (mci == NULL)
179 return NULL;
180
181 /* Adjust pointers so they point within the memory we just allocated
182 * rather than an imaginary chunk of memory located at address 0.
183 */
184 csi = (struct csrow_info *)(((char *)mci) + ((unsigned long)csi));
185 chi = (struct channel_info *)(((char *)mci) + ((unsigned long)chi));
186 pvt = sz_pvt ? (((char *)mci) + ((unsigned long)pvt)) : NULL;
187
188 /* setup index and various internal pointers */
189 mci->mc_idx = edac_index;
190 mci->csrows = csi;
191 mci->pvt_info = pvt;
192 mci->nr_csrows = nr_csrows;
193
194 for (row = 0; row < nr_csrows; row++) {
195 csrow = &csi[row];
196 csrow->csrow_idx = row;
197 csrow->mci = mci;
198 csrow->nr_channels = nr_chans;
199 chp = &chi[row * nr_chans];
200 csrow->channels = chp;
201
202 for (chn = 0; chn < nr_chans; chn++) {
203 chan = &chp[chn];
204 chan->chan_idx = chn;
205 chan->csrow = csrow;
206 }
207 }
208
209 mci->op_state = OP_ALLOC;
210 INIT_LIST_HEAD(&mci->grp_kobj_list);
211
212 /*
213 * Initialize the 'root' kobj for the edac_mc controller
214 */
215 err = edac_mc_register_sysfs_main_kobj(mci);
216 if (err) {
217 kfree(mci);
218 return NULL;
219 }
220
221 /* at this point, the root kobj is valid, and in order to
222 * 'free' the object, then the function:
223 * edac_mc_unregister_sysfs_main_kobj() must be called
224 * which will perform kobj unregistration and the actual free
225 * will occur during the kobject callback operation
226 */
227 return mci;
228 }
229 EXPORT_SYMBOL_GPL(edac_mc_alloc);
230
231 /**
232 * edac_mc_free
233 * 'Free' a previously allocated 'mci' structure
234 * @mci: pointer to a struct mem_ctl_info structure
235 */
236 void edac_mc_free(struct mem_ctl_info *mci)
237 {
238 debugf1("%s()\n", __func__);
239
240 edac_mc_unregister_sysfs_main_kobj(mci);
241
242 /* free the mci instance memory here */
243 kfree(mci);
244 }
245 EXPORT_SYMBOL_GPL(edac_mc_free);
246
247
248 /**
249 * find_mci_by_dev
250 *
251 * scan list of controllers looking for the one that manages
252 * the 'dev' device
253 * @dev: pointer to a struct device related with the MCI
254 */
255 struct mem_ctl_info *find_mci_by_dev(struct device *dev)
256 {
257 struct mem_ctl_info *mci;
258 struct list_head *item;
259
260 debugf3("%s()\n", __func__);
261
262 list_for_each(item, &mc_devices) {
263 mci = list_entry(item, struct mem_ctl_info, link);
264
265 if (mci->dev == dev)
266 return mci;
267 }
268
269 return NULL;
270 }
271 EXPORT_SYMBOL_GPL(find_mci_by_dev);
272
273 /*
274 * handler for EDAC to check if NMI type handler has asserted interrupt
275 */
276 static int edac_mc_assert_error_check_and_clear(void)
277 {
278 int old_state;
279
280 if (edac_op_state == EDAC_OPSTATE_POLL)
281 return 1;
282
283 old_state = edac_err_assert;
284 edac_err_assert = 0;
285
286 return old_state;
287 }
288
289 /*
290 * edac_mc_workq_function
291 * performs the operation scheduled by a workq request
292 */
293 static void edac_mc_workq_function(struct work_struct *work_req)
294 {
295 struct delayed_work *d_work = to_delayed_work(work_req);
296 struct mem_ctl_info *mci = to_edac_mem_ctl_work(d_work);
297
298 mutex_lock(&mem_ctls_mutex);
299
300 /* if this control struct has movd to offline state, we are done */
301 if (mci->op_state == OP_OFFLINE) {
302 mutex_unlock(&mem_ctls_mutex);
303 return;
304 }
305
306 /* Only poll controllers that are running polled and have a check */
307 if (edac_mc_assert_error_check_and_clear() && (mci->edac_check != NULL))
308 mci->edac_check(mci);
309
310 mutex_unlock(&mem_ctls_mutex);
311
312 /* Reschedule */
313 queue_delayed_work(edac_workqueue, &mci->work,
314 msecs_to_jiffies(edac_mc_get_poll_msec()));
315 }
316
317 /*
318 * edac_mc_workq_setup
319 * initialize a workq item for this mci
320 * passing in the new delay period in msec
321 *
322 * locking model:
323 *
324 * called with the mem_ctls_mutex held
325 */
326 static void edac_mc_workq_setup(struct mem_ctl_info *mci, unsigned msec)
327 {
328 debugf0("%s()\n", __func__);
329
330 /* if this instance is not in the POLL state, then simply return */
331 if (mci->op_state != OP_RUNNING_POLL)
332 return;
333
334 INIT_DELAYED_WORK(&mci->work, edac_mc_workq_function);
335 queue_delayed_work(edac_workqueue, &mci->work, msecs_to_jiffies(msec));
336 }
337
338 /*
339 * edac_mc_workq_teardown
340 * stop the workq processing on this mci
341 *
342 * locking model:
343 *
344 * called WITHOUT lock held
345 */
346 static void edac_mc_workq_teardown(struct mem_ctl_info *mci)
347 {
348 int status;
349
350 if (mci->op_state != OP_RUNNING_POLL)
351 return;
352
353 status = cancel_delayed_work(&mci->work);
354 if (status == 0) {
355 debugf0("%s() not canceled, flush the queue\n",
356 __func__);
357
358 /* workq instance might be running, wait for it */
359 flush_workqueue(edac_workqueue);
360 }
361 }
362
363 /*
364 * edac_mc_reset_delay_period(unsigned long value)
365 *
366 * user space has updated our poll period value, need to
367 * reset our workq delays
368 */
369 void edac_mc_reset_delay_period(int value)
370 {
371 struct mem_ctl_info *mci;
372 struct list_head *item;
373
374 mutex_lock(&mem_ctls_mutex);
375
376 /* scan the list and turn off all workq timers, doing so under lock
377 */
378 list_for_each(item, &mc_devices) {
379 mci = list_entry(item, struct mem_ctl_info, link);
380
381 if (mci->op_state == OP_RUNNING_POLL)
382 cancel_delayed_work(&mci->work);
383 }
384
385 mutex_unlock(&mem_ctls_mutex);
386
387
388 /* re-walk the list, and reset the poll delay */
389 mutex_lock(&mem_ctls_mutex);
390
391 list_for_each(item, &mc_devices) {
392 mci = list_entry(item, struct mem_ctl_info, link);
393
394 edac_mc_workq_setup(mci, (unsigned long) value);
395 }
396
397 mutex_unlock(&mem_ctls_mutex);
398 }
399
400
401
402 /* Return 0 on success, 1 on failure.
403 * Before calling this function, caller must
404 * assign a unique value to mci->mc_idx.
405 *
406 * locking model:
407 *
408 * called with the mem_ctls_mutex lock held
409 */
410 static int add_mc_to_global_list(struct mem_ctl_info *mci)
411 {
412 struct list_head *item, *insert_before;
413 struct mem_ctl_info *p;
414
415 insert_before = &mc_devices;
416
417 p = find_mci_by_dev(mci->dev);
418 if (unlikely(p != NULL))
419 goto fail0;
420
421 list_for_each(item, &mc_devices) {
422 p = list_entry(item, struct mem_ctl_info, link);
423
424 if (p->mc_idx >= mci->mc_idx) {
425 if (unlikely(p->mc_idx == mci->mc_idx))
426 goto fail1;
427
428 insert_before = item;
429 break;
430 }
431 }
432
433 list_add_tail_rcu(&mci->link, insert_before);
434 atomic_inc(&edac_handlers);
435 return 0;
436
437 fail0:
438 edac_printk(KERN_WARNING, EDAC_MC,
439 "%s (%s) %s %s already assigned %d\n", dev_name(p->dev),
440 edac_dev_name(mci), p->mod_name, p->ctl_name, p->mc_idx);
441 return 1;
442
443 fail1:
444 edac_printk(KERN_WARNING, EDAC_MC,
445 "bug in low-level driver: attempt to assign\n"
446 " duplicate mc_idx %d in %s()\n", p->mc_idx, __func__);
447 return 1;
448 }
449
450 static void del_mc_from_global_list(struct mem_ctl_info *mci)
451 {
452 atomic_dec(&edac_handlers);
453 list_del_rcu(&mci->link);
454
455 /* these are for safe removal of devices from global list while
456 * NMI handlers may be traversing list
457 */
458 synchronize_rcu();
459 INIT_LIST_HEAD(&mci->link);
460 }
461
462 /**
463 * edac_mc_find: Search for a mem_ctl_info structure whose index is 'idx'.
464 *
465 * If found, return a pointer to the structure.
466 * Else return NULL.
467 *
468 * Caller must hold mem_ctls_mutex.
469 */
470 struct mem_ctl_info *edac_mc_find(int idx)
471 {
472 struct list_head *item;
473 struct mem_ctl_info *mci;
474
475 list_for_each(item, &mc_devices) {
476 mci = list_entry(item, struct mem_ctl_info, link);
477
478 if (mci->mc_idx >= idx) {
479 if (mci->mc_idx == idx)
480 return mci;
481
482 break;
483 }
484 }
485
486 return NULL;
487 }
488 EXPORT_SYMBOL(edac_mc_find);
489
490 /**
491 * edac_mc_add_mc: Insert the 'mci' structure into the mci global list and
492 * create sysfs entries associated with mci structure
493 * @mci: pointer to the mci structure to be added to the list
494 * @mc_idx: A unique numeric identifier to be assigned to the 'mci' structure.
495 *
496 * Return:
497 * 0 Success
498 * !0 Failure
499 */
500
501 /* FIXME - should a warning be printed if no error detection? correction? */
502 int edac_mc_add_mc(struct mem_ctl_info *mci)
503 {
504 debugf0("%s()\n", __func__);
505
506 #ifdef CONFIG_EDAC_DEBUG
507 if (edac_debug_level >= 3)
508 edac_mc_dump_mci(mci);
509
510 if (edac_debug_level >= 4) {
511 int i;
512
513 for (i = 0; i < mci->nr_csrows; i++) {
514 int j;
515
516 edac_mc_dump_csrow(&mci->csrows[i]);
517 for (j = 0; j < mci->csrows[i].nr_channels; j++)
518 edac_mc_dump_channel(&mci->csrows[i].
519 channels[j]);
520 }
521 }
522 #endif
523 mutex_lock(&mem_ctls_mutex);
524
525 if (add_mc_to_global_list(mci))
526 goto fail0;
527
528 /* set load time so that error rate can be tracked */
529 mci->start_time = jiffies;
530
531 if (edac_create_sysfs_mci_device(mci)) {
532 edac_mc_printk(mci, KERN_WARNING,
533 "failed to create sysfs device\n");
534 goto fail1;
535 }
536
537 /* If there IS a check routine, then we are running POLLED */
538 if (mci->edac_check != NULL) {
539 /* This instance is NOW RUNNING */
540 mci->op_state = OP_RUNNING_POLL;
541
542 edac_mc_workq_setup(mci, edac_mc_get_poll_msec());
543 } else {
544 mci->op_state = OP_RUNNING_INTERRUPT;
545 }
546
547 /* Report action taken */
548 edac_mc_printk(mci, KERN_INFO, "Giving out device to '%s' '%s':"
549 " DEV %s\n", mci->mod_name, mci->ctl_name, edac_dev_name(mci));
550
551 mutex_unlock(&mem_ctls_mutex);
552 return 0;
553
554 fail1:
555 del_mc_from_global_list(mci);
556
557 fail0:
558 mutex_unlock(&mem_ctls_mutex);
559 return 1;
560 }
561 EXPORT_SYMBOL_GPL(edac_mc_add_mc);
562
563 /**
564 * edac_mc_del_mc: Remove sysfs entries for specified mci structure and
565 * remove mci structure from global list
566 * @pdev: Pointer to 'struct device' representing mci structure to remove.
567 *
568 * Return pointer to removed mci structure, or NULL if device not found.
569 */
570 struct mem_ctl_info *edac_mc_del_mc(struct device *dev)
571 {
572 struct mem_ctl_info *mci;
573
574 debugf0("%s()\n", __func__);
575
576 mutex_lock(&mem_ctls_mutex);
577
578 /* find the requested mci struct in the global list */
579 mci = find_mci_by_dev(dev);
580 if (mci == NULL) {
581 mutex_unlock(&mem_ctls_mutex);
582 return NULL;
583 }
584
585 del_mc_from_global_list(mci);
586 mutex_unlock(&mem_ctls_mutex);
587
588 /* flush workq processes */
589 edac_mc_workq_teardown(mci);
590
591 /* marking MCI offline */
592 mci->op_state = OP_OFFLINE;
593
594 /* remove from sysfs */
595 edac_remove_sysfs_mci_device(mci);
596
597 edac_printk(KERN_INFO, EDAC_MC,
598 "Removed device %d for %s %s: DEV %s\n", mci->mc_idx,
599 mci->mod_name, mci->ctl_name, edac_dev_name(mci));
600
601 return mci;
602 }
603 EXPORT_SYMBOL_GPL(edac_mc_del_mc);
604
605 static void edac_mc_scrub_block(unsigned long page, unsigned long offset,
606 u32 size)
607 {
608 struct page *pg;
609 void *virt_addr;
610 unsigned long flags = 0;
611
612 debugf3("%s()\n", __func__);
613
614 /* ECC error page was not in our memory. Ignore it. */
615 if (!pfn_valid(page))
616 return;
617
618 /* Find the actual page structure then map it and fix */
619 pg = pfn_to_page(page);
620
621 if (PageHighMem(pg))
622 local_irq_save(flags);
623
624 virt_addr = kmap_atomic(pg, KM_BOUNCE_READ);
625
626 /* Perform architecture specific atomic scrub operation */
627 atomic_scrub(virt_addr + offset, size);
628
629 /* Unmap and complete */
630 kunmap_atomic(virt_addr, KM_BOUNCE_READ);
631
632 if (PageHighMem(pg))
633 local_irq_restore(flags);
634 }
635
636 /* FIXME - should return -1 */
637 int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci, unsigned long page)
638 {
639 struct csrow_info *csrows = mci->csrows;
640 int row, i;
641
642 debugf1("MC%d: %s(): 0x%lx\n", mci->mc_idx, __func__, page);
643 row = -1;
644
645 for (i = 0; i < mci->nr_csrows; i++) {
646 struct csrow_info *csrow = &csrows[i];
647
648 if (csrow->nr_pages == 0)
649 continue;
650
651 debugf3("MC%d: %s(): first(0x%lx) page(0x%lx) last(0x%lx) "
652 "mask(0x%lx)\n", mci->mc_idx, __func__,
653 csrow->first_page, page, csrow->last_page,
654 csrow->page_mask);
655
656 if ((page >= csrow->first_page) &&
657 (page <= csrow->last_page) &&
658 ((page & csrow->page_mask) ==
659 (csrow->first_page & csrow->page_mask))) {
660 row = i;
661 break;
662 }
663 }
664
665 if (row == -1)
666 edac_mc_printk(mci, KERN_ERR,
667 "could not look up page error address %lx\n",
668 (unsigned long)page);
669
670 return row;
671 }
672 EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page);
673
674 /* FIXME - setable log (warning/emerg) levels */
675 /* FIXME - integrate with evlog: http://evlog.sourceforge.net/ */
676 void edac_mc_handle_ce(struct mem_ctl_info *mci,
677 unsigned long page_frame_number,
678 unsigned long offset_in_page, unsigned long syndrome,
679 int row, int channel, const char *msg)
680 {
681 unsigned long remapped_page;
682
683 debugf3("MC%d: %s()\n", mci->mc_idx, __func__);
684
685 /* FIXME - maybe make panic on INTERNAL ERROR an option */
686 if (row >= mci->nr_csrows || row < 0) {
687 /* something is wrong */
688 edac_mc_printk(mci, KERN_ERR,
689 "INTERNAL ERROR: row out of range "
690 "(%d >= %d)\n", row, mci->nr_csrows);
691 edac_mc_handle_ce_no_info(mci, "INTERNAL ERROR");
692 return;
693 }
694
695 if (channel >= mci->csrows[row].nr_channels || channel < 0) {
696 /* something is wrong */
697 edac_mc_printk(mci, KERN_ERR,
698 "INTERNAL ERROR: channel out of range "
699 "(%d >= %d)\n", channel,
700 mci->csrows[row].nr_channels);
701 edac_mc_handle_ce_no_info(mci, "INTERNAL ERROR");
702 return;
703 }
704
705 if (edac_mc_get_log_ce())
706 /* FIXME - put in DIMM location */
707 edac_mc_printk(mci, KERN_WARNING,
708 "CE page 0x%lx, offset 0x%lx, grain %d, syndrome "
709 "0x%lx, row %d, channel %d, label \"%s\": %s\n",
710 page_frame_number, offset_in_page,
711 mci->csrows[row].grain, syndrome, row, channel,
712 mci->csrows[row].channels[channel].label, msg);
713
714 mci->ce_count++;
715 mci->csrows[row].ce_count++;
716 mci->csrows[row].channels[channel].ce_count++;
717
718 if (mci->scrub_mode & SCRUB_SW_SRC) {
719 /*
720 * Some MC's can remap memory so that it is still available
721 * at a different address when PCI devices map into memory.
722 * MC's that can't do this lose the memory where PCI devices
723 * are mapped. This mapping is MC dependent and so we call
724 * back into the MC driver for it to map the MC page to
725 * a physical (CPU) page which can then be mapped to a virtual
726 * page - which can then be scrubbed.
727 */
728 remapped_page = mci->ctl_page_to_phys ?
729 mci->ctl_page_to_phys(mci, page_frame_number) :
730 page_frame_number;
731
732 edac_mc_scrub_block(remapped_page, offset_in_page,
733 mci->csrows[row].grain);
734 }
735 }
736 EXPORT_SYMBOL_GPL(edac_mc_handle_ce);
737
738 void edac_mc_handle_ce_no_info(struct mem_ctl_info *mci, const char *msg)
739 {
740 if (edac_mc_get_log_ce())
741 edac_mc_printk(mci, KERN_WARNING,
742 "CE - no information available: %s\n", msg);
743
744 mci->ce_noinfo_count++;
745 mci->ce_count++;
746 }
747 EXPORT_SYMBOL_GPL(edac_mc_handle_ce_no_info);
748
749 void edac_mc_handle_ue(struct mem_ctl_info *mci,
750 unsigned long page_frame_number,
751 unsigned long offset_in_page, int row, const char *msg)
752 {
753 int len = EDAC_MC_LABEL_LEN * 4;
754 char labels[len + 1];
755 char *pos = labels;
756 int chan;
757 int chars;
758
759 debugf3("MC%d: %s()\n", mci->mc_idx, __func__);
760
761 /* FIXME - maybe make panic on INTERNAL ERROR an option */
762 if (row >= mci->nr_csrows || row < 0) {
763 /* something is wrong */
764 edac_mc_printk(mci, KERN_ERR,
765 "INTERNAL ERROR: row out of range "
766 "(%d >= %d)\n", row, mci->nr_csrows);
767 edac_mc_handle_ue_no_info(mci, "INTERNAL ERROR");
768 return;
769 }
770
771 chars = snprintf(pos, len + 1, "%s",
772 mci->csrows[row].channels[0].label);
773 len -= chars;
774 pos += chars;
775
776 for (chan = 1; (chan < mci->csrows[row].nr_channels) && (len > 0);
777 chan++) {
778 chars = snprintf(pos, len + 1, ":%s",
779 mci->csrows[row].channels[chan].label);
780 len -= chars;
781 pos += chars;
782 }
783
784 if (edac_mc_get_log_ue())
785 edac_mc_printk(mci, KERN_EMERG,
786 "UE page 0x%lx, offset 0x%lx, grain %d, row %d, "
787 "labels \"%s\": %s\n", page_frame_number,
788 offset_in_page, mci->csrows[row].grain, row,
789 labels, msg);
790
791 if (edac_mc_get_panic_on_ue())
792 panic("EDAC MC%d: UE page 0x%lx, offset 0x%lx, grain %d, "
793 "row %d, labels \"%s\": %s\n", mci->mc_idx,
794 page_frame_number, offset_in_page,
795 mci->csrows[row].grain, row, labels, msg);
796
797 mci->ue_count++;
798 mci->csrows[row].ue_count++;
799 }
800 EXPORT_SYMBOL_GPL(edac_mc_handle_ue);
801
802 void edac_mc_handle_ue_no_info(struct mem_ctl_info *mci, const char *msg)
803 {
804 if (edac_mc_get_panic_on_ue())
805 panic("EDAC MC%d: Uncorrected Error", mci->mc_idx);
806
807 if (edac_mc_get_log_ue())
808 edac_mc_printk(mci, KERN_WARNING,
809 "UE - no information available: %s\n", msg);
810 mci->ue_noinfo_count++;
811 mci->ue_count++;
812 }
813 EXPORT_SYMBOL_GPL(edac_mc_handle_ue_no_info);
814
815 /*************************************************************
816 * On Fully Buffered DIMM modules, this help function is
817 * called to process UE events
818 */
819 void edac_mc_handle_fbd_ue(struct mem_ctl_info *mci,
820 unsigned int csrow,
821 unsigned int channela,
822 unsigned int channelb, char *msg)
823 {
824 int len = EDAC_MC_LABEL_LEN * 4;
825 char labels[len + 1];
826 char *pos = labels;
827 int chars;
828
829 if (csrow >= mci->nr_csrows) {
830 /* something is wrong */
831 edac_mc_printk(mci, KERN_ERR,
832 "INTERNAL ERROR: row out of range (%d >= %d)\n",
833 csrow, mci->nr_csrows);
834 edac_mc_handle_ue_no_info(mci, "INTERNAL ERROR");
835 return;
836 }
837
838 if (channela >= mci->csrows[csrow].nr_channels) {
839 /* something is wrong */
840 edac_mc_printk(mci, KERN_ERR,
841 "INTERNAL ERROR: channel-a out of range "
842 "(%d >= %d)\n",
843 channela, mci->csrows[csrow].nr_channels);
844 edac_mc_handle_ue_no_info(mci, "INTERNAL ERROR");
845 return;
846 }
847
848 if (channelb >= mci->csrows[csrow].nr_channels) {
849 /* something is wrong */
850 edac_mc_printk(mci, KERN_ERR,
851 "INTERNAL ERROR: channel-b out of range "
852 "(%d >= %d)\n",
853 channelb, mci->csrows[csrow].nr_channels);
854 edac_mc_handle_ue_no_info(mci, "INTERNAL ERROR");
855 return;
856 }
857
858 mci->ue_count++;
859 mci->csrows[csrow].ue_count++;
860
861 /* Generate the DIMM labels from the specified channels */
862 chars = snprintf(pos, len + 1, "%s",
863 mci->csrows[csrow].channels[channela].label);
864 len -= chars;
865 pos += chars;
866 chars = snprintf(pos, len + 1, "-%s",
867 mci->csrows[csrow].channels[channelb].label);
868
869 if (edac_mc_get_log_ue())
870 edac_mc_printk(mci, KERN_EMERG,
871 "UE row %d, channel-a= %d channel-b= %d "
872 "labels \"%s\": %s\n", csrow, channela, channelb,
873 labels, msg);
874
875 if (edac_mc_get_panic_on_ue())
876 panic("UE row %d, channel-a= %d channel-b= %d "
877 "labels \"%s\": %s\n", csrow, channela,
878 channelb, labels, msg);
879 }
880 EXPORT_SYMBOL(edac_mc_handle_fbd_ue);
881
882 /*************************************************************
883 * On Fully Buffered DIMM modules, this help function is
884 * called to process CE events
885 */
886 void edac_mc_handle_fbd_ce(struct mem_ctl_info *mci,
887 unsigned int csrow, unsigned int channel, char *msg)
888 {
889
890 /* Ensure boundary values */
891 if (csrow >= mci->nr_csrows) {
892 /* something is wrong */
893 edac_mc_printk(mci, KERN_ERR,
894 "INTERNAL ERROR: row out of range (%d >= %d)\n",
895 csrow, mci->nr_csrows);
896 edac_mc_handle_ce_no_info(mci, "INTERNAL ERROR");
897 return;
898 }
899 if (channel >= mci->csrows[csrow].nr_channels) {
900 /* something is wrong */
901 edac_mc_printk(mci, KERN_ERR,
902 "INTERNAL ERROR: channel out of range (%d >= %d)\n",
903 channel, mci->csrows[csrow].nr_channels);
904 edac_mc_handle_ce_no_info(mci, "INTERNAL ERROR");
905 return;
906 }
907
908 if (edac_mc_get_log_ce())
909 /* FIXME - put in DIMM location */
910 edac_mc_printk(mci, KERN_WARNING,
911 "CE row %d, channel %d, label \"%s\": %s\n",
912 csrow, channel,
913 mci->csrows[csrow].channels[channel].label, msg);
914
915 mci->ce_count++;
916 mci->csrows[csrow].ce_count++;
917 mci->csrows[csrow].channels[channel].ce_count++;
918 }
919 EXPORT_SYMBOL(edac_mc_handle_fbd_ce);