]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/edac/edac_mc.c
rhashtable: remove insecure_elasticity
[mirror_ubuntu-artful-kernel.git] / drivers / edac / edac_mc.c
1 /*
2 * edac_mc kernel module
3 * (C) 2005, 2006 Linux Networx (http://lnxi.com)
4 * This file may be distributed under the terms of the
5 * GNU General Public License.
6 *
7 * Written by Thayne Harbaugh
8 * Based on work by Dan Hollis <goemon at anime dot net> and others.
9 * http://www.anime.net/~goemon/linux-ecc/
10 *
11 * Modified by Dave Peterson and Doug Thompson
12 *
13 */
14
15 #include <linux/module.h>
16 #include <linux/proc_fs.h>
17 #include <linux/kernel.h>
18 #include <linux/types.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/sysctl.h>
22 #include <linux/highmem.h>
23 #include <linux/timer.h>
24 #include <linux/slab.h>
25 #include <linux/jiffies.h>
26 #include <linux/spinlock.h>
27 #include <linux/list.h>
28 #include <linux/ctype.h>
29 #include <linux/edac.h>
30 #include <linux/bitops.h>
31 #include <linux/uaccess.h>
32 #include <asm/page.h>
33 #include "edac_mc.h"
34 #include "edac_module.h"
35 #include <ras/ras_event.h>
36
37 #ifdef CONFIG_EDAC_ATOMIC_SCRUB
38 #include <asm/edac.h>
39 #else
40 #define edac_atomic_scrub(va, size) do { } while (0)
41 #endif
42
43 /* lock to memory controller's control array */
44 static DEFINE_MUTEX(mem_ctls_mutex);
45 static LIST_HEAD(mc_devices);
46
47 /*
48 * Used to lock EDAC MC to just one module, avoiding two drivers e. g.
49 * apei/ghes and i7core_edac to be used at the same time.
50 */
51 static void const *edac_mc_owner;
52
53 static struct bus_type mc_bus[EDAC_MAX_MCS];
54
55 unsigned edac_dimm_info_location(struct dimm_info *dimm, char *buf,
56 unsigned len)
57 {
58 struct mem_ctl_info *mci = dimm->mci;
59 int i, n, count = 0;
60 char *p = buf;
61
62 for (i = 0; i < mci->n_layers; i++) {
63 n = snprintf(p, len, "%s %d ",
64 edac_layer_name[mci->layers[i].type],
65 dimm->location[i]);
66 p += n;
67 len -= n;
68 count += n;
69 if (!len)
70 break;
71 }
72
73 return count;
74 }
75
76 #ifdef CONFIG_EDAC_DEBUG
77
78 static void edac_mc_dump_channel(struct rank_info *chan)
79 {
80 edac_dbg(4, " channel->chan_idx = %d\n", chan->chan_idx);
81 edac_dbg(4, " channel = %p\n", chan);
82 edac_dbg(4, " channel->csrow = %p\n", chan->csrow);
83 edac_dbg(4, " channel->dimm = %p\n", chan->dimm);
84 }
85
86 static void edac_mc_dump_dimm(struct dimm_info *dimm, int number)
87 {
88 char location[80];
89
90 edac_dimm_info_location(dimm, location, sizeof(location));
91
92 edac_dbg(4, "%s%i: %smapped as virtual row %d, chan %d\n",
93 dimm->mci->csbased ? "rank" : "dimm",
94 number, location, dimm->csrow, dimm->cschannel);
95 edac_dbg(4, " dimm = %p\n", dimm);
96 edac_dbg(4, " dimm->label = '%s'\n", dimm->label);
97 edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm->nr_pages);
98 edac_dbg(4, " dimm->grain = %d\n", dimm->grain);
99 edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm->nr_pages);
100 }
101
102 static void edac_mc_dump_csrow(struct csrow_info *csrow)
103 {
104 edac_dbg(4, "csrow->csrow_idx = %d\n", csrow->csrow_idx);
105 edac_dbg(4, " csrow = %p\n", csrow);
106 edac_dbg(4, " csrow->first_page = 0x%lx\n", csrow->first_page);
107 edac_dbg(4, " csrow->last_page = 0x%lx\n", csrow->last_page);
108 edac_dbg(4, " csrow->page_mask = 0x%lx\n", csrow->page_mask);
109 edac_dbg(4, " csrow->nr_channels = %d\n", csrow->nr_channels);
110 edac_dbg(4, " csrow->channels = %p\n", csrow->channels);
111 edac_dbg(4, " csrow->mci = %p\n", csrow->mci);
112 }
113
114 static void edac_mc_dump_mci(struct mem_ctl_info *mci)
115 {
116 edac_dbg(3, "\tmci = %p\n", mci);
117 edac_dbg(3, "\tmci->mtype_cap = %lx\n", mci->mtype_cap);
118 edac_dbg(3, "\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap);
119 edac_dbg(3, "\tmci->edac_cap = %lx\n", mci->edac_cap);
120 edac_dbg(4, "\tmci->edac_check = %p\n", mci->edac_check);
121 edac_dbg(3, "\tmci->nr_csrows = %d, csrows = %p\n",
122 mci->nr_csrows, mci->csrows);
123 edac_dbg(3, "\tmci->nr_dimms = %d, dimms = %p\n",
124 mci->tot_dimms, mci->dimms);
125 edac_dbg(3, "\tdev = %p\n", mci->pdev);
126 edac_dbg(3, "\tmod_name:ctl_name = %s:%s\n",
127 mci->mod_name, mci->ctl_name);
128 edac_dbg(3, "\tpvt_info = %p\n\n", mci->pvt_info);
129 }
130
131 #endif /* CONFIG_EDAC_DEBUG */
132
133 const char * const edac_mem_types[] = {
134 [MEM_EMPTY] = "Empty csrow",
135 [MEM_RESERVED] = "Reserved csrow type",
136 [MEM_UNKNOWN] = "Unknown csrow type",
137 [MEM_FPM] = "Fast page mode RAM",
138 [MEM_EDO] = "Extended data out RAM",
139 [MEM_BEDO] = "Burst Extended data out RAM",
140 [MEM_SDR] = "Single data rate SDRAM",
141 [MEM_RDR] = "Registered single data rate SDRAM",
142 [MEM_DDR] = "Double data rate SDRAM",
143 [MEM_RDDR] = "Registered Double data rate SDRAM",
144 [MEM_RMBS] = "Rambus DRAM",
145 [MEM_DDR2] = "Unbuffered DDR2 RAM",
146 [MEM_FB_DDR2] = "Fully buffered DDR2",
147 [MEM_RDDR2] = "Registered DDR2 RAM",
148 [MEM_XDR] = "Rambus XDR",
149 [MEM_DDR3] = "Unbuffered DDR3 RAM",
150 [MEM_RDDR3] = "Registered DDR3 RAM",
151 [MEM_LRDDR3] = "Load-Reduced DDR3 RAM",
152 [MEM_DDR4] = "Unbuffered DDR4 RAM",
153 [MEM_RDDR4] = "Registered DDR4 RAM",
154 };
155 EXPORT_SYMBOL_GPL(edac_mem_types);
156
157 /**
158 * edac_align_ptr - Prepares the pointer offsets for a single-shot allocation
159 * @p: pointer to a pointer with the memory offset to be used. At
160 * return, this will be incremented to point to the next offset
161 * @size: Size of the data structure to be reserved
162 * @n_elems: Number of elements that should be reserved
163 *
164 * If 'size' is a constant, the compiler will optimize this whole function
165 * down to either a no-op or the addition of a constant to the value of '*p'.
166 *
167 * The 'p' pointer is absolutely needed to keep the proper advancing
168 * further in memory to the proper offsets when allocating the struct along
169 * with its embedded structs, as edac_device_alloc_ctl_info() does it
170 * above, for example.
171 *
172 * At return, the pointer 'p' will be incremented to be used on a next call
173 * to this function.
174 */
175 void *edac_align_ptr(void **p, unsigned size, int n_elems)
176 {
177 unsigned align, r;
178 void *ptr = *p;
179
180 *p += size * n_elems;
181
182 /*
183 * 'p' can possibly be an unaligned item X such that sizeof(X) is
184 * 'size'. Adjust 'p' so that its alignment is at least as
185 * stringent as what the compiler would provide for X and return
186 * the aligned result.
187 * Here we assume that the alignment of a "long long" is the most
188 * stringent alignment that the compiler will ever provide by default.
189 * As far as I know, this is a reasonable assumption.
190 */
191 if (size > sizeof(long))
192 align = sizeof(long long);
193 else if (size > sizeof(int))
194 align = sizeof(long);
195 else if (size > sizeof(short))
196 align = sizeof(int);
197 else if (size > sizeof(char))
198 align = sizeof(short);
199 else
200 return (char *)ptr;
201
202 r = (unsigned long)p % align;
203
204 if (r == 0)
205 return (char *)ptr;
206
207 *p += align - r;
208
209 return (void *)(((unsigned long)ptr) + align - r);
210 }
211
212 static void _edac_mc_free(struct mem_ctl_info *mci)
213 {
214 int i, chn, row;
215 struct csrow_info *csr;
216 const unsigned int tot_dimms = mci->tot_dimms;
217 const unsigned int tot_channels = mci->num_cschannel;
218 const unsigned int tot_csrows = mci->nr_csrows;
219
220 if (mci->dimms) {
221 for (i = 0; i < tot_dimms; i++)
222 kfree(mci->dimms[i]);
223 kfree(mci->dimms);
224 }
225 if (mci->csrows) {
226 for (row = 0; row < tot_csrows; row++) {
227 csr = mci->csrows[row];
228 if (csr) {
229 if (csr->channels) {
230 for (chn = 0; chn < tot_channels; chn++)
231 kfree(csr->channels[chn]);
232 kfree(csr->channels);
233 }
234 kfree(csr);
235 }
236 }
237 kfree(mci->csrows);
238 }
239 kfree(mci);
240 }
241
242 struct mem_ctl_info *edac_mc_alloc(unsigned mc_num,
243 unsigned n_layers,
244 struct edac_mc_layer *layers,
245 unsigned sz_pvt)
246 {
247 struct mem_ctl_info *mci;
248 struct edac_mc_layer *layer;
249 struct csrow_info *csr;
250 struct rank_info *chan;
251 struct dimm_info *dimm;
252 u32 *ce_per_layer[EDAC_MAX_LAYERS], *ue_per_layer[EDAC_MAX_LAYERS];
253 unsigned pos[EDAC_MAX_LAYERS];
254 unsigned size, tot_dimms = 1, count = 1;
255 unsigned tot_csrows = 1, tot_channels = 1, tot_errcount = 0;
256 void *pvt, *p, *ptr = NULL;
257 int i, j, row, chn, n, len, off;
258 bool per_rank = false;
259
260 BUG_ON(n_layers > EDAC_MAX_LAYERS || n_layers == 0);
261 /*
262 * Calculate the total amount of dimms and csrows/cschannels while
263 * in the old API emulation mode
264 */
265 for (i = 0; i < n_layers; i++) {
266 tot_dimms *= layers[i].size;
267 if (layers[i].is_virt_csrow)
268 tot_csrows *= layers[i].size;
269 else
270 tot_channels *= layers[i].size;
271
272 if (layers[i].type == EDAC_MC_LAYER_CHIP_SELECT)
273 per_rank = true;
274 }
275
276 /* Figure out the offsets of the various items from the start of an mc
277 * structure. We want the alignment of each item to be at least as
278 * stringent as what the compiler would provide if we could simply
279 * hardcode everything into a single struct.
280 */
281 mci = edac_align_ptr(&ptr, sizeof(*mci), 1);
282 layer = edac_align_ptr(&ptr, sizeof(*layer), n_layers);
283 for (i = 0; i < n_layers; i++) {
284 count *= layers[i].size;
285 edac_dbg(4, "errcount layer %d size %d\n", i, count);
286 ce_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count);
287 ue_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count);
288 tot_errcount += 2 * count;
289 }
290
291 edac_dbg(4, "allocating %d error counters\n", tot_errcount);
292 pvt = edac_align_ptr(&ptr, sz_pvt, 1);
293 size = ((unsigned long)pvt) + sz_pvt;
294
295 edac_dbg(1, "allocating %u bytes for mci data (%d %s, %d csrows/channels)\n",
296 size,
297 tot_dimms,
298 per_rank ? "ranks" : "dimms",
299 tot_csrows * tot_channels);
300
301 mci = kzalloc(size, GFP_KERNEL);
302 if (mci == NULL)
303 return NULL;
304
305 /* Adjust pointers so they point within the memory we just allocated
306 * rather than an imaginary chunk of memory located at address 0.
307 */
308 layer = (struct edac_mc_layer *)(((char *)mci) + ((unsigned long)layer));
309 for (i = 0; i < n_layers; i++) {
310 mci->ce_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ce_per_layer[i]));
311 mci->ue_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ue_per_layer[i]));
312 }
313 pvt = sz_pvt ? (((char *)mci) + ((unsigned long)pvt)) : NULL;
314
315 /* setup index and various internal pointers */
316 mci->mc_idx = mc_num;
317 mci->tot_dimms = tot_dimms;
318 mci->pvt_info = pvt;
319 mci->n_layers = n_layers;
320 mci->layers = layer;
321 memcpy(mci->layers, layers, sizeof(*layer) * n_layers);
322 mci->nr_csrows = tot_csrows;
323 mci->num_cschannel = tot_channels;
324 mci->csbased = per_rank;
325
326 /*
327 * Alocate and fill the csrow/channels structs
328 */
329 mci->csrows = kcalloc(tot_csrows, sizeof(*mci->csrows), GFP_KERNEL);
330 if (!mci->csrows)
331 goto error;
332 for (row = 0; row < tot_csrows; row++) {
333 csr = kzalloc(sizeof(**mci->csrows), GFP_KERNEL);
334 if (!csr)
335 goto error;
336 mci->csrows[row] = csr;
337 csr->csrow_idx = row;
338 csr->mci = mci;
339 csr->nr_channels = tot_channels;
340 csr->channels = kcalloc(tot_channels, sizeof(*csr->channels),
341 GFP_KERNEL);
342 if (!csr->channels)
343 goto error;
344
345 for (chn = 0; chn < tot_channels; chn++) {
346 chan = kzalloc(sizeof(**csr->channels), GFP_KERNEL);
347 if (!chan)
348 goto error;
349 csr->channels[chn] = chan;
350 chan->chan_idx = chn;
351 chan->csrow = csr;
352 }
353 }
354
355 /*
356 * Allocate and fill the dimm structs
357 */
358 mci->dimms = kcalloc(tot_dimms, sizeof(*mci->dimms), GFP_KERNEL);
359 if (!mci->dimms)
360 goto error;
361
362 memset(&pos, 0, sizeof(pos));
363 row = 0;
364 chn = 0;
365 for (i = 0; i < tot_dimms; i++) {
366 chan = mci->csrows[row]->channels[chn];
367 off = EDAC_DIMM_OFF(layer, n_layers, pos[0], pos[1], pos[2]);
368 if (off < 0 || off >= tot_dimms) {
369 edac_mc_printk(mci, KERN_ERR, "EDAC core bug: EDAC_DIMM_OFF is trying to do an illegal data access\n");
370 goto error;
371 }
372
373 dimm = kzalloc(sizeof(**mci->dimms), GFP_KERNEL);
374 if (!dimm)
375 goto error;
376 mci->dimms[off] = dimm;
377 dimm->mci = mci;
378
379 /*
380 * Copy DIMM location and initialize it.
381 */
382 len = sizeof(dimm->label);
383 p = dimm->label;
384 n = snprintf(p, len, "mc#%u", mc_num);
385 p += n;
386 len -= n;
387 for (j = 0; j < n_layers; j++) {
388 n = snprintf(p, len, "%s#%u",
389 edac_layer_name[layers[j].type],
390 pos[j]);
391 p += n;
392 len -= n;
393 dimm->location[j] = pos[j];
394
395 if (len <= 0)
396 break;
397 }
398
399 /* Link it to the csrows old API data */
400 chan->dimm = dimm;
401 dimm->csrow = row;
402 dimm->cschannel = chn;
403
404 /* Increment csrow location */
405 if (layers[0].is_virt_csrow) {
406 chn++;
407 if (chn == tot_channels) {
408 chn = 0;
409 row++;
410 }
411 } else {
412 row++;
413 if (row == tot_csrows) {
414 row = 0;
415 chn++;
416 }
417 }
418
419 /* Increment dimm location */
420 for (j = n_layers - 1; j >= 0; j--) {
421 pos[j]++;
422 if (pos[j] < layers[j].size)
423 break;
424 pos[j] = 0;
425 }
426 }
427
428 mci->op_state = OP_ALLOC;
429
430 return mci;
431
432 error:
433 _edac_mc_free(mci);
434
435 return NULL;
436 }
437 EXPORT_SYMBOL_GPL(edac_mc_alloc);
438
439 void edac_mc_free(struct mem_ctl_info *mci)
440 {
441 edac_dbg(1, "\n");
442
443 /* If we're not yet registered with sysfs free only what was allocated
444 * in edac_mc_alloc().
445 */
446 if (!device_is_registered(&mci->dev)) {
447 _edac_mc_free(mci);
448 return;
449 }
450
451 /* the mci instance is freed here, when the sysfs object is dropped */
452 edac_unregister_sysfs(mci);
453 }
454 EXPORT_SYMBOL_GPL(edac_mc_free);
455
456 bool edac_has_mcs(void)
457 {
458 bool ret;
459
460 mutex_lock(&mem_ctls_mutex);
461
462 ret = list_empty(&mc_devices);
463
464 mutex_unlock(&mem_ctls_mutex);
465
466 return !ret;
467 }
468 EXPORT_SYMBOL_GPL(edac_has_mcs);
469
470 /* Caller must hold mem_ctls_mutex */
471 static struct mem_ctl_info *__find_mci_by_dev(struct device *dev)
472 {
473 struct mem_ctl_info *mci;
474 struct list_head *item;
475
476 edac_dbg(3, "\n");
477
478 list_for_each(item, &mc_devices) {
479 mci = list_entry(item, struct mem_ctl_info, link);
480
481 if (mci->pdev == dev)
482 return mci;
483 }
484
485 return NULL;
486 }
487
488 /**
489 * find_mci_by_dev
490 *
491 * scan list of controllers looking for the one that manages
492 * the 'dev' device
493 * @dev: pointer to a struct device related with the MCI
494 */
495 struct mem_ctl_info *find_mci_by_dev(struct device *dev)
496 {
497 struct mem_ctl_info *ret;
498
499 mutex_lock(&mem_ctls_mutex);
500 ret = __find_mci_by_dev(dev);
501 mutex_unlock(&mem_ctls_mutex);
502
503 return ret;
504 }
505 EXPORT_SYMBOL_GPL(find_mci_by_dev);
506
507 /*
508 * handler for EDAC to check if NMI type handler has asserted interrupt
509 */
510 static int edac_mc_assert_error_check_and_clear(void)
511 {
512 int old_state;
513
514 if (edac_op_state == EDAC_OPSTATE_POLL)
515 return 1;
516
517 old_state = edac_err_assert;
518 edac_err_assert = 0;
519
520 return old_state;
521 }
522
523 /*
524 * edac_mc_workq_function
525 * performs the operation scheduled by a workq request
526 */
527 static void edac_mc_workq_function(struct work_struct *work_req)
528 {
529 struct delayed_work *d_work = to_delayed_work(work_req);
530 struct mem_ctl_info *mci = to_edac_mem_ctl_work(d_work);
531
532 mutex_lock(&mem_ctls_mutex);
533
534 if (mci->op_state != OP_RUNNING_POLL) {
535 mutex_unlock(&mem_ctls_mutex);
536 return;
537 }
538
539 if (edac_mc_assert_error_check_and_clear())
540 mci->edac_check(mci);
541
542 mutex_unlock(&mem_ctls_mutex);
543
544 /* Queue ourselves again. */
545 edac_queue_work(&mci->work, msecs_to_jiffies(edac_mc_get_poll_msec()));
546 }
547
548 /*
549 * edac_mc_reset_delay_period(unsigned long value)
550 *
551 * user space has updated our poll period value, need to
552 * reset our workq delays
553 */
554 void edac_mc_reset_delay_period(unsigned long value)
555 {
556 struct mem_ctl_info *mci;
557 struct list_head *item;
558
559 mutex_lock(&mem_ctls_mutex);
560
561 list_for_each(item, &mc_devices) {
562 mci = list_entry(item, struct mem_ctl_info, link);
563
564 if (mci->op_state == OP_RUNNING_POLL)
565 edac_mod_work(&mci->work, value);
566 }
567 mutex_unlock(&mem_ctls_mutex);
568 }
569
570
571
572 /* Return 0 on success, 1 on failure.
573 * Before calling this function, caller must
574 * assign a unique value to mci->mc_idx.
575 *
576 * locking model:
577 *
578 * called with the mem_ctls_mutex lock held
579 */
580 static int add_mc_to_global_list(struct mem_ctl_info *mci)
581 {
582 struct list_head *item, *insert_before;
583 struct mem_ctl_info *p;
584
585 insert_before = &mc_devices;
586
587 p = __find_mci_by_dev(mci->pdev);
588 if (unlikely(p != NULL))
589 goto fail0;
590
591 list_for_each(item, &mc_devices) {
592 p = list_entry(item, struct mem_ctl_info, link);
593
594 if (p->mc_idx >= mci->mc_idx) {
595 if (unlikely(p->mc_idx == mci->mc_idx))
596 goto fail1;
597
598 insert_before = item;
599 break;
600 }
601 }
602
603 list_add_tail_rcu(&mci->link, insert_before);
604 atomic_inc(&edac_handlers);
605 return 0;
606
607 fail0:
608 edac_printk(KERN_WARNING, EDAC_MC,
609 "%s (%s) %s %s already assigned %d\n", dev_name(p->pdev),
610 edac_dev_name(mci), p->mod_name, p->ctl_name, p->mc_idx);
611 return 1;
612
613 fail1:
614 edac_printk(KERN_WARNING, EDAC_MC,
615 "bug in low-level driver: attempt to assign\n"
616 " duplicate mc_idx %d in %s()\n", p->mc_idx, __func__);
617 return 1;
618 }
619
620 static int del_mc_from_global_list(struct mem_ctl_info *mci)
621 {
622 int handlers = atomic_dec_return(&edac_handlers);
623 list_del_rcu(&mci->link);
624
625 /* these are for safe removal of devices from global list while
626 * NMI handlers may be traversing list
627 */
628 synchronize_rcu();
629 INIT_LIST_HEAD(&mci->link);
630
631 return handlers;
632 }
633
634 struct mem_ctl_info *edac_mc_find(int idx)
635 {
636 struct mem_ctl_info *mci = NULL;
637 struct list_head *item;
638
639 mutex_lock(&mem_ctls_mutex);
640
641 list_for_each(item, &mc_devices) {
642 mci = list_entry(item, struct mem_ctl_info, link);
643
644 if (mci->mc_idx >= idx) {
645 if (mci->mc_idx == idx) {
646 goto unlock;
647 }
648 break;
649 }
650 }
651
652 unlock:
653 mutex_unlock(&mem_ctls_mutex);
654 return mci;
655 }
656 EXPORT_SYMBOL(edac_mc_find);
657
658
659 /* FIXME - should a warning be printed if no error detection? correction? */
660 int edac_mc_add_mc_with_groups(struct mem_ctl_info *mci,
661 const struct attribute_group **groups)
662 {
663 int ret = -EINVAL;
664 edac_dbg(0, "\n");
665
666 if (mci->mc_idx >= EDAC_MAX_MCS) {
667 pr_warn_once("Too many memory controllers: %d\n", mci->mc_idx);
668 return -ENODEV;
669 }
670
671 #ifdef CONFIG_EDAC_DEBUG
672 if (edac_debug_level >= 3)
673 edac_mc_dump_mci(mci);
674
675 if (edac_debug_level >= 4) {
676 int i;
677
678 for (i = 0; i < mci->nr_csrows; i++) {
679 struct csrow_info *csrow = mci->csrows[i];
680 u32 nr_pages = 0;
681 int j;
682
683 for (j = 0; j < csrow->nr_channels; j++)
684 nr_pages += csrow->channels[j]->dimm->nr_pages;
685 if (!nr_pages)
686 continue;
687 edac_mc_dump_csrow(csrow);
688 for (j = 0; j < csrow->nr_channels; j++)
689 if (csrow->channels[j]->dimm->nr_pages)
690 edac_mc_dump_channel(csrow->channels[j]);
691 }
692 for (i = 0; i < mci->tot_dimms; i++)
693 if (mci->dimms[i]->nr_pages)
694 edac_mc_dump_dimm(mci->dimms[i], i);
695 }
696 #endif
697 mutex_lock(&mem_ctls_mutex);
698
699 if (edac_mc_owner && edac_mc_owner != mci->mod_name) {
700 ret = -EPERM;
701 goto fail0;
702 }
703
704 if (add_mc_to_global_list(mci))
705 goto fail0;
706
707 /* set load time so that error rate can be tracked */
708 mci->start_time = jiffies;
709
710 mci->bus = &mc_bus[mci->mc_idx];
711
712 if (edac_create_sysfs_mci_device(mci, groups)) {
713 edac_mc_printk(mci, KERN_WARNING,
714 "failed to create sysfs device\n");
715 goto fail1;
716 }
717
718 if (mci->edac_check) {
719 mci->op_state = OP_RUNNING_POLL;
720
721 INIT_DELAYED_WORK(&mci->work, edac_mc_workq_function);
722 edac_queue_work(&mci->work, msecs_to_jiffies(edac_mc_get_poll_msec()));
723
724 } else {
725 mci->op_state = OP_RUNNING_INTERRUPT;
726 }
727
728 /* Report action taken */
729 edac_mc_printk(mci, KERN_INFO,
730 "Giving out device to module %s controller %s: DEV %s (%s)\n",
731 mci->mod_name, mci->ctl_name, mci->dev_name,
732 edac_op_state_to_string(mci->op_state));
733
734 edac_mc_owner = mci->mod_name;
735
736 mutex_unlock(&mem_ctls_mutex);
737 return 0;
738
739 fail1:
740 del_mc_from_global_list(mci);
741
742 fail0:
743 mutex_unlock(&mem_ctls_mutex);
744 return ret;
745 }
746 EXPORT_SYMBOL_GPL(edac_mc_add_mc_with_groups);
747
748 struct mem_ctl_info *edac_mc_del_mc(struct device *dev)
749 {
750 struct mem_ctl_info *mci;
751
752 edac_dbg(0, "\n");
753
754 mutex_lock(&mem_ctls_mutex);
755
756 /* find the requested mci struct in the global list */
757 mci = __find_mci_by_dev(dev);
758 if (mci == NULL) {
759 mutex_unlock(&mem_ctls_mutex);
760 return NULL;
761 }
762
763 /* mark MCI offline: */
764 mci->op_state = OP_OFFLINE;
765
766 if (!del_mc_from_global_list(mci))
767 edac_mc_owner = NULL;
768
769 mutex_unlock(&mem_ctls_mutex);
770
771 if (mci->edac_check)
772 edac_stop_work(&mci->work);
773
774 /* remove from sysfs */
775 edac_remove_sysfs_mci_device(mci);
776
777 edac_printk(KERN_INFO, EDAC_MC,
778 "Removed device %d for %s %s: DEV %s\n", mci->mc_idx,
779 mci->mod_name, mci->ctl_name, edac_dev_name(mci));
780
781 return mci;
782 }
783 EXPORT_SYMBOL_GPL(edac_mc_del_mc);
784
785 static void edac_mc_scrub_block(unsigned long page, unsigned long offset,
786 u32 size)
787 {
788 struct page *pg;
789 void *virt_addr;
790 unsigned long flags = 0;
791
792 edac_dbg(3, "\n");
793
794 /* ECC error page was not in our memory. Ignore it. */
795 if (!pfn_valid(page))
796 return;
797
798 /* Find the actual page structure then map it and fix */
799 pg = pfn_to_page(page);
800
801 if (PageHighMem(pg))
802 local_irq_save(flags);
803
804 virt_addr = kmap_atomic(pg);
805
806 /* Perform architecture specific atomic scrub operation */
807 edac_atomic_scrub(virt_addr + offset, size);
808
809 /* Unmap and complete */
810 kunmap_atomic(virt_addr);
811
812 if (PageHighMem(pg))
813 local_irq_restore(flags);
814 }
815
816 /* FIXME - should return -1 */
817 int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci, unsigned long page)
818 {
819 struct csrow_info **csrows = mci->csrows;
820 int row, i, j, n;
821
822 edac_dbg(1, "MC%d: 0x%lx\n", mci->mc_idx, page);
823 row = -1;
824
825 for (i = 0; i < mci->nr_csrows; i++) {
826 struct csrow_info *csrow = csrows[i];
827 n = 0;
828 for (j = 0; j < csrow->nr_channels; j++) {
829 struct dimm_info *dimm = csrow->channels[j]->dimm;
830 n += dimm->nr_pages;
831 }
832 if (n == 0)
833 continue;
834
835 edac_dbg(3, "MC%d: first(0x%lx) page(0x%lx) last(0x%lx) mask(0x%lx)\n",
836 mci->mc_idx,
837 csrow->first_page, page, csrow->last_page,
838 csrow->page_mask);
839
840 if ((page >= csrow->first_page) &&
841 (page <= csrow->last_page) &&
842 ((page & csrow->page_mask) ==
843 (csrow->first_page & csrow->page_mask))) {
844 row = i;
845 break;
846 }
847 }
848
849 if (row == -1)
850 edac_mc_printk(mci, KERN_ERR,
851 "could not look up page error address %lx\n",
852 (unsigned long)page);
853
854 return row;
855 }
856 EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page);
857
858 const char *edac_layer_name[] = {
859 [EDAC_MC_LAYER_BRANCH] = "branch",
860 [EDAC_MC_LAYER_CHANNEL] = "channel",
861 [EDAC_MC_LAYER_SLOT] = "slot",
862 [EDAC_MC_LAYER_CHIP_SELECT] = "csrow",
863 [EDAC_MC_LAYER_ALL_MEM] = "memory",
864 };
865 EXPORT_SYMBOL_GPL(edac_layer_name);
866
867 static void edac_inc_ce_error(struct mem_ctl_info *mci,
868 bool enable_per_layer_report,
869 const int pos[EDAC_MAX_LAYERS],
870 const u16 count)
871 {
872 int i, index = 0;
873
874 mci->ce_mc += count;
875
876 if (!enable_per_layer_report) {
877 mci->ce_noinfo_count += count;
878 return;
879 }
880
881 for (i = 0; i < mci->n_layers; i++) {
882 if (pos[i] < 0)
883 break;
884 index += pos[i];
885 mci->ce_per_layer[i][index] += count;
886
887 if (i < mci->n_layers - 1)
888 index *= mci->layers[i + 1].size;
889 }
890 }
891
892 static void edac_inc_ue_error(struct mem_ctl_info *mci,
893 bool enable_per_layer_report,
894 const int pos[EDAC_MAX_LAYERS],
895 const u16 count)
896 {
897 int i, index = 0;
898
899 mci->ue_mc += count;
900
901 if (!enable_per_layer_report) {
902 mci->ue_noinfo_count += count;
903 return;
904 }
905
906 for (i = 0; i < mci->n_layers; i++) {
907 if (pos[i] < 0)
908 break;
909 index += pos[i];
910 mci->ue_per_layer[i][index] += count;
911
912 if (i < mci->n_layers - 1)
913 index *= mci->layers[i + 1].size;
914 }
915 }
916
917 static void edac_ce_error(struct mem_ctl_info *mci,
918 const u16 error_count,
919 const int pos[EDAC_MAX_LAYERS],
920 const char *msg,
921 const char *location,
922 const char *label,
923 const char *detail,
924 const char *other_detail,
925 const bool enable_per_layer_report,
926 const unsigned long page_frame_number,
927 const unsigned long offset_in_page,
928 long grain)
929 {
930 unsigned long remapped_page;
931 char *msg_aux = "";
932
933 if (*msg)
934 msg_aux = " ";
935
936 if (edac_mc_get_log_ce()) {
937 if (other_detail && *other_detail)
938 edac_mc_printk(mci, KERN_WARNING,
939 "%d CE %s%son %s (%s %s - %s)\n",
940 error_count, msg, msg_aux, label,
941 location, detail, other_detail);
942 else
943 edac_mc_printk(mci, KERN_WARNING,
944 "%d CE %s%son %s (%s %s)\n",
945 error_count, msg, msg_aux, label,
946 location, detail);
947 }
948 edac_inc_ce_error(mci, enable_per_layer_report, pos, error_count);
949
950 if (mci->scrub_mode == SCRUB_SW_SRC) {
951 /*
952 * Some memory controllers (called MCs below) can remap
953 * memory so that it is still available at a different
954 * address when PCI devices map into memory.
955 * MC's that can't do this, lose the memory where PCI
956 * devices are mapped. This mapping is MC-dependent
957 * and so we call back into the MC driver for it to
958 * map the MC page to a physical (CPU) page which can
959 * then be mapped to a virtual page - which can then
960 * be scrubbed.
961 */
962 remapped_page = mci->ctl_page_to_phys ?
963 mci->ctl_page_to_phys(mci, page_frame_number) :
964 page_frame_number;
965
966 edac_mc_scrub_block(remapped_page,
967 offset_in_page, grain);
968 }
969 }
970
971 static void edac_ue_error(struct mem_ctl_info *mci,
972 const u16 error_count,
973 const int pos[EDAC_MAX_LAYERS],
974 const char *msg,
975 const char *location,
976 const char *label,
977 const char *detail,
978 const char *other_detail,
979 const bool enable_per_layer_report)
980 {
981 char *msg_aux = "";
982
983 if (*msg)
984 msg_aux = " ";
985
986 if (edac_mc_get_log_ue()) {
987 if (other_detail && *other_detail)
988 edac_mc_printk(mci, KERN_WARNING,
989 "%d UE %s%son %s (%s %s - %s)\n",
990 error_count, msg, msg_aux, label,
991 location, detail, other_detail);
992 else
993 edac_mc_printk(mci, KERN_WARNING,
994 "%d UE %s%son %s (%s %s)\n",
995 error_count, msg, msg_aux, label,
996 location, detail);
997 }
998
999 if (edac_mc_get_panic_on_ue()) {
1000 if (other_detail && *other_detail)
1001 panic("UE %s%son %s (%s%s - %s)\n",
1002 msg, msg_aux, label, location, detail, other_detail);
1003 else
1004 panic("UE %s%son %s (%s%s)\n",
1005 msg, msg_aux, label, location, detail);
1006 }
1007
1008 edac_inc_ue_error(mci, enable_per_layer_report, pos, error_count);
1009 }
1010
1011 void edac_raw_mc_handle_error(const enum hw_event_mc_err_type type,
1012 struct mem_ctl_info *mci,
1013 struct edac_raw_error_desc *e)
1014 {
1015 char detail[80];
1016 int pos[EDAC_MAX_LAYERS] = { e->top_layer, e->mid_layer, e->low_layer };
1017
1018 /* Memory type dependent details about the error */
1019 if (type == HW_EVENT_ERR_CORRECTED) {
1020 snprintf(detail, sizeof(detail),
1021 "page:0x%lx offset:0x%lx grain:%ld syndrome:0x%lx",
1022 e->page_frame_number, e->offset_in_page,
1023 e->grain, e->syndrome);
1024 edac_ce_error(mci, e->error_count, pos, e->msg, e->location, e->label,
1025 detail, e->other_detail, e->enable_per_layer_report,
1026 e->page_frame_number, e->offset_in_page, e->grain);
1027 } else {
1028 snprintf(detail, sizeof(detail),
1029 "page:0x%lx offset:0x%lx grain:%ld",
1030 e->page_frame_number, e->offset_in_page, e->grain);
1031
1032 edac_ue_error(mci, e->error_count, pos, e->msg, e->location, e->label,
1033 detail, e->other_detail, e->enable_per_layer_report);
1034 }
1035
1036
1037 }
1038 EXPORT_SYMBOL_GPL(edac_raw_mc_handle_error);
1039
1040 void edac_mc_handle_error(const enum hw_event_mc_err_type type,
1041 struct mem_ctl_info *mci,
1042 const u16 error_count,
1043 const unsigned long page_frame_number,
1044 const unsigned long offset_in_page,
1045 const unsigned long syndrome,
1046 const int top_layer,
1047 const int mid_layer,
1048 const int low_layer,
1049 const char *msg,
1050 const char *other_detail)
1051 {
1052 char *p;
1053 int row = -1, chan = -1;
1054 int pos[EDAC_MAX_LAYERS] = { top_layer, mid_layer, low_layer };
1055 int i, n_labels = 0;
1056 u8 grain_bits;
1057 struct edac_raw_error_desc *e = &mci->error_desc;
1058
1059 edac_dbg(3, "MC%d\n", mci->mc_idx);
1060
1061 /* Fills the error report buffer */
1062 memset(e, 0, sizeof (*e));
1063 e->error_count = error_count;
1064 e->top_layer = top_layer;
1065 e->mid_layer = mid_layer;
1066 e->low_layer = low_layer;
1067 e->page_frame_number = page_frame_number;
1068 e->offset_in_page = offset_in_page;
1069 e->syndrome = syndrome;
1070 e->msg = msg;
1071 e->other_detail = other_detail;
1072
1073 /*
1074 * Check if the event report is consistent and if the memory
1075 * location is known. If it is known, enable_per_layer_report will be
1076 * true, the DIMM(s) label info will be filled and the per-layer
1077 * error counters will be incremented.
1078 */
1079 for (i = 0; i < mci->n_layers; i++) {
1080 if (pos[i] >= (int)mci->layers[i].size) {
1081
1082 edac_mc_printk(mci, KERN_ERR,
1083 "INTERNAL ERROR: %s value is out of range (%d >= %d)\n",
1084 edac_layer_name[mci->layers[i].type],
1085 pos[i], mci->layers[i].size);
1086 /*
1087 * Instead of just returning it, let's use what's
1088 * known about the error. The increment routines and
1089 * the DIMM filter logic will do the right thing by
1090 * pointing the likely damaged DIMMs.
1091 */
1092 pos[i] = -1;
1093 }
1094 if (pos[i] >= 0)
1095 e->enable_per_layer_report = true;
1096 }
1097
1098 /*
1099 * Get the dimm label/grain that applies to the match criteria.
1100 * As the error algorithm may not be able to point to just one memory
1101 * stick, the logic here will get all possible labels that could
1102 * pottentially be affected by the error.
1103 * On FB-DIMM memory controllers, for uncorrected errors, it is common
1104 * to have only the MC channel and the MC dimm (also called "branch")
1105 * but the channel is not known, as the memory is arranged in pairs,
1106 * where each memory belongs to a separate channel within the same
1107 * branch.
1108 */
1109 p = e->label;
1110 *p = '\0';
1111
1112 for (i = 0; i < mci->tot_dimms; i++) {
1113 struct dimm_info *dimm = mci->dimms[i];
1114
1115 if (top_layer >= 0 && top_layer != dimm->location[0])
1116 continue;
1117 if (mid_layer >= 0 && mid_layer != dimm->location[1])
1118 continue;
1119 if (low_layer >= 0 && low_layer != dimm->location[2])
1120 continue;
1121
1122 /* get the max grain, over the error match range */
1123 if (dimm->grain > e->grain)
1124 e->grain = dimm->grain;
1125
1126 /*
1127 * If the error is memory-controller wide, there's no need to
1128 * seek for the affected DIMMs because the whole
1129 * channel/memory controller/... may be affected.
1130 * Also, don't show errors for empty DIMM slots.
1131 */
1132 if (e->enable_per_layer_report && dimm->nr_pages) {
1133 if (n_labels >= EDAC_MAX_LABELS) {
1134 e->enable_per_layer_report = false;
1135 break;
1136 }
1137 n_labels++;
1138 if (p != e->label) {
1139 strcpy(p, OTHER_LABEL);
1140 p += strlen(OTHER_LABEL);
1141 }
1142 strcpy(p, dimm->label);
1143 p += strlen(p);
1144 *p = '\0';
1145
1146 /*
1147 * get csrow/channel of the DIMM, in order to allow
1148 * incrementing the compat API counters
1149 */
1150 edac_dbg(4, "%s csrows map: (%d,%d)\n",
1151 mci->csbased ? "rank" : "dimm",
1152 dimm->csrow, dimm->cschannel);
1153 if (row == -1)
1154 row = dimm->csrow;
1155 else if (row >= 0 && row != dimm->csrow)
1156 row = -2;
1157
1158 if (chan == -1)
1159 chan = dimm->cschannel;
1160 else if (chan >= 0 && chan != dimm->cschannel)
1161 chan = -2;
1162 }
1163 }
1164
1165 if (!e->enable_per_layer_report) {
1166 strcpy(e->label, "any memory");
1167 } else {
1168 edac_dbg(4, "csrow/channel to increment: (%d,%d)\n", row, chan);
1169 if (p == e->label)
1170 strcpy(e->label, "unknown memory");
1171 if (type == HW_EVENT_ERR_CORRECTED) {
1172 if (row >= 0) {
1173 mci->csrows[row]->ce_count += error_count;
1174 if (chan >= 0)
1175 mci->csrows[row]->channels[chan]->ce_count += error_count;
1176 }
1177 } else
1178 if (row >= 0)
1179 mci->csrows[row]->ue_count += error_count;
1180 }
1181
1182 /* Fill the RAM location data */
1183 p = e->location;
1184
1185 for (i = 0; i < mci->n_layers; i++) {
1186 if (pos[i] < 0)
1187 continue;
1188
1189 p += sprintf(p, "%s:%d ",
1190 edac_layer_name[mci->layers[i].type],
1191 pos[i]);
1192 }
1193 if (p > e->location)
1194 *(p - 1) = '\0';
1195
1196 /* Report the error via the trace interface */
1197 grain_bits = fls_long(e->grain) + 1;
1198 trace_mc_event(type, e->msg, e->label, e->error_count,
1199 mci->mc_idx, e->top_layer, e->mid_layer, e->low_layer,
1200 (e->page_frame_number << PAGE_SHIFT) | e->offset_in_page,
1201 grain_bits, e->syndrome, e->other_detail);
1202
1203 edac_raw_mc_handle_error(type, mci, e);
1204 }
1205 EXPORT_SYMBOL_GPL(edac_mc_handle_error);