]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/edac/i7core_edac.c
e1cbbbad466ee205bfb5bdded5a126c4496640b5
[mirror_ubuntu-artful-kernel.git] / drivers / edac / i7core_edac.c
1 /* Intel i7 core/Nehalem Memory Controller kernel module
2 *
3 * This driver supports yhe memory controllers found on the Intel
4 * processor families i7core, i7core 7xx/8xx, i5core, Xeon 35xx,
5 * Xeon 55xx and Xeon 56xx also known as Nehalem, Nehalem-EP, Lynnfield
6 * and Westmere-EP.
7 *
8 * This file may be distributed under the terms of the
9 * GNU General Public License version 2 only.
10 *
11 * Copyright (c) 2009-2010 by:
12 * Mauro Carvalho Chehab <mchehab@redhat.com>
13 *
14 * Red Hat Inc. http://www.redhat.com
15 *
16 * Forked and adapted from the i5400_edac driver
17 *
18 * Based on the following public Intel datasheets:
19 * Intel Core i7 Processor Extreme Edition and Intel Core i7 Processor
20 * Datasheet, Volume 2:
21 * http://download.intel.com/design/processor/datashts/320835.pdf
22 * Intel Xeon Processor 5500 Series Datasheet Volume 2
23 * http://www.intel.com/Assets/PDF/datasheet/321322.pdf
24 * also available at:
25 * http://www.arrownac.com/manufacturers/intel/s/nehalem/5500-datasheet-v2.pdf
26 */
27
28 #include <linux/module.h>
29 #include <linux/init.h>
30 #include <linux/pci.h>
31 #include <linux/pci_ids.h>
32 #include <linux/slab.h>
33 #include <linux/delay.h>
34 #include <linux/edac.h>
35 #include <linux/mmzone.h>
36 #include <linux/edac_mce.h>
37 #include <linux/smp.h>
38 #include <asm/processor.h>
39
40 #include "edac_core.h"
41
42 /* Static vars */
43 static LIST_HEAD(i7core_edac_list);
44 static DEFINE_MUTEX(i7core_edac_lock);
45 static int probed;
46
47 static int use_pci_fixup;
48 module_param(use_pci_fixup, int, 0444);
49 MODULE_PARM_DESC(use_pci_fixup, "Enable PCI fixup to seek for hidden devices");
50 /*
51 * This is used for Nehalem-EP and Nehalem-EX devices, where the non-core
52 * registers start at bus 255, and are not reported by BIOS.
53 * We currently find devices with only 2 sockets. In order to support more QPI
54 * Quick Path Interconnect, just increment this number.
55 */
56 #define MAX_SOCKET_BUSES 2
57
58
59 /*
60 * Alter this version for the module when modifications are made
61 */
62 #define I7CORE_REVISION " Ver: 1.0.0 " __DATE__
63 #define EDAC_MOD_STR "i7core_edac"
64
65 /*
66 * Debug macros
67 */
68 #define i7core_printk(level, fmt, arg...) \
69 edac_printk(level, "i7core", fmt, ##arg)
70
71 #define i7core_mc_printk(mci, level, fmt, arg...) \
72 edac_mc_chipset_printk(mci, level, "i7core", fmt, ##arg)
73
74 /*
75 * i7core Memory Controller Registers
76 */
77
78 /* OFFSETS for Device 0 Function 0 */
79
80 #define MC_CFG_CONTROL 0x90
81
82 /* OFFSETS for Device 3 Function 0 */
83
84 #define MC_CONTROL 0x48
85 #define MC_STATUS 0x4c
86 #define MC_MAX_DOD 0x64
87
88 /*
89 * OFFSETS for Device 3 Function 4, as inicated on Xeon 5500 datasheet:
90 * http://www.arrownac.com/manufacturers/intel/s/nehalem/5500-datasheet-v2.pdf
91 */
92
93 #define MC_TEST_ERR_RCV1 0x60
94 #define DIMM2_COR_ERR(r) ((r) & 0x7fff)
95
96 #define MC_TEST_ERR_RCV0 0x64
97 #define DIMM1_COR_ERR(r) (((r) >> 16) & 0x7fff)
98 #define DIMM0_COR_ERR(r) ((r) & 0x7fff)
99
100 /* OFFSETS for Device 3 Function 2, as inicated on Xeon 5500 datasheet */
101 #define MC_COR_ECC_CNT_0 0x80
102 #define MC_COR_ECC_CNT_1 0x84
103 #define MC_COR_ECC_CNT_2 0x88
104 #define MC_COR_ECC_CNT_3 0x8c
105 #define MC_COR_ECC_CNT_4 0x90
106 #define MC_COR_ECC_CNT_5 0x94
107
108 #define DIMM_TOP_COR_ERR(r) (((r) >> 16) & 0x7fff)
109 #define DIMM_BOT_COR_ERR(r) ((r) & 0x7fff)
110
111
112 /* OFFSETS for Devices 4,5 and 6 Function 0 */
113
114 #define MC_CHANNEL_DIMM_INIT_PARAMS 0x58
115 #define THREE_DIMMS_PRESENT (1 << 24)
116 #define SINGLE_QUAD_RANK_PRESENT (1 << 23)
117 #define QUAD_RANK_PRESENT (1 << 22)
118 #define REGISTERED_DIMM (1 << 15)
119
120 #define MC_CHANNEL_MAPPER 0x60
121 #define RDLCH(r, ch) ((((r) >> (3 + (ch * 6))) & 0x07) - 1)
122 #define WRLCH(r, ch) ((((r) >> (ch * 6)) & 0x07) - 1)
123
124 #define MC_CHANNEL_RANK_PRESENT 0x7c
125 #define RANK_PRESENT_MASK 0xffff
126
127 #define MC_CHANNEL_ADDR_MATCH 0xf0
128 #define MC_CHANNEL_ERROR_MASK 0xf8
129 #define MC_CHANNEL_ERROR_INJECT 0xfc
130 #define INJECT_ADDR_PARITY 0x10
131 #define INJECT_ECC 0x08
132 #define MASK_CACHELINE 0x06
133 #define MASK_FULL_CACHELINE 0x06
134 #define MASK_MSB32_CACHELINE 0x04
135 #define MASK_LSB32_CACHELINE 0x02
136 #define NO_MASK_CACHELINE 0x00
137 #define REPEAT_EN 0x01
138
139 /* OFFSETS for Devices 4,5 and 6 Function 1 */
140
141 #define MC_DOD_CH_DIMM0 0x48
142 #define MC_DOD_CH_DIMM1 0x4c
143 #define MC_DOD_CH_DIMM2 0x50
144 #define RANKOFFSET_MASK ((1 << 12) | (1 << 11) | (1 << 10))
145 #define RANKOFFSET(x) ((x & RANKOFFSET_MASK) >> 10)
146 #define DIMM_PRESENT_MASK (1 << 9)
147 #define DIMM_PRESENT(x) (((x) & DIMM_PRESENT_MASK) >> 9)
148 #define MC_DOD_NUMBANK_MASK ((1 << 8) | (1 << 7))
149 #define MC_DOD_NUMBANK(x) (((x) & MC_DOD_NUMBANK_MASK) >> 7)
150 #define MC_DOD_NUMRANK_MASK ((1 << 6) | (1 << 5))
151 #define MC_DOD_NUMRANK(x) (((x) & MC_DOD_NUMRANK_MASK) >> 5)
152 #define MC_DOD_NUMROW_MASK ((1 << 4) | (1 << 3) | (1 << 2))
153 #define MC_DOD_NUMROW(x) (((x) & MC_DOD_NUMROW_MASK) >> 2)
154 #define MC_DOD_NUMCOL_MASK 3
155 #define MC_DOD_NUMCOL(x) ((x) & MC_DOD_NUMCOL_MASK)
156
157 #define MC_RANK_PRESENT 0x7c
158
159 #define MC_SAG_CH_0 0x80
160 #define MC_SAG_CH_1 0x84
161 #define MC_SAG_CH_2 0x88
162 #define MC_SAG_CH_3 0x8c
163 #define MC_SAG_CH_4 0x90
164 #define MC_SAG_CH_5 0x94
165 #define MC_SAG_CH_6 0x98
166 #define MC_SAG_CH_7 0x9c
167
168 #define MC_RIR_LIMIT_CH_0 0x40
169 #define MC_RIR_LIMIT_CH_1 0x44
170 #define MC_RIR_LIMIT_CH_2 0x48
171 #define MC_RIR_LIMIT_CH_3 0x4C
172 #define MC_RIR_LIMIT_CH_4 0x50
173 #define MC_RIR_LIMIT_CH_5 0x54
174 #define MC_RIR_LIMIT_CH_6 0x58
175 #define MC_RIR_LIMIT_CH_7 0x5C
176 #define MC_RIR_LIMIT_MASK ((1 << 10) - 1)
177
178 #define MC_RIR_WAY_CH 0x80
179 #define MC_RIR_WAY_OFFSET_MASK (((1 << 14) - 1) & ~0x7)
180 #define MC_RIR_WAY_RANK_MASK 0x7
181
182 /*
183 * i7core structs
184 */
185
186 #define NUM_CHANS 3
187 #define MAX_DIMMS 3 /* Max DIMMS per channel */
188 #define MAX_MCR_FUNC 4
189 #define MAX_CHAN_FUNC 3
190
191 struct i7core_info {
192 u32 mc_control;
193 u32 mc_status;
194 u32 max_dod;
195 u32 ch_map;
196 };
197
198
199 struct i7core_inject {
200 int enable;
201
202 u32 section;
203 u32 type;
204 u32 eccmask;
205
206 /* Error address mask */
207 int channel, dimm, rank, bank, page, col;
208 };
209
210 struct i7core_channel {
211 u32 ranks;
212 u32 dimms;
213 };
214
215 struct pci_id_descr {
216 int dev;
217 int func;
218 int dev_id;
219 int optional;
220 };
221
222 struct pci_id_table {
223 const struct pci_id_descr *descr;
224 int n_devs;
225 };
226
227 struct i7core_dev {
228 struct list_head list;
229 u8 socket;
230 struct pci_dev **pdev;
231 int n_devs;
232 struct mem_ctl_info *mci;
233 };
234
235 struct i7core_pvt {
236 struct pci_dev *pci_noncore;
237 struct pci_dev *pci_mcr[MAX_MCR_FUNC + 1];
238 struct pci_dev *pci_ch[NUM_CHANS][MAX_CHAN_FUNC + 1];
239
240 struct i7core_dev *i7core_dev;
241
242 struct i7core_info info;
243 struct i7core_inject inject;
244 struct i7core_channel channel[NUM_CHANS];
245
246 int channels; /* Number of active channels */
247
248 int ce_count_available;
249 int csrow_map[NUM_CHANS][MAX_DIMMS];
250
251 /* ECC corrected errors counts per udimm */
252 unsigned long udimm_ce_count[MAX_DIMMS];
253 int udimm_last_ce_count[MAX_DIMMS];
254 /* ECC corrected errors counts per rdimm */
255 unsigned long rdimm_ce_count[NUM_CHANS][MAX_DIMMS];
256 int rdimm_last_ce_count[NUM_CHANS][MAX_DIMMS];
257
258 unsigned int is_registered;
259
260 /* mcelog glue */
261 struct edac_mce edac_mce;
262
263 /* Fifo double buffers */
264 struct mce mce_entry[MCE_LOG_LEN];
265 struct mce mce_outentry[MCE_LOG_LEN];
266
267 /* Fifo in/out counters */
268 unsigned mce_in, mce_out;
269
270 /* Count indicator to show errors not got */
271 unsigned mce_overrun;
272
273 /* Struct to control EDAC polling */
274 struct edac_pci_ctl_info *i7core_pci;
275 };
276
277 #define PCI_DESCR(device, function, device_id) \
278 .dev = (device), \
279 .func = (function), \
280 .dev_id = (device_id)
281
282 static const struct pci_id_descr pci_dev_descr_i7core_nehalem[] = {
283 /* Memory controller */
284 { PCI_DESCR(3, 0, PCI_DEVICE_ID_INTEL_I7_MCR) },
285 { PCI_DESCR(3, 1, PCI_DEVICE_ID_INTEL_I7_MC_TAD) },
286 /* Exists only for RDIMM */
287 { PCI_DESCR(3, 2, PCI_DEVICE_ID_INTEL_I7_MC_RAS), .optional = 1 },
288 { PCI_DESCR(3, 4, PCI_DEVICE_ID_INTEL_I7_MC_TEST) },
289
290 /* Channel 0 */
291 { PCI_DESCR(4, 0, PCI_DEVICE_ID_INTEL_I7_MC_CH0_CTRL) },
292 { PCI_DESCR(4, 1, PCI_DEVICE_ID_INTEL_I7_MC_CH0_ADDR) },
293 { PCI_DESCR(4, 2, PCI_DEVICE_ID_INTEL_I7_MC_CH0_RANK) },
294 { PCI_DESCR(4, 3, PCI_DEVICE_ID_INTEL_I7_MC_CH0_TC) },
295
296 /* Channel 1 */
297 { PCI_DESCR(5, 0, PCI_DEVICE_ID_INTEL_I7_MC_CH1_CTRL) },
298 { PCI_DESCR(5, 1, PCI_DEVICE_ID_INTEL_I7_MC_CH1_ADDR) },
299 { PCI_DESCR(5, 2, PCI_DEVICE_ID_INTEL_I7_MC_CH1_RANK) },
300 { PCI_DESCR(5, 3, PCI_DEVICE_ID_INTEL_I7_MC_CH1_TC) },
301
302 /* Channel 2 */
303 { PCI_DESCR(6, 0, PCI_DEVICE_ID_INTEL_I7_MC_CH2_CTRL) },
304 { PCI_DESCR(6, 1, PCI_DEVICE_ID_INTEL_I7_MC_CH2_ADDR) },
305 { PCI_DESCR(6, 2, PCI_DEVICE_ID_INTEL_I7_MC_CH2_RANK) },
306 { PCI_DESCR(6, 3, PCI_DEVICE_ID_INTEL_I7_MC_CH2_TC) },
307
308 /* Generic Non-core registers */
309 /*
310 * This is the PCI device on i7core and on Xeon 35xx (8086:2c41)
311 * On Xeon 55xx, however, it has a different id (8086:2c40). So,
312 * the probing code needs to test for the other address in case of
313 * failure of this one
314 */
315 { PCI_DESCR(0, 0, PCI_DEVICE_ID_INTEL_I7_NONCORE) },
316
317 };
318
319 static const struct pci_id_descr pci_dev_descr_lynnfield[] = {
320 { PCI_DESCR( 3, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MCR) },
321 { PCI_DESCR( 3, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TAD) },
322 { PCI_DESCR( 3, 4, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TEST) },
323
324 { PCI_DESCR( 4, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_CTRL) },
325 { PCI_DESCR( 4, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_ADDR) },
326 { PCI_DESCR( 4, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_RANK) },
327 { PCI_DESCR( 4, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_TC) },
328
329 { PCI_DESCR( 5, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_CTRL) },
330 { PCI_DESCR( 5, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_ADDR) },
331 { PCI_DESCR( 5, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_RANK) },
332 { PCI_DESCR( 5, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_TC) },
333
334 /*
335 * This is the PCI device has an alternate address on some
336 * processors like Core i7 860
337 */
338 { PCI_DESCR( 0, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE) },
339 };
340
341 static const struct pci_id_descr pci_dev_descr_i7core_westmere[] = {
342 /* Memory controller */
343 { PCI_DESCR(3, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MCR_REV2) },
344 { PCI_DESCR(3, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TAD_REV2) },
345 /* Exists only for RDIMM */
346 { PCI_DESCR(3, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_RAS_REV2), .optional = 1 },
347 { PCI_DESCR(3, 4, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TEST_REV2) },
348
349 /* Channel 0 */
350 { PCI_DESCR(4, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_CTRL_REV2) },
351 { PCI_DESCR(4, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_ADDR_REV2) },
352 { PCI_DESCR(4, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_RANK_REV2) },
353 { PCI_DESCR(4, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_TC_REV2) },
354
355 /* Channel 1 */
356 { PCI_DESCR(5, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_CTRL_REV2) },
357 { PCI_DESCR(5, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_ADDR_REV2) },
358 { PCI_DESCR(5, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_RANK_REV2) },
359 { PCI_DESCR(5, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_TC_REV2) },
360
361 /* Channel 2 */
362 { PCI_DESCR(6, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_CTRL_REV2) },
363 { PCI_DESCR(6, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_ADDR_REV2) },
364 { PCI_DESCR(6, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_RANK_REV2) },
365 { PCI_DESCR(6, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_TC_REV2) },
366
367 /* Generic Non-core registers */
368 { PCI_DESCR(0, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE_REV2) },
369
370 };
371
372 #define PCI_ID_TABLE_ENTRY(A) { .descr=A, .n_devs = ARRAY_SIZE(A) }
373 static const struct pci_id_table pci_dev_table[] = {
374 PCI_ID_TABLE_ENTRY(pci_dev_descr_i7core_nehalem),
375 PCI_ID_TABLE_ENTRY(pci_dev_descr_lynnfield),
376 PCI_ID_TABLE_ENTRY(pci_dev_descr_i7core_westmere),
377 };
378
379 /*
380 * pci_device_id table for which devices we are looking for
381 */
382 static const struct pci_device_id i7core_pci_tbl[] __devinitdata = {
383 {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_X58_HUB_MGMT)},
384 {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_LYNNFIELD_QPI_LINK0)},
385 {0,} /* 0 terminated list. */
386 };
387
388 /****************************************************************************
389 Anciliary status routines
390 ****************************************************************************/
391
392 /* MC_CONTROL bits */
393 #define CH_ACTIVE(pvt, ch) ((pvt)->info.mc_control & (1 << (8 + ch)))
394 #define ECCx8(pvt) ((pvt)->info.mc_control & (1 << 1))
395
396 /* MC_STATUS bits */
397 #define ECC_ENABLED(pvt) ((pvt)->info.mc_status & (1 << 4))
398 #define CH_DISABLED(pvt, ch) ((pvt)->info.mc_status & (1 << ch))
399
400 /* MC_MAX_DOD read functions */
401 static inline int numdimms(u32 dimms)
402 {
403 return (dimms & 0x3) + 1;
404 }
405
406 static inline int numrank(u32 rank)
407 {
408 static int ranks[4] = { 1, 2, 4, -EINVAL };
409
410 return ranks[rank & 0x3];
411 }
412
413 static inline int numbank(u32 bank)
414 {
415 static int banks[4] = { 4, 8, 16, -EINVAL };
416
417 return banks[bank & 0x3];
418 }
419
420 static inline int numrow(u32 row)
421 {
422 static int rows[8] = {
423 1 << 12, 1 << 13, 1 << 14, 1 << 15,
424 1 << 16, -EINVAL, -EINVAL, -EINVAL,
425 };
426
427 return rows[row & 0x7];
428 }
429
430 static inline int numcol(u32 col)
431 {
432 static int cols[8] = {
433 1 << 10, 1 << 11, 1 << 12, -EINVAL,
434 };
435 return cols[col & 0x3];
436 }
437
438 static struct i7core_dev *get_i7core_dev(u8 socket)
439 {
440 struct i7core_dev *i7core_dev;
441
442 list_for_each_entry(i7core_dev, &i7core_edac_list, list) {
443 if (i7core_dev->socket == socket)
444 return i7core_dev;
445 }
446
447 return NULL;
448 }
449
450 static struct i7core_dev *alloc_i7core_dev(u8 socket,
451 const struct pci_id_table *table)
452 {
453 struct i7core_dev *i7core_dev;
454
455 i7core_dev = kzalloc(sizeof(*i7core_dev), GFP_KERNEL);
456 if (!i7core_dev)
457 return NULL;
458
459 i7core_dev->pdev = kzalloc(sizeof(*i7core_dev->pdev) * table->n_devs,
460 GFP_KERNEL);
461 if (!i7core_dev->pdev) {
462 kfree(i7core_dev);
463 return NULL;
464 }
465
466 i7core_dev->socket = socket;
467 i7core_dev->n_devs = table->n_devs;
468 list_add_tail(&i7core_dev->list, &i7core_edac_list);
469
470 return i7core_dev;
471 }
472
473 static void free_i7core_dev(struct i7core_dev *i7core_dev)
474 {
475 list_del(&i7core_dev->list);
476 kfree(i7core_dev->pdev);
477 kfree(i7core_dev);
478 }
479
480 /****************************************************************************
481 Memory check routines
482 ****************************************************************************/
483 static struct pci_dev *get_pdev_slot_func(u8 socket, unsigned slot,
484 unsigned func)
485 {
486 struct i7core_dev *i7core_dev = get_i7core_dev(socket);
487 int i;
488
489 if (!i7core_dev)
490 return NULL;
491
492 for (i = 0; i < i7core_dev->n_devs; i++) {
493 if (!i7core_dev->pdev[i])
494 continue;
495
496 if (PCI_SLOT(i7core_dev->pdev[i]->devfn) == slot &&
497 PCI_FUNC(i7core_dev->pdev[i]->devfn) == func) {
498 return i7core_dev->pdev[i];
499 }
500 }
501
502 return NULL;
503 }
504
505 /**
506 * i7core_get_active_channels() - gets the number of channels and csrows
507 * @socket: Quick Path Interconnect socket
508 * @channels: Number of channels that will be returned
509 * @csrows: Number of csrows found
510 *
511 * Since EDAC core needs to know in advance the number of available channels
512 * and csrows, in order to allocate memory for csrows/channels, it is needed
513 * to run two similar steps. At the first step, implemented on this function,
514 * it checks the number of csrows/channels present at one socket.
515 * this is used in order to properly allocate the size of mci components.
516 *
517 * It should be noticed that none of the current available datasheets explain
518 * or even mention how csrows are seen by the memory controller. So, we need
519 * to add a fake description for csrows.
520 * So, this driver is attributing one DIMM memory for one csrow.
521 */
522 static int i7core_get_active_channels(const u8 socket, unsigned *channels,
523 unsigned *csrows)
524 {
525 struct pci_dev *pdev = NULL;
526 int i, j;
527 u32 status, control;
528
529 *channels = 0;
530 *csrows = 0;
531
532 pdev = get_pdev_slot_func(socket, 3, 0);
533 if (!pdev) {
534 i7core_printk(KERN_ERR, "Couldn't find socket %d fn 3.0!!!\n",
535 socket);
536 return -ENODEV;
537 }
538
539 /* Device 3 function 0 reads */
540 pci_read_config_dword(pdev, MC_STATUS, &status);
541 pci_read_config_dword(pdev, MC_CONTROL, &control);
542
543 for (i = 0; i < NUM_CHANS; i++) {
544 u32 dimm_dod[3];
545 /* Check if the channel is active */
546 if (!(control & (1 << (8 + i))))
547 continue;
548
549 /* Check if the channel is disabled */
550 if (status & (1 << i))
551 continue;
552
553 pdev = get_pdev_slot_func(socket, i + 4, 1);
554 if (!pdev) {
555 i7core_printk(KERN_ERR, "Couldn't find socket %d "
556 "fn %d.%d!!!\n",
557 socket, i + 4, 1);
558 return -ENODEV;
559 }
560 /* Devices 4-6 function 1 */
561 pci_read_config_dword(pdev,
562 MC_DOD_CH_DIMM0, &dimm_dod[0]);
563 pci_read_config_dword(pdev,
564 MC_DOD_CH_DIMM1, &dimm_dod[1]);
565 pci_read_config_dword(pdev,
566 MC_DOD_CH_DIMM2, &dimm_dod[2]);
567
568 (*channels)++;
569
570 for (j = 0; j < 3; j++) {
571 if (!DIMM_PRESENT(dimm_dod[j]))
572 continue;
573 (*csrows)++;
574 }
575 }
576
577 debugf0("Number of active channels on socket %d: %d\n",
578 socket, *channels);
579
580 return 0;
581 }
582
583 static int get_dimm_config(const struct mem_ctl_info *mci, int *csrow)
584 {
585 struct i7core_pvt *pvt = mci->pvt_info;
586 struct csrow_info *csr;
587 struct pci_dev *pdev;
588 int i, j;
589 unsigned long last_page = 0;
590 enum edac_type mode;
591 enum mem_type mtype;
592
593 /* Get data from the MC register, function 0 */
594 pdev = pvt->pci_mcr[0];
595 if (!pdev)
596 return -ENODEV;
597
598 /* Device 3 function 0 reads */
599 pci_read_config_dword(pdev, MC_CONTROL, &pvt->info.mc_control);
600 pci_read_config_dword(pdev, MC_STATUS, &pvt->info.mc_status);
601 pci_read_config_dword(pdev, MC_MAX_DOD, &pvt->info.max_dod);
602 pci_read_config_dword(pdev, MC_CHANNEL_MAPPER, &pvt->info.ch_map);
603
604 debugf0("QPI %d control=0x%08x status=0x%08x dod=0x%08x map=0x%08x\n",
605 pvt->i7core_dev->socket, pvt->info.mc_control, pvt->info.mc_status,
606 pvt->info.max_dod, pvt->info.ch_map);
607
608 if (ECC_ENABLED(pvt)) {
609 debugf0("ECC enabled with x%d SDCC\n", ECCx8(pvt) ? 8 : 4);
610 if (ECCx8(pvt))
611 mode = EDAC_S8ECD8ED;
612 else
613 mode = EDAC_S4ECD4ED;
614 } else {
615 debugf0("ECC disabled\n");
616 mode = EDAC_NONE;
617 }
618
619 /* FIXME: need to handle the error codes */
620 debugf0("DOD Max limits: DIMMS: %d, %d-ranked, %d-banked "
621 "x%x x 0x%x\n",
622 numdimms(pvt->info.max_dod),
623 numrank(pvt->info.max_dod >> 2),
624 numbank(pvt->info.max_dod >> 4),
625 numrow(pvt->info.max_dod >> 6),
626 numcol(pvt->info.max_dod >> 9));
627
628 for (i = 0; i < NUM_CHANS; i++) {
629 u32 data, dimm_dod[3], value[8];
630
631 if (!pvt->pci_ch[i][0])
632 continue;
633
634 if (!CH_ACTIVE(pvt, i)) {
635 debugf0("Channel %i is not active\n", i);
636 continue;
637 }
638 if (CH_DISABLED(pvt, i)) {
639 debugf0("Channel %i is disabled\n", i);
640 continue;
641 }
642
643 /* Devices 4-6 function 0 */
644 pci_read_config_dword(pvt->pci_ch[i][0],
645 MC_CHANNEL_DIMM_INIT_PARAMS, &data);
646
647 pvt->channel[i].ranks = (data & QUAD_RANK_PRESENT) ?
648 4 : 2;
649
650 if (data & REGISTERED_DIMM)
651 mtype = MEM_RDDR3;
652 else
653 mtype = MEM_DDR3;
654 #if 0
655 if (data & THREE_DIMMS_PRESENT)
656 pvt->channel[i].dimms = 3;
657 else if (data & SINGLE_QUAD_RANK_PRESENT)
658 pvt->channel[i].dimms = 1;
659 else
660 pvt->channel[i].dimms = 2;
661 #endif
662
663 /* Devices 4-6 function 1 */
664 pci_read_config_dword(pvt->pci_ch[i][1],
665 MC_DOD_CH_DIMM0, &dimm_dod[0]);
666 pci_read_config_dword(pvt->pci_ch[i][1],
667 MC_DOD_CH_DIMM1, &dimm_dod[1]);
668 pci_read_config_dword(pvt->pci_ch[i][1],
669 MC_DOD_CH_DIMM2, &dimm_dod[2]);
670
671 debugf0("Ch%d phy rd%d, wr%d (0x%08x): "
672 "%d ranks, %cDIMMs\n",
673 i,
674 RDLCH(pvt->info.ch_map, i), WRLCH(pvt->info.ch_map, i),
675 data,
676 pvt->channel[i].ranks,
677 (data & REGISTERED_DIMM) ? 'R' : 'U');
678
679 for (j = 0; j < 3; j++) {
680 u32 banks, ranks, rows, cols;
681 u32 size, npages;
682
683 if (!DIMM_PRESENT(dimm_dod[j]))
684 continue;
685
686 banks = numbank(MC_DOD_NUMBANK(dimm_dod[j]));
687 ranks = numrank(MC_DOD_NUMRANK(dimm_dod[j]));
688 rows = numrow(MC_DOD_NUMROW(dimm_dod[j]));
689 cols = numcol(MC_DOD_NUMCOL(dimm_dod[j]));
690
691 /* DDR3 has 8 I/O banks */
692 size = (rows * cols * banks * ranks) >> (20 - 3);
693
694 pvt->channel[i].dimms++;
695
696 debugf0("\tdimm %d %d Mb offset: %x, "
697 "bank: %d, rank: %d, row: %#x, col: %#x\n",
698 j, size,
699 RANKOFFSET(dimm_dod[j]),
700 banks, ranks, rows, cols);
701
702 npages = MiB_TO_PAGES(size);
703
704 csr = &mci->csrows[*csrow];
705 csr->first_page = last_page + 1;
706 last_page += npages;
707 csr->last_page = last_page;
708 csr->nr_pages = npages;
709
710 csr->page_mask = 0;
711 csr->grain = 8;
712 csr->csrow_idx = *csrow;
713 csr->nr_channels = 1;
714
715 csr->channels[0].chan_idx = i;
716 csr->channels[0].ce_count = 0;
717
718 pvt->csrow_map[i][j] = *csrow;
719
720 switch (banks) {
721 case 4:
722 csr->dtype = DEV_X4;
723 break;
724 case 8:
725 csr->dtype = DEV_X8;
726 break;
727 case 16:
728 csr->dtype = DEV_X16;
729 break;
730 default:
731 csr->dtype = DEV_UNKNOWN;
732 }
733
734 csr->edac_mode = mode;
735 csr->mtype = mtype;
736
737 (*csrow)++;
738 }
739
740 pci_read_config_dword(pdev, MC_SAG_CH_0, &value[0]);
741 pci_read_config_dword(pdev, MC_SAG_CH_1, &value[1]);
742 pci_read_config_dword(pdev, MC_SAG_CH_2, &value[2]);
743 pci_read_config_dword(pdev, MC_SAG_CH_3, &value[3]);
744 pci_read_config_dword(pdev, MC_SAG_CH_4, &value[4]);
745 pci_read_config_dword(pdev, MC_SAG_CH_5, &value[5]);
746 pci_read_config_dword(pdev, MC_SAG_CH_6, &value[6]);
747 pci_read_config_dword(pdev, MC_SAG_CH_7, &value[7]);
748 debugf1("\t[%i] DIVBY3\tREMOVED\tOFFSET\n", i);
749 for (j = 0; j < 8; j++)
750 debugf1("\t\t%#x\t%#x\t%#x\n",
751 (value[j] >> 27) & 0x1,
752 (value[j] >> 24) & 0x7,
753 (value[j] && ((1 << 24) - 1)));
754 }
755
756 return 0;
757 }
758
759 /****************************************************************************
760 Error insertion routines
761 ****************************************************************************/
762
763 /* The i7core has independent error injection features per channel.
764 However, to have a simpler code, we don't allow enabling error injection
765 on more than one channel.
766 Also, since a change at an inject parameter will be applied only at enable,
767 we're disabling error injection on all write calls to the sysfs nodes that
768 controls the error code injection.
769 */
770 static int disable_inject(const struct mem_ctl_info *mci)
771 {
772 struct i7core_pvt *pvt = mci->pvt_info;
773
774 pvt->inject.enable = 0;
775
776 if (!pvt->pci_ch[pvt->inject.channel][0])
777 return -ENODEV;
778
779 pci_write_config_dword(pvt->pci_ch[pvt->inject.channel][0],
780 MC_CHANNEL_ERROR_INJECT, 0);
781
782 return 0;
783 }
784
785 /*
786 * i7core inject inject.section
787 *
788 * accept and store error injection inject.section value
789 * bit 0 - refers to the lower 32-byte half cacheline
790 * bit 1 - refers to the upper 32-byte half cacheline
791 */
792 static ssize_t i7core_inject_section_store(struct mem_ctl_info *mci,
793 const char *data, size_t count)
794 {
795 struct i7core_pvt *pvt = mci->pvt_info;
796 unsigned long value;
797 int rc;
798
799 if (pvt->inject.enable)
800 disable_inject(mci);
801
802 rc = strict_strtoul(data, 10, &value);
803 if ((rc < 0) || (value > 3))
804 return -EIO;
805
806 pvt->inject.section = (u32) value;
807 return count;
808 }
809
810 static ssize_t i7core_inject_section_show(struct mem_ctl_info *mci,
811 char *data)
812 {
813 struct i7core_pvt *pvt = mci->pvt_info;
814 return sprintf(data, "0x%08x\n", pvt->inject.section);
815 }
816
817 /*
818 * i7core inject.type
819 *
820 * accept and store error injection inject.section value
821 * bit 0 - repeat enable - Enable error repetition
822 * bit 1 - inject ECC error
823 * bit 2 - inject parity error
824 */
825 static ssize_t i7core_inject_type_store(struct mem_ctl_info *mci,
826 const char *data, size_t count)
827 {
828 struct i7core_pvt *pvt = mci->pvt_info;
829 unsigned long value;
830 int rc;
831
832 if (pvt->inject.enable)
833 disable_inject(mci);
834
835 rc = strict_strtoul(data, 10, &value);
836 if ((rc < 0) || (value > 7))
837 return -EIO;
838
839 pvt->inject.type = (u32) value;
840 return count;
841 }
842
843 static ssize_t i7core_inject_type_show(struct mem_ctl_info *mci,
844 char *data)
845 {
846 struct i7core_pvt *pvt = mci->pvt_info;
847 return sprintf(data, "0x%08x\n", pvt->inject.type);
848 }
849
850 /*
851 * i7core_inject_inject.eccmask_store
852 *
853 * The type of error (UE/CE) will depend on the inject.eccmask value:
854 * Any bits set to a 1 will flip the corresponding ECC bit
855 * Correctable errors can be injected by flipping 1 bit or the bits within
856 * a symbol pair (2 consecutive aligned 8-bit pairs - i.e. 7:0 and 15:8 or
857 * 23:16 and 31:24). Flipping bits in two symbol pairs will cause an
858 * uncorrectable error to be injected.
859 */
860 static ssize_t i7core_inject_eccmask_store(struct mem_ctl_info *mci,
861 const char *data, size_t count)
862 {
863 struct i7core_pvt *pvt = mci->pvt_info;
864 unsigned long value;
865 int rc;
866
867 if (pvt->inject.enable)
868 disable_inject(mci);
869
870 rc = strict_strtoul(data, 10, &value);
871 if (rc < 0)
872 return -EIO;
873
874 pvt->inject.eccmask = (u32) value;
875 return count;
876 }
877
878 static ssize_t i7core_inject_eccmask_show(struct mem_ctl_info *mci,
879 char *data)
880 {
881 struct i7core_pvt *pvt = mci->pvt_info;
882 return sprintf(data, "0x%08x\n", pvt->inject.eccmask);
883 }
884
885 /*
886 * i7core_addrmatch
887 *
888 * The type of error (UE/CE) will depend on the inject.eccmask value:
889 * Any bits set to a 1 will flip the corresponding ECC bit
890 * Correctable errors can be injected by flipping 1 bit or the bits within
891 * a symbol pair (2 consecutive aligned 8-bit pairs - i.e. 7:0 and 15:8 or
892 * 23:16 and 31:24). Flipping bits in two symbol pairs will cause an
893 * uncorrectable error to be injected.
894 */
895
896 #define DECLARE_ADDR_MATCH(param, limit) \
897 static ssize_t i7core_inject_store_##param( \
898 struct mem_ctl_info *mci, \
899 const char *data, size_t count) \
900 { \
901 struct i7core_pvt *pvt; \
902 long value; \
903 int rc; \
904 \
905 debugf1("%s()\n", __func__); \
906 pvt = mci->pvt_info; \
907 \
908 if (pvt->inject.enable) \
909 disable_inject(mci); \
910 \
911 if (!strcasecmp(data, "any") || !strcasecmp(data, "any\n"))\
912 value = -1; \
913 else { \
914 rc = strict_strtoul(data, 10, &value); \
915 if ((rc < 0) || (value >= limit)) \
916 return -EIO; \
917 } \
918 \
919 pvt->inject.param = value; \
920 \
921 return count; \
922 } \
923 \
924 static ssize_t i7core_inject_show_##param( \
925 struct mem_ctl_info *mci, \
926 char *data) \
927 { \
928 struct i7core_pvt *pvt; \
929 \
930 pvt = mci->pvt_info; \
931 debugf1("%s() pvt=%p\n", __func__, pvt); \
932 if (pvt->inject.param < 0) \
933 return sprintf(data, "any\n"); \
934 else \
935 return sprintf(data, "%d\n", pvt->inject.param);\
936 }
937
938 #define ATTR_ADDR_MATCH(param) \
939 { \
940 .attr = { \
941 .name = #param, \
942 .mode = (S_IRUGO | S_IWUSR) \
943 }, \
944 .show = i7core_inject_show_##param, \
945 .store = i7core_inject_store_##param, \
946 }
947
948 DECLARE_ADDR_MATCH(channel, 3);
949 DECLARE_ADDR_MATCH(dimm, 3);
950 DECLARE_ADDR_MATCH(rank, 4);
951 DECLARE_ADDR_MATCH(bank, 32);
952 DECLARE_ADDR_MATCH(page, 0x10000);
953 DECLARE_ADDR_MATCH(col, 0x4000);
954
955 static int write_and_test(struct pci_dev *dev, const int where, const u32 val)
956 {
957 u32 read;
958 int count;
959
960 debugf0("setting pci %02x:%02x.%x reg=%02x value=%08x\n",
961 dev->bus->number, PCI_SLOT(dev->devfn), PCI_FUNC(dev->devfn),
962 where, val);
963
964 for (count = 0; count < 10; count++) {
965 if (count)
966 msleep(100);
967 pci_write_config_dword(dev, where, val);
968 pci_read_config_dword(dev, where, &read);
969
970 if (read == val)
971 return 0;
972 }
973
974 i7core_printk(KERN_ERR, "Error during set pci %02x:%02x.%x reg=%02x "
975 "write=%08x. Read=%08x\n",
976 dev->bus->number, PCI_SLOT(dev->devfn), PCI_FUNC(dev->devfn),
977 where, val, read);
978
979 return -EINVAL;
980 }
981
982 /*
983 * This routine prepares the Memory Controller for error injection.
984 * The error will be injected when some process tries to write to the
985 * memory that matches the given criteria.
986 * The criteria can be set in terms of a mask where dimm, rank, bank, page
987 * and col can be specified.
988 * A -1 value for any of the mask items will make the MCU to ignore
989 * that matching criteria for error injection.
990 *
991 * It should be noticed that the error will only happen after a write operation
992 * on a memory that matches the condition. if REPEAT_EN is not enabled at
993 * inject mask, then it will produce just one error. Otherwise, it will repeat
994 * until the injectmask would be cleaned.
995 *
996 * FIXME: This routine assumes that MAXNUMDIMMS value of MC_MAX_DOD
997 * is reliable enough to check if the MC is using the
998 * three channels. However, this is not clear at the datasheet.
999 */
1000 static ssize_t i7core_inject_enable_store(struct mem_ctl_info *mci,
1001 const char *data, size_t count)
1002 {
1003 struct i7core_pvt *pvt = mci->pvt_info;
1004 u32 injectmask;
1005 u64 mask = 0;
1006 int rc;
1007 long enable;
1008
1009 if (!pvt->pci_ch[pvt->inject.channel][0])
1010 return 0;
1011
1012 rc = strict_strtoul(data, 10, &enable);
1013 if ((rc < 0))
1014 return 0;
1015
1016 if (enable) {
1017 pvt->inject.enable = 1;
1018 } else {
1019 disable_inject(mci);
1020 return count;
1021 }
1022
1023 /* Sets pvt->inject.dimm mask */
1024 if (pvt->inject.dimm < 0)
1025 mask |= 1LL << 41;
1026 else {
1027 if (pvt->channel[pvt->inject.channel].dimms > 2)
1028 mask |= (pvt->inject.dimm & 0x3LL) << 35;
1029 else
1030 mask |= (pvt->inject.dimm & 0x1LL) << 36;
1031 }
1032
1033 /* Sets pvt->inject.rank mask */
1034 if (pvt->inject.rank < 0)
1035 mask |= 1LL << 40;
1036 else {
1037 if (pvt->channel[pvt->inject.channel].dimms > 2)
1038 mask |= (pvt->inject.rank & 0x1LL) << 34;
1039 else
1040 mask |= (pvt->inject.rank & 0x3LL) << 34;
1041 }
1042
1043 /* Sets pvt->inject.bank mask */
1044 if (pvt->inject.bank < 0)
1045 mask |= 1LL << 39;
1046 else
1047 mask |= (pvt->inject.bank & 0x15LL) << 30;
1048
1049 /* Sets pvt->inject.page mask */
1050 if (pvt->inject.page < 0)
1051 mask |= 1LL << 38;
1052 else
1053 mask |= (pvt->inject.page & 0xffff) << 14;
1054
1055 /* Sets pvt->inject.column mask */
1056 if (pvt->inject.col < 0)
1057 mask |= 1LL << 37;
1058 else
1059 mask |= (pvt->inject.col & 0x3fff);
1060
1061 /*
1062 * bit 0: REPEAT_EN
1063 * bits 1-2: MASK_HALF_CACHELINE
1064 * bit 3: INJECT_ECC
1065 * bit 4: INJECT_ADDR_PARITY
1066 */
1067
1068 injectmask = (pvt->inject.type & 1) |
1069 (pvt->inject.section & 0x3) << 1 |
1070 (pvt->inject.type & 0x6) << (3 - 1);
1071
1072 /* Unlock writes to registers - this register is write only */
1073 pci_write_config_dword(pvt->pci_noncore,
1074 MC_CFG_CONTROL, 0x2);
1075
1076 write_and_test(pvt->pci_ch[pvt->inject.channel][0],
1077 MC_CHANNEL_ADDR_MATCH, mask);
1078 write_and_test(pvt->pci_ch[pvt->inject.channel][0],
1079 MC_CHANNEL_ADDR_MATCH + 4, mask >> 32L);
1080
1081 write_and_test(pvt->pci_ch[pvt->inject.channel][0],
1082 MC_CHANNEL_ERROR_MASK, pvt->inject.eccmask);
1083
1084 write_and_test(pvt->pci_ch[pvt->inject.channel][0],
1085 MC_CHANNEL_ERROR_INJECT, injectmask);
1086
1087 /*
1088 * This is something undocumented, based on my tests
1089 * Without writing 8 to this register, errors aren't injected. Not sure
1090 * why.
1091 */
1092 pci_write_config_dword(pvt->pci_noncore,
1093 MC_CFG_CONTROL, 8);
1094
1095 debugf0("Error inject addr match 0x%016llx, ecc 0x%08x,"
1096 " inject 0x%08x\n",
1097 mask, pvt->inject.eccmask, injectmask);
1098
1099
1100 return count;
1101 }
1102
1103 static ssize_t i7core_inject_enable_show(struct mem_ctl_info *mci,
1104 char *data)
1105 {
1106 struct i7core_pvt *pvt = mci->pvt_info;
1107 u32 injectmask;
1108
1109 if (!pvt->pci_ch[pvt->inject.channel][0])
1110 return 0;
1111
1112 pci_read_config_dword(pvt->pci_ch[pvt->inject.channel][0],
1113 MC_CHANNEL_ERROR_INJECT, &injectmask);
1114
1115 debugf0("Inject error read: 0x%018x\n", injectmask);
1116
1117 if (injectmask & 0x0c)
1118 pvt->inject.enable = 1;
1119
1120 return sprintf(data, "%d\n", pvt->inject.enable);
1121 }
1122
1123 #define DECLARE_COUNTER(param) \
1124 static ssize_t i7core_show_counter_##param( \
1125 struct mem_ctl_info *mci, \
1126 char *data) \
1127 { \
1128 struct i7core_pvt *pvt = mci->pvt_info; \
1129 \
1130 debugf1("%s() \n", __func__); \
1131 if (!pvt->ce_count_available || (pvt->is_registered)) \
1132 return sprintf(data, "data unavailable\n"); \
1133 return sprintf(data, "%lu\n", \
1134 pvt->udimm_ce_count[param]); \
1135 }
1136
1137 #define ATTR_COUNTER(param) \
1138 { \
1139 .attr = { \
1140 .name = __stringify(udimm##param), \
1141 .mode = (S_IRUGO | S_IWUSR) \
1142 }, \
1143 .show = i7core_show_counter_##param \
1144 }
1145
1146 DECLARE_COUNTER(0);
1147 DECLARE_COUNTER(1);
1148 DECLARE_COUNTER(2);
1149
1150 /*
1151 * Sysfs struct
1152 */
1153
1154 static const struct mcidev_sysfs_attribute i7core_addrmatch_attrs[] = {
1155 ATTR_ADDR_MATCH(channel),
1156 ATTR_ADDR_MATCH(dimm),
1157 ATTR_ADDR_MATCH(rank),
1158 ATTR_ADDR_MATCH(bank),
1159 ATTR_ADDR_MATCH(page),
1160 ATTR_ADDR_MATCH(col),
1161 { } /* End of list */
1162 };
1163
1164 static const struct mcidev_sysfs_group i7core_inject_addrmatch = {
1165 .name = "inject_addrmatch",
1166 .mcidev_attr = i7core_addrmatch_attrs,
1167 };
1168
1169 static const struct mcidev_sysfs_attribute i7core_udimm_counters_attrs[] = {
1170 ATTR_COUNTER(0),
1171 ATTR_COUNTER(1),
1172 ATTR_COUNTER(2),
1173 { .attr = { .name = NULL } }
1174 };
1175
1176 static const struct mcidev_sysfs_group i7core_udimm_counters = {
1177 .name = "all_channel_counts",
1178 .mcidev_attr = i7core_udimm_counters_attrs,
1179 };
1180
1181 static const struct mcidev_sysfs_attribute i7core_sysfs_rdimm_attrs[] = {
1182 {
1183 .attr = {
1184 .name = "inject_section",
1185 .mode = (S_IRUGO | S_IWUSR)
1186 },
1187 .show = i7core_inject_section_show,
1188 .store = i7core_inject_section_store,
1189 }, {
1190 .attr = {
1191 .name = "inject_type",
1192 .mode = (S_IRUGO | S_IWUSR)
1193 },
1194 .show = i7core_inject_type_show,
1195 .store = i7core_inject_type_store,
1196 }, {
1197 .attr = {
1198 .name = "inject_eccmask",
1199 .mode = (S_IRUGO | S_IWUSR)
1200 },
1201 .show = i7core_inject_eccmask_show,
1202 .store = i7core_inject_eccmask_store,
1203 }, {
1204 .grp = &i7core_inject_addrmatch,
1205 }, {
1206 .attr = {
1207 .name = "inject_enable",
1208 .mode = (S_IRUGO | S_IWUSR)
1209 },
1210 .show = i7core_inject_enable_show,
1211 .store = i7core_inject_enable_store,
1212 },
1213 { } /* End of list */
1214 };
1215
1216 static const struct mcidev_sysfs_attribute i7core_sysfs_udimm_attrs[] = {
1217 {
1218 .attr = {
1219 .name = "inject_section",
1220 .mode = (S_IRUGO | S_IWUSR)
1221 },
1222 .show = i7core_inject_section_show,
1223 .store = i7core_inject_section_store,
1224 }, {
1225 .attr = {
1226 .name = "inject_type",
1227 .mode = (S_IRUGO | S_IWUSR)
1228 },
1229 .show = i7core_inject_type_show,
1230 .store = i7core_inject_type_store,
1231 }, {
1232 .attr = {
1233 .name = "inject_eccmask",
1234 .mode = (S_IRUGO | S_IWUSR)
1235 },
1236 .show = i7core_inject_eccmask_show,
1237 .store = i7core_inject_eccmask_store,
1238 }, {
1239 .grp = &i7core_inject_addrmatch,
1240 }, {
1241 .attr = {
1242 .name = "inject_enable",
1243 .mode = (S_IRUGO | S_IWUSR)
1244 },
1245 .show = i7core_inject_enable_show,
1246 .store = i7core_inject_enable_store,
1247 }, {
1248 .grp = &i7core_udimm_counters,
1249 },
1250 { } /* End of list */
1251 };
1252
1253 /****************************************************************************
1254 Device initialization routines: put/get, init/exit
1255 ****************************************************************************/
1256
1257 /*
1258 * i7core_put_devices 'put' all the devices that we have
1259 * reserved via 'get'
1260 */
1261 static void i7core_put_devices(struct i7core_dev *i7core_dev)
1262 {
1263 int i;
1264
1265 debugf0(__FILE__ ": %s()\n", __func__);
1266 for (i = 0; i < i7core_dev->n_devs; i++) {
1267 struct pci_dev *pdev = i7core_dev->pdev[i];
1268 if (!pdev)
1269 continue;
1270 debugf0("Removing dev %02x:%02x.%d\n",
1271 pdev->bus->number,
1272 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
1273 pci_dev_put(pdev);
1274 }
1275 }
1276
1277 static void i7core_put_all_devices(void)
1278 {
1279 struct i7core_dev *i7core_dev, *tmp;
1280
1281 list_for_each_entry_safe(i7core_dev, tmp, &i7core_edac_list, list) {
1282 i7core_put_devices(i7core_dev);
1283 free_i7core_dev(i7core_dev);
1284 }
1285 }
1286
1287 static void __init i7core_xeon_pci_fixup(const struct pci_id_table *table)
1288 {
1289 struct pci_dev *pdev = NULL;
1290 int i;
1291
1292 /*
1293 * On Xeon 55xx, the Intel Quckpath Arch Generic Non-core pci buses
1294 * aren't announced by acpi. So, we need to use a legacy scan probing
1295 * to detect them
1296 */
1297 while (table && table->descr) {
1298 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, table->descr[0].dev_id, NULL);
1299 if (unlikely(!pdev)) {
1300 for (i = 0; i < MAX_SOCKET_BUSES; i++)
1301 pcibios_scan_specific_bus(255-i);
1302 }
1303 pci_dev_put(pdev);
1304 table++;
1305 }
1306 }
1307
1308 static unsigned i7core_pci_lastbus(void)
1309 {
1310 int last_bus = 0, bus;
1311 struct pci_bus *b = NULL;
1312
1313 while ((b = pci_find_next_bus(b)) != NULL) {
1314 bus = b->number;
1315 debugf0("Found bus %d\n", bus);
1316 if (bus > last_bus)
1317 last_bus = bus;
1318 }
1319
1320 debugf0("Last bus %d\n", last_bus);
1321
1322 return last_bus;
1323 }
1324
1325 /*
1326 * i7core_get_devices Find and perform 'get' operation on the MCH's
1327 * device/functions we want to reference for this driver
1328 *
1329 * Need to 'get' device 16 func 1 and func 2
1330 */
1331 static int i7core_get_onedevice(struct pci_dev **prev,
1332 const struct pci_id_table *table,
1333 const unsigned devno,
1334 const unsigned last_bus)
1335 {
1336 struct i7core_dev *i7core_dev;
1337 const struct pci_id_descr *dev_descr = &table->descr[devno];
1338
1339 struct pci_dev *pdev = NULL;
1340 u8 bus = 0;
1341 u8 socket = 0;
1342
1343 pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
1344 dev_descr->dev_id, *prev);
1345
1346 /*
1347 * On Xeon 55xx, the Intel Quckpath Arch Generic Non-core regs
1348 * is at addr 8086:2c40, instead of 8086:2c41. So, we need
1349 * to probe for the alternate address in case of failure
1350 */
1351 if (dev_descr->dev_id == PCI_DEVICE_ID_INTEL_I7_NONCORE && !pdev)
1352 pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
1353 PCI_DEVICE_ID_INTEL_I7_NONCORE_ALT, *prev);
1354
1355 if (dev_descr->dev_id == PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE && !pdev)
1356 pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
1357 PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE_ALT,
1358 *prev);
1359
1360 if (!pdev) {
1361 if (*prev) {
1362 *prev = pdev;
1363 return 0;
1364 }
1365
1366 if (dev_descr->optional)
1367 return 0;
1368
1369 if (devno == 0)
1370 return -ENODEV;
1371
1372 i7core_printk(KERN_INFO,
1373 "Device not found: dev %02x.%d PCI ID %04x:%04x\n",
1374 dev_descr->dev, dev_descr->func,
1375 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1376
1377 /* End of list, leave */
1378 return -ENODEV;
1379 }
1380 bus = pdev->bus->number;
1381
1382 socket = last_bus - bus;
1383
1384 i7core_dev = get_i7core_dev(socket);
1385 if (!i7core_dev) {
1386 i7core_dev = alloc_i7core_dev(socket, table);
1387 if (!i7core_dev)
1388 return -ENOMEM;
1389 }
1390
1391 if (i7core_dev->pdev[devno]) {
1392 i7core_printk(KERN_ERR,
1393 "Duplicated device for "
1394 "dev %02x:%02x.%d PCI ID %04x:%04x\n",
1395 bus, dev_descr->dev, dev_descr->func,
1396 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1397 pci_dev_put(pdev);
1398 return -ENODEV;
1399 }
1400
1401 i7core_dev->pdev[devno] = pdev;
1402
1403 /* Sanity check */
1404 if (unlikely(PCI_SLOT(pdev->devfn) != dev_descr->dev ||
1405 PCI_FUNC(pdev->devfn) != dev_descr->func)) {
1406 i7core_printk(KERN_ERR,
1407 "Device PCI ID %04x:%04x "
1408 "has dev %02x:%02x.%d instead of dev %02x:%02x.%d\n",
1409 PCI_VENDOR_ID_INTEL, dev_descr->dev_id,
1410 bus, PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
1411 bus, dev_descr->dev, dev_descr->func);
1412 return -ENODEV;
1413 }
1414
1415 /* Be sure that the device is enabled */
1416 if (unlikely(pci_enable_device(pdev) < 0)) {
1417 i7core_printk(KERN_ERR,
1418 "Couldn't enable "
1419 "dev %02x:%02x.%d PCI ID %04x:%04x\n",
1420 bus, dev_descr->dev, dev_descr->func,
1421 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1422 return -ENODEV;
1423 }
1424
1425 debugf0("Detected socket %d dev %02x:%02x.%d PCI ID %04x:%04x\n",
1426 socket, bus, dev_descr->dev,
1427 dev_descr->func,
1428 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1429
1430 *prev = pdev;
1431
1432 return 0;
1433 }
1434
1435 static int i7core_get_devices(const struct pci_id_table *table)
1436 {
1437 int i, rc, last_bus;
1438 struct pci_dev *pdev = NULL;
1439
1440 last_bus = i7core_pci_lastbus();
1441
1442 while (table && table->descr) {
1443 for (i = 0; i < table->n_devs; i++) {
1444 pdev = NULL;
1445 do {
1446 rc = i7core_get_onedevice(&pdev, table, i,
1447 last_bus);
1448 if (rc < 0) {
1449 if (i == 0) {
1450 i = table->n_devs;
1451 break;
1452 }
1453 i7core_put_all_devices();
1454 return -ENODEV;
1455 }
1456 } while (pdev);
1457 }
1458 table++;
1459 }
1460
1461 return 0;
1462 }
1463
1464 static int mci_bind_devs(struct mem_ctl_info *mci,
1465 struct i7core_dev *i7core_dev)
1466 {
1467 struct i7core_pvt *pvt = mci->pvt_info;
1468 struct pci_dev *pdev;
1469 int i, func, slot;
1470
1471 /* Associates i7core_dev and mci for future usage */
1472 pvt->i7core_dev = i7core_dev;
1473 i7core_dev->mci = mci;
1474
1475 pvt->is_registered = 0;
1476 for (i = 0; i < i7core_dev->n_devs; i++) {
1477 pdev = i7core_dev->pdev[i];
1478 if (!pdev)
1479 continue;
1480
1481 func = PCI_FUNC(pdev->devfn);
1482 slot = PCI_SLOT(pdev->devfn);
1483 if (slot == 3) {
1484 if (unlikely(func > MAX_MCR_FUNC))
1485 goto error;
1486 pvt->pci_mcr[func] = pdev;
1487 } else if (likely(slot >= 4 && slot < 4 + NUM_CHANS)) {
1488 if (unlikely(func > MAX_CHAN_FUNC))
1489 goto error;
1490 pvt->pci_ch[slot - 4][func] = pdev;
1491 } else if (!slot && !func)
1492 pvt->pci_noncore = pdev;
1493 else
1494 goto error;
1495
1496 debugf0("Associated fn %d.%d, dev = %p, socket %d\n",
1497 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
1498 pdev, i7core_dev->socket);
1499
1500 if (PCI_SLOT(pdev->devfn) == 3 &&
1501 PCI_FUNC(pdev->devfn) == 2)
1502 pvt->is_registered = 1;
1503 }
1504
1505 return 0;
1506
1507 error:
1508 i7core_printk(KERN_ERR, "Device %d, function %d "
1509 "is out of the expected range\n",
1510 slot, func);
1511 return -EINVAL;
1512 }
1513
1514 /****************************************************************************
1515 Error check routines
1516 ****************************************************************************/
1517 static void i7core_rdimm_update_csrow(struct mem_ctl_info *mci,
1518 const int chan,
1519 const int dimm,
1520 const int add)
1521 {
1522 char *msg;
1523 struct i7core_pvt *pvt = mci->pvt_info;
1524 int row = pvt->csrow_map[chan][dimm], i;
1525
1526 for (i = 0; i < add; i++) {
1527 msg = kasprintf(GFP_KERNEL, "Corrected error "
1528 "(Socket=%d channel=%d dimm=%d)",
1529 pvt->i7core_dev->socket, chan, dimm);
1530
1531 edac_mc_handle_fbd_ce(mci, row, 0, msg);
1532 kfree (msg);
1533 }
1534 }
1535
1536 static void i7core_rdimm_update_ce_count(struct mem_ctl_info *mci,
1537 const int chan,
1538 const int new0,
1539 const int new1,
1540 const int new2)
1541 {
1542 struct i7core_pvt *pvt = mci->pvt_info;
1543 int add0 = 0, add1 = 0, add2 = 0;
1544 /* Updates CE counters if it is not the first time here */
1545 if (pvt->ce_count_available) {
1546 /* Updates CE counters */
1547
1548 add2 = new2 - pvt->rdimm_last_ce_count[chan][2];
1549 add1 = new1 - pvt->rdimm_last_ce_count[chan][1];
1550 add0 = new0 - pvt->rdimm_last_ce_count[chan][0];
1551
1552 if (add2 < 0)
1553 add2 += 0x7fff;
1554 pvt->rdimm_ce_count[chan][2] += add2;
1555
1556 if (add1 < 0)
1557 add1 += 0x7fff;
1558 pvt->rdimm_ce_count[chan][1] += add1;
1559
1560 if (add0 < 0)
1561 add0 += 0x7fff;
1562 pvt->rdimm_ce_count[chan][0] += add0;
1563 } else
1564 pvt->ce_count_available = 1;
1565
1566 /* Store the new values */
1567 pvt->rdimm_last_ce_count[chan][2] = new2;
1568 pvt->rdimm_last_ce_count[chan][1] = new1;
1569 pvt->rdimm_last_ce_count[chan][0] = new0;
1570
1571 /*updated the edac core */
1572 if (add0 != 0)
1573 i7core_rdimm_update_csrow(mci, chan, 0, add0);
1574 if (add1 != 0)
1575 i7core_rdimm_update_csrow(mci, chan, 1, add1);
1576 if (add2 != 0)
1577 i7core_rdimm_update_csrow(mci, chan, 2, add2);
1578
1579 }
1580
1581 static void i7core_rdimm_check_mc_ecc_err(struct mem_ctl_info *mci)
1582 {
1583 struct i7core_pvt *pvt = mci->pvt_info;
1584 u32 rcv[3][2];
1585 int i, new0, new1, new2;
1586
1587 /*Read DEV 3: FUN 2: MC_COR_ECC_CNT regs directly*/
1588 pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_0,
1589 &rcv[0][0]);
1590 pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_1,
1591 &rcv[0][1]);
1592 pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_2,
1593 &rcv[1][0]);
1594 pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_3,
1595 &rcv[1][1]);
1596 pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_4,
1597 &rcv[2][0]);
1598 pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_5,
1599 &rcv[2][1]);
1600 for (i = 0 ; i < 3; i++) {
1601 debugf3("MC_COR_ECC_CNT%d = 0x%x; MC_COR_ECC_CNT%d = 0x%x\n",
1602 (i * 2), rcv[i][0], (i * 2) + 1, rcv[i][1]);
1603 /*if the channel has 3 dimms*/
1604 if (pvt->channel[i].dimms > 2) {
1605 new0 = DIMM_BOT_COR_ERR(rcv[i][0]);
1606 new1 = DIMM_TOP_COR_ERR(rcv[i][0]);
1607 new2 = DIMM_BOT_COR_ERR(rcv[i][1]);
1608 } else {
1609 new0 = DIMM_TOP_COR_ERR(rcv[i][0]) +
1610 DIMM_BOT_COR_ERR(rcv[i][0]);
1611 new1 = DIMM_TOP_COR_ERR(rcv[i][1]) +
1612 DIMM_BOT_COR_ERR(rcv[i][1]);
1613 new2 = 0;
1614 }
1615
1616 i7core_rdimm_update_ce_count(mci, i, new0, new1, new2);
1617 }
1618 }
1619
1620 /* This function is based on the device 3 function 4 registers as described on:
1621 * Intel Xeon Processor 5500 Series Datasheet Volume 2
1622 * http://www.intel.com/Assets/PDF/datasheet/321322.pdf
1623 * also available at:
1624 * http://www.arrownac.com/manufacturers/intel/s/nehalem/5500-datasheet-v2.pdf
1625 */
1626 static void i7core_udimm_check_mc_ecc_err(struct mem_ctl_info *mci)
1627 {
1628 struct i7core_pvt *pvt = mci->pvt_info;
1629 u32 rcv1, rcv0;
1630 int new0, new1, new2;
1631
1632 if (!pvt->pci_mcr[4]) {
1633 debugf0("%s MCR registers not found\n", __func__);
1634 return;
1635 }
1636
1637 /* Corrected test errors */
1638 pci_read_config_dword(pvt->pci_mcr[4], MC_TEST_ERR_RCV1, &rcv1);
1639 pci_read_config_dword(pvt->pci_mcr[4], MC_TEST_ERR_RCV0, &rcv0);
1640
1641 /* Store the new values */
1642 new2 = DIMM2_COR_ERR(rcv1);
1643 new1 = DIMM1_COR_ERR(rcv0);
1644 new0 = DIMM0_COR_ERR(rcv0);
1645
1646 /* Updates CE counters if it is not the first time here */
1647 if (pvt->ce_count_available) {
1648 /* Updates CE counters */
1649 int add0, add1, add2;
1650
1651 add2 = new2 - pvt->udimm_last_ce_count[2];
1652 add1 = new1 - pvt->udimm_last_ce_count[1];
1653 add0 = new0 - pvt->udimm_last_ce_count[0];
1654
1655 if (add2 < 0)
1656 add2 += 0x7fff;
1657 pvt->udimm_ce_count[2] += add2;
1658
1659 if (add1 < 0)
1660 add1 += 0x7fff;
1661 pvt->udimm_ce_count[1] += add1;
1662
1663 if (add0 < 0)
1664 add0 += 0x7fff;
1665 pvt->udimm_ce_count[0] += add0;
1666
1667 if (add0 | add1 | add2)
1668 i7core_printk(KERN_ERR, "New Corrected error(s): "
1669 "dimm0: +%d, dimm1: +%d, dimm2 +%d\n",
1670 add0, add1, add2);
1671 } else
1672 pvt->ce_count_available = 1;
1673
1674 /* Store the new values */
1675 pvt->udimm_last_ce_count[2] = new2;
1676 pvt->udimm_last_ce_count[1] = new1;
1677 pvt->udimm_last_ce_count[0] = new0;
1678 }
1679
1680 /*
1681 * According with tables E-11 and E-12 of chapter E.3.3 of Intel 64 and IA-32
1682 * Architectures Software Developer’s Manual Volume 3B.
1683 * Nehalem are defined as family 0x06, model 0x1a
1684 *
1685 * The MCA registers used here are the following ones:
1686 * struct mce field MCA Register
1687 * m->status MSR_IA32_MC8_STATUS
1688 * m->addr MSR_IA32_MC8_ADDR
1689 * m->misc MSR_IA32_MC8_MISC
1690 * In the case of Nehalem, the error information is masked at .status and .misc
1691 * fields
1692 */
1693 static void i7core_mce_output_error(struct mem_ctl_info *mci,
1694 const struct mce *m)
1695 {
1696 struct i7core_pvt *pvt = mci->pvt_info;
1697 char *type, *optype, *err, *msg;
1698 unsigned long error = m->status & 0x1ff0000l;
1699 u32 optypenum = (m->status >> 4) & 0x07;
1700 u32 core_err_cnt = (m->status >> 38) && 0x7fff;
1701 u32 dimm = (m->misc >> 16) & 0x3;
1702 u32 channel = (m->misc >> 18) & 0x3;
1703 u32 syndrome = m->misc >> 32;
1704 u32 errnum = find_first_bit(&error, 32);
1705 int csrow;
1706
1707 if (m->mcgstatus & 1)
1708 type = "FATAL";
1709 else
1710 type = "NON_FATAL";
1711
1712 switch (optypenum) {
1713 case 0:
1714 optype = "generic undef request";
1715 break;
1716 case 1:
1717 optype = "read error";
1718 break;
1719 case 2:
1720 optype = "write error";
1721 break;
1722 case 3:
1723 optype = "addr/cmd error";
1724 break;
1725 case 4:
1726 optype = "scrubbing error";
1727 break;
1728 default:
1729 optype = "reserved";
1730 break;
1731 }
1732
1733 switch (errnum) {
1734 case 16:
1735 err = "read ECC error";
1736 break;
1737 case 17:
1738 err = "RAS ECC error";
1739 break;
1740 case 18:
1741 err = "write parity error";
1742 break;
1743 case 19:
1744 err = "redundacy loss";
1745 break;
1746 case 20:
1747 err = "reserved";
1748 break;
1749 case 21:
1750 err = "memory range error";
1751 break;
1752 case 22:
1753 err = "RTID out of range";
1754 break;
1755 case 23:
1756 err = "address parity error";
1757 break;
1758 case 24:
1759 err = "byte enable parity error";
1760 break;
1761 default:
1762 err = "unknown";
1763 }
1764
1765 /* FIXME: should convert addr into bank and rank information */
1766 msg = kasprintf(GFP_ATOMIC,
1767 "%s (addr = 0x%08llx, cpu=%d, Dimm=%d, Channel=%d, "
1768 "syndrome=0x%08x, count=%d, Err=%08llx:%08llx (%s: %s))\n",
1769 type, (long long) m->addr, m->cpu, dimm, channel,
1770 syndrome, core_err_cnt, (long long)m->status,
1771 (long long)m->misc, optype, err);
1772
1773 debugf0("%s", msg);
1774
1775 csrow = pvt->csrow_map[channel][dimm];
1776
1777 /* Call the helper to output message */
1778 if (m->mcgstatus & 1)
1779 edac_mc_handle_fbd_ue(mci, csrow, 0,
1780 0 /* FIXME: should be channel here */, msg);
1781 else if (!pvt->is_registered)
1782 edac_mc_handle_fbd_ce(mci, csrow,
1783 0 /* FIXME: should be channel here */, msg);
1784
1785 kfree(msg);
1786 }
1787
1788 /*
1789 * i7core_check_error Retrieve and process errors reported by the
1790 * hardware. Called by the Core module.
1791 */
1792 static void i7core_check_error(struct mem_ctl_info *mci)
1793 {
1794 struct i7core_pvt *pvt = mci->pvt_info;
1795 int i;
1796 unsigned count = 0;
1797 struct mce *m;
1798
1799 /*
1800 * MCE first step: Copy all mce errors into a temporary buffer
1801 * We use a double buffering here, to reduce the risk of
1802 * loosing an error.
1803 */
1804 smp_rmb();
1805 count = (pvt->mce_out + MCE_LOG_LEN - pvt->mce_in)
1806 % MCE_LOG_LEN;
1807 if (!count)
1808 goto check_ce_error;
1809
1810 m = pvt->mce_outentry;
1811 if (pvt->mce_in + count > MCE_LOG_LEN) {
1812 unsigned l = MCE_LOG_LEN - pvt->mce_in;
1813
1814 memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * l);
1815 smp_wmb();
1816 pvt->mce_in = 0;
1817 count -= l;
1818 m += l;
1819 }
1820 memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * count);
1821 smp_wmb();
1822 pvt->mce_in += count;
1823
1824 smp_rmb();
1825 if (pvt->mce_overrun) {
1826 i7core_printk(KERN_ERR, "Lost %d memory errors\n",
1827 pvt->mce_overrun);
1828 smp_wmb();
1829 pvt->mce_overrun = 0;
1830 }
1831
1832 /*
1833 * MCE second step: parse errors and display
1834 */
1835 for (i = 0; i < count; i++)
1836 i7core_mce_output_error(mci, &pvt->mce_outentry[i]);
1837
1838 /*
1839 * Now, let's increment CE error counts
1840 */
1841 check_ce_error:
1842 if (!pvt->is_registered)
1843 i7core_udimm_check_mc_ecc_err(mci);
1844 else
1845 i7core_rdimm_check_mc_ecc_err(mci);
1846 }
1847
1848 /*
1849 * i7core_mce_check_error Replicates mcelog routine to get errors
1850 * This routine simply queues mcelog errors, and
1851 * return. The error itself should be handled later
1852 * by i7core_check_error.
1853 * WARNING: As this routine should be called at NMI time, extra care should
1854 * be taken to avoid deadlocks, and to be as fast as possible.
1855 */
1856 static int i7core_mce_check_error(void *priv, struct mce *mce)
1857 {
1858 struct mem_ctl_info *mci = priv;
1859 struct i7core_pvt *pvt = mci->pvt_info;
1860
1861 /*
1862 * Just let mcelog handle it if the error is
1863 * outside the memory controller
1864 */
1865 if (((mce->status & 0xffff) >> 7) != 1)
1866 return 0;
1867
1868 /* Bank 8 registers are the only ones that we know how to handle */
1869 if (mce->bank != 8)
1870 return 0;
1871
1872 #ifdef CONFIG_SMP
1873 /* Only handle if it is the right mc controller */
1874 if (cpu_data(mce->cpu).phys_proc_id != pvt->i7core_dev->socket)
1875 return 0;
1876 #endif
1877
1878 smp_rmb();
1879 if ((pvt->mce_out + 1) % MCE_LOG_LEN == pvt->mce_in) {
1880 smp_wmb();
1881 pvt->mce_overrun++;
1882 return 0;
1883 }
1884
1885 /* Copy memory error at the ringbuffer */
1886 memcpy(&pvt->mce_entry[pvt->mce_out], mce, sizeof(*mce));
1887 smp_wmb();
1888 pvt->mce_out = (pvt->mce_out + 1) % MCE_LOG_LEN;
1889
1890 /* Handle fatal errors immediately */
1891 if (mce->mcgstatus & 1)
1892 i7core_check_error(mci);
1893
1894 /* Advice mcelog that the error were handled */
1895 return 1;
1896 }
1897
1898 static int i7core_register_mci(struct i7core_dev *i7core_dev,
1899 const int num_channels, const int num_csrows)
1900 {
1901 struct mem_ctl_info *mci;
1902 struct i7core_pvt *pvt;
1903 int csrow = 0;
1904 int rc;
1905
1906 /* allocate a new MC control structure */
1907 mci = edac_mc_alloc(sizeof(*pvt), num_csrows, num_channels,
1908 i7core_dev->socket);
1909 if (unlikely(!mci))
1910 return -ENOMEM;
1911
1912 debugf0("MC: " __FILE__ ": %s(): mci = %p, dev = %p\n",
1913 __func__, mci, &i7core_dev->pdev[0]->dev);
1914
1915 /* record ptr to the generic device */
1916 mci->dev = &i7core_dev->pdev[0]->dev;
1917
1918 pvt = mci->pvt_info;
1919 memset(pvt, 0, sizeof(*pvt));
1920
1921 /*
1922 * FIXME: how to handle RDDR3 at MCI level? It is possible to have
1923 * Mixed RDDR3/UDDR3 with Nehalem, provided that they are on different
1924 * memory channels
1925 */
1926 mci->mtype_cap = MEM_FLAG_DDR3;
1927 mci->edac_ctl_cap = EDAC_FLAG_NONE;
1928 mci->edac_cap = EDAC_FLAG_NONE;
1929 mci->mod_name = "i7core_edac.c";
1930 mci->mod_ver = I7CORE_REVISION;
1931 mci->ctl_name = kasprintf(GFP_KERNEL, "i7 core #%d",
1932 i7core_dev->socket);
1933 mci->dev_name = pci_name(i7core_dev->pdev[0]);
1934 mci->ctl_page_to_phys = NULL;
1935
1936 if (pvt->is_registered)
1937 mci->mc_driver_sysfs_attributes = i7core_sysfs_rdimm_attrs;
1938 else
1939 mci->mc_driver_sysfs_attributes = i7core_sysfs_udimm_attrs;
1940
1941 /* Set the function pointer to an actual operation function */
1942 mci->edac_check = i7core_check_error;
1943
1944 /* Store pci devices at mci for faster access */
1945 rc = mci_bind_devs(mci, i7core_dev);
1946 if (unlikely(rc < 0))
1947 goto fail;
1948
1949 /* Get dimm basic config */
1950 get_dimm_config(mci, &csrow);
1951
1952 /* add this new MC control structure to EDAC's list of MCs */
1953 if (unlikely(edac_mc_add_mc(mci))) {
1954 debugf0("MC: " __FILE__
1955 ": %s(): failed edac_mc_add_mc()\n", __func__);
1956 /* FIXME: perhaps some code should go here that disables error
1957 * reporting if we just enabled it
1958 */
1959
1960 rc = -EINVAL;
1961 goto fail;
1962 }
1963
1964 /* Default error mask is any memory */
1965 pvt->inject.channel = 0;
1966 pvt->inject.dimm = -1;
1967 pvt->inject.rank = -1;
1968 pvt->inject.bank = -1;
1969 pvt->inject.page = -1;
1970 pvt->inject.col = -1;
1971
1972 /* Registers on edac_mce in order to receive memory errors */
1973 pvt->edac_mce.priv = mci;
1974 pvt->edac_mce.check_error = i7core_mce_check_error;
1975
1976 /* allocating generic PCI control info */
1977 pvt->i7core_pci = edac_pci_create_generic_ctl(&i7core_dev->pdev[0]->dev,
1978 EDAC_MOD_STR);
1979 if (unlikely(!pvt->i7core_pci)) {
1980 printk(KERN_WARNING
1981 "%s(): Unable to create PCI control\n",
1982 __func__);
1983 printk(KERN_WARNING
1984 "%s(): PCI error report via EDAC not setup\n",
1985 __func__);
1986 }
1987
1988 rc = edac_mce_register(&pvt->edac_mce);
1989 if (unlikely(rc < 0)) {
1990 debugf0("MC: " __FILE__
1991 ": %s(): failed edac_mce_register()\n", __func__);
1992 }
1993
1994 fail:
1995 if (rc < 0)
1996 edac_mc_free(mci);
1997 return rc;
1998 }
1999
2000 /*
2001 * i7core_probe Probe for ONE instance of device to see if it is
2002 * present.
2003 * return:
2004 * 0 for FOUND a device
2005 * < 0 for error code
2006 */
2007
2008 static int __devinit i7core_probe(struct pci_dev *pdev,
2009 const struct pci_device_id *id)
2010 {
2011 int rc;
2012 struct i7core_dev *i7core_dev;
2013
2014 /* get the pci devices we want to reserve for our use */
2015 mutex_lock(&i7core_edac_lock);
2016
2017 /*
2018 * All memory controllers are allocated at the first pass.
2019 */
2020 if (unlikely(probed >= 1)) {
2021 mutex_unlock(&i7core_edac_lock);
2022 return -EINVAL;
2023 }
2024 probed++;
2025
2026 rc = i7core_get_devices(pci_dev_table);
2027 if (unlikely(rc < 0))
2028 goto fail0;
2029
2030 list_for_each_entry(i7core_dev, &i7core_edac_list, list) {
2031 int channels;
2032 int csrows;
2033
2034 /* Check the number of active and not disabled channels */
2035 rc = i7core_get_active_channels(i7core_dev->socket,
2036 &channels, &csrows);
2037 if (unlikely(rc < 0))
2038 goto fail1;
2039
2040 rc = i7core_register_mci(i7core_dev, channels, csrows);
2041 if (unlikely(rc < 0))
2042 goto fail1;
2043 }
2044
2045 i7core_printk(KERN_INFO, "Driver loaded.\n");
2046
2047 mutex_unlock(&i7core_edac_lock);
2048 return 0;
2049
2050 fail1:
2051 i7core_put_all_devices();
2052 fail0:
2053 mutex_unlock(&i7core_edac_lock);
2054 return rc;
2055 }
2056
2057 /*
2058 * i7core_remove destructor for one instance of device
2059 *
2060 */
2061 static void __devexit i7core_remove(struct pci_dev *pdev)
2062 {
2063 struct mem_ctl_info *mci;
2064 struct i7core_dev *i7core_dev, *tmp;
2065 struct i7core_pvt *pvt;
2066
2067 debugf0(__FILE__ ": %s()\n", __func__);
2068
2069 /*
2070 * we have a trouble here: pdev value for removal will be wrong, since
2071 * it will point to the X58 register used to detect that the machine
2072 * is a Nehalem or upper design. However, due to the way several PCI
2073 * devices are grouped together to provide MC functionality, we need
2074 * to use a different method for releasing the devices
2075 */
2076
2077 mutex_lock(&i7core_edac_lock);
2078 list_for_each_entry_safe(i7core_dev, tmp, &i7core_edac_list, list) {
2079 mci = find_mci_by_dev(&i7core_dev->pdev[0]->dev);
2080 if (unlikely(!mci || !mci->pvt_info)) {
2081 debugf0("MC: " __FILE__ ": %s(): dev = %p\n",
2082 __func__, &i7core_dev->pdev[0]->dev);
2083
2084 i7core_printk(KERN_ERR,
2085 "Couldn't find mci hanler\n");
2086 } else {
2087 pvt = mci->pvt_info;
2088 i7core_dev = pvt->i7core_dev;
2089
2090 debugf0("MC: " __FILE__ ": %s(): mci = %p, dev = %p\n",
2091 __func__, mci, &i7core_dev->pdev[0]->dev);
2092
2093 /* Disable MCE NMI handler */
2094 edac_mce_unregister(&pvt->edac_mce);
2095
2096 /* Disable EDAC polling */
2097 if (likely(pvt->i7core_pci))
2098 edac_pci_release_generic_ctl(pvt->i7core_pci);
2099 else
2100 i7core_printk(KERN_ERR,
2101 "Couldn't find mem_ctl_info for socket %d\n",
2102 i7core_dev->socket);
2103 pvt->i7core_pci = NULL;
2104
2105 /* Remove MC sysfs nodes */
2106 edac_mc_del_mc(&i7core_dev->pdev[0]->dev);
2107
2108 debugf1("%s: free mci struct\n", mci->ctl_name);
2109 kfree(mci->ctl_name);
2110 edac_mc_free(mci);
2111
2112 /* Release PCI resources */
2113 i7core_put_devices(i7core_dev);
2114 free_i7core_dev(i7core_dev);
2115 }
2116 }
2117 probed--;
2118
2119 mutex_unlock(&i7core_edac_lock);
2120 }
2121
2122 MODULE_DEVICE_TABLE(pci, i7core_pci_tbl);
2123
2124 /*
2125 * i7core_driver pci_driver structure for this module
2126 *
2127 */
2128 static struct pci_driver i7core_driver = {
2129 .name = "i7core_edac",
2130 .probe = i7core_probe,
2131 .remove = __devexit_p(i7core_remove),
2132 .id_table = i7core_pci_tbl,
2133 };
2134
2135 /*
2136 * i7core_init Module entry function
2137 * Try to initialize this module for its devices
2138 */
2139 static int __init i7core_init(void)
2140 {
2141 int pci_rc;
2142
2143 debugf2("MC: " __FILE__ ": %s()\n", __func__);
2144
2145 /* Ensure that the OPSTATE is set correctly for POLL or NMI */
2146 opstate_init();
2147
2148 if (use_pci_fixup)
2149 i7core_xeon_pci_fixup(pci_dev_table);
2150
2151 pci_rc = pci_register_driver(&i7core_driver);
2152
2153 if (pci_rc >= 0)
2154 return 0;
2155
2156 i7core_printk(KERN_ERR, "Failed to register device with error %d.\n",
2157 pci_rc);
2158
2159 return pci_rc;
2160 }
2161
2162 /*
2163 * i7core_exit() Module exit function
2164 * Unregister the driver
2165 */
2166 static void __exit i7core_exit(void)
2167 {
2168 debugf2("MC: " __FILE__ ": %s()\n", __func__);
2169 pci_unregister_driver(&i7core_driver);
2170 }
2171
2172 module_init(i7core_init);
2173 module_exit(i7core_exit);
2174
2175 MODULE_LICENSE("GPL");
2176 MODULE_AUTHOR("Mauro Carvalho Chehab <mchehab@redhat.com>");
2177 MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
2178 MODULE_DESCRIPTION("MC Driver for Intel i7 Core memory controllers - "
2179 I7CORE_REVISION);
2180
2181 module_param(edac_op_state, int, 0444);
2182 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");