]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - drivers/edac/pnd2_edac.c
Merge branch 'x86/boot' into x86/mm, to avoid conflict
[mirror_ubuntu-focal-kernel.git] / drivers / edac / pnd2_edac.c
1 /*
2 * Driver for Pondicherry2 memory controller.
3 *
4 * Copyright (c) 2016, Intel Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * [Derived from sb_edac.c]
16 *
17 * Translation of system physical addresses to DIMM addresses
18 * is a two stage process:
19 *
20 * First the Pondicherry 2 memory controller handles slice and channel interleaving
21 * in "sys2pmi()". This is (almost) completley common between platforms.
22 *
23 * Then a platform specific dunit (DIMM unit) completes the process to provide DIMM,
24 * rank, bank, row and column using the appropriate "dunit_ops" functions/parameters.
25 */
26
27 #include <linux/module.h>
28 #include <linux/init.h>
29 #include <linux/pci.h>
30 #include <linux/pci_ids.h>
31 #include <linux/slab.h>
32 #include <linux/delay.h>
33 #include <linux/edac.h>
34 #include <linux/mmzone.h>
35 #include <linux/smp.h>
36 #include <linux/bitmap.h>
37 #include <linux/math64.h>
38 #include <linux/mod_devicetable.h>
39 #include <asm/cpu_device_id.h>
40 #include <asm/intel-family.h>
41 #include <asm/processor.h>
42 #include <asm/mce.h>
43
44 #include "edac_mc.h"
45 #include "edac_module.h"
46 #include "pnd2_edac.h"
47
48 #define APL_NUM_CHANNELS 4
49 #define DNV_NUM_CHANNELS 2
50 #define DNV_MAX_DIMMS 2 /* Max DIMMs per channel */
51
52 enum type {
53 APL,
54 DNV, /* All requests go to PMI CH0 on each slice (CH1 disabled) */
55 };
56
57 struct dram_addr {
58 int chan;
59 int dimm;
60 int rank;
61 int bank;
62 int row;
63 int col;
64 };
65
66 struct pnd2_pvt {
67 int dimm_geom[APL_NUM_CHANNELS];
68 u64 tolm, tohm;
69 };
70
71 /*
72 * System address space is divided into multiple regions with
73 * different interleave rules in each. The as0/as1 regions
74 * have no interleaving at all. The as2 region is interleaved
75 * between two channels. The mot region is magic and may overlap
76 * other regions, with its interleave rules taking precedence.
77 * Addresses not in any of these regions are interleaved across
78 * all four channels.
79 */
80 static struct region {
81 u64 base;
82 u64 limit;
83 u8 enabled;
84 } mot, as0, as1, as2;
85
86 static struct dunit_ops {
87 char *name;
88 enum type type;
89 int pmiaddr_shift;
90 int pmiidx_shift;
91 int channels;
92 int dimms_per_channel;
93 int (*rd_reg)(int port, int off, int op, void *data, size_t sz, char *name);
94 int (*get_registers)(void);
95 int (*check_ecc)(void);
96 void (*mk_region)(char *name, struct region *rp, void *asym);
97 void (*get_dimm_config)(struct mem_ctl_info *mci);
98 int (*pmi2mem)(struct mem_ctl_info *mci, u64 pmiaddr, u32 pmiidx,
99 struct dram_addr *daddr, char *msg);
100 } *ops;
101
102 static struct mem_ctl_info *pnd2_mci;
103
104 #define PND2_MSG_SIZE 256
105
106 /* Debug macros */
107 #define pnd2_printk(level, fmt, arg...) \
108 edac_printk(level, "pnd2", fmt, ##arg)
109
110 #define pnd2_mc_printk(mci, level, fmt, arg...) \
111 edac_mc_chipset_printk(mci, level, "pnd2", fmt, ##arg)
112
113 #define MOT_CHAN_INTLV_BIT_1SLC_2CH 12
114 #define MOT_CHAN_INTLV_BIT_2SLC_2CH 13
115 #define SELECTOR_DISABLED (-1)
116 #define _4GB (1ul << 32)
117
118 #define PMI_ADDRESS_WIDTH 31
119 #define PND_MAX_PHYS_BIT 39
120
121 #define APL_ASYMSHIFT 28
122 #define DNV_ASYMSHIFT 31
123 #define CH_HASH_MASK_LSB 6
124 #define SLICE_HASH_MASK_LSB 6
125 #define MOT_SLC_INTLV_BIT 12
126 #define LOG2_PMI_ADDR_GRANULARITY 5
127 #define MOT_SHIFT 24
128
129 #define GET_BITFIELD(v, lo, hi) (((v) & GENMASK_ULL(hi, lo)) >> (lo))
130 #define U64_LSHIFT(val, s) ((u64)(val) << (s))
131
132 #ifdef CONFIG_X86_INTEL_SBI_APL
133 #include "linux/platform_data/sbi_apl.h"
134 int sbi_send(int port, int off, int op, u32 *data)
135 {
136 struct sbi_apl_message sbi_arg;
137 int ret, read = 0;
138
139 memset(&sbi_arg, 0, sizeof(sbi_arg));
140
141 if (op == 0 || op == 4 || op == 6)
142 read = 1;
143 else
144 sbi_arg.data = *data;
145
146 sbi_arg.opcode = op;
147 sbi_arg.port_address = port;
148 sbi_arg.register_offset = off;
149 ret = sbi_apl_commit(&sbi_arg);
150 if (ret || sbi_arg.status)
151 edac_dbg(2, "sbi_send status=%d ret=%d data=%x\n",
152 sbi_arg.status, ret, sbi_arg.data);
153
154 if (ret == 0)
155 ret = sbi_arg.status;
156
157 if (ret == 0 && read)
158 *data = sbi_arg.data;
159
160 return ret;
161 }
162 #else
163 int sbi_send(int port, int off, int op, u32 *data)
164 {
165 return -EUNATCH;
166 }
167 #endif
168
169 static int apl_rd_reg(int port, int off, int op, void *data, size_t sz, char *name)
170 {
171 int ret = 0;
172
173 edac_dbg(2, "Read %s port=%x off=%x op=%x\n", name, port, off, op);
174 switch (sz) {
175 case 8:
176 ret = sbi_send(port, off + 4, op, (u32 *)(data + 4));
177 case 4:
178 ret = sbi_send(port, off, op, (u32 *)data);
179 pnd2_printk(KERN_DEBUG, "%s=%x%08x ret=%d\n", name,
180 sz == 8 ? *((u32 *)(data + 4)) : 0, *((u32 *)data), ret);
181 break;
182 }
183
184 return ret;
185 }
186
187 static u64 get_mem_ctrl_hub_base_addr(void)
188 {
189 struct b_cr_mchbar_lo_pci lo;
190 struct b_cr_mchbar_hi_pci hi;
191 struct pci_dev *pdev;
192
193 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x1980, NULL);
194 if (pdev) {
195 pci_read_config_dword(pdev, 0x48, (u32 *)&lo);
196 pci_read_config_dword(pdev, 0x4c, (u32 *)&hi);
197 pci_dev_put(pdev);
198 } else {
199 return 0;
200 }
201
202 if (!lo.enable) {
203 edac_dbg(2, "MMIO via memory controller hub base address is disabled!\n");
204 return 0;
205 }
206
207 return U64_LSHIFT(hi.base, 32) | U64_LSHIFT(lo.base, 15);
208 }
209
210 static u64 get_sideband_reg_base_addr(void)
211 {
212 struct pci_dev *pdev;
213 u32 hi, lo;
214
215 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x19dd, NULL);
216 if (pdev) {
217 pci_read_config_dword(pdev, 0x10, &lo);
218 pci_read_config_dword(pdev, 0x14, &hi);
219 pci_dev_put(pdev);
220 return (U64_LSHIFT(hi, 32) | U64_LSHIFT(lo, 0));
221 } else {
222 return 0xfd000000;
223 }
224 }
225
226 static int dnv_rd_reg(int port, int off, int op, void *data, size_t sz, char *name)
227 {
228 struct pci_dev *pdev;
229 char *base;
230 u64 addr;
231
232 if (op == 4) {
233 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x1980, NULL);
234 if (!pdev)
235 return -ENODEV;
236
237 pci_read_config_dword(pdev, off, data);
238 pci_dev_put(pdev);
239 } else {
240 /* MMIO via memory controller hub base address */
241 if (op == 0 && port == 0x4c) {
242 addr = get_mem_ctrl_hub_base_addr();
243 if (!addr)
244 return -ENODEV;
245 } else {
246 /* MMIO via sideband register base address */
247 addr = get_sideband_reg_base_addr();
248 if (!addr)
249 return -ENODEV;
250 addr += (port << 16);
251 }
252
253 base = ioremap((resource_size_t)addr, 0x10000);
254 if (!base)
255 return -ENODEV;
256
257 if (sz == 8)
258 *(u32 *)(data + 4) = *(u32 *)(base + off + 4);
259 *(u32 *)data = *(u32 *)(base + off);
260
261 iounmap(base);
262 }
263
264 edac_dbg(2, "Read %s=%.8x_%.8x\n", name,
265 (sz == 8) ? *(u32 *)(data + 4) : 0, *(u32 *)data);
266
267 return 0;
268 }
269
270 #define RD_REGP(regp, regname, port) \
271 ops->rd_reg(port, \
272 regname##_offset, \
273 regname##_r_opcode, \
274 regp, sizeof(struct regname), \
275 #regname)
276
277 #define RD_REG(regp, regname) \
278 ops->rd_reg(regname ## _port, \
279 regname##_offset, \
280 regname##_r_opcode, \
281 regp, sizeof(struct regname), \
282 #regname)
283
284 static u64 top_lm, top_hm;
285 static bool two_slices;
286 static bool two_channels; /* Both PMI channels in one slice enabled */
287
288 static u8 sym_chan_mask;
289 static u8 asym_chan_mask;
290 static u8 chan_mask;
291
292 static int slice_selector = -1;
293 static int chan_selector = -1;
294 static u64 slice_hash_mask;
295 static u64 chan_hash_mask;
296
297 static void mk_region(char *name, struct region *rp, u64 base, u64 limit)
298 {
299 rp->enabled = 1;
300 rp->base = base;
301 rp->limit = limit;
302 edac_dbg(2, "Region:%s [%llx, %llx]\n", name, base, limit);
303 }
304
305 static void mk_region_mask(char *name, struct region *rp, u64 base, u64 mask)
306 {
307 if (mask == 0) {
308 pr_info(FW_BUG "MOT mask cannot be zero\n");
309 return;
310 }
311 if (mask != GENMASK_ULL(PND_MAX_PHYS_BIT, __ffs(mask))) {
312 pr_info(FW_BUG "MOT mask not power of two\n");
313 return;
314 }
315 if (base & ~mask) {
316 pr_info(FW_BUG "MOT region base/mask alignment error\n");
317 return;
318 }
319 rp->base = base;
320 rp->limit = (base | ~mask) & GENMASK_ULL(PND_MAX_PHYS_BIT, 0);
321 rp->enabled = 1;
322 edac_dbg(2, "Region:%s [%llx, %llx]\n", name, base, rp->limit);
323 }
324
325 static bool in_region(struct region *rp, u64 addr)
326 {
327 if (!rp->enabled)
328 return false;
329
330 return rp->base <= addr && addr <= rp->limit;
331 }
332
333 static int gen_sym_mask(struct b_cr_slice_channel_hash *p)
334 {
335 int mask = 0;
336
337 if (!p->slice_0_mem_disabled)
338 mask |= p->sym_slice0_channel_enabled;
339
340 if (!p->slice_1_disabled)
341 mask |= p->sym_slice1_channel_enabled << 2;
342
343 if (p->ch_1_disabled || p->enable_pmi_dual_data_mode)
344 mask &= 0x5;
345
346 return mask;
347 }
348
349 static int gen_asym_mask(struct b_cr_slice_channel_hash *p,
350 struct b_cr_asym_mem_region0_mchbar *as0,
351 struct b_cr_asym_mem_region1_mchbar *as1,
352 struct b_cr_asym_2way_mem_region_mchbar *as2way)
353 {
354 const int intlv[] = { 0x5, 0xA, 0x3, 0xC };
355 int mask = 0;
356
357 if (as2way->asym_2way_interleave_enable)
358 mask = intlv[as2way->asym_2way_intlv_mode];
359 if (as0->slice0_asym_enable)
360 mask |= (1 << as0->slice0_asym_channel_select);
361 if (as1->slice1_asym_enable)
362 mask |= (4 << as1->slice1_asym_channel_select);
363 if (p->slice_0_mem_disabled)
364 mask &= 0xc;
365 if (p->slice_1_disabled)
366 mask &= 0x3;
367 if (p->ch_1_disabled || p->enable_pmi_dual_data_mode)
368 mask &= 0x5;
369
370 return mask;
371 }
372
373 static struct b_cr_tolud_pci tolud;
374 static struct b_cr_touud_lo_pci touud_lo;
375 static struct b_cr_touud_hi_pci touud_hi;
376 static struct b_cr_asym_mem_region0_mchbar asym0;
377 static struct b_cr_asym_mem_region1_mchbar asym1;
378 static struct b_cr_asym_2way_mem_region_mchbar asym_2way;
379 static struct b_cr_mot_out_base_mchbar mot_base;
380 static struct b_cr_mot_out_mask_mchbar mot_mask;
381 static struct b_cr_slice_channel_hash chash;
382
383 /* Apollo Lake dunit */
384 /*
385 * Validated on board with just two DIMMs in the [0] and [2] positions
386 * in this array. Other port number matches documentation, but caution
387 * advised.
388 */
389 static const int apl_dports[APL_NUM_CHANNELS] = { 0x18, 0x10, 0x11, 0x19 };
390 static struct d_cr_drp0 drp0[APL_NUM_CHANNELS];
391
392 /* Denverton dunit */
393 static const int dnv_dports[DNV_NUM_CHANNELS] = { 0x10, 0x12 };
394 static struct d_cr_dsch dsch;
395 static struct d_cr_ecc_ctrl ecc_ctrl[DNV_NUM_CHANNELS];
396 static struct d_cr_drp drp[DNV_NUM_CHANNELS];
397 static struct d_cr_dmap dmap[DNV_NUM_CHANNELS];
398 static struct d_cr_dmap1 dmap1[DNV_NUM_CHANNELS];
399 static struct d_cr_dmap2 dmap2[DNV_NUM_CHANNELS];
400 static struct d_cr_dmap3 dmap3[DNV_NUM_CHANNELS];
401 static struct d_cr_dmap4 dmap4[DNV_NUM_CHANNELS];
402 static struct d_cr_dmap5 dmap5[DNV_NUM_CHANNELS];
403
404 static void apl_mk_region(char *name, struct region *rp, void *asym)
405 {
406 struct b_cr_asym_mem_region0_mchbar *a = asym;
407
408 mk_region(name, rp,
409 U64_LSHIFT(a->slice0_asym_base, APL_ASYMSHIFT),
410 U64_LSHIFT(a->slice0_asym_limit, APL_ASYMSHIFT) +
411 GENMASK_ULL(APL_ASYMSHIFT - 1, 0));
412 }
413
414 static void dnv_mk_region(char *name, struct region *rp, void *asym)
415 {
416 struct b_cr_asym_mem_region_denverton *a = asym;
417
418 mk_region(name, rp,
419 U64_LSHIFT(a->slice_asym_base, DNV_ASYMSHIFT),
420 U64_LSHIFT(a->slice_asym_limit, DNV_ASYMSHIFT) +
421 GENMASK_ULL(DNV_ASYMSHIFT - 1, 0));
422 }
423
424 static int apl_get_registers(void)
425 {
426 int i;
427
428 if (RD_REG(&asym_2way, b_cr_asym_2way_mem_region_mchbar))
429 return -ENODEV;
430
431 for (i = 0; i < APL_NUM_CHANNELS; i++)
432 if (RD_REGP(&drp0[i], d_cr_drp0, apl_dports[i]))
433 return -ENODEV;
434
435 return 0;
436 }
437
438 static int dnv_get_registers(void)
439 {
440 int i;
441
442 if (RD_REG(&dsch, d_cr_dsch))
443 return -ENODEV;
444
445 for (i = 0; i < DNV_NUM_CHANNELS; i++)
446 if (RD_REGP(&ecc_ctrl[i], d_cr_ecc_ctrl, dnv_dports[i]) ||
447 RD_REGP(&drp[i], d_cr_drp, dnv_dports[i]) ||
448 RD_REGP(&dmap[i], d_cr_dmap, dnv_dports[i]) ||
449 RD_REGP(&dmap1[i], d_cr_dmap1, dnv_dports[i]) ||
450 RD_REGP(&dmap2[i], d_cr_dmap2, dnv_dports[i]) ||
451 RD_REGP(&dmap3[i], d_cr_dmap3, dnv_dports[i]) ||
452 RD_REGP(&dmap4[i], d_cr_dmap4, dnv_dports[i]) ||
453 RD_REGP(&dmap5[i], d_cr_dmap5, dnv_dports[i]))
454 return -ENODEV;
455
456 return 0;
457 }
458
459 /*
460 * Read all the h/w config registers once here (they don't
461 * change at run time. Figure out which address ranges have
462 * which interleave characteristics.
463 */
464 static int get_registers(void)
465 {
466 const int intlv[] = { 10, 11, 12, 12 };
467
468 if (RD_REG(&tolud, b_cr_tolud_pci) ||
469 RD_REG(&touud_lo, b_cr_touud_lo_pci) ||
470 RD_REG(&touud_hi, b_cr_touud_hi_pci) ||
471 RD_REG(&asym0, b_cr_asym_mem_region0_mchbar) ||
472 RD_REG(&asym1, b_cr_asym_mem_region1_mchbar) ||
473 RD_REG(&mot_base, b_cr_mot_out_base_mchbar) ||
474 RD_REG(&mot_mask, b_cr_mot_out_mask_mchbar) ||
475 RD_REG(&chash, b_cr_slice_channel_hash))
476 return -ENODEV;
477
478 if (ops->get_registers())
479 return -ENODEV;
480
481 if (ops->type == DNV) {
482 /* PMI channel idx (always 0) for asymmetric region */
483 asym0.slice0_asym_channel_select = 0;
484 asym1.slice1_asym_channel_select = 0;
485 /* PMI channel bitmap (always 1) for symmetric region */
486 chash.sym_slice0_channel_enabled = 0x1;
487 chash.sym_slice1_channel_enabled = 0x1;
488 }
489
490 if (asym0.slice0_asym_enable)
491 ops->mk_region("as0", &as0, &asym0);
492
493 if (asym1.slice1_asym_enable)
494 ops->mk_region("as1", &as1, &asym1);
495
496 if (asym_2way.asym_2way_interleave_enable) {
497 mk_region("as2way", &as2,
498 U64_LSHIFT(asym_2way.asym_2way_base, APL_ASYMSHIFT),
499 U64_LSHIFT(asym_2way.asym_2way_limit, APL_ASYMSHIFT) +
500 GENMASK_ULL(APL_ASYMSHIFT - 1, 0));
501 }
502
503 if (mot_base.imr_en) {
504 mk_region_mask("mot", &mot,
505 U64_LSHIFT(mot_base.mot_out_base, MOT_SHIFT),
506 U64_LSHIFT(mot_mask.mot_out_mask, MOT_SHIFT));
507 }
508
509 top_lm = U64_LSHIFT(tolud.tolud, 20);
510 top_hm = U64_LSHIFT(touud_hi.touud, 32) | U64_LSHIFT(touud_lo.touud, 20);
511
512 two_slices = !chash.slice_1_disabled &&
513 !chash.slice_0_mem_disabled &&
514 (chash.sym_slice0_channel_enabled != 0) &&
515 (chash.sym_slice1_channel_enabled != 0);
516 two_channels = !chash.ch_1_disabled &&
517 !chash.enable_pmi_dual_data_mode &&
518 ((chash.sym_slice0_channel_enabled == 3) ||
519 (chash.sym_slice1_channel_enabled == 3));
520
521 sym_chan_mask = gen_sym_mask(&chash);
522 asym_chan_mask = gen_asym_mask(&chash, &asym0, &asym1, &asym_2way);
523 chan_mask = sym_chan_mask | asym_chan_mask;
524
525 if (two_slices && !two_channels) {
526 if (chash.hvm_mode)
527 slice_selector = 29;
528 else
529 slice_selector = intlv[chash.interleave_mode];
530 } else if (!two_slices && two_channels) {
531 if (chash.hvm_mode)
532 chan_selector = 29;
533 else
534 chan_selector = intlv[chash.interleave_mode];
535 } else if (two_slices && two_channels) {
536 if (chash.hvm_mode) {
537 slice_selector = 29;
538 chan_selector = 30;
539 } else {
540 slice_selector = intlv[chash.interleave_mode];
541 chan_selector = intlv[chash.interleave_mode] + 1;
542 }
543 }
544
545 if (two_slices) {
546 if (!chash.hvm_mode)
547 slice_hash_mask = chash.slice_hash_mask << SLICE_HASH_MASK_LSB;
548 if (!two_channels)
549 slice_hash_mask |= BIT_ULL(slice_selector);
550 }
551
552 if (two_channels) {
553 if (!chash.hvm_mode)
554 chan_hash_mask = chash.ch_hash_mask << CH_HASH_MASK_LSB;
555 if (!two_slices)
556 chan_hash_mask |= BIT_ULL(chan_selector);
557 }
558
559 return 0;
560 }
561
562 /* Get a contiguous memory address (remove the MMIO gap) */
563 static u64 remove_mmio_gap(u64 sys)
564 {
565 return (sys < _4GB) ? sys : sys - (_4GB - top_lm);
566 }
567
568 /* Squeeze out one address bit, shift upper part down to fill gap */
569 static void remove_addr_bit(u64 *addr, int bitidx)
570 {
571 u64 mask;
572
573 if (bitidx == -1)
574 return;
575
576 mask = (1ull << bitidx) - 1;
577 *addr = ((*addr >> 1) & ~mask) | (*addr & mask);
578 }
579
580 /* XOR all the bits from addr specified in mask */
581 static int hash_by_mask(u64 addr, u64 mask)
582 {
583 u64 result = addr & mask;
584
585 result = (result >> 32) ^ result;
586 result = (result >> 16) ^ result;
587 result = (result >> 8) ^ result;
588 result = (result >> 4) ^ result;
589 result = (result >> 2) ^ result;
590 result = (result >> 1) ^ result;
591
592 return (int)result & 1;
593 }
594
595 /*
596 * First stage decode. Take the system address and figure out which
597 * second stage will deal with it based on interleave modes.
598 */
599 static int sys2pmi(const u64 addr, u32 *pmiidx, u64 *pmiaddr, char *msg)
600 {
601 u64 contig_addr, contig_base, contig_offset, contig_base_adj;
602 int mot_intlv_bit = two_slices ? MOT_CHAN_INTLV_BIT_2SLC_2CH :
603 MOT_CHAN_INTLV_BIT_1SLC_2CH;
604 int slice_intlv_bit_rm = SELECTOR_DISABLED;
605 int chan_intlv_bit_rm = SELECTOR_DISABLED;
606 /* Determine if address is in the MOT region. */
607 bool mot_hit = in_region(&mot, addr);
608 /* Calculate the number of symmetric regions enabled. */
609 int sym_channels = hweight8(sym_chan_mask);
610
611 /*
612 * The amount we need to shift the asym base can be determined by the
613 * number of enabled symmetric channels.
614 * NOTE: This can only work because symmetric memory is not supposed
615 * to do a 3-way interleave.
616 */
617 int sym_chan_shift = sym_channels >> 1;
618
619 /* Give up if address is out of range, or in MMIO gap */
620 if (addr >= (1ul << PND_MAX_PHYS_BIT) ||
621 (addr >= top_lm && addr < _4GB) || addr >= top_hm) {
622 snprintf(msg, PND2_MSG_SIZE, "Error address 0x%llx is not DRAM", addr);
623 return -EINVAL;
624 }
625
626 /* Get a contiguous memory address (remove the MMIO gap) */
627 contig_addr = remove_mmio_gap(addr);
628
629 if (in_region(&as0, addr)) {
630 *pmiidx = asym0.slice0_asym_channel_select;
631
632 contig_base = remove_mmio_gap(as0.base);
633 contig_offset = contig_addr - contig_base;
634 contig_base_adj = (contig_base >> sym_chan_shift) *
635 ((chash.sym_slice0_channel_enabled >> (*pmiidx & 1)) & 1);
636 contig_addr = contig_offset + ((sym_channels > 0) ? contig_base_adj : 0ull);
637 } else if (in_region(&as1, addr)) {
638 *pmiidx = 2u + asym1.slice1_asym_channel_select;
639
640 contig_base = remove_mmio_gap(as1.base);
641 contig_offset = contig_addr - contig_base;
642 contig_base_adj = (contig_base >> sym_chan_shift) *
643 ((chash.sym_slice1_channel_enabled >> (*pmiidx & 1)) & 1);
644 contig_addr = contig_offset + ((sym_channels > 0) ? contig_base_adj : 0ull);
645 } else if (in_region(&as2, addr) && (asym_2way.asym_2way_intlv_mode == 0x3ul)) {
646 bool channel1;
647
648 mot_intlv_bit = MOT_CHAN_INTLV_BIT_1SLC_2CH;
649 *pmiidx = (asym_2way.asym_2way_intlv_mode & 1) << 1;
650 channel1 = mot_hit ? ((bool)((addr >> mot_intlv_bit) & 1)) :
651 hash_by_mask(contig_addr, chan_hash_mask);
652 *pmiidx |= (u32)channel1;
653
654 contig_base = remove_mmio_gap(as2.base);
655 chan_intlv_bit_rm = mot_hit ? mot_intlv_bit : chan_selector;
656 contig_offset = contig_addr - contig_base;
657 remove_addr_bit(&contig_offset, chan_intlv_bit_rm);
658 contig_addr = (contig_base >> sym_chan_shift) + contig_offset;
659 } else {
660 /* Otherwise we're in normal, boring symmetric mode. */
661 *pmiidx = 0u;
662
663 if (two_slices) {
664 bool slice1;
665
666 if (mot_hit) {
667 slice_intlv_bit_rm = MOT_SLC_INTLV_BIT;
668 slice1 = (addr >> MOT_SLC_INTLV_BIT) & 1;
669 } else {
670 slice_intlv_bit_rm = slice_selector;
671 slice1 = hash_by_mask(addr, slice_hash_mask);
672 }
673
674 *pmiidx = (u32)slice1 << 1;
675 }
676
677 if (two_channels) {
678 bool channel1;
679
680 mot_intlv_bit = two_slices ? MOT_CHAN_INTLV_BIT_2SLC_2CH :
681 MOT_CHAN_INTLV_BIT_1SLC_2CH;
682
683 if (mot_hit) {
684 chan_intlv_bit_rm = mot_intlv_bit;
685 channel1 = (addr >> mot_intlv_bit) & 1;
686 } else {
687 chan_intlv_bit_rm = chan_selector;
688 channel1 = hash_by_mask(contig_addr, chan_hash_mask);
689 }
690
691 *pmiidx |= (u32)channel1;
692 }
693 }
694
695 /* Remove the chan_selector bit first */
696 remove_addr_bit(&contig_addr, chan_intlv_bit_rm);
697 /* Remove the slice bit (we remove it second because it must be lower */
698 remove_addr_bit(&contig_addr, slice_intlv_bit_rm);
699 *pmiaddr = contig_addr;
700
701 return 0;
702 }
703
704 /* Translate PMI address to memory (rank, row, bank, column) */
705 #define C(n) (0x10 | (n)) /* column */
706 #define B(n) (0x20 | (n)) /* bank */
707 #define R(n) (0x40 | (n)) /* row */
708 #define RS (0x80) /* rank */
709
710 /* addrdec values */
711 #define AMAP_1KB 0
712 #define AMAP_2KB 1
713 #define AMAP_4KB 2
714 #define AMAP_RSVD 3
715
716 /* dden values */
717 #define DEN_4Gb 0
718 #define DEN_8Gb 2
719
720 /* dwid values */
721 #define X8 0
722 #define X16 1
723
724 static struct dimm_geometry {
725 u8 addrdec;
726 u8 dden;
727 u8 dwid;
728 u8 rowbits, colbits;
729 u16 bits[PMI_ADDRESS_WIDTH];
730 } dimms[] = {
731 {
732 .addrdec = AMAP_1KB, .dden = DEN_4Gb, .dwid = X16,
733 .rowbits = 15, .colbits = 10,
734 .bits = {
735 C(2), C(3), C(4), C(5), C(6), B(0), B(1), B(2), R(0),
736 R(1), R(2), R(3), R(4), R(5), R(6), R(7), R(8), R(9),
737 R(10), C(7), C(8), C(9), R(11), RS, R(12), R(13), R(14),
738 0, 0, 0, 0
739 }
740 },
741 {
742 .addrdec = AMAP_1KB, .dden = DEN_4Gb, .dwid = X8,
743 .rowbits = 16, .colbits = 10,
744 .bits = {
745 C(2), C(3), C(4), C(5), C(6), B(0), B(1), B(2), R(0),
746 R(1), R(2), R(3), R(4), R(5), R(6), R(7), R(8), R(9),
747 R(10), C(7), C(8), C(9), R(11), RS, R(12), R(13), R(14),
748 R(15), 0, 0, 0
749 }
750 },
751 {
752 .addrdec = AMAP_1KB, .dden = DEN_8Gb, .dwid = X16,
753 .rowbits = 16, .colbits = 10,
754 .bits = {
755 C(2), C(3), C(4), C(5), C(6), B(0), B(1), B(2), R(0),
756 R(1), R(2), R(3), R(4), R(5), R(6), R(7), R(8), R(9),
757 R(10), C(7), C(8), C(9), R(11), RS, R(12), R(13), R(14),
758 R(15), 0, 0, 0
759 }
760 },
761 {
762 .addrdec = AMAP_1KB, .dden = DEN_8Gb, .dwid = X8,
763 .rowbits = 16, .colbits = 11,
764 .bits = {
765 C(2), C(3), C(4), C(5), C(6), B(0), B(1), B(2), R(0),
766 R(1), R(2), R(3), R(4), R(5), R(6), R(7), R(8), R(9),
767 R(10), C(7), C(8), C(9), R(11), RS, C(11), R(12), R(13),
768 R(14), R(15), 0, 0
769 }
770 },
771 {
772 .addrdec = AMAP_2KB, .dden = DEN_4Gb, .dwid = X16,
773 .rowbits = 15, .colbits = 10,
774 .bits = {
775 C(2), C(3), C(4), C(5), C(6), C(7), B(0), B(1), B(2),
776 R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7), R(8),
777 R(9), R(10), C(8), C(9), R(11), RS, R(12), R(13), R(14),
778 0, 0, 0, 0
779 }
780 },
781 {
782 .addrdec = AMAP_2KB, .dden = DEN_4Gb, .dwid = X8,
783 .rowbits = 16, .colbits = 10,
784 .bits = {
785 C(2), C(3), C(4), C(5), C(6), C(7), B(0), B(1), B(2),
786 R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7), R(8),
787 R(9), R(10), C(8), C(9), R(11), RS, R(12), R(13), R(14),
788 R(15), 0, 0, 0
789 }
790 },
791 {
792 .addrdec = AMAP_2KB, .dden = DEN_8Gb, .dwid = X16,
793 .rowbits = 16, .colbits = 10,
794 .bits = {
795 C(2), C(3), C(4), C(5), C(6), C(7), B(0), B(1), B(2),
796 R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7), R(8),
797 R(9), R(10), C(8), C(9), R(11), RS, R(12), R(13), R(14),
798 R(15), 0, 0, 0
799 }
800 },
801 {
802 .addrdec = AMAP_2KB, .dden = DEN_8Gb, .dwid = X8,
803 .rowbits = 16, .colbits = 11,
804 .bits = {
805 C(2), C(3), C(4), C(5), C(6), C(7), B(0), B(1), B(2),
806 R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7), R(8),
807 R(9), R(10), C(8), C(9), R(11), RS, C(11), R(12), R(13),
808 R(14), R(15), 0, 0
809 }
810 },
811 {
812 .addrdec = AMAP_4KB, .dden = DEN_4Gb, .dwid = X16,
813 .rowbits = 15, .colbits = 10,
814 .bits = {
815 C(2), C(3), C(4), C(5), C(6), C(7), C(8), B(0), B(1),
816 B(2), R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7),
817 R(8), R(9), R(10), C(9), R(11), RS, R(12), R(13), R(14),
818 0, 0, 0, 0
819 }
820 },
821 {
822 .addrdec = AMAP_4KB, .dden = DEN_4Gb, .dwid = X8,
823 .rowbits = 16, .colbits = 10,
824 .bits = {
825 C(2), C(3), C(4), C(5), C(6), C(7), C(8), B(0), B(1),
826 B(2), R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7),
827 R(8), R(9), R(10), C(9), R(11), RS, R(12), R(13), R(14),
828 R(15), 0, 0, 0
829 }
830 },
831 {
832 .addrdec = AMAP_4KB, .dden = DEN_8Gb, .dwid = X16,
833 .rowbits = 16, .colbits = 10,
834 .bits = {
835 C(2), C(3), C(4), C(5), C(6), C(7), C(8), B(0), B(1),
836 B(2), R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7),
837 R(8), R(9), R(10), C(9), R(11), RS, R(12), R(13), R(14),
838 R(15), 0, 0, 0
839 }
840 },
841 {
842 .addrdec = AMAP_4KB, .dden = DEN_8Gb, .dwid = X8,
843 .rowbits = 16, .colbits = 11,
844 .bits = {
845 C(2), C(3), C(4), C(5), C(6), C(7), C(8), B(0), B(1),
846 B(2), R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7),
847 R(8), R(9), R(10), C(9), R(11), RS, C(11), R(12), R(13),
848 R(14), R(15), 0, 0
849 }
850 }
851 };
852
853 static int bank_hash(u64 pmiaddr, int idx, int shft)
854 {
855 int bhash = 0;
856
857 switch (idx) {
858 case 0:
859 bhash ^= ((pmiaddr >> (12 + shft)) ^ (pmiaddr >> (9 + shft))) & 1;
860 break;
861 case 1:
862 bhash ^= (((pmiaddr >> (10 + shft)) ^ (pmiaddr >> (8 + shft))) & 1) << 1;
863 bhash ^= ((pmiaddr >> 22) & 1) << 1;
864 break;
865 case 2:
866 bhash ^= (((pmiaddr >> (13 + shft)) ^ (pmiaddr >> (11 + shft))) & 1) << 2;
867 break;
868 }
869
870 return bhash;
871 }
872
873 static int rank_hash(u64 pmiaddr)
874 {
875 return ((pmiaddr >> 16) ^ (pmiaddr >> 10)) & 1;
876 }
877
878 /* Second stage decode. Compute rank, bank, row & column. */
879 static int apl_pmi2mem(struct mem_ctl_info *mci, u64 pmiaddr, u32 pmiidx,
880 struct dram_addr *daddr, char *msg)
881 {
882 struct d_cr_drp0 *cr_drp0 = &drp0[pmiidx];
883 struct pnd2_pvt *pvt = mci->pvt_info;
884 int g = pvt->dimm_geom[pmiidx];
885 struct dimm_geometry *d = &dimms[g];
886 int column = 0, bank = 0, row = 0, rank = 0;
887 int i, idx, type, skiprs = 0;
888
889 for (i = 0; i < PMI_ADDRESS_WIDTH; i++) {
890 int bit = (pmiaddr >> i) & 1;
891
892 if (i + skiprs >= PMI_ADDRESS_WIDTH) {
893 snprintf(msg, PND2_MSG_SIZE, "Bad dimm_geometry[] table\n");
894 return -EINVAL;
895 }
896
897 type = d->bits[i + skiprs] & ~0xf;
898 idx = d->bits[i + skiprs] & 0xf;
899
900 /*
901 * On single rank DIMMs ignore the rank select bit
902 * and shift remainder of "bits[]" down one place.
903 */
904 if (type == RS && (cr_drp0->rken0 + cr_drp0->rken1) == 1) {
905 skiprs = 1;
906 type = d->bits[i + skiprs] & ~0xf;
907 idx = d->bits[i + skiprs] & 0xf;
908 }
909
910 switch (type) {
911 case C(0):
912 column |= (bit << idx);
913 break;
914 case B(0):
915 bank |= (bit << idx);
916 if (cr_drp0->bahen)
917 bank ^= bank_hash(pmiaddr, idx, d->addrdec);
918 break;
919 case R(0):
920 row |= (bit << idx);
921 break;
922 case RS:
923 rank = bit;
924 if (cr_drp0->rsien)
925 rank ^= rank_hash(pmiaddr);
926 break;
927 default:
928 if (bit) {
929 snprintf(msg, PND2_MSG_SIZE, "Bad translation\n");
930 return -EINVAL;
931 }
932 goto done;
933 }
934 }
935
936 done:
937 daddr->col = column;
938 daddr->bank = bank;
939 daddr->row = row;
940 daddr->rank = rank;
941 daddr->dimm = 0;
942
943 return 0;
944 }
945
946 /* Pluck bit "in" from pmiaddr and return value shifted to bit "out" */
947 #define dnv_get_bit(pmi, in, out) ((int)(((pmi) >> (in)) & 1u) << (out))
948
949 static int dnv_pmi2mem(struct mem_ctl_info *mci, u64 pmiaddr, u32 pmiidx,
950 struct dram_addr *daddr, char *msg)
951 {
952 /* Rank 0 or 1 */
953 daddr->rank = dnv_get_bit(pmiaddr, dmap[pmiidx].rs0 + 13, 0);
954 /* Rank 2 or 3 */
955 daddr->rank |= dnv_get_bit(pmiaddr, dmap[pmiidx].rs1 + 13, 1);
956
957 /*
958 * Normally ranks 0,1 are DIMM0, and 2,3 are DIMM1, but we
959 * flip them if DIMM1 is larger than DIMM0.
960 */
961 daddr->dimm = (daddr->rank >= 2) ^ drp[pmiidx].dimmflip;
962
963 daddr->bank = dnv_get_bit(pmiaddr, dmap[pmiidx].ba0 + 6, 0);
964 daddr->bank |= dnv_get_bit(pmiaddr, dmap[pmiidx].ba1 + 6, 1);
965 daddr->bank |= dnv_get_bit(pmiaddr, dmap[pmiidx].bg0 + 6, 2);
966 if (dsch.ddr4en)
967 daddr->bank |= dnv_get_bit(pmiaddr, dmap[pmiidx].bg1 + 6, 3);
968 if (dmap1[pmiidx].bxor) {
969 if (dsch.ddr4en) {
970 daddr->bank ^= dnv_get_bit(pmiaddr, dmap3[pmiidx].row6 + 6, 0);
971 daddr->bank ^= dnv_get_bit(pmiaddr, dmap3[pmiidx].row7 + 6, 1);
972 if (dsch.chan_width == 0)
973 /* 64/72 bit dram channel width */
974 daddr->bank ^= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca3 + 6, 2);
975 else
976 /* 32/40 bit dram channel width */
977 daddr->bank ^= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca4 + 6, 2);
978 daddr->bank ^= dnv_get_bit(pmiaddr, dmap2[pmiidx].row2 + 6, 3);
979 } else {
980 daddr->bank ^= dnv_get_bit(pmiaddr, dmap2[pmiidx].row2 + 6, 0);
981 daddr->bank ^= dnv_get_bit(pmiaddr, dmap3[pmiidx].row6 + 6, 1);
982 if (dsch.chan_width == 0)
983 daddr->bank ^= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca3 + 6, 2);
984 else
985 daddr->bank ^= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca4 + 6, 2);
986 }
987 }
988
989 daddr->row = dnv_get_bit(pmiaddr, dmap2[pmiidx].row0 + 6, 0);
990 daddr->row |= dnv_get_bit(pmiaddr, dmap2[pmiidx].row1 + 6, 1);
991 daddr->row |= dnv_get_bit(pmiaddr, dmap2[pmiidx].row2 + 6, 2);
992 daddr->row |= dnv_get_bit(pmiaddr, dmap2[pmiidx].row3 + 6, 3);
993 daddr->row |= dnv_get_bit(pmiaddr, dmap2[pmiidx].row4 + 6, 4);
994 daddr->row |= dnv_get_bit(pmiaddr, dmap2[pmiidx].row5 + 6, 5);
995 daddr->row |= dnv_get_bit(pmiaddr, dmap3[pmiidx].row6 + 6, 6);
996 daddr->row |= dnv_get_bit(pmiaddr, dmap3[pmiidx].row7 + 6, 7);
997 daddr->row |= dnv_get_bit(pmiaddr, dmap3[pmiidx].row8 + 6, 8);
998 daddr->row |= dnv_get_bit(pmiaddr, dmap3[pmiidx].row9 + 6, 9);
999 daddr->row |= dnv_get_bit(pmiaddr, dmap3[pmiidx].row10 + 6, 10);
1000 daddr->row |= dnv_get_bit(pmiaddr, dmap3[pmiidx].row11 + 6, 11);
1001 daddr->row |= dnv_get_bit(pmiaddr, dmap4[pmiidx].row12 + 6, 12);
1002 daddr->row |= dnv_get_bit(pmiaddr, dmap4[pmiidx].row13 + 6, 13);
1003 if (dmap4[pmiidx].row14 != 31)
1004 daddr->row |= dnv_get_bit(pmiaddr, dmap4[pmiidx].row14 + 6, 14);
1005 if (dmap4[pmiidx].row15 != 31)
1006 daddr->row |= dnv_get_bit(pmiaddr, dmap4[pmiidx].row15 + 6, 15);
1007 if (dmap4[pmiidx].row16 != 31)
1008 daddr->row |= dnv_get_bit(pmiaddr, dmap4[pmiidx].row16 + 6, 16);
1009 if (dmap4[pmiidx].row17 != 31)
1010 daddr->row |= dnv_get_bit(pmiaddr, dmap4[pmiidx].row17 + 6, 17);
1011
1012 daddr->col = dnv_get_bit(pmiaddr, dmap5[pmiidx].ca3 + 6, 3);
1013 daddr->col |= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca4 + 6, 4);
1014 daddr->col |= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca5 + 6, 5);
1015 daddr->col |= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca6 + 6, 6);
1016 daddr->col |= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca7 + 6, 7);
1017 daddr->col |= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca8 + 6, 8);
1018 daddr->col |= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca9 + 6, 9);
1019 if (!dsch.ddr4en && dmap1[pmiidx].ca11 != 0x3f)
1020 daddr->col |= dnv_get_bit(pmiaddr, dmap1[pmiidx].ca11 + 13, 11);
1021
1022 return 0;
1023 }
1024
1025 static int check_channel(int ch)
1026 {
1027 if (drp0[ch].dramtype != 0) {
1028 pnd2_printk(KERN_INFO, "Unsupported DIMM in channel %d\n", ch);
1029 return 1;
1030 } else if (drp0[ch].eccen == 0) {
1031 pnd2_printk(KERN_INFO, "ECC disabled on channel %d\n", ch);
1032 return 1;
1033 }
1034 return 0;
1035 }
1036
1037 static int apl_check_ecc_active(void)
1038 {
1039 int i, ret = 0;
1040
1041 /* Check dramtype and ECC mode for each present DIMM */
1042 for (i = 0; i < APL_NUM_CHANNELS; i++)
1043 if (chan_mask & BIT(i))
1044 ret += check_channel(i);
1045 return ret ? -EINVAL : 0;
1046 }
1047
1048 #define DIMMS_PRESENT(d) ((d)->rken0 + (d)->rken1 + (d)->rken2 + (d)->rken3)
1049
1050 static int check_unit(int ch)
1051 {
1052 struct d_cr_drp *d = &drp[ch];
1053
1054 if (DIMMS_PRESENT(d) && !ecc_ctrl[ch].eccen) {
1055 pnd2_printk(KERN_INFO, "ECC disabled on channel %d\n", ch);
1056 return 1;
1057 }
1058 return 0;
1059 }
1060
1061 static int dnv_check_ecc_active(void)
1062 {
1063 int i, ret = 0;
1064
1065 for (i = 0; i < DNV_NUM_CHANNELS; i++)
1066 ret += check_unit(i);
1067 return ret ? -EINVAL : 0;
1068 }
1069
1070 static int get_memory_error_data(struct mem_ctl_info *mci, u64 addr,
1071 struct dram_addr *daddr, char *msg)
1072 {
1073 u64 pmiaddr;
1074 u32 pmiidx;
1075 int ret;
1076
1077 ret = sys2pmi(addr, &pmiidx, &pmiaddr, msg);
1078 if (ret)
1079 return ret;
1080
1081 pmiaddr >>= ops->pmiaddr_shift;
1082 /* pmi channel idx to dimm channel idx */
1083 pmiidx >>= ops->pmiidx_shift;
1084 daddr->chan = pmiidx;
1085
1086 ret = ops->pmi2mem(mci, pmiaddr, pmiidx, daddr, msg);
1087 if (ret)
1088 return ret;
1089
1090 edac_dbg(0, "SysAddr=%llx PmiAddr=%llx Channel=%d DIMM=%d Rank=%d Bank=%d Row=%d Column=%d\n",
1091 addr, pmiaddr, daddr->chan, daddr->dimm, daddr->rank, daddr->bank, daddr->row, daddr->col);
1092
1093 return 0;
1094 }
1095
1096 static void pnd2_mce_output_error(struct mem_ctl_info *mci, const struct mce *m,
1097 struct dram_addr *daddr)
1098 {
1099 enum hw_event_mc_err_type tp_event;
1100 char *optype, msg[PND2_MSG_SIZE];
1101 bool ripv = m->mcgstatus & MCG_STATUS_RIPV;
1102 bool overflow = m->status & MCI_STATUS_OVER;
1103 bool uc_err = m->status & MCI_STATUS_UC;
1104 bool recov = m->status & MCI_STATUS_S;
1105 u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52);
1106 u32 mscod = GET_BITFIELD(m->status, 16, 31);
1107 u32 errcode = GET_BITFIELD(m->status, 0, 15);
1108 u32 optypenum = GET_BITFIELD(m->status, 4, 6);
1109 int rc;
1110
1111 tp_event = uc_err ? (ripv ? HW_EVENT_ERR_FATAL : HW_EVENT_ERR_UNCORRECTED) :
1112 HW_EVENT_ERR_CORRECTED;
1113
1114 /*
1115 * According with Table 15-9 of the Intel Architecture spec vol 3A,
1116 * memory errors should fit in this mask:
1117 * 000f 0000 1mmm cccc (binary)
1118 * where:
1119 * f = Correction Report Filtering Bit. If 1, subsequent errors
1120 * won't be shown
1121 * mmm = error type
1122 * cccc = channel
1123 * If the mask doesn't match, report an error to the parsing logic
1124 */
1125 if (!((errcode & 0xef80) == 0x80)) {
1126 optype = "Can't parse: it is not a mem";
1127 } else {
1128 switch (optypenum) {
1129 case 0:
1130 optype = "generic undef request error";
1131 break;
1132 case 1:
1133 optype = "memory read error";
1134 break;
1135 case 2:
1136 optype = "memory write error";
1137 break;
1138 case 3:
1139 optype = "addr/cmd error";
1140 break;
1141 case 4:
1142 optype = "memory scrubbing error";
1143 break;
1144 default:
1145 optype = "reserved";
1146 break;
1147 }
1148 }
1149
1150 /* Only decode errors with an valid address (ADDRV) */
1151 if (!(m->status & MCI_STATUS_ADDRV))
1152 return;
1153
1154 rc = get_memory_error_data(mci, m->addr, daddr, msg);
1155 if (rc)
1156 goto address_error;
1157
1158 snprintf(msg, sizeof(msg),
1159 "%s%s err_code:%04x:%04x channel:%d DIMM:%d rank:%d row:%d bank:%d col:%d",
1160 overflow ? " OVERFLOW" : "", (uc_err && recov) ? " recoverable" : "", mscod,
1161 errcode, daddr->chan, daddr->dimm, daddr->rank, daddr->row, daddr->bank, daddr->col);
1162
1163 edac_dbg(0, "%s\n", msg);
1164
1165 /* Call the helper to output message */
1166 edac_mc_handle_error(tp_event, mci, core_err_cnt, m->addr >> PAGE_SHIFT,
1167 m->addr & ~PAGE_MASK, 0, daddr->chan, daddr->dimm, -1, optype, msg);
1168
1169 return;
1170
1171 address_error:
1172 edac_mc_handle_error(tp_event, mci, core_err_cnt, 0, 0, 0, -1, -1, -1, msg, "");
1173 }
1174
1175 static void apl_get_dimm_config(struct mem_ctl_info *mci)
1176 {
1177 struct pnd2_pvt *pvt = mci->pvt_info;
1178 struct dimm_info *dimm;
1179 struct d_cr_drp0 *d;
1180 u64 capacity;
1181 int i, g;
1182
1183 for (i = 0; i < APL_NUM_CHANNELS; i++) {
1184 if (!(chan_mask & BIT(i)))
1185 continue;
1186
1187 dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, mci->n_layers, i, 0, 0);
1188 if (!dimm) {
1189 edac_dbg(0, "No allocated DIMM for channel %d\n", i);
1190 continue;
1191 }
1192
1193 d = &drp0[i];
1194 for (g = 0; g < ARRAY_SIZE(dimms); g++)
1195 if (dimms[g].addrdec == d->addrdec &&
1196 dimms[g].dden == d->dden &&
1197 dimms[g].dwid == d->dwid)
1198 break;
1199
1200 if (g == ARRAY_SIZE(dimms)) {
1201 edac_dbg(0, "Channel %d: unrecognized DIMM\n", i);
1202 continue;
1203 }
1204
1205 pvt->dimm_geom[i] = g;
1206 capacity = (d->rken0 + d->rken1) * 8 * (1ul << dimms[g].rowbits) *
1207 (1ul << dimms[g].colbits);
1208 edac_dbg(0, "Channel %d: %lld MByte DIMM\n", i, capacity >> (20 - 3));
1209 dimm->nr_pages = MiB_TO_PAGES(capacity >> (20 - 3));
1210 dimm->grain = 32;
1211 dimm->dtype = (d->dwid == 0) ? DEV_X8 : DEV_X16;
1212 dimm->mtype = MEM_DDR3;
1213 dimm->edac_mode = EDAC_SECDED;
1214 snprintf(dimm->label, sizeof(dimm->label), "Slice#%d_Chan#%d", i / 2, i % 2);
1215 }
1216 }
1217
1218 static const int dnv_dtypes[] = {
1219 DEV_X8, DEV_X4, DEV_X16, DEV_UNKNOWN
1220 };
1221
1222 static void dnv_get_dimm_config(struct mem_ctl_info *mci)
1223 {
1224 int i, j, ranks_of_dimm[DNV_MAX_DIMMS], banks, rowbits, colbits, memtype;
1225 struct dimm_info *dimm;
1226 struct d_cr_drp *d;
1227 u64 capacity;
1228
1229 if (dsch.ddr4en) {
1230 memtype = MEM_DDR4;
1231 banks = 16;
1232 colbits = 10;
1233 } else {
1234 memtype = MEM_DDR3;
1235 banks = 8;
1236 }
1237
1238 for (i = 0; i < DNV_NUM_CHANNELS; i++) {
1239 if (dmap4[i].row14 == 31)
1240 rowbits = 14;
1241 else if (dmap4[i].row15 == 31)
1242 rowbits = 15;
1243 else if (dmap4[i].row16 == 31)
1244 rowbits = 16;
1245 else if (dmap4[i].row17 == 31)
1246 rowbits = 17;
1247 else
1248 rowbits = 18;
1249
1250 if (memtype == MEM_DDR3) {
1251 if (dmap1[i].ca11 != 0x3f)
1252 colbits = 12;
1253 else
1254 colbits = 10;
1255 }
1256
1257 d = &drp[i];
1258 /* DIMM0 is present if rank0 and/or rank1 is enabled */
1259 ranks_of_dimm[0] = d->rken0 + d->rken1;
1260 /* DIMM1 is present if rank2 and/or rank3 is enabled */
1261 ranks_of_dimm[1] = d->rken2 + d->rken3;
1262
1263 for (j = 0; j < DNV_MAX_DIMMS; j++) {
1264 if (!ranks_of_dimm[j])
1265 continue;
1266
1267 dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, mci->n_layers, i, j, 0);
1268 if (!dimm) {
1269 edac_dbg(0, "No allocated DIMM for channel %d DIMM %d\n", i, j);
1270 continue;
1271 }
1272
1273 capacity = ranks_of_dimm[j] * banks * (1ul << rowbits) * (1ul << colbits);
1274 edac_dbg(0, "Channel %d DIMM %d: %lld MByte DIMM\n", i, j, capacity >> (20 - 3));
1275 dimm->nr_pages = MiB_TO_PAGES(capacity >> (20 - 3));
1276 dimm->grain = 32;
1277 dimm->dtype = dnv_dtypes[j ? d->dimmdwid0 : d->dimmdwid1];
1278 dimm->mtype = memtype;
1279 dimm->edac_mode = EDAC_SECDED;
1280 snprintf(dimm->label, sizeof(dimm->label), "Chan#%d_DIMM#%d", i, j);
1281 }
1282 }
1283 }
1284
1285 static int pnd2_register_mci(struct mem_ctl_info **ppmci)
1286 {
1287 struct edac_mc_layer layers[2];
1288 struct mem_ctl_info *mci;
1289 struct pnd2_pvt *pvt;
1290 int rc;
1291
1292 rc = ops->check_ecc();
1293 if (rc < 0)
1294 return rc;
1295
1296 /* Allocate a new MC control structure */
1297 layers[0].type = EDAC_MC_LAYER_CHANNEL;
1298 layers[0].size = ops->channels;
1299 layers[0].is_virt_csrow = false;
1300 layers[1].type = EDAC_MC_LAYER_SLOT;
1301 layers[1].size = ops->dimms_per_channel;
1302 layers[1].is_virt_csrow = true;
1303 mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers, sizeof(*pvt));
1304 if (!mci)
1305 return -ENOMEM;
1306
1307 pvt = mci->pvt_info;
1308 memset(pvt, 0, sizeof(*pvt));
1309
1310 mci->mod_name = "pnd2_edac.c";
1311 mci->dev_name = ops->name;
1312 mci->ctl_name = "Pondicherry2";
1313
1314 /* Get dimm basic config and the memory layout */
1315 ops->get_dimm_config(mci);
1316
1317 if (edac_mc_add_mc(mci)) {
1318 edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
1319 edac_mc_free(mci);
1320 return -EINVAL;
1321 }
1322
1323 *ppmci = mci;
1324
1325 return 0;
1326 }
1327
1328 static void pnd2_unregister_mci(struct mem_ctl_info *mci)
1329 {
1330 if (unlikely(!mci || !mci->pvt_info)) {
1331 pnd2_printk(KERN_ERR, "Couldn't find mci handler\n");
1332 return;
1333 }
1334
1335 /* Remove MC sysfs nodes */
1336 edac_mc_del_mc(NULL);
1337 edac_dbg(1, "%s: free mci struct\n", mci->ctl_name);
1338 edac_mc_free(mci);
1339 }
1340
1341 /*
1342 * Callback function registered with core kernel mce code.
1343 * Called once for each logged error.
1344 */
1345 static int pnd2_mce_check_error(struct notifier_block *nb, unsigned long val, void *data)
1346 {
1347 struct mce *mce = (struct mce *)data;
1348 struct mem_ctl_info *mci;
1349 struct dram_addr daddr;
1350 char *type;
1351
1352 if (get_edac_report_status() == EDAC_REPORTING_DISABLED)
1353 return NOTIFY_DONE;
1354
1355 mci = pnd2_mci;
1356 if (!mci)
1357 return NOTIFY_DONE;
1358
1359 /*
1360 * Just let mcelog handle it if the error is
1361 * outside the memory controller. A memory error
1362 * is indicated by bit 7 = 1 and bits = 8-11,13-15 = 0.
1363 * bit 12 has an special meaning.
1364 */
1365 if ((mce->status & 0xefff) >> 7 != 1)
1366 return NOTIFY_DONE;
1367
1368 if (mce->mcgstatus & MCG_STATUS_MCIP)
1369 type = "Exception";
1370 else
1371 type = "Event";
1372
1373 pnd2_mc_printk(mci, KERN_INFO, "HANDLING MCE MEMORY ERROR\n");
1374 pnd2_mc_printk(mci, KERN_INFO, "CPU %u: Machine Check %s: %llx Bank %u: %llx\n",
1375 mce->extcpu, type, mce->mcgstatus, mce->bank, mce->status);
1376 pnd2_mc_printk(mci, KERN_INFO, "TSC %llx ", mce->tsc);
1377 pnd2_mc_printk(mci, KERN_INFO, "ADDR %llx ", mce->addr);
1378 pnd2_mc_printk(mci, KERN_INFO, "MISC %llx ", mce->misc);
1379 pnd2_mc_printk(mci, KERN_INFO, "PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x\n",
1380 mce->cpuvendor, mce->cpuid, mce->time, mce->socketid, mce->apicid);
1381
1382 pnd2_mce_output_error(mci, mce, &daddr);
1383
1384 /* Advice mcelog that the error were handled */
1385 return NOTIFY_STOP;
1386 }
1387
1388 static struct notifier_block pnd2_mce_dec = {
1389 .notifier_call = pnd2_mce_check_error,
1390 };
1391
1392 #ifdef CONFIG_EDAC_DEBUG
1393 /*
1394 * Write an address to this file to exercise the address decode
1395 * logic in this driver.
1396 */
1397 static u64 pnd2_fake_addr;
1398 #define PND2_BLOB_SIZE 1024
1399 static char pnd2_result[PND2_BLOB_SIZE];
1400 static struct dentry *pnd2_test;
1401 static struct debugfs_blob_wrapper pnd2_blob = {
1402 .data = pnd2_result,
1403 .size = 0
1404 };
1405
1406 static int debugfs_u64_set(void *data, u64 val)
1407 {
1408 struct dram_addr daddr;
1409 struct mce m;
1410
1411 *(u64 *)data = val;
1412 m.mcgstatus = 0;
1413 /* ADDRV + MemRd + Unknown channel */
1414 m.status = MCI_STATUS_ADDRV + 0x9f;
1415 m.addr = val;
1416 pnd2_mce_output_error(pnd2_mci, &m, &daddr);
1417 snprintf(pnd2_blob.data, PND2_BLOB_SIZE,
1418 "SysAddr=%llx Channel=%d DIMM=%d Rank=%d Bank=%d Row=%d Column=%d\n",
1419 m.addr, daddr.chan, daddr.dimm, daddr.rank, daddr.bank, daddr.row, daddr.col);
1420 pnd2_blob.size = strlen(pnd2_blob.data);
1421
1422 return 0;
1423 }
1424 DEFINE_DEBUGFS_ATTRIBUTE(fops_u64_wo, NULL, debugfs_u64_set, "%llu\n");
1425
1426 static void setup_pnd2_debug(void)
1427 {
1428 pnd2_test = edac_debugfs_create_dir("pnd2_test");
1429 edac_debugfs_create_file("pnd2_debug_addr", 0200, pnd2_test,
1430 &pnd2_fake_addr, &fops_u64_wo);
1431 debugfs_create_blob("pnd2_debug_results", 0400, pnd2_test, &pnd2_blob);
1432 }
1433
1434 static void teardown_pnd2_debug(void)
1435 {
1436 debugfs_remove_recursive(pnd2_test);
1437 }
1438 #else
1439 static void setup_pnd2_debug(void) {}
1440 static void teardown_pnd2_debug(void) {}
1441 #endif /* CONFIG_EDAC_DEBUG */
1442
1443
1444 static int pnd2_probe(void)
1445 {
1446 int rc;
1447
1448 edac_dbg(2, "\n");
1449 rc = get_registers();
1450 if (rc)
1451 return rc;
1452
1453 return pnd2_register_mci(&pnd2_mci);
1454 }
1455
1456 static void pnd2_remove(void)
1457 {
1458 edac_dbg(0, "\n");
1459 pnd2_unregister_mci(pnd2_mci);
1460 }
1461
1462 static struct dunit_ops apl_ops = {
1463 .name = "pnd2/apl",
1464 .type = APL,
1465 .pmiaddr_shift = LOG2_PMI_ADDR_GRANULARITY,
1466 .pmiidx_shift = 0,
1467 .channels = APL_NUM_CHANNELS,
1468 .dimms_per_channel = 1,
1469 .rd_reg = apl_rd_reg,
1470 .get_registers = apl_get_registers,
1471 .check_ecc = apl_check_ecc_active,
1472 .mk_region = apl_mk_region,
1473 .get_dimm_config = apl_get_dimm_config,
1474 .pmi2mem = apl_pmi2mem,
1475 };
1476
1477 static struct dunit_ops dnv_ops = {
1478 .name = "pnd2/dnv",
1479 .type = DNV,
1480 .pmiaddr_shift = 0,
1481 .pmiidx_shift = 1,
1482 .channels = DNV_NUM_CHANNELS,
1483 .dimms_per_channel = 2,
1484 .rd_reg = dnv_rd_reg,
1485 .get_registers = dnv_get_registers,
1486 .check_ecc = dnv_check_ecc_active,
1487 .mk_region = dnv_mk_region,
1488 .get_dimm_config = dnv_get_dimm_config,
1489 .pmi2mem = dnv_pmi2mem,
1490 };
1491
1492 static const struct x86_cpu_id pnd2_cpuids[] = {
1493 { X86_VENDOR_INTEL, 6, INTEL_FAM6_ATOM_GOLDMONT, 0, (kernel_ulong_t)&apl_ops },
1494 { X86_VENDOR_INTEL, 6, INTEL_FAM6_ATOM_DENVERTON, 0, (kernel_ulong_t)&dnv_ops },
1495 { }
1496 };
1497 MODULE_DEVICE_TABLE(x86cpu, pnd2_cpuids);
1498
1499 static int __init pnd2_init(void)
1500 {
1501 const struct x86_cpu_id *id;
1502 int rc;
1503
1504 edac_dbg(2, "\n");
1505
1506 id = x86_match_cpu(pnd2_cpuids);
1507 if (!id)
1508 return -ENODEV;
1509
1510 ops = (struct dunit_ops *)id->driver_data;
1511
1512 /* Ensure that the OPSTATE is set correctly for POLL or NMI */
1513 opstate_init();
1514
1515 rc = pnd2_probe();
1516 if (rc < 0) {
1517 pnd2_printk(KERN_ERR, "Failed to register device with error %d.\n", rc);
1518 return rc;
1519 }
1520
1521 if (!pnd2_mci)
1522 return -ENODEV;
1523
1524 mce_register_decode_chain(&pnd2_mce_dec);
1525 setup_pnd2_debug();
1526
1527 return 0;
1528 }
1529
1530 static void __exit pnd2_exit(void)
1531 {
1532 edac_dbg(2, "\n");
1533 teardown_pnd2_debug();
1534 mce_unregister_decode_chain(&pnd2_mce_dec);
1535 pnd2_remove();
1536 }
1537
1538 module_init(pnd2_init);
1539 module_exit(pnd2_exit);
1540
1541 module_param(edac_op_state, int, 0444);
1542 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
1543
1544 MODULE_LICENSE("GPL v2");
1545 MODULE_AUTHOR("Tony Luck");
1546 MODULE_DESCRIPTION("MC Driver for Intel SoC using Pondicherry memory controller");