]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/edac/sb_edac.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm...
[mirror_ubuntu-artful-kernel.git] / drivers / edac / sb_edac.c
1 /* Intel Sandy Bridge -EN/-EP/-EX Memory Controller kernel module
2 *
3 * This driver supports the memory controllers found on the Intel
4 * processor family Sandy Bridge.
5 *
6 * This file may be distributed under the terms of the
7 * GNU General Public License version 2 only.
8 *
9 * Copyright (c) 2011 by:
10 * Mauro Carvalho Chehab
11 */
12
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/pci.h>
16 #include <linux/pci_ids.h>
17 #include <linux/slab.h>
18 #include <linux/delay.h>
19 #include <linux/edac.h>
20 #include <linux/mmzone.h>
21 #include <linux/smp.h>
22 #include <linux/bitmap.h>
23 #include <linux/math64.h>
24 #include <linux/mod_devicetable.h>
25 #include <asm/cpu_device_id.h>
26 #include <asm/intel-family.h>
27 #include <asm/processor.h>
28 #include <asm/mce.h>
29
30 #include "edac_module.h"
31
32 /* Static vars */
33 static LIST_HEAD(sbridge_edac_list);
34
35 /*
36 * Alter this version for the module when modifications are made
37 */
38 #define SBRIDGE_REVISION " Ver: 1.1.2 "
39 #define EDAC_MOD_STR "sbridge_edac"
40
41 /*
42 * Debug macros
43 */
44 #define sbridge_printk(level, fmt, arg...) \
45 edac_printk(level, "sbridge", fmt, ##arg)
46
47 #define sbridge_mc_printk(mci, level, fmt, arg...) \
48 edac_mc_chipset_printk(mci, level, "sbridge", fmt, ##arg)
49
50 /*
51 * Get a bit field at register value <v>, from bit <lo> to bit <hi>
52 */
53 #define GET_BITFIELD(v, lo, hi) \
54 (((v) & GENMASK_ULL(hi, lo)) >> (lo))
55
56 /* Devices 12 Function 6, Offsets 0x80 to 0xcc */
57 static const u32 sbridge_dram_rule[] = {
58 0x80, 0x88, 0x90, 0x98, 0xa0,
59 0xa8, 0xb0, 0xb8, 0xc0, 0xc8,
60 };
61
62 static const u32 ibridge_dram_rule[] = {
63 0x60, 0x68, 0x70, 0x78, 0x80,
64 0x88, 0x90, 0x98, 0xa0, 0xa8,
65 0xb0, 0xb8, 0xc0, 0xc8, 0xd0,
66 0xd8, 0xe0, 0xe8, 0xf0, 0xf8,
67 };
68
69 static const u32 knl_dram_rule[] = {
70 0x60, 0x68, 0x70, 0x78, 0x80, /* 0-4 */
71 0x88, 0x90, 0x98, 0xa0, 0xa8, /* 5-9 */
72 0xb0, 0xb8, 0xc0, 0xc8, 0xd0, /* 10-14 */
73 0xd8, 0xe0, 0xe8, 0xf0, 0xf8, /* 15-19 */
74 0x100, 0x108, 0x110, 0x118, /* 20-23 */
75 };
76
77 #define DRAM_RULE_ENABLE(reg) GET_BITFIELD(reg, 0, 0)
78 #define A7MODE(reg) GET_BITFIELD(reg, 26, 26)
79
80 static char *show_dram_attr(u32 attr)
81 {
82 switch (attr) {
83 case 0:
84 return "DRAM";
85 case 1:
86 return "MMCFG";
87 case 2:
88 return "NXM";
89 default:
90 return "unknown";
91 }
92 }
93
94 static const u32 sbridge_interleave_list[] = {
95 0x84, 0x8c, 0x94, 0x9c, 0xa4,
96 0xac, 0xb4, 0xbc, 0xc4, 0xcc,
97 };
98
99 static const u32 ibridge_interleave_list[] = {
100 0x64, 0x6c, 0x74, 0x7c, 0x84,
101 0x8c, 0x94, 0x9c, 0xa4, 0xac,
102 0xb4, 0xbc, 0xc4, 0xcc, 0xd4,
103 0xdc, 0xe4, 0xec, 0xf4, 0xfc,
104 };
105
106 static const u32 knl_interleave_list[] = {
107 0x64, 0x6c, 0x74, 0x7c, 0x84, /* 0-4 */
108 0x8c, 0x94, 0x9c, 0xa4, 0xac, /* 5-9 */
109 0xb4, 0xbc, 0xc4, 0xcc, 0xd4, /* 10-14 */
110 0xdc, 0xe4, 0xec, 0xf4, 0xfc, /* 15-19 */
111 0x104, 0x10c, 0x114, 0x11c, /* 20-23 */
112 };
113
114 struct interleave_pkg {
115 unsigned char start;
116 unsigned char end;
117 };
118
119 static const struct interleave_pkg sbridge_interleave_pkg[] = {
120 { 0, 2 },
121 { 3, 5 },
122 { 8, 10 },
123 { 11, 13 },
124 { 16, 18 },
125 { 19, 21 },
126 { 24, 26 },
127 { 27, 29 },
128 };
129
130 static const struct interleave_pkg ibridge_interleave_pkg[] = {
131 { 0, 3 },
132 { 4, 7 },
133 { 8, 11 },
134 { 12, 15 },
135 { 16, 19 },
136 { 20, 23 },
137 { 24, 27 },
138 { 28, 31 },
139 };
140
141 static inline int sad_pkg(const struct interleave_pkg *table, u32 reg,
142 int interleave)
143 {
144 return GET_BITFIELD(reg, table[interleave].start,
145 table[interleave].end);
146 }
147
148 /* Devices 12 Function 7 */
149
150 #define TOLM 0x80
151 #define TOHM 0x84
152 #define HASWELL_TOLM 0xd0
153 #define HASWELL_TOHM_0 0xd4
154 #define HASWELL_TOHM_1 0xd8
155 #define KNL_TOLM 0xd0
156 #define KNL_TOHM_0 0xd4
157 #define KNL_TOHM_1 0xd8
158
159 #define GET_TOLM(reg) ((GET_BITFIELD(reg, 0, 3) << 28) | 0x3ffffff)
160 #define GET_TOHM(reg) ((GET_BITFIELD(reg, 0, 20) << 25) | 0x3ffffff)
161
162 /* Device 13 Function 6 */
163
164 #define SAD_TARGET 0xf0
165
166 #define SOURCE_ID(reg) GET_BITFIELD(reg, 9, 11)
167
168 #define SOURCE_ID_KNL(reg) GET_BITFIELD(reg, 12, 14)
169
170 #define SAD_CONTROL 0xf4
171
172 /* Device 14 function 0 */
173
174 static const u32 tad_dram_rule[] = {
175 0x40, 0x44, 0x48, 0x4c,
176 0x50, 0x54, 0x58, 0x5c,
177 0x60, 0x64, 0x68, 0x6c,
178 };
179 #define MAX_TAD ARRAY_SIZE(tad_dram_rule)
180
181 #define TAD_LIMIT(reg) ((GET_BITFIELD(reg, 12, 31) << 26) | 0x3ffffff)
182 #define TAD_SOCK(reg) GET_BITFIELD(reg, 10, 11)
183 #define TAD_CH(reg) GET_BITFIELD(reg, 8, 9)
184 #define TAD_TGT3(reg) GET_BITFIELD(reg, 6, 7)
185 #define TAD_TGT2(reg) GET_BITFIELD(reg, 4, 5)
186 #define TAD_TGT1(reg) GET_BITFIELD(reg, 2, 3)
187 #define TAD_TGT0(reg) GET_BITFIELD(reg, 0, 1)
188
189 /* Device 15, function 0 */
190
191 #define MCMTR 0x7c
192 #define KNL_MCMTR 0x624
193
194 #define IS_ECC_ENABLED(mcmtr) GET_BITFIELD(mcmtr, 2, 2)
195 #define IS_LOCKSTEP_ENABLED(mcmtr) GET_BITFIELD(mcmtr, 1, 1)
196 #define IS_CLOSE_PG(mcmtr) GET_BITFIELD(mcmtr, 0, 0)
197
198 /* Device 15, function 1 */
199
200 #define RASENABLES 0xac
201 #define IS_MIRROR_ENABLED(reg) GET_BITFIELD(reg, 0, 0)
202
203 /* Device 15, functions 2-5 */
204
205 static const int mtr_regs[] = {
206 0x80, 0x84, 0x88,
207 };
208
209 static const int knl_mtr_reg = 0xb60;
210
211 #define RANK_DISABLE(mtr) GET_BITFIELD(mtr, 16, 19)
212 #define IS_DIMM_PRESENT(mtr) GET_BITFIELD(mtr, 14, 14)
213 #define RANK_CNT_BITS(mtr) GET_BITFIELD(mtr, 12, 13)
214 #define RANK_WIDTH_BITS(mtr) GET_BITFIELD(mtr, 2, 4)
215 #define COL_WIDTH_BITS(mtr) GET_BITFIELD(mtr, 0, 1)
216
217 static const u32 tad_ch_nilv_offset[] = {
218 0x90, 0x94, 0x98, 0x9c,
219 0xa0, 0xa4, 0xa8, 0xac,
220 0xb0, 0xb4, 0xb8, 0xbc,
221 };
222 #define CHN_IDX_OFFSET(reg) GET_BITFIELD(reg, 28, 29)
223 #define TAD_OFFSET(reg) (GET_BITFIELD(reg, 6, 25) << 26)
224
225 static const u32 rir_way_limit[] = {
226 0x108, 0x10c, 0x110, 0x114, 0x118,
227 };
228 #define MAX_RIR_RANGES ARRAY_SIZE(rir_way_limit)
229
230 #define IS_RIR_VALID(reg) GET_BITFIELD(reg, 31, 31)
231 #define RIR_WAY(reg) GET_BITFIELD(reg, 28, 29)
232
233 #define MAX_RIR_WAY 8
234
235 static const u32 rir_offset[MAX_RIR_RANGES][MAX_RIR_WAY] = {
236 { 0x120, 0x124, 0x128, 0x12c, 0x130, 0x134, 0x138, 0x13c },
237 { 0x140, 0x144, 0x148, 0x14c, 0x150, 0x154, 0x158, 0x15c },
238 { 0x160, 0x164, 0x168, 0x16c, 0x170, 0x174, 0x178, 0x17c },
239 { 0x180, 0x184, 0x188, 0x18c, 0x190, 0x194, 0x198, 0x19c },
240 { 0x1a0, 0x1a4, 0x1a8, 0x1ac, 0x1b0, 0x1b4, 0x1b8, 0x1bc },
241 };
242
243 #define RIR_RNK_TGT(type, reg) (((type) == BROADWELL) ? \
244 GET_BITFIELD(reg, 20, 23) : GET_BITFIELD(reg, 16, 19))
245
246 #define RIR_OFFSET(type, reg) (((type) == HASWELL || (type) == BROADWELL) ? \
247 GET_BITFIELD(reg, 2, 15) : GET_BITFIELD(reg, 2, 14))
248
249 /* Device 16, functions 2-7 */
250
251 /*
252 * FIXME: Implement the error count reads directly
253 */
254
255 static const u32 correrrcnt[] = {
256 0x104, 0x108, 0x10c, 0x110,
257 };
258
259 #define RANK_ODD_OV(reg) GET_BITFIELD(reg, 31, 31)
260 #define RANK_ODD_ERR_CNT(reg) GET_BITFIELD(reg, 16, 30)
261 #define RANK_EVEN_OV(reg) GET_BITFIELD(reg, 15, 15)
262 #define RANK_EVEN_ERR_CNT(reg) GET_BITFIELD(reg, 0, 14)
263
264 static const u32 correrrthrsld[] = {
265 0x11c, 0x120, 0x124, 0x128,
266 };
267
268 #define RANK_ODD_ERR_THRSLD(reg) GET_BITFIELD(reg, 16, 30)
269 #define RANK_EVEN_ERR_THRSLD(reg) GET_BITFIELD(reg, 0, 14)
270
271
272 /* Device 17, function 0 */
273
274 #define SB_RANK_CFG_A 0x0328
275
276 #define IB_RANK_CFG_A 0x0320
277
278 /*
279 * sbridge structs
280 */
281
282 #define NUM_CHANNELS 4 /* Max channels per MC */
283 #define MAX_DIMMS 3 /* Max DIMMS per channel */
284 #define KNL_MAX_CHAS 38 /* KNL max num. of Cache Home Agents */
285 #define KNL_MAX_CHANNELS 6 /* KNL max num. of PCI channels */
286 #define KNL_MAX_EDCS 8 /* Embedded DRAM controllers */
287 #define CHANNEL_UNSPECIFIED 0xf /* Intel IA32 SDM 15-14 */
288
289 enum type {
290 SANDY_BRIDGE,
291 IVY_BRIDGE,
292 HASWELL,
293 BROADWELL,
294 KNIGHTS_LANDING,
295 };
296
297 enum domain {
298 IMC0 = 0,
299 IMC1,
300 SOCK,
301 };
302
303 struct sbridge_pvt;
304 struct sbridge_info {
305 enum type type;
306 u32 mcmtr;
307 u32 rankcfgr;
308 u64 (*get_tolm)(struct sbridge_pvt *pvt);
309 u64 (*get_tohm)(struct sbridge_pvt *pvt);
310 u64 (*rir_limit)(u32 reg);
311 u64 (*sad_limit)(u32 reg);
312 u32 (*interleave_mode)(u32 reg);
313 u32 (*dram_attr)(u32 reg);
314 const u32 *dram_rule;
315 const u32 *interleave_list;
316 const struct interleave_pkg *interleave_pkg;
317 u8 max_sad;
318 u8 max_interleave;
319 u8 (*get_node_id)(struct sbridge_pvt *pvt);
320 enum mem_type (*get_memory_type)(struct sbridge_pvt *pvt);
321 enum dev_type (*get_width)(struct sbridge_pvt *pvt, u32 mtr);
322 struct pci_dev *pci_vtd;
323 };
324
325 struct sbridge_channel {
326 u32 ranks;
327 u32 dimms;
328 };
329
330 struct pci_id_descr {
331 int dev_id;
332 int optional;
333 enum domain dom;
334 };
335
336 struct pci_id_table {
337 const struct pci_id_descr *descr;
338 int n_devs_per_imc;
339 int n_devs_per_sock;
340 int n_imcs_per_sock;
341 enum type type;
342 };
343
344 struct sbridge_dev {
345 struct list_head list;
346 u8 bus, mc;
347 u8 node_id, source_id;
348 struct pci_dev **pdev;
349 enum domain dom;
350 int n_devs;
351 int i_devs;
352 struct mem_ctl_info *mci;
353 };
354
355 struct knl_pvt {
356 struct pci_dev *pci_cha[KNL_MAX_CHAS];
357 struct pci_dev *pci_channel[KNL_MAX_CHANNELS];
358 struct pci_dev *pci_mc0;
359 struct pci_dev *pci_mc1;
360 struct pci_dev *pci_mc0_misc;
361 struct pci_dev *pci_mc1_misc;
362 struct pci_dev *pci_mc_info; /* tolm, tohm */
363 };
364
365 struct sbridge_pvt {
366 /* Devices per socket */
367 struct pci_dev *pci_ddrio;
368 struct pci_dev *pci_sad0, *pci_sad1;
369 struct pci_dev *pci_br0, *pci_br1;
370 /* Devices per memory controller */
371 struct pci_dev *pci_ha, *pci_ta, *pci_ras;
372 struct pci_dev *pci_tad[NUM_CHANNELS];
373
374 struct sbridge_dev *sbridge_dev;
375
376 struct sbridge_info info;
377 struct sbridge_channel channel[NUM_CHANNELS];
378
379 /* Memory type detection */
380 bool is_mirrored, is_lockstep, is_close_pg;
381 bool is_chan_hash;
382
383 /* Memory description */
384 u64 tolm, tohm;
385 struct knl_pvt knl;
386 };
387
388 #define PCI_DESCR(device_id, opt, domain) \
389 .dev_id = (device_id), \
390 .optional = opt, \
391 .dom = domain
392
393 static const struct pci_id_descr pci_dev_descr_sbridge[] = {
394 /* Processor Home Agent */
395 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0, 0, IMC0) },
396
397 /* Memory controller */
398 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA, 0, IMC0) },
399 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS, 0, IMC0) },
400 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0, 0, IMC0) },
401 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1, 0, IMC0) },
402 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2, 0, IMC0) },
403 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3, 0, IMC0) },
404 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO, 1, SOCK) },
405
406 /* System Address Decoder */
407 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0, 0, SOCK) },
408 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1, 0, SOCK) },
409
410 /* Broadcast Registers */
411 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_BR, 0, SOCK) },
412 };
413
414 #define PCI_ID_TABLE_ENTRY(A, N, M, T) { \
415 .descr = A, \
416 .n_devs_per_imc = N, \
417 .n_devs_per_sock = ARRAY_SIZE(A), \
418 .n_imcs_per_sock = M, \
419 .type = T \
420 }
421
422 static const struct pci_id_table pci_dev_descr_sbridge_table[] = {
423 PCI_ID_TABLE_ENTRY(pci_dev_descr_sbridge, ARRAY_SIZE(pci_dev_descr_sbridge), 1, SANDY_BRIDGE),
424 {0,} /* 0 terminated list. */
425 };
426
427 /* This changes depending if 1HA or 2HA:
428 * 1HA:
429 * 0x0eb8 (17.0) is DDRIO0
430 * 2HA:
431 * 0x0ebc (17.4) is DDRIO0
432 */
433 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0 0x0eb8
434 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0 0x0ebc
435
436 /* pci ids */
437 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0 0x0ea0
438 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA 0x0ea8
439 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS 0x0e71
440 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0 0x0eaa
441 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1 0x0eab
442 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2 0x0eac
443 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3 0x0ead
444 #define PCI_DEVICE_ID_INTEL_IBRIDGE_SAD 0x0ec8
445 #define PCI_DEVICE_ID_INTEL_IBRIDGE_BR0 0x0ec9
446 #define PCI_DEVICE_ID_INTEL_IBRIDGE_BR1 0x0eca
447 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1 0x0e60
448 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA 0x0e68
449 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS 0x0e79
450 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0 0x0e6a
451 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1 0x0e6b
452 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2 0x0e6c
453 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3 0x0e6d
454
455 static const struct pci_id_descr pci_dev_descr_ibridge[] = {
456 /* Processor Home Agent */
457 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0, 0, IMC0) },
458
459 /* Memory controller */
460 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA, 0, IMC0) },
461 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS, 0, IMC0) },
462 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0, 0, IMC0) },
463 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1, 0, IMC0) },
464 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2, 0, IMC0) },
465 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3, 0, IMC0) },
466
467 /* Optional, mode 2HA */
468 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1, 1, IMC1) },
469 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA, 1, IMC1) },
470 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS, 1, IMC1) },
471 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0, 1, IMC1) },
472 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1, 1, IMC1) },
473 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2, 1, IMC1) },
474 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3, 1, IMC1) },
475
476 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0, 1, SOCK) },
477 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0, 1, SOCK) },
478
479 /* System Address Decoder */
480 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_SAD, 0, SOCK) },
481
482 /* Broadcast Registers */
483 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR0, 1, SOCK) },
484 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR1, 0, SOCK) },
485
486 };
487
488 static const struct pci_id_table pci_dev_descr_ibridge_table[] = {
489 PCI_ID_TABLE_ENTRY(pci_dev_descr_ibridge, 12, 2, IVY_BRIDGE),
490 {0,} /* 0 terminated list. */
491 };
492
493 /* Haswell support */
494 /* EN processor:
495 * - 1 IMC
496 * - 3 DDR3 channels, 2 DPC per channel
497 * EP processor:
498 * - 1 or 2 IMC
499 * - 4 DDR4 channels, 3 DPC per channel
500 * EP 4S processor:
501 * - 2 IMC
502 * - 4 DDR4 channels, 3 DPC per channel
503 * EX processor:
504 * - 2 IMC
505 * - each IMC interfaces with a SMI 2 channel
506 * - each SMI channel interfaces with a scalable memory buffer
507 * - each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC
508 */
509 #define HASWELL_DDRCRCLKCONTROLS 0xa10 /* Ditto on Broadwell */
510 #define HASWELL_HASYSDEFEATURE2 0x84
511 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC 0x2f28
512 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0 0x2fa0
513 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1 0x2f60
514 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA 0x2fa8
515 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TM 0x2f71
516 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA 0x2f68
517 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TM 0x2f79
518 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0 0x2ffc
519 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1 0x2ffd
520 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0 0x2faa
521 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1 0x2fab
522 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2 0x2fac
523 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3 0x2fad
524 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0 0x2f6a
525 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1 0x2f6b
526 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2 0x2f6c
527 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3 0x2f6d
528 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0 0x2fbd
529 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1 0x2fbf
530 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2 0x2fb9
531 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3 0x2fbb
532 static const struct pci_id_descr pci_dev_descr_haswell[] = {
533 /* first item must be the HA */
534 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0, 0, IMC0) },
535 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1, 1, IMC1) },
536
537 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA, 0, IMC0) },
538 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TM, 0, IMC0) },
539 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0, 0, IMC0) },
540 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1, 0, IMC0) },
541 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2, 1, IMC0) },
542 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3, 1, IMC0) },
543
544 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA, 1, IMC1) },
545 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TM, 1, IMC1) },
546 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0, 1, IMC1) },
547 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1, 1, IMC1) },
548 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2, 1, IMC1) },
549 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3, 1, IMC1) },
550
551 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0, 0, SOCK) },
552 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1, 0, SOCK) },
553 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0, 1, SOCK) },
554 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1, 1, SOCK) },
555 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2, 1, SOCK) },
556 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3, 1, SOCK) },
557 };
558
559 static const struct pci_id_table pci_dev_descr_haswell_table[] = {
560 PCI_ID_TABLE_ENTRY(pci_dev_descr_haswell, 13, 2, HASWELL),
561 {0,} /* 0 terminated list. */
562 };
563
564 /* Knight's Landing Support */
565 /*
566 * KNL's memory channels are swizzled between memory controllers.
567 * MC0 is mapped to CH3,4,5 and MC1 is mapped to CH0,1,2
568 */
569 #define knl_channel_remap(mc, chan) ((mc) ? (chan) : (chan) + 3)
570
571 /* Memory controller, TAD tables, error injection - 2-8-0, 2-9-0 (2 of these) */
572 #define PCI_DEVICE_ID_INTEL_KNL_IMC_MC 0x7840
573 /* DRAM channel stuff; bank addrs, dimmmtr, etc.. 2-8-2 - 2-9-4 (6 of these) */
574 #define PCI_DEVICE_ID_INTEL_KNL_IMC_CHAN 0x7843
575 /* kdrwdbu TAD limits/offsets, MCMTR - 2-10-1, 2-11-1 (2 of these) */
576 #define PCI_DEVICE_ID_INTEL_KNL_IMC_TA 0x7844
577 /* CHA broadcast registers, dram rules - 1-29-0 (1 of these) */
578 #define PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0 0x782a
579 /* SAD target - 1-29-1 (1 of these) */
580 #define PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1 0x782b
581 /* Caching / Home Agent */
582 #define PCI_DEVICE_ID_INTEL_KNL_IMC_CHA 0x782c
583 /* Device with TOLM and TOHM, 0-5-0 (1 of these) */
584 #define PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM 0x7810
585
586 /*
587 * KNL differs from SB, IB, and Haswell in that it has multiple
588 * instances of the same device with the same device ID, so we handle that
589 * by creating as many copies in the table as we expect to find.
590 * (Like device ID must be grouped together.)
591 */
592
593 static const struct pci_id_descr pci_dev_descr_knl[] = {
594 [0 ... 1] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_MC, 0, IMC0)},
595 [2 ... 7] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_CHAN, 0, IMC0) },
596 [8] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_TA, 0, IMC0) },
597 [9] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM, 0, IMC0) },
598 [10] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0, 0, SOCK) },
599 [11] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1, 0, SOCK) },
600 [12 ... 49] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_CHA, 0, SOCK) },
601 };
602
603 static const struct pci_id_table pci_dev_descr_knl_table[] = {
604 PCI_ID_TABLE_ENTRY(pci_dev_descr_knl, ARRAY_SIZE(pci_dev_descr_knl), 1, KNIGHTS_LANDING),
605 {0,}
606 };
607
608 /*
609 * Broadwell support
610 *
611 * DE processor:
612 * - 1 IMC
613 * - 2 DDR3 channels, 2 DPC per channel
614 * EP processor:
615 * - 1 or 2 IMC
616 * - 4 DDR4 channels, 3 DPC per channel
617 * EP 4S processor:
618 * - 2 IMC
619 * - 4 DDR4 channels, 3 DPC per channel
620 * EX processor:
621 * - 2 IMC
622 * - each IMC interfaces with a SMI 2 channel
623 * - each SMI channel interfaces with a scalable memory buffer
624 * - each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC
625 */
626 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC 0x6f28
627 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0 0x6fa0
628 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1 0x6f60
629 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA 0x6fa8
630 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TM 0x6f71
631 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA 0x6f68
632 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TM 0x6f79
633 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0 0x6ffc
634 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1 0x6ffd
635 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0 0x6faa
636 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1 0x6fab
637 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2 0x6fac
638 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3 0x6fad
639 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0 0x6f6a
640 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1 0x6f6b
641 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2 0x6f6c
642 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3 0x6f6d
643 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0 0x6faf
644
645 static const struct pci_id_descr pci_dev_descr_broadwell[] = {
646 /* first item must be the HA */
647 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0, 0, IMC0) },
648 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1, 1, IMC1) },
649
650 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA, 0, IMC0) },
651 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TM, 0, IMC0) },
652 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0, 0, IMC0) },
653 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1, 0, IMC0) },
654 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2, 1, IMC0) },
655 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3, 1, IMC0) },
656
657 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA, 1, IMC1) },
658 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TM, 1, IMC1) },
659 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0, 1, IMC1) },
660 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1, 1, IMC1) },
661 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2, 1, IMC1) },
662 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3, 1, IMC1) },
663
664 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0, 0, SOCK) },
665 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1, 0, SOCK) },
666 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0, 1, SOCK) },
667 };
668
669 static const struct pci_id_table pci_dev_descr_broadwell_table[] = {
670 PCI_ID_TABLE_ENTRY(pci_dev_descr_broadwell, 10, 2, BROADWELL),
671 {0,} /* 0 terminated list. */
672 };
673
674
675 /****************************************************************************
676 Ancillary status routines
677 ****************************************************************************/
678
679 static inline int numrank(enum type type, u32 mtr)
680 {
681 int ranks = (1 << RANK_CNT_BITS(mtr));
682 int max = 4;
683
684 if (type == HASWELL || type == BROADWELL || type == KNIGHTS_LANDING)
685 max = 8;
686
687 if (ranks > max) {
688 edac_dbg(0, "Invalid number of ranks: %d (max = %i) raw value = %x (%04x)\n",
689 ranks, max, (unsigned int)RANK_CNT_BITS(mtr), mtr);
690 return -EINVAL;
691 }
692
693 return ranks;
694 }
695
696 static inline int numrow(u32 mtr)
697 {
698 int rows = (RANK_WIDTH_BITS(mtr) + 12);
699
700 if (rows < 13 || rows > 18) {
701 edac_dbg(0, "Invalid number of rows: %d (should be between 14 and 17) raw value = %x (%04x)\n",
702 rows, (unsigned int)RANK_WIDTH_BITS(mtr), mtr);
703 return -EINVAL;
704 }
705
706 return 1 << rows;
707 }
708
709 static inline int numcol(u32 mtr)
710 {
711 int cols = (COL_WIDTH_BITS(mtr) + 10);
712
713 if (cols > 12) {
714 edac_dbg(0, "Invalid number of cols: %d (max = 4) raw value = %x (%04x)\n",
715 cols, (unsigned int)COL_WIDTH_BITS(mtr), mtr);
716 return -EINVAL;
717 }
718
719 return 1 << cols;
720 }
721
722 static struct sbridge_dev *get_sbridge_dev(u8 bus, enum domain dom, int multi_bus,
723 struct sbridge_dev *prev)
724 {
725 struct sbridge_dev *sbridge_dev;
726
727 /*
728 * If we have devices scattered across several busses that pertain
729 * to the same memory controller, we'll lump them all together.
730 */
731 if (multi_bus) {
732 return list_first_entry_or_null(&sbridge_edac_list,
733 struct sbridge_dev, list);
734 }
735
736 sbridge_dev = list_entry(prev ? prev->list.next
737 : sbridge_edac_list.next, struct sbridge_dev, list);
738
739 list_for_each_entry_from(sbridge_dev, &sbridge_edac_list, list) {
740 if (sbridge_dev->bus == bus && (dom == SOCK || dom == sbridge_dev->dom))
741 return sbridge_dev;
742 }
743
744 return NULL;
745 }
746
747 static struct sbridge_dev *alloc_sbridge_dev(u8 bus, enum domain dom,
748 const struct pci_id_table *table)
749 {
750 struct sbridge_dev *sbridge_dev;
751
752 sbridge_dev = kzalloc(sizeof(*sbridge_dev), GFP_KERNEL);
753 if (!sbridge_dev)
754 return NULL;
755
756 sbridge_dev->pdev = kcalloc(table->n_devs_per_imc,
757 sizeof(*sbridge_dev->pdev),
758 GFP_KERNEL);
759 if (!sbridge_dev->pdev) {
760 kfree(sbridge_dev);
761 return NULL;
762 }
763
764 sbridge_dev->bus = bus;
765 sbridge_dev->dom = dom;
766 sbridge_dev->n_devs = table->n_devs_per_imc;
767 list_add_tail(&sbridge_dev->list, &sbridge_edac_list);
768
769 return sbridge_dev;
770 }
771
772 static void free_sbridge_dev(struct sbridge_dev *sbridge_dev)
773 {
774 list_del(&sbridge_dev->list);
775 kfree(sbridge_dev->pdev);
776 kfree(sbridge_dev);
777 }
778
779 static u64 sbridge_get_tolm(struct sbridge_pvt *pvt)
780 {
781 u32 reg;
782
783 /* Address range is 32:28 */
784 pci_read_config_dword(pvt->pci_sad1, TOLM, &reg);
785 return GET_TOLM(reg);
786 }
787
788 static u64 sbridge_get_tohm(struct sbridge_pvt *pvt)
789 {
790 u32 reg;
791
792 pci_read_config_dword(pvt->pci_sad1, TOHM, &reg);
793 return GET_TOHM(reg);
794 }
795
796 static u64 ibridge_get_tolm(struct sbridge_pvt *pvt)
797 {
798 u32 reg;
799
800 pci_read_config_dword(pvt->pci_br1, TOLM, &reg);
801
802 return GET_TOLM(reg);
803 }
804
805 static u64 ibridge_get_tohm(struct sbridge_pvt *pvt)
806 {
807 u32 reg;
808
809 pci_read_config_dword(pvt->pci_br1, TOHM, &reg);
810
811 return GET_TOHM(reg);
812 }
813
814 static u64 rir_limit(u32 reg)
815 {
816 return ((u64)GET_BITFIELD(reg, 1, 10) << 29) | 0x1fffffff;
817 }
818
819 static u64 sad_limit(u32 reg)
820 {
821 return (GET_BITFIELD(reg, 6, 25) << 26) | 0x3ffffff;
822 }
823
824 static u32 interleave_mode(u32 reg)
825 {
826 return GET_BITFIELD(reg, 1, 1);
827 }
828
829 static u32 dram_attr(u32 reg)
830 {
831 return GET_BITFIELD(reg, 2, 3);
832 }
833
834 static u64 knl_sad_limit(u32 reg)
835 {
836 return (GET_BITFIELD(reg, 7, 26) << 26) | 0x3ffffff;
837 }
838
839 static u32 knl_interleave_mode(u32 reg)
840 {
841 return GET_BITFIELD(reg, 1, 2);
842 }
843
844 static const char * const knl_intlv_mode[] = {
845 "[8:6]", "[10:8]", "[14:12]", "[32:30]"
846 };
847
848 static const char *get_intlv_mode_str(u32 reg, enum type t)
849 {
850 if (t == KNIGHTS_LANDING)
851 return knl_intlv_mode[knl_interleave_mode(reg)];
852 else
853 return interleave_mode(reg) ? "[8:6]" : "[8:6]XOR[18:16]";
854 }
855
856 static u32 dram_attr_knl(u32 reg)
857 {
858 return GET_BITFIELD(reg, 3, 4);
859 }
860
861
862 static enum mem_type get_memory_type(struct sbridge_pvt *pvt)
863 {
864 u32 reg;
865 enum mem_type mtype;
866
867 if (pvt->pci_ddrio) {
868 pci_read_config_dword(pvt->pci_ddrio, pvt->info.rankcfgr,
869 &reg);
870 if (GET_BITFIELD(reg, 11, 11))
871 /* FIXME: Can also be LRDIMM */
872 mtype = MEM_RDDR3;
873 else
874 mtype = MEM_DDR3;
875 } else
876 mtype = MEM_UNKNOWN;
877
878 return mtype;
879 }
880
881 static enum mem_type haswell_get_memory_type(struct sbridge_pvt *pvt)
882 {
883 u32 reg;
884 bool registered = false;
885 enum mem_type mtype = MEM_UNKNOWN;
886
887 if (!pvt->pci_ddrio)
888 goto out;
889
890 pci_read_config_dword(pvt->pci_ddrio,
891 HASWELL_DDRCRCLKCONTROLS, &reg);
892 /* Is_Rdimm */
893 if (GET_BITFIELD(reg, 16, 16))
894 registered = true;
895
896 pci_read_config_dword(pvt->pci_ta, MCMTR, &reg);
897 if (GET_BITFIELD(reg, 14, 14)) {
898 if (registered)
899 mtype = MEM_RDDR4;
900 else
901 mtype = MEM_DDR4;
902 } else {
903 if (registered)
904 mtype = MEM_RDDR3;
905 else
906 mtype = MEM_DDR3;
907 }
908
909 out:
910 return mtype;
911 }
912
913 static enum dev_type knl_get_width(struct sbridge_pvt *pvt, u32 mtr)
914 {
915 /* for KNL value is fixed */
916 return DEV_X16;
917 }
918
919 static enum dev_type sbridge_get_width(struct sbridge_pvt *pvt, u32 mtr)
920 {
921 /* there's no way to figure out */
922 return DEV_UNKNOWN;
923 }
924
925 static enum dev_type __ibridge_get_width(u32 mtr)
926 {
927 enum dev_type type;
928
929 switch (mtr) {
930 case 3:
931 type = DEV_UNKNOWN;
932 break;
933 case 2:
934 type = DEV_X16;
935 break;
936 case 1:
937 type = DEV_X8;
938 break;
939 case 0:
940 type = DEV_X4;
941 break;
942 }
943
944 return type;
945 }
946
947 static enum dev_type ibridge_get_width(struct sbridge_pvt *pvt, u32 mtr)
948 {
949 /*
950 * ddr3_width on the documentation but also valid for DDR4 on
951 * Haswell
952 */
953 return __ibridge_get_width(GET_BITFIELD(mtr, 7, 8));
954 }
955
956 static enum dev_type broadwell_get_width(struct sbridge_pvt *pvt, u32 mtr)
957 {
958 /* ddr3_width on the documentation but also valid for DDR4 */
959 return __ibridge_get_width(GET_BITFIELD(mtr, 8, 9));
960 }
961
962 static enum mem_type knl_get_memory_type(struct sbridge_pvt *pvt)
963 {
964 /* DDR4 RDIMMS and LRDIMMS are supported */
965 return MEM_RDDR4;
966 }
967
968 static u8 get_node_id(struct sbridge_pvt *pvt)
969 {
970 u32 reg;
971 pci_read_config_dword(pvt->pci_br0, SAD_CONTROL, &reg);
972 return GET_BITFIELD(reg, 0, 2);
973 }
974
975 static u8 haswell_get_node_id(struct sbridge_pvt *pvt)
976 {
977 u32 reg;
978
979 pci_read_config_dword(pvt->pci_sad1, SAD_CONTROL, &reg);
980 return GET_BITFIELD(reg, 0, 3);
981 }
982
983 static u8 knl_get_node_id(struct sbridge_pvt *pvt)
984 {
985 u32 reg;
986
987 pci_read_config_dword(pvt->pci_sad1, SAD_CONTROL, &reg);
988 return GET_BITFIELD(reg, 0, 2);
989 }
990
991
992 static u64 haswell_get_tolm(struct sbridge_pvt *pvt)
993 {
994 u32 reg;
995
996 pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOLM, &reg);
997 return (GET_BITFIELD(reg, 26, 31) << 26) | 0x3ffffff;
998 }
999
1000 static u64 haswell_get_tohm(struct sbridge_pvt *pvt)
1001 {
1002 u64 rc;
1003 u32 reg;
1004
1005 pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOHM_0, &reg);
1006 rc = GET_BITFIELD(reg, 26, 31);
1007 pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOHM_1, &reg);
1008 rc = ((reg << 6) | rc) << 26;
1009
1010 return rc | 0x1ffffff;
1011 }
1012
1013 static u64 knl_get_tolm(struct sbridge_pvt *pvt)
1014 {
1015 u32 reg;
1016
1017 pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOLM, &reg);
1018 return (GET_BITFIELD(reg, 26, 31) << 26) | 0x3ffffff;
1019 }
1020
1021 static u64 knl_get_tohm(struct sbridge_pvt *pvt)
1022 {
1023 u64 rc;
1024 u32 reg_lo, reg_hi;
1025
1026 pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOHM_0, &reg_lo);
1027 pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOHM_1, &reg_hi);
1028 rc = ((u64)reg_hi << 32) | reg_lo;
1029 return rc | 0x3ffffff;
1030 }
1031
1032
1033 static u64 haswell_rir_limit(u32 reg)
1034 {
1035 return (((u64)GET_BITFIELD(reg, 1, 11) + 1) << 29) - 1;
1036 }
1037
1038 static inline u8 sad_pkg_socket(u8 pkg)
1039 {
1040 /* on Ivy Bridge, nodeID is SASS, where A is HA and S is node id */
1041 return ((pkg >> 3) << 2) | (pkg & 0x3);
1042 }
1043
1044 static inline u8 sad_pkg_ha(u8 pkg)
1045 {
1046 return (pkg >> 2) & 0x1;
1047 }
1048
1049 static int haswell_chan_hash(int idx, u64 addr)
1050 {
1051 int i;
1052
1053 /*
1054 * XOR even bits from 12:26 to bit0 of idx,
1055 * odd bits from 13:27 to bit1
1056 */
1057 for (i = 12; i < 28; i += 2)
1058 idx ^= (addr >> i) & 3;
1059
1060 return idx;
1061 }
1062
1063 /* Low bits of TAD limit, and some metadata. */
1064 static const u32 knl_tad_dram_limit_lo[] = {
1065 0x400, 0x500, 0x600, 0x700,
1066 0x800, 0x900, 0xa00, 0xb00,
1067 };
1068
1069 /* Low bits of TAD offset. */
1070 static const u32 knl_tad_dram_offset_lo[] = {
1071 0x404, 0x504, 0x604, 0x704,
1072 0x804, 0x904, 0xa04, 0xb04,
1073 };
1074
1075 /* High 16 bits of TAD limit and offset. */
1076 static const u32 knl_tad_dram_hi[] = {
1077 0x408, 0x508, 0x608, 0x708,
1078 0x808, 0x908, 0xa08, 0xb08,
1079 };
1080
1081 /* Number of ways a tad entry is interleaved. */
1082 static const u32 knl_tad_ways[] = {
1083 8, 6, 4, 3, 2, 1,
1084 };
1085
1086 /*
1087 * Retrieve the n'th Target Address Decode table entry
1088 * from the memory controller's TAD table.
1089 *
1090 * @pvt: driver private data
1091 * @entry: which entry you want to retrieve
1092 * @mc: which memory controller (0 or 1)
1093 * @offset: output tad range offset
1094 * @limit: output address of first byte above tad range
1095 * @ways: output number of interleave ways
1096 *
1097 * The offset value has curious semantics. It's a sort of running total
1098 * of the sizes of all the memory regions that aren't mapped in this
1099 * tad table.
1100 */
1101 static int knl_get_tad(const struct sbridge_pvt *pvt,
1102 const int entry,
1103 const int mc,
1104 u64 *offset,
1105 u64 *limit,
1106 int *ways)
1107 {
1108 u32 reg_limit_lo, reg_offset_lo, reg_hi;
1109 struct pci_dev *pci_mc;
1110 int way_id;
1111
1112 switch (mc) {
1113 case 0:
1114 pci_mc = pvt->knl.pci_mc0;
1115 break;
1116 case 1:
1117 pci_mc = pvt->knl.pci_mc1;
1118 break;
1119 default:
1120 WARN_ON(1);
1121 return -EINVAL;
1122 }
1123
1124 pci_read_config_dword(pci_mc,
1125 knl_tad_dram_limit_lo[entry], &reg_limit_lo);
1126 pci_read_config_dword(pci_mc,
1127 knl_tad_dram_offset_lo[entry], &reg_offset_lo);
1128 pci_read_config_dword(pci_mc,
1129 knl_tad_dram_hi[entry], &reg_hi);
1130
1131 /* Is this TAD entry enabled? */
1132 if (!GET_BITFIELD(reg_limit_lo, 0, 0))
1133 return -ENODEV;
1134
1135 way_id = GET_BITFIELD(reg_limit_lo, 3, 5);
1136
1137 if (way_id < ARRAY_SIZE(knl_tad_ways)) {
1138 *ways = knl_tad_ways[way_id];
1139 } else {
1140 *ways = 0;
1141 sbridge_printk(KERN_ERR,
1142 "Unexpected value %d in mc_tad_limit_lo wayness field\n",
1143 way_id);
1144 return -ENODEV;
1145 }
1146
1147 /*
1148 * The least significant 6 bits of base and limit are truncated.
1149 * For limit, we fill the missing bits with 1s.
1150 */
1151 *offset = ((u64) GET_BITFIELD(reg_offset_lo, 6, 31) << 6) |
1152 ((u64) GET_BITFIELD(reg_hi, 0, 15) << 32);
1153 *limit = ((u64) GET_BITFIELD(reg_limit_lo, 6, 31) << 6) | 63 |
1154 ((u64) GET_BITFIELD(reg_hi, 16, 31) << 32);
1155
1156 return 0;
1157 }
1158
1159 /* Determine which memory controller is responsible for a given channel. */
1160 static int knl_channel_mc(int channel)
1161 {
1162 WARN_ON(channel < 0 || channel >= 6);
1163
1164 return channel < 3 ? 1 : 0;
1165 }
1166
1167 /*
1168 * Get the Nth entry from EDC_ROUTE_TABLE register.
1169 * (This is the per-tile mapping of logical interleave targets to
1170 * physical EDC modules.)
1171 *
1172 * entry 0: 0:2
1173 * 1: 3:5
1174 * 2: 6:8
1175 * 3: 9:11
1176 * 4: 12:14
1177 * 5: 15:17
1178 * 6: 18:20
1179 * 7: 21:23
1180 * reserved: 24:31
1181 */
1182 static u32 knl_get_edc_route(int entry, u32 reg)
1183 {
1184 WARN_ON(entry >= KNL_MAX_EDCS);
1185 return GET_BITFIELD(reg, entry*3, (entry*3)+2);
1186 }
1187
1188 /*
1189 * Get the Nth entry from MC_ROUTE_TABLE register.
1190 * (This is the per-tile mapping of logical interleave targets to
1191 * physical DRAM channels modules.)
1192 *
1193 * entry 0: mc 0:2 channel 18:19
1194 * 1: mc 3:5 channel 20:21
1195 * 2: mc 6:8 channel 22:23
1196 * 3: mc 9:11 channel 24:25
1197 * 4: mc 12:14 channel 26:27
1198 * 5: mc 15:17 channel 28:29
1199 * reserved: 30:31
1200 *
1201 * Though we have 3 bits to identify the MC, we should only see
1202 * the values 0 or 1.
1203 */
1204
1205 static u32 knl_get_mc_route(int entry, u32 reg)
1206 {
1207 int mc, chan;
1208
1209 WARN_ON(entry >= KNL_MAX_CHANNELS);
1210
1211 mc = GET_BITFIELD(reg, entry*3, (entry*3)+2);
1212 chan = GET_BITFIELD(reg, (entry*2) + 18, (entry*2) + 18 + 1);
1213
1214 return knl_channel_remap(mc, chan);
1215 }
1216
1217 /*
1218 * Render the EDC_ROUTE register in human-readable form.
1219 * Output string s should be at least KNL_MAX_EDCS*2 bytes.
1220 */
1221 static void knl_show_edc_route(u32 reg, char *s)
1222 {
1223 int i;
1224
1225 for (i = 0; i < KNL_MAX_EDCS; i++) {
1226 s[i*2] = knl_get_edc_route(i, reg) + '0';
1227 s[i*2+1] = '-';
1228 }
1229
1230 s[KNL_MAX_EDCS*2 - 1] = '\0';
1231 }
1232
1233 /*
1234 * Render the MC_ROUTE register in human-readable form.
1235 * Output string s should be at least KNL_MAX_CHANNELS*2 bytes.
1236 */
1237 static void knl_show_mc_route(u32 reg, char *s)
1238 {
1239 int i;
1240
1241 for (i = 0; i < KNL_MAX_CHANNELS; i++) {
1242 s[i*2] = knl_get_mc_route(i, reg) + '0';
1243 s[i*2+1] = '-';
1244 }
1245
1246 s[KNL_MAX_CHANNELS*2 - 1] = '\0';
1247 }
1248
1249 #define KNL_EDC_ROUTE 0xb8
1250 #define KNL_MC_ROUTE 0xb4
1251
1252 /* Is this dram rule backed by regular DRAM in flat mode? */
1253 #define KNL_EDRAM(reg) GET_BITFIELD(reg, 29, 29)
1254
1255 /* Is this dram rule cached? */
1256 #define KNL_CACHEABLE(reg) GET_BITFIELD(reg, 28, 28)
1257
1258 /* Is this rule backed by edc ? */
1259 #define KNL_EDRAM_ONLY(reg) GET_BITFIELD(reg, 29, 29)
1260
1261 /* Is this rule backed by DRAM, cacheable in EDRAM? */
1262 #define KNL_CACHEABLE(reg) GET_BITFIELD(reg, 28, 28)
1263
1264 /* Is this rule mod3? */
1265 #define KNL_MOD3(reg) GET_BITFIELD(reg, 27, 27)
1266
1267 /*
1268 * Figure out how big our RAM modules are.
1269 *
1270 * The DIMMMTR register in KNL doesn't tell us the size of the DIMMs, so we
1271 * have to figure this out from the SAD rules, interleave lists, route tables,
1272 * and TAD rules.
1273 *
1274 * SAD rules can have holes in them (e.g. the 3G-4G hole), so we have to
1275 * inspect the TAD rules to figure out how large the SAD regions really are.
1276 *
1277 * When we know the real size of a SAD region and how many ways it's
1278 * interleaved, we know the individual contribution of each channel to
1279 * TAD is size/ways.
1280 *
1281 * Finally, we have to check whether each channel participates in each SAD
1282 * region.
1283 *
1284 * Fortunately, KNL only supports one DIMM per channel, so once we know how
1285 * much memory the channel uses, we know the DIMM is at least that large.
1286 * (The BIOS might possibly choose not to map all available memory, in which
1287 * case we will underreport the size of the DIMM.)
1288 *
1289 * In theory, we could try to determine the EDC sizes as well, but that would
1290 * only work in flat mode, not in cache mode.
1291 *
1292 * @mc_sizes: Output sizes of channels (must have space for KNL_MAX_CHANNELS
1293 * elements)
1294 */
1295 static int knl_get_dimm_capacity(struct sbridge_pvt *pvt, u64 *mc_sizes)
1296 {
1297 u64 sad_base, sad_size, sad_limit = 0;
1298 u64 tad_base, tad_size, tad_limit, tad_deadspace, tad_livespace;
1299 int sad_rule = 0;
1300 int tad_rule = 0;
1301 int intrlv_ways, tad_ways;
1302 u32 first_pkg, pkg;
1303 int i;
1304 u64 sad_actual_size[2]; /* sad size accounting for holes, per mc */
1305 u32 dram_rule, interleave_reg;
1306 u32 mc_route_reg[KNL_MAX_CHAS];
1307 u32 edc_route_reg[KNL_MAX_CHAS];
1308 int edram_only;
1309 char edc_route_string[KNL_MAX_EDCS*2];
1310 char mc_route_string[KNL_MAX_CHANNELS*2];
1311 int cur_reg_start;
1312 int mc;
1313 int channel;
1314 int way;
1315 int participants[KNL_MAX_CHANNELS];
1316 int participant_count = 0;
1317
1318 for (i = 0; i < KNL_MAX_CHANNELS; i++)
1319 mc_sizes[i] = 0;
1320
1321 /* Read the EDC route table in each CHA. */
1322 cur_reg_start = 0;
1323 for (i = 0; i < KNL_MAX_CHAS; i++) {
1324 pci_read_config_dword(pvt->knl.pci_cha[i],
1325 KNL_EDC_ROUTE, &edc_route_reg[i]);
1326
1327 if (i > 0 && edc_route_reg[i] != edc_route_reg[i-1]) {
1328 knl_show_edc_route(edc_route_reg[i-1],
1329 edc_route_string);
1330 if (cur_reg_start == i-1)
1331 edac_dbg(0, "edc route table for CHA %d: %s\n",
1332 cur_reg_start, edc_route_string);
1333 else
1334 edac_dbg(0, "edc route table for CHA %d-%d: %s\n",
1335 cur_reg_start, i-1, edc_route_string);
1336 cur_reg_start = i;
1337 }
1338 }
1339 knl_show_edc_route(edc_route_reg[i-1], edc_route_string);
1340 if (cur_reg_start == i-1)
1341 edac_dbg(0, "edc route table for CHA %d: %s\n",
1342 cur_reg_start, edc_route_string);
1343 else
1344 edac_dbg(0, "edc route table for CHA %d-%d: %s\n",
1345 cur_reg_start, i-1, edc_route_string);
1346
1347 /* Read the MC route table in each CHA. */
1348 cur_reg_start = 0;
1349 for (i = 0; i < KNL_MAX_CHAS; i++) {
1350 pci_read_config_dword(pvt->knl.pci_cha[i],
1351 KNL_MC_ROUTE, &mc_route_reg[i]);
1352
1353 if (i > 0 && mc_route_reg[i] != mc_route_reg[i-1]) {
1354 knl_show_mc_route(mc_route_reg[i-1], mc_route_string);
1355 if (cur_reg_start == i-1)
1356 edac_dbg(0, "mc route table for CHA %d: %s\n",
1357 cur_reg_start, mc_route_string);
1358 else
1359 edac_dbg(0, "mc route table for CHA %d-%d: %s\n",
1360 cur_reg_start, i-1, mc_route_string);
1361 cur_reg_start = i;
1362 }
1363 }
1364 knl_show_mc_route(mc_route_reg[i-1], mc_route_string);
1365 if (cur_reg_start == i-1)
1366 edac_dbg(0, "mc route table for CHA %d: %s\n",
1367 cur_reg_start, mc_route_string);
1368 else
1369 edac_dbg(0, "mc route table for CHA %d-%d: %s\n",
1370 cur_reg_start, i-1, mc_route_string);
1371
1372 /* Process DRAM rules */
1373 for (sad_rule = 0; sad_rule < pvt->info.max_sad; sad_rule++) {
1374 /* previous limit becomes the new base */
1375 sad_base = sad_limit;
1376
1377 pci_read_config_dword(pvt->pci_sad0,
1378 pvt->info.dram_rule[sad_rule], &dram_rule);
1379
1380 if (!DRAM_RULE_ENABLE(dram_rule))
1381 break;
1382
1383 edram_only = KNL_EDRAM_ONLY(dram_rule);
1384
1385 sad_limit = pvt->info.sad_limit(dram_rule)+1;
1386 sad_size = sad_limit - sad_base;
1387
1388 pci_read_config_dword(pvt->pci_sad0,
1389 pvt->info.interleave_list[sad_rule], &interleave_reg);
1390
1391 /*
1392 * Find out how many ways this dram rule is interleaved.
1393 * We stop when we see the first channel again.
1394 */
1395 first_pkg = sad_pkg(pvt->info.interleave_pkg,
1396 interleave_reg, 0);
1397 for (intrlv_ways = 1; intrlv_ways < 8; intrlv_ways++) {
1398 pkg = sad_pkg(pvt->info.interleave_pkg,
1399 interleave_reg, intrlv_ways);
1400
1401 if ((pkg & 0x8) == 0) {
1402 /*
1403 * 0 bit means memory is non-local,
1404 * which KNL doesn't support
1405 */
1406 edac_dbg(0, "Unexpected interleave target %d\n",
1407 pkg);
1408 return -1;
1409 }
1410
1411 if (pkg == first_pkg)
1412 break;
1413 }
1414 if (KNL_MOD3(dram_rule))
1415 intrlv_ways *= 3;
1416
1417 edac_dbg(3, "dram rule %d (base 0x%llx, limit 0x%llx), %d way interleave%s\n",
1418 sad_rule,
1419 sad_base,
1420 sad_limit,
1421 intrlv_ways,
1422 edram_only ? ", EDRAM" : "");
1423
1424 /*
1425 * Find out how big the SAD region really is by iterating
1426 * over TAD tables (SAD regions may contain holes).
1427 * Each memory controller might have a different TAD table, so
1428 * we have to look at both.
1429 *
1430 * Livespace is the memory that's mapped in this TAD table,
1431 * deadspace is the holes (this could be the MMIO hole, or it
1432 * could be memory that's mapped by the other TAD table but
1433 * not this one).
1434 */
1435 for (mc = 0; mc < 2; mc++) {
1436 sad_actual_size[mc] = 0;
1437 tad_livespace = 0;
1438 for (tad_rule = 0;
1439 tad_rule < ARRAY_SIZE(
1440 knl_tad_dram_limit_lo);
1441 tad_rule++) {
1442 if (knl_get_tad(pvt,
1443 tad_rule,
1444 mc,
1445 &tad_deadspace,
1446 &tad_limit,
1447 &tad_ways))
1448 break;
1449
1450 tad_size = (tad_limit+1) -
1451 (tad_livespace + tad_deadspace);
1452 tad_livespace += tad_size;
1453 tad_base = (tad_limit+1) - tad_size;
1454
1455 if (tad_base < sad_base) {
1456 if (tad_limit > sad_base)
1457 edac_dbg(0, "TAD region overlaps lower SAD boundary -- TAD tables may be configured incorrectly.\n");
1458 } else if (tad_base < sad_limit) {
1459 if (tad_limit+1 > sad_limit) {
1460 edac_dbg(0, "TAD region overlaps upper SAD boundary -- TAD tables may be configured incorrectly.\n");
1461 } else {
1462 /* TAD region is completely inside SAD region */
1463 edac_dbg(3, "TAD region %d 0x%llx - 0x%llx (%lld bytes) table%d\n",
1464 tad_rule, tad_base,
1465 tad_limit, tad_size,
1466 mc);
1467 sad_actual_size[mc] += tad_size;
1468 }
1469 }
1470 tad_base = tad_limit+1;
1471 }
1472 }
1473
1474 for (mc = 0; mc < 2; mc++) {
1475 edac_dbg(3, " total TAD DRAM footprint in table%d : 0x%llx (%lld bytes)\n",
1476 mc, sad_actual_size[mc], sad_actual_size[mc]);
1477 }
1478
1479 /* Ignore EDRAM rule */
1480 if (edram_only)
1481 continue;
1482
1483 /* Figure out which channels participate in interleave. */
1484 for (channel = 0; channel < KNL_MAX_CHANNELS; channel++)
1485 participants[channel] = 0;
1486
1487 /* For each channel, does at least one CHA have
1488 * this channel mapped to the given target?
1489 */
1490 for (channel = 0; channel < KNL_MAX_CHANNELS; channel++) {
1491 for (way = 0; way < intrlv_ways; way++) {
1492 int target;
1493 int cha;
1494
1495 if (KNL_MOD3(dram_rule))
1496 target = way;
1497 else
1498 target = 0x7 & sad_pkg(
1499 pvt->info.interleave_pkg, interleave_reg, way);
1500
1501 for (cha = 0; cha < KNL_MAX_CHAS; cha++) {
1502 if (knl_get_mc_route(target,
1503 mc_route_reg[cha]) == channel
1504 && !participants[channel]) {
1505 participant_count++;
1506 participants[channel] = 1;
1507 break;
1508 }
1509 }
1510 }
1511 }
1512
1513 if (participant_count != intrlv_ways)
1514 edac_dbg(0, "participant_count (%d) != interleave_ways (%d): DIMM size may be incorrect\n",
1515 participant_count, intrlv_ways);
1516
1517 for (channel = 0; channel < KNL_MAX_CHANNELS; channel++) {
1518 mc = knl_channel_mc(channel);
1519 if (participants[channel]) {
1520 edac_dbg(4, "mc channel %d contributes %lld bytes via sad entry %d\n",
1521 channel,
1522 sad_actual_size[mc]/intrlv_ways,
1523 sad_rule);
1524 mc_sizes[channel] +=
1525 sad_actual_size[mc]/intrlv_ways;
1526 }
1527 }
1528 }
1529
1530 return 0;
1531 }
1532
1533 static void get_source_id(struct mem_ctl_info *mci)
1534 {
1535 struct sbridge_pvt *pvt = mci->pvt_info;
1536 u32 reg;
1537
1538 if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL ||
1539 pvt->info.type == KNIGHTS_LANDING)
1540 pci_read_config_dword(pvt->pci_sad1, SAD_TARGET, &reg);
1541 else
1542 pci_read_config_dword(pvt->pci_br0, SAD_TARGET, &reg);
1543
1544 if (pvt->info.type == KNIGHTS_LANDING)
1545 pvt->sbridge_dev->source_id = SOURCE_ID_KNL(reg);
1546 else
1547 pvt->sbridge_dev->source_id = SOURCE_ID(reg);
1548 }
1549
1550 static int __populate_dimms(struct mem_ctl_info *mci,
1551 u64 knl_mc_sizes[KNL_MAX_CHANNELS],
1552 enum edac_type mode)
1553 {
1554 struct sbridge_pvt *pvt = mci->pvt_info;
1555 int channels = pvt->info.type == KNIGHTS_LANDING ? KNL_MAX_CHANNELS
1556 : NUM_CHANNELS;
1557 unsigned int i, j, banks, ranks, rows, cols, npages;
1558 struct dimm_info *dimm;
1559 enum mem_type mtype;
1560 u64 size;
1561
1562 mtype = pvt->info.get_memory_type(pvt);
1563 if (mtype == MEM_RDDR3 || mtype == MEM_RDDR4)
1564 edac_dbg(0, "Memory is registered\n");
1565 else if (mtype == MEM_UNKNOWN)
1566 edac_dbg(0, "Cannot determine memory type\n");
1567 else
1568 edac_dbg(0, "Memory is unregistered\n");
1569
1570 if (mtype == MEM_DDR4 || mtype == MEM_RDDR4)
1571 banks = 16;
1572 else
1573 banks = 8;
1574
1575 for (i = 0; i < channels; i++) {
1576 u32 mtr;
1577
1578 int max_dimms_per_channel;
1579
1580 if (pvt->info.type == KNIGHTS_LANDING) {
1581 max_dimms_per_channel = 1;
1582 if (!pvt->knl.pci_channel[i])
1583 continue;
1584 } else {
1585 max_dimms_per_channel = ARRAY_SIZE(mtr_regs);
1586 if (!pvt->pci_tad[i])
1587 continue;
1588 }
1589
1590 for (j = 0; j < max_dimms_per_channel; j++) {
1591 dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, mci->n_layers, i, j, 0);
1592 if (pvt->info.type == KNIGHTS_LANDING) {
1593 pci_read_config_dword(pvt->knl.pci_channel[i],
1594 knl_mtr_reg, &mtr);
1595 } else {
1596 pci_read_config_dword(pvt->pci_tad[i],
1597 mtr_regs[j], &mtr);
1598 }
1599 edac_dbg(4, "Channel #%d MTR%d = %x\n", i, j, mtr);
1600 if (IS_DIMM_PRESENT(mtr)) {
1601 if (!IS_ECC_ENABLED(pvt->info.mcmtr)) {
1602 sbridge_printk(KERN_ERR, "CPU SrcID #%d, Ha #%d, Channel #%d has DIMMs, but ECC is disabled\n",
1603 pvt->sbridge_dev->source_id,
1604 pvt->sbridge_dev->dom, i);
1605 return -ENODEV;
1606 }
1607 pvt->channel[i].dimms++;
1608
1609 ranks = numrank(pvt->info.type, mtr);
1610
1611 if (pvt->info.type == KNIGHTS_LANDING) {
1612 /* For DDR4, this is fixed. */
1613 cols = 1 << 10;
1614 rows = knl_mc_sizes[i] /
1615 ((u64) cols * ranks * banks * 8);
1616 } else {
1617 rows = numrow(mtr);
1618 cols = numcol(mtr);
1619 }
1620
1621 size = ((u64)rows * cols * banks * ranks) >> (20 - 3);
1622 npages = MiB_TO_PAGES(size);
1623
1624 edac_dbg(0, "mc#%d: ha %d channel %d, dimm %d, %lld Mb (%d pages) bank: %d, rank: %d, row: %#x, col: %#x\n",
1625 pvt->sbridge_dev->mc, pvt->sbridge_dev->dom, i, j,
1626 size, npages,
1627 banks, ranks, rows, cols);
1628
1629 dimm->nr_pages = npages;
1630 dimm->grain = 32;
1631 dimm->dtype = pvt->info.get_width(pvt, mtr);
1632 dimm->mtype = mtype;
1633 dimm->edac_mode = mode;
1634 snprintf(dimm->label, sizeof(dimm->label),
1635 "CPU_SrcID#%u_Ha#%u_Chan#%u_DIMM#%u",
1636 pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom, i, j);
1637 }
1638 }
1639 }
1640
1641 return 0;
1642 }
1643
1644 static int get_dimm_config(struct mem_ctl_info *mci)
1645 {
1646 struct sbridge_pvt *pvt = mci->pvt_info;
1647 u64 knl_mc_sizes[KNL_MAX_CHANNELS];
1648 enum edac_type mode;
1649 u32 reg;
1650
1651 if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL) {
1652 pci_read_config_dword(pvt->pci_ha, HASWELL_HASYSDEFEATURE2, &reg);
1653 pvt->is_chan_hash = GET_BITFIELD(reg, 21, 21);
1654 }
1655 pvt->sbridge_dev->node_id = pvt->info.get_node_id(pvt);
1656 edac_dbg(0, "mc#%d: Node ID: %d, source ID: %d\n",
1657 pvt->sbridge_dev->mc,
1658 pvt->sbridge_dev->node_id,
1659 pvt->sbridge_dev->source_id);
1660
1661 /* KNL doesn't support mirroring or lockstep,
1662 * and is always closed page
1663 */
1664 if (pvt->info.type == KNIGHTS_LANDING) {
1665 mode = EDAC_S4ECD4ED;
1666 pvt->is_mirrored = false;
1667
1668 if (knl_get_dimm_capacity(pvt, knl_mc_sizes) != 0)
1669 return -1;
1670 pci_read_config_dword(pvt->pci_ta, KNL_MCMTR, &pvt->info.mcmtr);
1671 } else {
1672 pci_read_config_dword(pvt->pci_ras, RASENABLES, &reg);
1673 if (IS_MIRROR_ENABLED(reg)) {
1674 edac_dbg(0, "Memory mirror is enabled\n");
1675 pvt->is_mirrored = true;
1676 } else {
1677 edac_dbg(0, "Memory mirror is disabled\n");
1678 pvt->is_mirrored = false;
1679 }
1680
1681 pci_read_config_dword(pvt->pci_ta, MCMTR, &pvt->info.mcmtr);
1682 if (IS_LOCKSTEP_ENABLED(pvt->info.mcmtr)) {
1683 edac_dbg(0, "Lockstep is enabled\n");
1684 mode = EDAC_S8ECD8ED;
1685 pvt->is_lockstep = true;
1686 } else {
1687 edac_dbg(0, "Lockstep is disabled\n");
1688 mode = EDAC_S4ECD4ED;
1689 pvt->is_lockstep = false;
1690 }
1691 if (IS_CLOSE_PG(pvt->info.mcmtr)) {
1692 edac_dbg(0, "address map is on closed page mode\n");
1693 pvt->is_close_pg = true;
1694 } else {
1695 edac_dbg(0, "address map is on open page mode\n");
1696 pvt->is_close_pg = false;
1697 }
1698 }
1699
1700 return __populate_dimms(mci, knl_mc_sizes, mode);
1701 }
1702
1703 static void get_memory_layout(const struct mem_ctl_info *mci)
1704 {
1705 struct sbridge_pvt *pvt = mci->pvt_info;
1706 int i, j, k, n_sads, n_tads, sad_interl;
1707 u32 reg;
1708 u64 limit, prv = 0;
1709 u64 tmp_mb;
1710 u32 gb, mb;
1711 u32 rir_way;
1712
1713 /*
1714 * Step 1) Get TOLM/TOHM ranges
1715 */
1716
1717 pvt->tolm = pvt->info.get_tolm(pvt);
1718 tmp_mb = (1 + pvt->tolm) >> 20;
1719
1720 gb = div_u64_rem(tmp_mb, 1024, &mb);
1721 edac_dbg(0, "TOLM: %u.%03u GB (0x%016Lx)\n",
1722 gb, (mb*1000)/1024, (u64)pvt->tolm);
1723
1724 /* Address range is already 45:25 */
1725 pvt->tohm = pvt->info.get_tohm(pvt);
1726 tmp_mb = (1 + pvt->tohm) >> 20;
1727
1728 gb = div_u64_rem(tmp_mb, 1024, &mb);
1729 edac_dbg(0, "TOHM: %u.%03u GB (0x%016Lx)\n",
1730 gb, (mb*1000)/1024, (u64)pvt->tohm);
1731
1732 /*
1733 * Step 2) Get SAD range and SAD Interleave list
1734 * TAD registers contain the interleave wayness. However, it
1735 * seems simpler to just discover it indirectly, with the
1736 * algorithm bellow.
1737 */
1738 prv = 0;
1739 for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) {
1740 /* SAD_LIMIT Address range is 45:26 */
1741 pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads],
1742 &reg);
1743 limit = pvt->info.sad_limit(reg);
1744
1745 if (!DRAM_RULE_ENABLE(reg))
1746 continue;
1747
1748 if (limit <= prv)
1749 break;
1750
1751 tmp_mb = (limit + 1) >> 20;
1752 gb = div_u64_rem(tmp_mb, 1024, &mb);
1753 edac_dbg(0, "SAD#%d %s up to %u.%03u GB (0x%016Lx) Interleave: %s reg=0x%08x\n",
1754 n_sads,
1755 show_dram_attr(pvt->info.dram_attr(reg)),
1756 gb, (mb*1000)/1024,
1757 ((u64)tmp_mb) << 20L,
1758 get_intlv_mode_str(reg, pvt->info.type),
1759 reg);
1760 prv = limit;
1761
1762 pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads],
1763 &reg);
1764 sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0);
1765 for (j = 0; j < 8; j++) {
1766 u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, j);
1767 if (j > 0 && sad_interl == pkg)
1768 break;
1769
1770 edac_dbg(0, "SAD#%d, interleave #%d: %d\n",
1771 n_sads, j, pkg);
1772 }
1773 }
1774
1775 if (pvt->info.type == KNIGHTS_LANDING)
1776 return;
1777
1778 /*
1779 * Step 3) Get TAD range
1780 */
1781 prv = 0;
1782 for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
1783 pci_read_config_dword(pvt->pci_ha, tad_dram_rule[n_tads], &reg);
1784 limit = TAD_LIMIT(reg);
1785 if (limit <= prv)
1786 break;
1787 tmp_mb = (limit + 1) >> 20;
1788
1789 gb = div_u64_rem(tmp_mb, 1024, &mb);
1790 edac_dbg(0, "TAD#%d: up to %u.%03u GB (0x%016Lx), socket interleave %d, memory interleave %d, TGT: %d, %d, %d, %d, reg=0x%08x\n",
1791 n_tads, gb, (mb*1000)/1024,
1792 ((u64)tmp_mb) << 20L,
1793 (u32)(1 << TAD_SOCK(reg)),
1794 (u32)TAD_CH(reg) + 1,
1795 (u32)TAD_TGT0(reg),
1796 (u32)TAD_TGT1(reg),
1797 (u32)TAD_TGT2(reg),
1798 (u32)TAD_TGT3(reg),
1799 reg);
1800 prv = limit;
1801 }
1802
1803 /*
1804 * Step 4) Get TAD offsets, per each channel
1805 */
1806 for (i = 0; i < NUM_CHANNELS; i++) {
1807 if (!pvt->channel[i].dimms)
1808 continue;
1809 for (j = 0; j < n_tads; j++) {
1810 pci_read_config_dword(pvt->pci_tad[i],
1811 tad_ch_nilv_offset[j],
1812 &reg);
1813 tmp_mb = TAD_OFFSET(reg) >> 20;
1814 gb = div_u64_rem(tmp_mb, 1024, &mb);
1815 edac_dbg(0, "TAD CH#%d, offset #%d: %u.%03u GB (0x%016Lx), reg=0x%08x\n",
1816 i, j,
1817 gb, (mb*1000)/1024,
1818 ((u64)tmp_mb) << 20L,
1819 reg);
1820 }
1821 }
1822
1823 /*
1824 * Step 6) Get RIR Wayness/Limit, per each channel
1825 */
1826 for (i = 0; i < NUM_CHANNELS; i++) {
1827 if (!pvt->channel[i].dimms)
1828 continue;
1829 for (j = 0; j < MAX_RIR_RANGES; j++) {
1830 pci_read_config_dword(pvt->pci_tad[i],
1831 rir_way_limit[j],
1832 &reg);
1833
1834 if (!IS_RIR_VALID(reg))
1835 continue;
1836
1837 tmp_mb = pvt->info.rir_limit(reg) >> 20;
1838 rir_way = 1 << RIR_WAY(reg);
1839 gb = div_u64_rem(tmp_mb, 1024, &mb);
1840 edac_dbg(0, "CH#%d RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d, reg=0x%08x\n",
1841 i, j,
1842 gb, (mb*1000)/1024,
1843 ((u64)tmp_mb) << 20L,
1844 rir_way,
1845 reg);
1846
1847 for (k = 0; k < rir_way; k++) {
1848 pci_read_config_dword(pvt->pci_tad[i],
1849 rir_offset[j][k],
1850 &reg);
1851 tmp_mb = RIR_OFFSET(pvt->info.type, reg) << 6;
1852
1853 gb = div_u64_rem(tmp_mb, 1024, &mb);
1854 edac_dbg(0, "CH#%d RIR#%d INTL#%d, offset %u.%03u GB (0x%016Lx), tgt: %d, reg=0x%08x\n",
1855 i, j, k,
1856 gb, (mb*1000)/1024,
1857 ((u64)tmp_mb) << 20L,
1858 (u32)RIR_RNK_TGT(pvt->info.type, reg),
1859 reg);
1860 }
1861 }
1862 }
1863 }
1864
1865 static struct mem_ctl_info *get_mci_for_node_id(u8 node_id, u8 ha)
1866 {
1867 struct sbridge_dev *sbridge_dev;
1868
1869 list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
1870 if (sbridge_dev->node_id == node_id && sbridge_dev->dom == ha)
1871 return sbridge_dev->mci;
1872 }
1873 return NULL;
1874 }
1875
1876 static int get_memory_error_data(struct mem_ctl_info *mci,
1877 u64 addr,
1878 u8 *socket, u8 *ha,
1879 long *channel_mask,
1880 u8 *rank,
1881 char **area_type, char *msg)
1882 {
1883 struct mem_ctl_info *new_mci;
1884 struct sbridge_pvt *pvt = mci->pvt_info;
1885 struct pci_dev *pci_ha;
1886 int n_rir, n_sads, n_tads, sad_way, sck_xch;
1887 int sad_interl, idx, base_ch;
1888 int interleave_mode, shiftup = 0;
1889 unsigned sad_interleave[pvt->info.max_interleave];
1890 u32 reg, dram_rule;
1891 u8 ch_way, sck_way, pkg, sad_ha = 0;
1892 u32 tad_offset;
1893 u32 rir_way;
1894 u32 mb, gb;
1895 u64 ch_addr, offset, limit = 0, prv = 0;
1896
1897
1898 /*
1899 * Step 0) Check if the address is at special memory ranges
1900 * The check bellow is probably enough to fill all cases where
1901 * the error is not inside a memory, except for the legacy
1902 * range (e. g. VGA addresses). It is unlikely, however, that the
1903 * memory controller would generate an error on that range.
1904 */
1905 if ((addr > (u64) pvt->tolm) && (addr < (1LL << 32))) {
1906 sprintf(msg, "Error at TOLM area, on addr 0x%08Lx", addr);
1907 return -EINVAL;
1908 }
1909 if (addr >= (u64)pvt->tohm) {
1910 sprintf(msg, "Error at MMIOH area, on addr 0x%016Lx", addr);
1911 return -EINVAL;
1912 }
1913
1914 /*
1915 * Step 1) Get socket
1916 */
1917 for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) {
1918 pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads],
1919 &reg);
1920
1921 if (!DRAM_RULE_ENABLE(reg))
1922 continue;
1923
1924 limit = pvt->info.sad_limit(reg);
1925 if (limit <= prv) {
1926 sprintf(msg, "Can't discover the memory socket");
1927 return -EINVAL;
1928 }
1929 if (addr <= limit)
1930 break;
1931 prv = limit;
1932 }
1933 if (n_sads == pvt->info.max_sad) {
1934 sprintf(msg, "Can't discover the memory socket");
1935 return -EINVAL;
1936 }
1937 dram_rule = reg;
1938 *area_type = show_dram_attr(pvt->info.dram_attr(dram_rule));
1939 interleave_mode = pvt->info.interleave_mode(dram_rule);
1940
1941 pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads],
1942 &reg);
1943
1944 if (pvt->info.type == SANDY_BRIDGE) {
1945 sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0);
1946 for (sad_way = 0; sad_way < 8; sad_way++) {
1947 u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, sad_way);
1948 if (sad_way > 0 && sad_interl == pkg)
1949 break;
1950 sad_interleave[sad_way] = pkg;
1951 edac_dbg(0, "SAD interleave #%d: %d\n",
1952 sad_way, sad_interleave[sad_way]);
1953 }
1954 edac_dbg(0, "mc#%d: Error detected on SAD#%d: address 0x%016Lx < 0x%016Lx, Interleave [%d:6]%s\n",
1955 pvt->sbridge_dev->mc,
1956 n_sads,
1957 addr,
1958 limit,
1959 sad_way + 7,
1960 !interleave_mode ? "" : "XOR[18:16]");
1961 if (interleave_mode)
1962 idx = ((addr >> 6) ^ (addr >> 16)) & 7;
1963 else
1964 idx = (addr >> 6) & 7;
1965 switch (sad_way) {
1966 case 1:
1967 idx = 0;
1968 break;
1969 case 2:
1970 idx = idx & 1;
1971 break;
1972 case 4:
1973 idx = idx & 3;
1974 break;
1975 case 8:
1976 break;
1977 default:
1978 sprintf(msg, "Can't discover socket interleave");
1979 return -EINVAL;
1980 }
1981 *socket = sad_interleave[idx];
1982 edac_dbg(0, "SAD interleave index: %d (wayness %d) = CPU socket %d\n",
1983 idx, sad_way, *socket);
1984 } else if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL) {
1985 int bits, a7mode = A7MODE(dram_rule);
1986
1987 if (a7mode) {
1988 /* A7 mode swaps P9 with P6 */
1989 bits = GET_BITFIELD(addr, 7, 8) << 1;
1990 bits |= GET_BITFIELD(addr, 9, 9);
1991 } else
1992 bits = GET_BITFIELD(addr, 6, 8);
1993
1994 if (interleave_mode == 0) {
1995 /* interleave mode will XOR {8,7,6} with {18,17,16} */
1996 idx = GET_BITFIELD(addr, 16, 18);
1997 idx ^= bits;
1998 } else
1999 idx = bits;
2000
2001 pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx);
2002 *socket = sad_pkg_socket(pkg);
2003 sad_ha = sad_pkg_ha(pkg);
2004
2005 if (a7mode) {
2006 /* MCChanShiftUpEnable */
2007 pci_read_config_dword(pvt->pci_ha, HASWELL_HASYSDEFEATURE2, &reg);
2008 shiftup = GET_BITFIELD(reg, 22, 22);
2009 }
2010
2011 edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %i, shiftup: %i\n",
2012 idx, *socket, sad_ha, shiftup);
2013 } else {
2014 /* Ivy Bridge's SAD mode doesn't support XOR interleave mode */
2015 idx = (addr >> 6) & 7;
2016 pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx);
2017 *socket = sad_pkg_socket(pkg);
2018 sad_ha = sad_pkg_ha(pkg);
2019 edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %d\n",
2020 idx, *socket, sad_ha);
2021 }
2022
2023 *ha = sad_ha;
2024
2025 /*
2026 * Move to the proper node structure, in order to access the
2027 * right PCI registers
2028 */
2029 new_mci = get_mci_for_node_id(*socket, sad_ha);
2030 if (!new_mci) {
2031 sprintf(msg, "Struct for socket #%u wasn't initialized",
2032 *socket);
2033 return -EINVAL;
2034 }
2035 mci = new_mci;
2036 pvt = mci->pvt_info;
2037
2038 /*
2039 * Step 2) Get memory channel
2040 */
2041 prv = 0;
2042 pci_ha = pvt->pci_ha;
2043 for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
2044 pci_read_config_dword(pci_ha, tad_dram_rule[n_tads], &reg);
2045 limit = TAD_LIMIT(reg);
2046 if (limit <= prv) {
2047 sprintf(msg, "Can't discover the memory channel");
2048 return -EINVAL;
2049 }
2050 if (addr <= limit)
2051 break;
2052 prv = limit;
2053 }
2054 if (n_tads == MAX_TAD) {
2055 sprintf(msg, "Can't discover the memory channel");
2056 return -EINVAL;
2057 }
2058
2059 ch_way = TAD_CH(reg) + 1;
2060 sck_way = TAD_SOCK(reg);
2061
2062 if (ch_way == 3)
2063 idx = addr >> 6;
2064 else {
2065 idx = (addr >> (6 + sck_way + shiftup)) & 0x3;
2066 if (pvt->is_chan_hash)
2067 idx = haswell_chan_hash(idx, addr);
2068 }
2069 idx = idx % ch_way;
2070
2071 /*
2072 * FIXME: Shouldn't we use CHN_IDX_OFFSET() here, when ch_way == 3 ???
2073 */
2074 switch (idx) {
2075 case 0:
2076 base_ch = TAD_TGT0(reg);
2077 break;
2078 case 1:
2079 base_ch = TAD_TGT1(reg);
2080 break;
2081 case 2:
2082 base_ch = TAD_TGT2(reg);
2083 break;
2084 case 3:
2085 base_ch = TAD_TGT3(reg);
2086 break;
2087 default:
2088 sprintf(msg, "Can't discover the TAD target");
2089 return -EINVAL;
2090 }
2091 *channel_mask = 1 << base_ch;
2092
2093 pci_read_config_dword(pvt->pci_tad[base_ch], tad_ch_nilv_offset[n_tads], &tad_offset);
2094
2095 if (pvt->is_mirrored) {
2096 *channel_mask |= 1 << ((base_ch + 2) % 4);
2097 switch(ch_way) {
2098 case 2:
2099 case 4:
2100 sck_xch = (1 << sck_way) * (ch_way >> 1);
2101 break;
2102 default:
2103 sprintf(msg, "Invalid mirror set. Can't decode addr");
2104 return -EINVAL;
2105 }
2106 } else
2107 sck_xch = (1 << sck_way) * ch_way;
2108
2109 if (pvt->is_lockstep)
2110 *channel_mask |= 1 << ((base_ch + 1) % 4);
2111
2112 offset = TAD_OFFSET(tad_offset);
2113
2114 edac_dbg(0, "TAD#%d: address 0x%016Lx < 0x%016Lx, socket interleave %d, channel interleave %d (offset 0x%08Lx), index %d, base ch: %d, ch mask: 0x%02lx\n",
2115 n_tads,
2116 addr,
2117 limit,
2118 sck_way,
2119 ch_way,
2120 offset,
2121 idx,
2122 base_ch,
2123 *channel_mask);
2124
2125 /* Calculate channel address */
2126 /* Remove the TAD offset */
2127
2128 if (offset > addr) {
2129 sprintf(msg, "Can't calculate ch addr: TAD offset 0x%08Lx is too high for addr 0x%08Lx!",
2130 offset, addr);
2131 return -EINVAL;
2132 }
2133
2134 ch_addr = addr - offset;
2135 ch_addr >>= (6 + shiftup);
2136 ch_addr /= sck_xch;
2137 ch_addr <<= (6 + shiftup);
2138 ch_addr |= addr & ((1 << (6 + shiftup)) - 1);
2139
2140 /*
2141 * Step 3) Decode rank
2142 */
2143 for (n_rir = 0; n_rir < MAX_RIR_RANGES; n_rir++) {
2144 pci_read_config_dword(pvt->pci_tad[base_ch], rir_way_limit[n_rir], &reg);
2145
2146 if (!IS_RIR_VALID(reg))
2147 continue;
2148
2149 limit = pvt->info.rir_limit(reg);
2150 gb = div_u64_rem(limit >> 20, 1024, &mb);
2151 edac_dbg(0, "RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d\n",
2152 n_rir,
2153 gb, (mb*1000)/1024,
2154 limit,
2155 1 << RIR_WAY(reg));
2156 if (ch_addr <= limit)
2157 break;
2158 }
2159 if (n_rir == MAX_RIR_RANGES) {
2160 sprintf(msg, "Can't discover the memory rank for ch addr 0x%08Lx",
2161 ch_addr);
2162 return -EINVAL;
2163 }
2164 rir_way = RIR_WAY(reg);
2165
2166 if (pvt->is_close_pg)
2167 idx = (ch_addr >> 6);
2168 else
2169 idx = (ch_addr >> 13); /* FIXME: Datasheet says to shift by 15 */
2170 idx %= 1 << rir_way;
2171
2172 pci_read_config_dword(pvt->pci_tad[base_ch], rir_offset[n_rir][idx], &reg);
2173 *rank = RIR_RNK_TGT(pvt->info.type, reg);
2174
2175 edac_dbg(0, "RIR#%d: channel address 0x%08Lx < 0x%08Lx, RIR interleave %d, index %d\n",
2176 n_rir,
2177 ch_addr,
2178 limit,
2179 rir_way,
2180 idx);
2181
2182 return 0;
2183 }
2184
2185 /****************************************************************************
2186 Device initialization routines: put/get, init/exit
2187 ****************************************************************************/
2188
2189 /*
2190 * sbridge_put_all_devices 'put' all the devices that we have
2191 * reserved via 'get'
2192 */
2193 static void sbridge_put_devices(struct sbridge_dev *sbridge_dev)
2194 {
2195 int i;
2196
2197 edac_dbg(0, "\n");
2198 for (i = 0; i < sbridge_dev->n_devs; i++) {
2199 struct pci_dev *pdev = sbridge_dev->pdev[i];
2200 if (!pdev)
2201 continue;
2202 edac_dbg(0, "Removing dev %02x:%02x.%d\n",
2203 pdev->bus->number,
2204 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
2205 pci_dev_put(pdev);
2206 }
2207 }
2208
2209 static void sbridge_put_all_devices(void)
2210 {
2211 struct sbridge_dev *sbridge_dev, *tmp;
2212
2213 list_for_each_entry_safe(sbridge_dev, tmp, &sbridge_edac_list, list) {
2214 sbridge_put_devices(sbridge_dev);
2215 free_sbridge_dev(sbridge_dev);
2216 }
2217 }
2218
2219 static int sbridge_get_onedevice(struct pci_dev **prev,
2220 u8 *num_mc,
2221 const struct pci_id_table *table,
2222 const unsigned devno,
2223 const int multi_bus)
2224 {
2225 struct sbridge_dev *sbridge_dev = NULL;
2226 const struct pci_id_descr *dev_descr = &table->descr[devno];
2227 struct pci_dev *pdev = NULL;
2228 u8 bus = 0;
2229 int i = 0;
2230
2231 sbridge_printk(KERN_DEBUG,
2232 "Seeking for: PCI ID %04x:%04x\n",
2233 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2234
2235 pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
2236 dev_descr->dev_id, *prev);
2237
2238 if (!pdev) {
2239 if (*prev) {
2240 *prev = pdev;
2241 return 0;
2242 }
2243
2244 if (dev_descr->optional)
2245 return 0;
2246
2247 /* if the HA wasn't found */
2248 if (devno == 0)
2249 return -ENODEV;
2250
2251 sbridge_printk(KERN_INFO,
2252 "Device not found: %04x:%04x\n",
2253 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2254
2255 /* End of list, leave */
2256 return -ENODEV;
2257 }
2258 bus = pdev->bus->number;
2259
2260 next_imc:
2261 sbridge_dev = get_sbridge_dev(bus, dev_descr->dom, multi_bus, sbridge_dev);
2262 if (!sbridge_dev) {
2263
2264 if (dev_descr->dom == SOCK)
2265 goto out_imc;
2266
2267 sbridge_dev = alloc_sbridge_dev(bus, dev_descr->dom, table);
2268 if (!sbridge_dev) {
2269 pci_dev_put(pdev);
2270 return -ENOMEM;
2271 }
2272 (*num_mc)++;
2273 }
2274
2275 if (sbridge_dev->pdev[sbridge_dev->i_devs]) {
2276 sbridge_printk(KERN_ERR,
2277 "Duplicated device for %04x:%04x\n",
2278 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2279 pci_dev_put(pdev);
2280 return -ENODEV;
2281 }
2282
2283 sbridge_dev->pdev[sbridge_dev->i_devs++] = pdev;
2284
2285 /* pdev belongs to more than one IMC, do extra gets */
2286 if (++i > 1)
2287 pci_dev_get(pdev);
2288
2289 if (dev_descr->dom == SOCK && i < table->n_imcs_per_sock)
2290 goto next_imc;
2291
2292 out_imc:
2293 /* Be sure that the device is enabled */
2294 if (unlikely(pci_enable_device(pdev) < 0)) {
2295 sbridge_printk(KERN_ERR,
2296 "Couldn't enable %04x:%04x\n",
2297 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2298 return -ENODEV;
2299 }
2300
2301 edac_dbg(0, "Detected %04x:%04x\n",
2302 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2303
2304 /*
2305 * As stated on drivers/pci/search.c, the reference count for
2306 * @from is always decremented if it is not %NULL. So, as we need
2307 * to get all devices up to null, we need to do a get for the device
2308 */
2309 pci_dev_get(pdev);
2310
2311 *prev = pdev;
2312
2313 return 0;
2314 }
2315
2316 /*
2317 * sbridge_get_all_devices - Find and perform 'get' operation on the MCH's
2318 * devices we want to reference for this driver.
2319 * @num_mc: pointer to the memory controllers count, to be incremented in case
2320 * of success.
2321 * @table: model specific table
2322 *
2323 * returns 0 in case of success or error code
2324 */
2325 static int sbridge_get_all_devices(u8 *num_mc,
2326 const struct pci_id_table *table)
2327 {
2328 int i, rc;
2329 struct pci_dev *pdev = NULL;
2330 int allow_dups = 0;
2331 int multi_bus = 0;
2332
2333 if (table->type == KNIGHTS_LANDING)
2334 allow_dups = multi_bus = 1;
2335 while (table && table->descr) {
2336 for (i = 0; i < table->n_devs_per_sock; i++) {
2337 if (!allow_dups || i == 0 ||
2338 table->descr[i].dev_id !=
2339 table->descr[i-1].dev_id) {
2340 pdev = NULL;
2341 }
2342 do {
2343 rc = sbridge_get_onedevice(&pdev, num_mc,
2344 table, i, multi_bus);
2345 if (rc < 0) {
2346 if (i == 0) {
2347 i = table->n_devs_per_sock;
2348 break;
2349 }
2350 sbridge_put_all_devices();
2351 return -ENODEV;
2352 }
2353 } while (pdev && !allow_dups);
2354 }
2355 table++;
2356 }
2357
2358 return 0;
2359 }
2360
2361 /*
2362 * Device IDs for {SBRIDGE,IBRIDGE,HASWELL,BROADWELL}_IMC_HA0_TAD0 are in
2363 * the format: XXXa. So we can convert from a device to the corresponding
2364 * channel like this
2365 */
2366 #define TAD_DEV_TO_CHAN(dev) (((dev) & 0xf) - 0xa)
2367
2368 static int sbridge_mci_bind_devs(struct mem_ctl_info *mci,
2369 struct sbridge_dev *sbridge_dev)
2370 {
2371 struct sbridge_pvt *pvt = mci->pvt_info;
2372 struct pci_dev *pdev;
2373 u8 saw_chan_mask = 0;
2374 int i;
2375
2376 for (i = 0; i < sbridge_dev->n_devs; i++) {
2377 pdev = sbridge_dev->pdev[i];
2378 if (!pdev)
2379 continue;
2380
2381 switch (pdev->device) {
2382 case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0:
2383 pvt->pci_sad0 = pdev;
2384 break;
2385 case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1:
2386 pvt->pci_sad1 = pdev;
2387 break;
2388 case PCI_DEVICE_ID_INTEL_SBRIDGE_BR:
2389 pvt->pci_br0 = pdev;
2390 break;
2391 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0:
2392 pvt->pci_ha = pdev;
2393 break;
2394 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA:
2395 pvt->pci_ta = pdev;
2396 break;
2397 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS:
2398 pvt->pci_ras = pdev;
2399 break;
2400 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0:
2401 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1:
2402 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2:
2403 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3:
2404 {
2405 int id = TAD_DEV_TO_CHAN(pdev->device);
2406 pvt->pci_tad[id] = pdev;
2407 saw_chan_mask |= 1 << id;
2408 }
2409 break;
2410 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO:
2411 pvt->pci_ddrio = pdev;
2412 break;
2413 default:
2414 goto error;
2415 }
2416
2417 edac_dbg(0, "Associated PCI %02x:%02x, bus %d with dev = %p\n",
2418 pdev->vendor, pdev->device,
2419 sbridge_dev->bus,
2420 pdev);
2421 }
2422
2423 /* Check if everything were registered */
2424 if (!pvt->pci_sad0 || !pvt->pci_sad1 || !pvt->pci_ha ||
2425 !pvt->pci_ras || !pvt->pci_ta)
2426 goto enodev;
2427
2428 if (saw_chan_mask != 0x0f)
2429 goto enodev;
2430 return 0;
2431
2432 enodev:
2433 sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2434 return -ENODEV;
2435
2436 error:
2437 sbridge_printk(KERN_ERR, "Unexpected device %02x:%02x\n",
2438 PCI_VENDOR_ID_INTEL, pdev->device);
2439 return -EINVAL;
2440 }
2441
2442 static int ibridge_mci_bind_devs(struct mem_ctl_info *mci,
2443 struct sbridge_dev *sbridge_dev)
2444 {
2445 struct sbridge_pvt *pvt = mci->pvt_info;
2446 struct pci_dev *pdev;
2447 u8 saw_chan_mask = 0;
2448 int i;
2449
2450 for (i = 0; i < sbridge_dev->n_devs; i++) {
2451 pdev = sbridge_dev->pdev[i];
2452 if (!pdev)
2453 continue;
2454
2455 switch (pdev->device) {
2456 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0:
2457 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1:
2458 pvt->pci_ha = pdev;
2459 break;
2460 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA:
2461 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA:
2462 pvt->pci_ta = pdev;
2463 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS:
2464 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS:
2465 pvt->pci_ras = pdev;
2466 break;
2467 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0:
2468 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1:
2469 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2:
2470 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3:
2471 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0:
2472 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1:
2473 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2:
2474 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3:
2475 {
2476 int id = TAD_DEV_TO_CHAN(pdev->device);
2477 pvt->pci_tad[id] = pdev;
2478 saw_chan_mask |= 1 << id;
2479 }
2480 break;
2481 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0:
2482 pvt->pci_ddrio = pdev;
2483 break;
2484 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0:
2485 pvt->pci_ddrio = pdev;
2486 break;
2487 case PCI_DEVICE_ID_INTEL_IBRIDGE_SAD:
2488 pvt->pci_sad0 = pdev;
2489 break;
2490 case PCI_DEVICE_ID_INTEL_IBRIDGE_BR0:
2491 pvt->pci_br0 = pdev;
2492 break;
2493 case PCI_DEVICE_ID_INTEL_IBRIDGE_BR1:
2494 pvt->pci_br1 = pdev;
2495 break;
2496 default:
2497 goto error;
2498 }
2499
2500 edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
2501 sbridge_dev->bus,
2502 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
2503 pdev);
2504 }
2505
2506 /* Check if everything were registered */
2507 if (!pvt->pci_sad0 || !pvt->pci_ha || !pvt->pci_br0 ||
2508 !pvt->pci_br1 || !pvt->pci_ras || !pvt->pci_ta)
2509 goto enodev;
2510
2511 if (saw_chan_mask != 0x0f && /* -EN/-EX */
2512 saw_chan_mask != 0x03) /* -EP */
2513 goto enodev;
2514 return 0;
2515
2516 enodev:
2517 sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2518 return -ENODEV;
2519
2520 error:
2521 sbridge_printk(KERN_ERR,
2522 "Unexpected device %02x:%02x\n", PCI_VENDOR_ID_INTEL,
2523 pdev->device);
2524 return -EINVAL;
2525 }
2526
2527 static int haswell_mci_bind_devs(struct mem_ctl_info *mci,
2528 struct sbridge_dev *sbridge_dev)
2529 {
2530 struct sbridge_pvt *pvt = mci->pvt_info;
2531 struct pci_dev *pdev;
2532 u8 saw_chan_mask = 0;
2533 int i;
2534
2535 /* there's only one device per system; not tied to any bus */
2536 if (pvt->info.pci_vtd == NULL)
2537 /* result will be checked later */
2538 pvt->info.pci_vtd = pci_get_device(PCI_VENDOR_ID_INTEL,
2539 PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC,
2540 NULL);
2541
2542 for (i = 0; i < sbridge_dev->n_devs; i++) {
2543 pdev = sbridge_dev->pdev[i];
2544 if (!pdev)
2545 continue;
2546
2547 switch (pdev->device) {
2548 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0:
2549 pvt->pci_sad0 = pdev;
2550 break;
2551 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1:
2552 pvt->pci_sad1 = pdev;
2553 break;
2554 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0:
2555 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1:
2556 pvt->pci_ha = pdev;
2557 break;
2558 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA:
2559 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA:
2560 pvt->pci_ta = pdev;
2561 break;
2562 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TM:
2563 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TM:
2564 pvt->pci_ras = pdev;
2565 break;
2566 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0:
2567 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1:
2568 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2:
2569 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3:
2570 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0:
2571 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1:
2572 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2:
2573 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3:
2574 {
2575 int id = TAD_DEV_TO_CHAN(pdev->device);
2576 pvt->pci_tad[id] = pdev;
2577 saw_chan_mask |= 1 << id;
2578 }
2579 break;
2580 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0:
2581 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1:
2582 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2:
2583 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3:
2584 if (!pvt->pci_ddrio)
2585 pvt->pci_ddrio = pdev;
2586 break;
2587 default:
2588 break;
2589 }
2590
2591 edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
2592 sbridge_dev->bus,
2593 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
2594 pdev);
2595 }
2596
2597 /* Check if everything were registered */
2598 if (!pvt->pci_sad0 || !pvt->pci_ha || !pvt->pci_sad1 ||
2599 !pvt->pci_ras || !pvt->pci_ta || !pvt->info.pci_vtd)
2600 goto enodev;
2601
2602 if (saw_chan_mask != 0x0f && /* -EN/-EX */
2603 saw_chan_mask != 0x03) /* -EP */
2604 goto enodev;
2605 return 0;
2606
2607 enodev:
2608 sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2609 return -ENODEV;
2610 }
2611
2612 static int broadwell_mci_bind_devs(struct mem_ctl_info *mci,
2613 struct sbridge_dev *sbridge_dev)
2614 {
2615 struct sbridge_pvt *pvt = mci->pvt_info;
2616 struct pci_dev *pdev;
2617 u8 saw_chan_mask = 0;
2618 int i;
2619
2620 /* there's only one device per system; not tied to any bus */
2621 if (pvt->info.pci_vtd == NULL)
2622 /* result will be checked later */
2623 pvt->info.pci_vtd = pci_get_device(PCI_VENDOR_ID_INTEL,
2624 PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC,
2625 NULL);
2626
2627 for (i = 0; i < sbridge_dev->n_devs; i++) {
2628 pdev = sbridge_dev->pdev[i];
2629 if (!pdev)
2630 continue;
2631
2632 switch (pdev->device) {
2633 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0:
2634 pvt->pci_sad0 = pdev;
2635 break;
2636 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1:
2637 pvt->pci_sad1 = pdev;
2638 break;
2639 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0:
2640 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1:
2641 pvt->pci_ha = pdev;
2642 break;
2643 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA:
2644 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA:
2645 pvt->pci_ta = pdev;
2646 break;
2647 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TM:
2648 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TM:
2649 pvt->pci_ras = pdev;
2650 break;
2651 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0:
2652 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1:
2653 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2:
2654 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3:
2655 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0:
2656 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1:
2657 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2:
2658 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3:
2659 {
2660 int id = TAD_DEV_TO_CHAN(pdev->device);
2661 pvt->pci_tad[id] = pdev;
2662 saw_chan_mask |= 1 << id;
2663 }
2664 break;
2665 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0:
2666 pvt->pci_ddrio = pdev;
2667 break;
2668 default:
2669 break;
2670 }
2671
2672 edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
2673 sbridge_dev->bus,
2674 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
2675 pdev);
2676 }
2677
2678 /* Check if everything were registered */
2679 if (!pvt->pci_sad0 || !pvt->pci_ha || !pvt->pci_sad1 ||
2680 !pvt->pci_ras || !pvt->pci_ta || !pvt->info.pci_vtd)
2681 goto enodev;
2682
2683 if (saw_chan_mask != 0x0f && /* -EN/-EX */
2684 saw_chan_mask != 0x03) /* -EP */
2685 goto enodev;
2686 return 0;
2687
2688 enodev:
2689 sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2690 return -ENODEV;
2691 }
2692
2693 static int knl_mci_bind_devs(struct mem_ctl_info *mci,
2694 struct sbridge_dev *sbridge_dev)
2695 {
2696 struct sbridge_pvt *pvt = mci->pvt_info;
2697 struct pci_dev *pdev;
2698 int dev, func;
2699
2700 int i;
2701 int devidx;
2702
2703 for (i = 0; i < sbridge_dev->n_devs; i++) {
2704 pdev = sbridge_dev->pdev[i];
2705 if (!pdev)
2706 continue;
2707
2708 /* Extract PCI device and function. */
2709 dev = (pdev->devfn >> 3) & 0x1f;
2710 func = pdev->devfn & 0x7;
2711
2712 switch (pdev->device) {
2713 case PCI_DEVICE_ID_INTEL_KNL_IMC_MC:
2714 if (dev == 8)
2715 pvt->knl.pci_mc0 = pdev;
2716 else if (dev == 9)
2717 pvt->knl.pci_mc1 = pdev;
2718 else {
2719 sbridge_printk(KERN_ERR,
2720 "Memory controller in unexpected place! (dev %d, fn %d)\n",
2721 dev, func);
2722 continue;
2723 }
2724 break;
2725
2726 case PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0:
2727 pvt->pci_sad0 = pdev;
2728 break;
2729
2730 case PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1:
2731 pvt->pci_sad1 = pdev;
2732 break;
2733
2734 case PCI_DEVICE_ID_INTEL_KNL_IMC_CHA:
2735 /* There are one of these per tile, and range from
2736 * 1.14.0 to 1.18.5.
2737 */
2738 devidx = ((dev-14)*8)+func;
2739
2740 if (devidx < 0 || devidx >= KNL_MAX_CHAS) {
2741 sbridge_printk(KERN_ERR,
2742 "Caching and Home Agent in unexpected place! (dev %d, fn %d)\n",
2743 dev, func);
2744 continue;
2745 }
2746
2747 WARN_ON(pvt->knl.pci_cha[devidx] != NULL);
2748
2749 pvt->knl.pci_cha[devidx] = pdev;
2750 break;
2751
2752 case PCI_DEVICE_ID_INTEL_KNL_IMC_CHAN:
2753 devidx = -1;
2754
2755 /*
2756 * MC0 channels 0-2 are device 9 function 2-4,
2757 * MC1 channels 3-5 are device 8 function 2-4.
2758 */
2759
2760 if (dev == 9)
2761 devidx = func-2;
2762 else if (dev == 8)
2763 devidx = 3 + (func-2);
2764
2765 if (devidx < 0 || devidx >= KNL_MAX_CHANNELS) {
2766 sbridge_printk(KERN_ERR,
2767 "DRAM Channel Registers in unexpected place! (dev %d, fn %d)\n",
2768 dev, func);
2769 continue;
2770 }
2771
2772 WARN_ON(pvt->knl.pci_channel[devidx] != NULL);
2773 pvt->knl.pci_channel[devidx] = pdev;
2774 break;
2775
2776 case PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM:
2777 pvt->knl.pci_mc_info = pdev;
2778 break;
2779
2780 case PCI_DEVICE_ID_INTEL_KNL_IMC_TA:
2781 pvt->pci_ta = pdev;
2782 break;
2783
2784 default:
2785 sbridge_printk(KERN_ERR, "Unexpected device %d\n",
2786 pdev->device);
2787 break;
2788 }
2789 }
2790
2791 if (!pvt->knl.pci_mc0 || !pvt->knl.pci_mc1 ||
2792 !pvt->pci_sad0 || !pvt->pci_sad1 ||
2793 !pvt->pci_ta) {
2794 goto enodev;
2795 }
2796
2797 for (i = 0; i < KNL_MAX_CHANNELS; i++) {
2798 if (!pvt->knl.pci_channel[i]) {
2799 sbridge_printk(KERN_ERR, "Missing channel %d\n", i);
2800 goto enodev;
2801 }
2802 }
2803
2804 for (i = 0; i < KNL_MAX_CHAS; i++) {
2805 if (!pvt->knl.pci_cha[i]) {
2806 sbridge_printk(KERN_ERR, "Missing CHA %d\n", i);
2807 goto enodev;
2808 }
2809 }
2810
2811 return 0;
2812
2813 enodev:
2814 sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2815 return -ENODEV;
2816 }
2817
2818 /****************************************************************************
2819 Error check routines
2820 ****************************************************************************/
2821
2822 /*
2823 * While Sandy Bridge has error count registers, SMI BIOS read values from
2824 * and resets the counters. So, they are not reliable for the OS to read
2825 * from them. So, we have no option but to just trust on whatever MCE is
2826 * telling us about the errors.
2827 */
2828 static void sbridge_mce_output_error(struct mem_ctl_info *mci,
2829 const struct mce *m)
2830 {
2831 struct mem_ctl_info *new_mci;
2832 struct sbridge_pvt *pvt = mci->pvt_info;
2833 enum hw_event_mc_err_type tp_event;
2834 char *type, *optype, msg[256];
2835 bool ripv = GET_BITFIELD(m->mcgstatus, 0, 0);
2836 bool overflow = GET_BITFIELD(m->status, 62, 62);
2837 bool uncorrected_error = GET_BITFIELD(m->status, 61, 61);
2838 bool recoverable;
2839 u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52);
2840 u32 mscod = GET_BITFIELD(m->status, 16, 31);
2841 u32 errcode = GET_BITFIELD(m->status, 0, 15);
2842 u32 channel = GET_BITFIELD(m->status, 0, 3);
2843 u32 optypenum = GET_BITFIELD(m->status, 4, 6);
2844 long channel_mask, first_channel;
2845 u8 rank, socket, ha;
2846 int rc, dimm;
2847 char *area_type = NULL;
2848
2849 if (pvt->info.type != SANDY_BRIDGE)
2850 recoverable = true;
2851 else
2852 recoverable = GET_BITFIELD(m->status, 56, 56);
2853
2854 if (uncorrected_error) {
2855 if (ripv) {
2856 type = "FATAL";
2857 tp_event = HW_EVENT_ERR_FATAL;
2858 } else {
2859 type = "NON_FATAL";
2860 tp_event = HW_EVENT_ERR_UNCORRECTED;
2861 }
2862 } else {
2863 type = "CORRECTED";
2864 tp_event = HW_EVENT_ERR_CORRECTED;
2865 }
2866
2867 /*
2868 * According with Table 15-9 of the Intel Architecture spec vol 3A,
2869 * memory errors should fit in this mask:
2870 * 000f 0000 1mmm cccc (binary)
2871 * where:
2872 * f = Correction Report Filtering Bit. If 1, subsequent errors
2873 * won't be shown
2874 * mmm = error type
2875 * cccc = channel
2876 * If the mask doesn't match, report an error to the parsing logic
2877 */
2878 if (! ((errcode & 0xef80) == 0x80)) {
2879 optype = "Can't parse: it is not a mem";
2880 } else {
2881 switch (optypenum) {
2882 case 0:
2883 optype = "generic undef request error";
2884 break;
2885 case 1:
2886 optype = "memory read error";
2887 break;
2888 case 2:
2889 optype = "memory write error";
2890 break;
2891 case 3:
2892 optype = "addr/cmd error";
2893 break;
2894 case 4:
2895 optype = "memory scrubbing error";
2896 break;
2897 default:
2898 optype = "reserved";
2899 break;
2900 }
2901 }
2902
2903 /* Only decode errors with an valid address (ADDRV) */
2904 if (!GET_BITFIELD(m->status, 58, 58))
2905 return;
2906
2907 if (pvt->info.type == KNIGHTS_LANDING) {
2908 if (channel == 14) {
2909 edac_dbg(0, "%s%s err_code:%04x:%04x EDRAM bank %d\n",
2910 overflow ? " OVERFLOW" : "",
2911 (uncorrected_error && recoverable)
2912 ? " recoverable" : "",
2913 mscod, errcode,
2914 m->bank);
2915 } else {
2916 char A = *("A");
2917
2918 /*
2919 * Reported channel is in range 0-2, so we can't map it
2920 * back to mc. To figure out mc we check machine check
2921 * bank register that reported this error.
2922 * bank15 means mc0 and bank16 means mc1.
2923 */
2924 channel = knl_channel_remap(m->bank == 16, channel);
2925 channel_mask = 1 << channel;
2926
2927 snprintf(msg, sizeof(msg),
2928 "%s%s err_code:%04x:%04x channel:%d (DIMM_%c)",
2929 overflow ? " OVERFLOW" : "",
2930 (uncorrected_error && recoverable)
2931 ? " recoverable" : " ",
2932 mscod, errcode, channel, A + channel);
2933 edac_mc_handle_error(tp_event, mci, core_err_cnt,
2934 m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
2935 channel, 0, -1,
2936 optype, msg);
2937 }
2938 return;
2939 } else {
2940 rc = get_memory_error_data(mci, m->addr, &socket, &ha,
2941 &channel_mask, &rank, &area_type, msg);
2942 }
2943
2944 if (rc < 0)
2945 goto err_parsing;
2946 new_mci = get_mci_for_node_id(socket, ha);
2947 if (!new_mci) {
2948 strcpy(msg, "Error: socket got corrupted!");
2949 goto err_parsing;
2950 }
2951 mci = new_mci;
2952 pvt = mci->pvt_info;
2953
2954 first_channel = find_first_bit(&channel_mask, NUM_CHANNELS);
2955
2956 if (rank < 4)
2957 dimm = 0;
2958 else if (rank < 8)
2959 dimm = 1;
2960 else
2961 dimm = 2;
2962
2963
2964 /*
2965 * FIXME: On some memory configurations (mirror, lockstep), the
2966 * Memory Controller can't point the error to a single DIMM. The
2967 * EDAC core should be handling the channel mask, in order to point
2968 * to the group of dimm's where the error may be happening.
2969 */
2970 if (!pvt->is_lockstep && !pvt->is_mirrored && !pvt->is_close_pg)
2971 channel = first_channel;
2972
2973 snprintf(msg, sizeof(msg),
2974 "%s%s area:%s err_code:%04x:%04x socket:%d ha:%d channel_mask:%ld rank:%d",
2975 overflow ? " OVERFLOW" : "",
2976 (uncorrected_error && recoverable) ? " recoverable" : "",
2977 area_type,
2978 mscod, errcode,
2979 socket, ha,
2980 channel_mask,
2981 rank);
2982
2983 edac_dbg(0, "%s\n", msg);
2984
2985 /* FIXME: need support for channel mask */
2986
2987 if (channel == CHANNEL_UNSPECIFIED)
2988 channel = -1;
2989
2990 /* Call the helper to output message */
2991 edac_mc_handle_error(tp_event, mci, core_err_cnt,
2992 m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
2993 channel, dimm, -1,
2994 optype, msg);
2995 return;
2996 err_parsing:
2997 edac_mc_handle_error(tp_event, mci, core_err_cnt, 0, 0, 0,
2998 -1, -1, -1,
2999 msg, "");
3000
3001 }
3002
3003 /*
3004 * Check that logging is enabled and that this is the right type
3005 * of error for us to handle.
3006 */
3007 static int sbridge_mce_check_error(struct notifier_block *nb, unsigned long val,
3008 void *data)
3009 {
3010 struct mce *mce = (struct mce *)data;
3011 struct mem_ctl_info *mci;
3012 struct sbridge_pvt *pvt;
3013 char *type;
3014
3015 if (edac_get_report_status() == EDAC_REPORTING_DISABLED)
3016 return NOTIFY_DONE;
3017
3018 mci = get_mci_for_node_id(mce->socketid, IMC0);
3019 if (!mci)
3020 return NOTIFY_DONE;
3021 pvt = mci->pvt_info;
3022
3023 /*
3024 * Just let mcelog handle it if the error is
3025 * outside the memory controller. A memory error
3026 * is indicated by bit 7 = 1 and bits = 8-11,13-15 = 0.
3027 * bit 12 has an special meaning.
3028 */
3029 if ((mce->status & 0xefff) >> 7 != 1)
3030 return NOTIFY_DONE;
3031
3032 if (mce->mcgstatus & MCG_STATUS_MCIP)
3033 type = "Exception";
3034 else
3035 type = "Event";
3036
3037 sbridge_mc_printk(mci, KERN_DEBUG, "HANDLING MCE MEMORY ERROR\n");
3038
3039 sbridge_mc_printk(mci, KERN_DEBUG, "CPU %d: Machine Check %s: %Lx "
3040 "Bank %d: %016Lx\n", mce->extcpu, type,
3041 mce->mcgstatus, mce->bank, mce->status);
3042 sbridge_mc_printk(mci, KERN_DEBUG, "TSC %llx ", mce->tsc);
3043 sbridge_mc_printk(mci, KERN_DEBUG, "ADDR %llx ", mce->addr);
3044 sbridge_mc_printk(mci, KERN_DEBUG, "MISC %llx ", mce->misc);
3045
3046 sbridge_mc_printk(mci, KERN_DEBUG, "PROCESSOR %u:%x TIME %llu SOCKET "
3047 "%u APIC %x\n", mce->cpuvendor, mce->cpuid,
3048 mce->time, mce->socketid, mce->apicid);
3049
3050 sbridge_mce_output_error(mci, mce);
3051
3052 /* Advice mcelog that the error were handled */
3053 return NOTIFY_STOP;
3054 }
3055
3056 static struct notifier_block sbridge_mce_dec = {
3057 .notifier_call = sbridge_mce_check_error,
3058 .priority = MCE_PRIO_EDAC,
3059 };
3060
3061 /****************************************************************************
3062 EDAC register/unregister logic
3063 ****************************************************************************/
3064
3065 static void sbridge_unregister_mci(struct sbridge_dev *sbridge_dev)
3066 {
3067 struct mem_ctl_info *mci = sbridge_dev->mci;
3068 struct sbridge_pvt *pvt;
3069
3070 if (unlikely(!mci || !mci->pvt_info)) {
3071 edac_dbg(0, "MC: dev = %p\n", &sbridge_dev->pdev[0]->dev);
3072
3073 sbridge_printk(KERN_ERR, "Couldn't find mci handler\n");
3074 return;
3075 }
3076
3077 pvt = mci->pvt_info;
3078
3079 edac_dbg(0, "MC: mci = %p, dev = %p\n",
3080 mci, &sbridge_dev->pdev[0]->dev);
3081
3082 /* Remove MC sysfs nodes */
3083 edac_mc_del_mc(mci->pdev);
3084
3085 edac_dbg(1, "%s: free mci struct\n", mci->ctl_name);
3086 kfree(mci->ctl_name);
3087 edac_mc_free(mci);
3088 sbridge_dev->mci = NULL;
3089 }
3090
3091 static int sbridge_register_mci(struct sbridge_dev *sbridge_dev, enum type type)
3092 {
3093 struct mem_ctl_info *mci;
3094 struct edac_mc_layer layers[2];
3095 struct sbridge_pvt *pvt;
3096 struct pci_dev *pdev = sbridge_dev->pdev[0];
3097 int rc;
3098
3099 /* allocate a new MC control structure */
3100 layers[0].type = EDAC_MC_LAYER_CHANNEL;
3101 layers[0].size = type == KNIGHTS_LANDING ?
3102 KNL_MAX_CHANNELS : NUM_CHANNELS;
3103 layers[0].is_virt_csrow = false;
3104 layers[1].type = EDAC_MC_LAYER_SLOT;
3105 layers[1].size = type == KNIGHTS_LANDING ? 1 : MAX_DIMMS;
3106 layers[1].is_virt_csrow = true;
3107 mci = edac_mc_alloc(sbridge_dev->mc, ARRAY_SIZE(layers), layers,
3108 sizeof(*pvt));
3109
3110 if (unlikely(!mci))
3111 return -ENOMEM;
3112
3113 edac_dbg(0, "MC: mci = %p, dev = %p\n",
3114 mci, &pdev->dev);
3115
3116 pvt = mci->pvt_info;
3117 memset(pvt, 0, sizeof(*pvt));
3118
3119 /* Associate sbridge_dev and mci for future usage */
3120 pvt->sbridge_dev = sbridge_dev;
3121 sbridge_dev->mci = mci;
3122
3123 mci->mtype_cap = type == KNIGHTS_LANDING ?
3124 MEM_FLAG_DDR4 : MEM_FLAG_DDR3;
3125 mci->edac_ctl_cap = EDAC_FLAG_NONE;
3126 mci->edac_cap = EDAC_FLAG_NONE;
3127 mci->mod_name = "sb_edac.c";
3128 mci->mod_ver = SBRIDGE_REVISION;
3129 mci->dev_name = pci_name(pdev);
3130 mci->ctl_page_to_phys = NULL;
3131
3132 pvt->info.type = type;
3133 switch (type) {
3134 case IVY_BRIDGE:
3135 pvt->info.rankcfgr = IB_RANK_CFG_A;
3136 pvt->info.get_tolm = ibridge_get_tolm;
3137 pvt->info.get_tohm = ibridge_get_tohm;
3138 pvt->info.dram_rule = ibridge_dram_rule;
3139 pvt->info.get_memory_type = get_memory_type;
3140 pvt->info.get_node_id = get_node_id;
3141 pvt->info.rir_limit = rir_limit;
3142 pvt->info.sad_limit = sad_limit;
3143 pvt->info.interleave_mode = interleave_mode;
3144 pvt->info.dram_attr = dram_attr;
3145 pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
3146 pvt->info.interleave_list = ibridge_interleave_list;
3147 pvt->info.max_interleave = ARRAY_SIZE(ibridge_interleave_list);
3148 pvt->info.interleave_pkg = ibridge_interleave_pkg;
3149 pvt->info.get_width = ibridge_get_width;
3150
3151 /* Store pci devices at mci for faster access */
3152 rc = ibridge_mci_bind_devs(mci, sbridge_dev);
3153 if (unlikely(rc < 0))
3154 goto fail0;
3155 get_source_id(mci);
3156 mci->ctl_name = kasprintf(GFP_KERNEL, "Ivy Bridge SrcID#%d_Ha#%d",
3157 pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
3158 break;
3159 case SANDY_BRIDGE:
3160 pvt->info.rankcfgr = SB_RANK_CFG_A;
3161 pvt->info.get_tolm = sbridge_get_tolm;
3162 pvt->info.get_tohm = sbridge_get_tohm;
3163 pvt->info.dram_rule = sbridge_dram_rule;
3164 pvt->info.get_memory_type = get_memory_type;
3165 pvt->info.get_node_id = get_node_id;
3166 pvt->info.rir_limit = rir_limit;
3167 pvt->info.sad_limit = sad_limit;
3168 pvt->info.interleave_mode = interleave_mode;
3169 pvt->info.dram_attr = dram_attr;
3170 pvt->info.max_sad = ARRAY_SIZE(sbridge_dram_rule);
3171 pvt->info.interleave_list = sbridge_interleave_list;
3172 pvt->info.max_interleave = ARRAY_SIZE(sbridge_interleave_list);
3173 pvt->info.interleave_pkg = sbridge_interleave_pkg;
3174 pvt->info.get_width = sbridge_get_width;
3175
3176 /* Store pci devices at mci for faster access */
3177 rc = sbridge_mci_bind_devs(mci, sbridge_dev);
3178 if (unlikely(rc < 0))
3179 goto fail0;
3180 get_source_id(mci);
3181 mci->ctl_name = kasprintf(GFP_KERNEL, "Sandy Bridge SrcID#%d_Ha#%d",
3182 pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
3183 break;
3184 case HASWELL:
3185 /* rankcfgr isn't used */
3186 pvt->info.get_tolm = haswell_get_tolm;
3187 pvt->info.get_tohm = haswell_get_tohm;
3188 pvt->info.dram_rule = ibridge_dram_rule;
3189 pvt->info.get_memory_type = haswell_get_memory_type;
3190 pvt->info.get_node_id = haswell_get_node_id;
3191 pvt->info.rir_limit = haswell_rir_limit;
3192 pvt->info.sad_limit = sad_limit;
3193 pvt->info.interleave_mode = interleave_mode;
3194 pvt->info.dram_attr = dram_attr;
3195 pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
3196 pvt->info.interleave_list = ibridge_interleave_list;
3197 pvt->info.max_interleave = ARRAY_SIZE(ibridge_interleave_list);
3198 pvt->info.interleave_pkg = ibridge_interleave_pkg;
3199 pvt->info.get_width = ibridge_get_width;
3200
3201 /* Store pci devices at mci for faster access */
3202 rc = haswell_mci_bind_devs(mci, sbridge_dev);
3203 if (unlikely(rc < 0))
3204 goto fail0;
3205 get_source_id(mci);
3206 mci->ctl_name = kasprintf(GFP_KERNEL, "Haswell SrcID#%d_Ha#%d",
3207 pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
3208 break;
3209 case BROADWELL:
3210 /* rankcfgr isn't used */
3211 pvt->info.get_tolm = haswell_get_tolm;
3212 pvt->info.get_tohm = haswell_get_tohm;
3213 pvt->info.dram_rule = ibridge_dram_rule;
3214 pvt->info.get_memory_type = haswell_get_memory_type;
3215 pvt->info.get_node_id = haswell_get_node_id;
3216 pvt->info.rir_limit = haswell_rir_limit;
3217 pvt->info.sad_limit = sad_limit;
3218 pvt->info.interleave_mode = interleave_mode;
3219 pvt->info.dram_attr = dram_attr;
3220 pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
3221 pvt->info.interleave_list = ibridge_interleave_list;
3222 pvt->info.max_interleave = ARRAY_SIZE(ibridge_interleave_list);
3223 pvt->info.interleave_pkg = ibridge_interleave_pkg;
3224 pvt->info.get_width = broadwell_get_width;
3225
3226 /* Store pci devices at mci for faster access */
3227 rc = broadwell_mci_bind_devs(mci, sbridge_dev);
3228 if (unlikely(rc < 0))
3229 goto fail0;
3230 get_source_id(mci);
3231 mci->ctl_name = kasprintf(GFP_KERNEL, "Broadwell SrcID#%d_Ha#%d",
3232 pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
3233 break;
3234 case KNIGHTS_LANDING:
3235 /* pvt->info.rankcfgr == ??? */
3236 pvt->info.get_tolm = knl_get_tolm;
3237 pvt->info.get_tohm = knl_get_tohm;
3238 pvt->info.dram_rule = knl_dram_rule;
3239 pvt->info.get_memory_type = knl_get_memory_type;
3240 pvt->info.get_node_id = knl_get_node_id;
3241 pvt->info.rir_limit = NULL;
3242 pvt->info.sad_limit = knl_sad_limit;
3243 pvt->info.interleave_mode = knl_interleave_mode;
3244 pvt->info.dram_attr = dram_attr_knl;
3245 pvt->info.max_sad = ARRAY_SIZE(knl_dram_rule);
3246 pvt->info.interleave_list = knl_interleave_list;
3247 pvt->info.max_interleave = ARRAY_SIZE(knl_interleave_list);
3248 pvt->info.interleave_pkg = ibridge_interleave_pkg;
3249 pvt->info.get_width = knl_get_width;
3250
3251 rc = knl_mci_bind_devs(mci, sbridge_dev);
3252 if (unlikely(rc < 0))
3253 goto fail0;
3254 get_source_id(mci);
3255 mci->ctl_name = kasprintf(GFP_KERNEL, "Knights Landing SrcID#%d_Ha#%d",
3256 pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
3257 break;
3258 }
3259
3260 /* Get dimm basic config and the memory layout */
3261 rc = get_dimm_config(mci);
3262 if (rc < 0) {
3263 edac_dbg(0, "MC: failed to get_dimm_config()\n");
3264 goto fail;
3265 }
3266 get_memory_layout(mci);
3267
3268 /* record ptr to the generic device */
3269 mci->pdev = &pdev->dev;
3270
3271 /* add this new MC control structure to EDAC's list of MCs */
3272 if (unlikely(edac_mc_add_mc(mci))) {
3273 edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
3274 rc = -EINVAL;
3275 goto fail;
3276 }
3277
3278 return 0;
3279
3280 fail:
3281 kfree(mci->ctl_name);
3282 fail0:
3283 edac_mc_free(mci);
3284 sbridge_dev->mci = NULL;
3285 return rc;
3286 }
3287
3288 #define ICPU(model, table) \
3289 { X86_VENDOR_INTEL, 6, model, 0, (unsigned long)&table }
3290
3291 static const struct x86_cpu_id sbridge_cpuids[] = {
3292 ICPU(INTEL_FAM6_SANDYBRIDGE_X, pci_dev_descr_sbridge_table),
3293 ICPU(INTEL_FAM6_IVYBRIDGE_X, pci_dev_descr_ibridge_table),
3294 ICPU(INTEL_FAM6_HASWELL_X, pci_dev_descr_haswell_table),
3295 ICPU(INTEL_FAM6_BROADWELL_X, pci_dev_descr_broadwell_table),
3296 ICPU(INTEL_FAM6_BROADWELL_XEON_D, pci_dev_descr_broadwell_table),
3297 ICPU(INTEL_FAM6_XEON_PHI_KNL, pci_dev_descr_knl_table),
3298 ICPU(INTEL_FAM6_XEON_PHI_KNM, pci_dev_descr_knl_table),
3299 { }
3300 };
3301 MODULE_DEVICE_TABLE(x86cpu, sbridge_cpuids);
3302
3303 /*
3304 * sbridge_probe Get all devices and register memory controllers
3305 * present.
3306 * return:
3307 * 0 for FOUND a device
3308 * < 0 for error code
3309 */
3310
3311 static int sbridge_probe(const struct x86_cpu_id *id)
3312 {
3313 int rc = -ENODEV;
3314 u8 mc, num_mc = 0;
3315 struct sbridge_dev *sbridge_dev;
3316 struct pci_id_table *ptable = (struct pci_id_table *)id->driver_data;
3317
3318 /* get the pci devices we want to reserve for our use */
3319 rc = sbridge_get_all_devices(&num_mc, ptable);
3320
3321 if (unlikely(rc < 0)) {
3322 edac_dbg(0, "couldn't get all devices\n");
3323 goto fail0;
3324 }
3325
3326 mc = 0;
3327
3328 list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
3329 edac_dbg(0, "Registering MC#%d (%d of %d)\n",
3330 mc, mc + 1, num_mc);
3331
3332 sbridge_dev->mc = mc++;
3333 rc = sbridge_register_mci(sbridge_dev, ptable->type);
3334 if (unlikely(rc < 0))
3335 goto fail1;
3336 }
3337
3338 sbridge_printk(KERN_INFO, "%s\n", SBRIDGE_REVISION);
3339
3340 return 0;
3341
3342 fail1:
3343 list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
3344 sbridge_unregister_mci(sbridge_dev);
3345
3346 sbridge_put_all_devices();
3347 fail0:
3348 return rc;
3349 }
3350
3351 /*
3352 * sbridge_remove cleanup
3353 *
3354 */
3355 static void sbridge_remove(void)
3356 {
3357 struct sbridge_dev *sbridge_dev;
3358
3359 edac_dbg(0, "\n");
3360
3361 list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
3362 sbridge_unregister_mci(sbridge_dev);
3363
3364 /* Release PCI resources */
3365 sbridge_put_all_devices();
3366 }
3367
3368 /*
3369 * sbridge_init Module entry function
3370 * Try to initialize this module for its devices
3371 */
3372 static int __init sbridge_init(void)
3373 {
3374 const struct x86_cpu_id *id;
3375 int rc;
3376
3377 edac_dbg(2, "\n");
3378
3379 id = x86_match_cpu(sbridge_cpuids);
3380 if (!id)
3381 return -ENODEV;
3382
3383 /* Ensure that the OPSTATE is set correctly for POLL or NMI */
3384 opstate_init();
3385
3386 rc = sbridge_probe(id);
3387
3388 if (rc >= 0) {
3389 mce_register_decode_chain(&sbridge_mce_dec);
3390 if (edac_get_report_status() == EDAC_REPORTING_DISABLED)
3391 sbridge_printk(KERN_WARNING, "Loading driver, error reporting disabled.\n");
3392 return 0;
3393 }
3394
3395 sbridge_printk(KERN_ERR, "Failed to register device with error %d.\n",
3396 rc);
3397
3398 return rc;
3399 }
3400
3401 /*
3402 * sbridge_exit() Module exit function
3403 * Unregister the driver
3404 */
3405 static void __exit sbridge_exit(void)
3406 {
3407 edac_dbg(2, "\n");
3408 sbridge_remove();
3409 mce_unregister_decode_chain(&sbridge_mce_dec);
3410 }
3411
3412 module_init(sbridge_init);
3413 module_exit(sbridge_exit);
3414
3415 module_param(edac_op_state, int, 0444);
3416 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
3417
3418 MODULE_LICENSE("GPL");
3419 MODULE_AUTHOR("Mauro Carvalho Chehab");
3420 MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
3421 MODULE_DESCRIPTION("MC Driver for Intel Sandy Bridge and Ivy Bridge memory controllers - "
3422 SBRIDGE_REVISION);