]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/firewire/core-device.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/geert/linux...
[mirror_ubuntu-bionic-kernel.git] / drivers / firewire / core-device.c
1 /*
2 * Device probing and sysfs code.
3 *
4 * Copyright (C) 2005-2006 Kristian Hoegsberg <krh@bitplanet.net>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21 #include <linux/bug.h>
22 #include <linux/ctype.h>
23 #include <linux/delay.h>
24 #include <linux/device.h>
25 #include <linux/errno.h>
26 #include <linux/firewire.h>
27 #include <linux/firewire-constants.h>
28 #include <linux/idr.h>
29 #include <linux/jiffies.h>
30 #include <linux/kobject.h>
31 #include <linux/list.h>
32 #include <linux/mod_devicetable.h>
33 #include <linux/module.h>
34 #include <linux/mutex.h>
35 #include <linux/rwsem.h>
36 #include <linux/slab.h>
37 #include <linux/spinlock.h>
38 #include <linux/string.h>
39 #include <linux/workqueue.h>
40
41 #include <linux/atomic.h>
42 #include <asm/byteorder.h>
43
44 #include "core.h"
45
46 void fw_csr_iterator_init(struct fw_csr_iterator *ci, const u32 *p)
47 {
48 ci->p = p + 1;
49 ci->end = ci->p + (p[0] >> 16);
50 }
51 EXPORT_SYMBOL(fw_csr_iterator_init);
52
53 int fw_csr_iterator_next(struct fw_csr_iterator *ci, int *key, int *value)
54 {
55 *key = *ci->p >> 24;
56 *value = *ci->p & 0xffffff;
57
58 return ci->p++ < ci->end;
59 }
60 EXPORT_SYMBOL(fw_csr_iterator_next);
61
62 static const u32 *search_leaf(const u32 *directory, int search_key)
63 {
64 struct fw_csr_iterator ci;
65 int last_key = 0, key, value;
66
67 fw_csr_iterator_init(&ci, directory);
68 while (fw_csr_iterator_next(&ci, &key, &value)) {
69 if (last_key == search_key &&
70 key == (CSR_DESCRIPTOR | CSR_LEAF))
71 return ci.p - 1 + value;
72
73 last_key = key;
74 }
75
76 return NULL;
77 }
78
79 static int textual_leaf_to_string(const u32 *block, char *buf, size_t size)
80 {
81 unsigned int quadlets, i;
82 char c;
83
84 if (!size || !buf)
85 return -EINVAL;
86
87 quadlets = min(block[0] >> 16, 256U);
88 if (quadlets < 2)
89 return -ENODATA;
90
91 if (block[1] != 0 || block[2] != 0)
92 /* unknown language/character set */
93 return -ENODATA;
94
95 block += 3;
96 quadlets -= 2;
97 for (i = 0; i < quadlets * 4 && i < size - 1; i++) {
98 c = block[i / 4] >> (24 - 8 * (i % 4));
99 if (c == '\0')
100 break;
101 buf[i] = c;
102 }
103 buf[i] = '\0';
104
105 return i;
106 }
107
108 /**
109 * fw_csr_string() - reads a string from the configuration ROM
110 * @directory: e.g. root directory or unit directory
111 * @key: the key of the preceding directory entry
112 * @buf: where to put the string
113 * @size: size of @buf, in bytes
114 *
115 * The string is taken from a minimal ASCII text descriptor leaf after
116 * the immediate entry with @key. The string is zero-terminated.
117 * Returns strlen(buf) or a negative error code.
118 */
119 int fw_csr_string(const u32 *directory, int key, char *buf, size_t size)
120 {
121 const u32 *leaf = search_leaf(directory, key);
122 if (!leaf)
123 return -ENOENT;
124
125 return textual_leaf_to_string(leaf, buf, size);
126 }
127 EXPORT_SYMBOL(fw_csr_string);
128
129 static void get_ids(const u32 *directory, int *id)
130 {
131 struct fw_csr_iterator ci;
132 int key, value;
133
134 fw_csr_iterator_init(&ci, directory);
135 while (fw_csr_iterator_next(&ci, &key, &value)) {
136 switch (key) {
137 case CSR_VENDOR: id[0] = value; break;
138 case CSR_MODEL: id[1] = value; break;
139 case CSR_SPECIFIER_ID: id[2] = value; break;
140 case CSR_VERSION: id[3] = value; break;
141 }
142 }
143 }
144
145 static void get_modalias_ids(struct fw_unit *unit, int *id)
146 {
147 get_ids(&fw_parent_device(unit)->config_rom[5], id);
148 get_ids(unit->directory, id);
149 }
150
151 static bool match_ids(const struct ieee1394_device_id *id_table, int *id)
152 {
153 int match = 0;
154
155 if (id[0] == id_table->vendor_id)
156 match |= IEEE1394_MATCH_VENDOR_ID;
157 if (id[1] == id_table->model_id)
158 match |= IEEE1394_MATCH_MODEL_ID;
159 if (id[2] == id_table->specifier_id)
160 match |= IEEE1394_MATCH_SPECIFIER_ID;
161 if (id[3] == id_table->version)
162 match |= IEEE1394_MATCH_VERSION;
163
164 return (match & id_table->match_flags) == id_table->match_flags;
165 }
166
167 static bool is_fw_unit(struct device *dev);
168
169 static int fw_unit_match(struct device *dev, struct device_driver *drv)
170 {
171 const struct ieee1394_device_id *id_table =
172 container_of(drv, struct fw_driver, driver)->id_table;
173 int id[] = {0, 0, 0, 0};
174
175 /* We only allow binding to fw_units. */
176 if (!is_fw_unit(dev))
177 return 0;
178
179 get_modalias_ids(fw_unit(dev), id);
180
181 for (; id_table->match_flags != 0; id_table++)
182 if (match_ids(id_table, id))
183 return 1;
184
185 return 0;
186 }
187
188 static int get_modalias(struct fw_unit *unit, char *buffer, size_t buffer_size)
189 {
190 int id[] = {0, 0, 0, 0};
191
192 get_modalias_ids(unit, id);
193
194 return snprintf(buffer, buffer_size,
195 "ieee1394:ven%08Xmo%08Xsp%08Xver%08X",
196 id[0], id[1], id[2], id[3]);
197 }
198
199 static int fw_unit_uevent(struct device *dev, struct kobj_uevent_env *env)
200 {
201 struct fw_unit *unit = fw_unit(dev);
202 char modalias[64];
203
204 get_modalias(unit, modalias, sizeof(modalias));
205
206 if (add_uevent_var(env, "MODALIAS=%s", modalias))
207 return -ENOMEM;
208
209 return 0;
210 }
211
212 struct bus_type fw_bus_type = {
213 .name = "firewire",
214 .match = fw_unit_match,
215 };
216 EXPORT_SYMBOL(fw_bus_type);
217
218 int fw_device_enable_phys_dma(struct fw_device *device)
219 {
220 int generation = device->generation;
221
222 /* device->node_id, accessed below, must not be older than generation */
223 smp_rmb();
224
225 return device->card->driver->enable_phys_dma(device->card,
226 device->node_id,
227 generation);
228 }
229 EXPORT_SYMBOL(fw_device_enable_phys_dma);
230
231 struct config_rom_attribute {
232 struct device_attribute attr;
233 u32 key;
234 };
235
236 static ssize_t show_immediate(struct device *dev,
237 struct device_attribute *dattr, char *buf)
238 {
239 struct config_rom_attribute *attr =
240 container_of(dattr, struct config_rom_attribute, attr);
241 struct fw_csr_iterator ci;
242 const u32 *dir;
243 int key, value, ret = -ENOENT;
244
245 down_read(&fw_device_rwsem);
246
247 if (is_fw_unit(dev))
248 dir = fw_unit(dev)->directory;
249 else
250 dir = fw_device(dev)->config_rom + 5;
251
252 fw_csr_iterator_init(&ci, dir);
253 while (fw_csr_iterator_next(&ci, &key, &value))
254 if (attr->key == key) {
255 ret = snprintf(buf, buf ? PAGE_SIZE : 0,
256 "0x%06x\n", value);
257 break;
258 }
259
260 up_read(&fw_device_rwsem);
261
262 return ret;
263 }
264
265 #define IMMEDIATE_ATTR(name, key) \
266 { __ATTR(name, S_IRUGO, show_immediate, NULL), key }
267
268 static ssize_t show_text_leaf(struct device *dev,
269 struct device_attribute *dattr, char *buf)
270 {
271 struct config_rom_attribute *attr =
272 container_of(dattr, struct config_rom_attribute, attr);
273 const u32 *dir;
274 size_t bufsize;
275 char dummy_buf[2];
276 int ret;
277
278 down_read(&fw_device_rwsem);
279
280 if (is_fw_unit(dev))
281 dir = fw_unit(dev)->directory;
282 else
283 dir = fw_device(dev)->config_rom + 5;
284
285 if (buf) {
286 bufsize = PAGE_SIZE - 1;
287 } else {
288 buf = dummy_buf;
289 bufsize = 1;
290 }
291
292 ret = fw_csr_string(dir, attr->key, buf, bufsize);
293
294 if (ret >= 0) {
295 /* Strip trailing whitespace and add newline. */
296 while (ret > 0 && isspace(buf[ret - 1]))
297 ret--;
298 strcpy(buf + ret, "\n");
299 ret++;
300 }
301
302 up_read(&fw_device_rwsem);
303
304 return ret;
305 }
306
307 #define TEXT_LEAF_ATTR(name, key) \
308 { __ATTR(name, S_IRUGO, show_text_leaf, NULL), key }
309
310 static struct config_rom_attribute config_rom_attributes[] = {
311 IMMEDIATE_ATTR(vendor, CSR_VENDOR),
312 IMMEDIATE_ATTR(hardware_version, CSR_HARDWARE_VERSION),
313 IMMEDIATE_ATTR(specifier_id, CSR_SPECIFIER_ID),
314 IMMEDIATE_ATTR(version, CSR_VERSION),
315 IMMEDIATE_ATTR(model, CSR_MODEL),
316 TEXT_LEAF_ATTR(vendor_name, CSR_VENDOR),
317 TEXT_LEAF_ATTR(model_name, CSR_MODEL),
318 TEXT_LEAF_ATTR(hardware_version_name, CSR_HARDWARE_VERSION),
319 };
320
321 static void init_fw_attribute_group(struct device *dev,
322 struct device_attribute *attrs,
323 struct fw_attribute_group *group)
324 {
325 struct device_attribute *attr;
326 int i, j;
327
328 for (j = 0; attrs[j].attr.name != NULL; j++)
329 group->attrs[j] = &attrs[j].attr;
330
331 for (i = 0; i < ARRAY_SIZE(config_rom_attributes); i++) {
332 attr = &config_rom_attributes[i].attr;
333 if (attr->show(dev, attr, NULL) < 0)
334 continue;
335 group->attrs[j++] = &attr->attr;
336 }
337
338 group->attrs[j] = NULL;
339 group->groups[0] = &group->group;
340 group->groups[1] = NULL;
341 group->group.attrs = group->attrs;
342 dev->groups = (const struct attribute_group **) group->groups;
343 }
344
345 static ssize_t modalias_show(struct device *dev,
346 struct device_attribute *attr, char *buf)
347 {
348 struct fw_unit *unit = fw_unit(dev);
349 int length;
350
351 length = get_modalias(unit, buf, PAGE_SIZE);
352 strcpy(buf + length, "\n");
353
354 return length + 1;
355 }
356
357 static ssize_t rom_index_show(struct device *dev,
358 struct device_attribute *attr, char *buf)
359 {
360 struct fw_device *device = fw_device(dev->parent);
361 struct fw_unit *unit = fw_unit(dev);
362
363 return snprintf(buf, PAGE_SIZE, "%d\n",
364 (int)(unit->directory - device->config_rom));
365 }
366
367 static struct device_attribute fw_unit_attributes[] = {
368 __ATTR_RO(modalias),
369 __ATTR_RO(rom_index),
370 __ATTR_NULL,
371 };
372
373 static ssize_t config_rom_show(struct device *dev,
374 struct device_attribute *attr, char *buf)
375 {
376 struct fw_device *device = fw_device(dev);
377 size_t length;
378
379 down_read(&fw_device_rwsem);
380 length = device->config_rom_length * 4;
381 memcpy(buf, device->config_rom, length);
382 up_read(&fw_device_rwsem);
383
384 return length;
385 }
386
387 static ssize_t guid_show(struct device *dev,
388 struct device_attribute *attr, char *buf)
389 {
390 struct fw_device *device = fw_device(dev);
391 int ret;
392
393 down_read(&fw_device_rwsem);
394 ret = snprintf(buf, PAGE_SIZE, "0x%08x%08x\n",
395 device->config_rom[3], device->config_rom[4]);
396 up_read(&fw_device_rwsem);
397
398 return ret;
399 }
400
401 static ssize_t is_local_show(struct device *dev,
402 struct device_attribute *attr, char *buf)
403 {
404 struct fw_device *device = fw_device(dev);
405
406 return sprintf(buf, "%u\n", device->is_local);
407 }
408
409 static int units_sprintf(char *buf, const u32 *directory)
410 {
411 struct fw_csr_iterator ci;
412 int key, value;
413 int specifier_id = 0;
414 int version = 0;
415
416 fw_csr_iterator_init(&ci, directory);
417 while (fw_csr_iterator_next(&ci, &key, &value)) {
418 switch (key) {
419 case CSR_SPECIFIER_ID:
420 specifier_id = value;
421 break;
422 case CSR_VERSION:
423 version = value;
424 break;
425 }
426 }
427
428 return sprintf(buf, "0x%06x:0x%06x ", specifier_id, version);
429 }
430
431 static ssize_t units_show(struct device *dev,
432 struct device_attribute *attr, char *buf)
433 {
434 struct fw_device *device = fw_device(dev);
435 struct fw_csr_iterator ci;
436 int key, value, i = 0;
437
438 down_read(&fw_device_rwsem);
439 fw_csr_iterator_init(&ci, &device->config_rom[5]);
440 while (fw_csr_iterator_next(&ci, &key, &value)) {
441 if (key != (CSR_UNIT | CSR_DIRECTORY))
442 continue;
443 i += units_sprintf(&buf[i], ci.p + value - 1);
444 if (i >= PAGE_SIZE - (8 + 1 + 8 + 1))
445 break;
446 }
447 up_read(&fw_device_rwsem);
448
449 if (i)
450 buf[i - 1] = '\n';
451
452 return i;
453 }
454
455 static struct device_attribute fw_device_attributes[] = {
456 __ATTR_RO(config_rom),
457 __ATTR_RO(guid),
458 __ATTR_RO(is_local),
459 __ATTR_RO(units),
460 __ATTR_NULL,
461 };
462
463 static int read_rom(struct fw_device *device,
464 int generation, int index, u32 *data)
465 {
466 u64 offset = (CSR_REGISTER_BASE | CSR_CONFIG_ROM) + index * 4;
467 int i, rcode;
468
469 /* device->node_id, accessed below, must not be older than generation */
470 smp_rmb();
471
472 for (i = 10; i < 100; i += 10) {
473 rcode = fw_run_transaction(device->card,
474 TCODE_READ_QUADLET_REQUEST, device->node_id,
475 generation, device->max_speed, offset, data, 4);
476 if (rcode != RCODE_BUSY)
477 break;
478 msleep(i);
479 }
480 be32_to_cpus(data);
481
482 return rcode;
483 }
484
485 #define MAX_CONFIG_ROM_SIZE 256
486
487 /*
488 * Read the bus info block, perform a speed probe, and read all of the rest of
489 * the config ROM. We do all this with a cached bus generation. If the bus
490 * generation changes under us, read_config_rom will fail and get retried.
491 * It's better to start all over in this case because the node from which we
492 * are reading the ROM may have changed the ROM during the reset.
493 * Returns either a result code or a negative error code.
494 */
495 static int read_config_rom(struct fw_device *device, int generation)
496 {
497 struct fw_card *card = device->card;
498 const u32 *old_rom, *new_rom;
499 u32 *rom, *stack;
500 u32 sp, key;
501 int i, end, length, ret;
502
503 rom = kmalloc(sizeof(*rom) * MAX_CONFIG_ROM_SIZE +
504 sizeof(*stack) * MAX_CONFIG_ROM_SIZE, GFP_KERNEL);
505 if (rom == NULL)
506 return -ENOMEM;
507
508 stack = &rom[MAX_CONFIG_ROM_SIZE];
509 memset(rom, 0, sizeof(*rom) * MAX_CONFIG_ROM_SIZE);
510
511 device->max_speed = SCODE_100;
512
513 /* First read the bus info block. */
514 for (i = 0; i < 5; i++) {
515 ret = read_rom(device, generation, i, &rom[i]);
516 if (ret != RCODE_COMPLETE)
517 goto out;
518 /*
519 * As per IEEE1212 7.2, during initialization, devices can
520 * reply with a 0 for the first quadlet of the config
521 * rom to indicate that they are booting (for example,
522 * if the firmware is on the disk of a external
523 * harddisk). In that case we just fail, and the
524 * retry mechanism will try again later.
525 */
526 if (i == 0 && rom[i] == 0) {
527 ret = RCODE_BUSY;
528 goto out;
529 }
530 }
531
532 device->max_speed = device->node->max_speed;
533
534 /*
535 * Determine the speed of
536 * - devices with link speed less than PHY speed,
537 * - devices with 1394b PHY (unless only connected to 1394a PHYs),
538 * - all devices if there are 1394b repeaters.
539 * Note, we cannot use the bus info block's link_spd as starting point
540 * because some buggy firmwares set it lower than necessary and because
541 * 1394-1995 nodes do not have the field.
542 */
543 if ((rom[2] & 0x7) < device->max_speed ||
544 device->max_speed == SCODE_BETA ||
545 card->beta_repeaters_present) {
546 u32 dummy;
547
548 /* for S1600 and S3200 */
549 if (device->max_speed == SCODE_BETA)
550 device->max_speed = card->link_speed;
551
552 while (device->max_speed > SCODE_100) {
553 if (read_rom(device, generation, 0, &dummy) ==
554 RCODE_COMPLETE)
555 break;
556 device->max_speed--;
557 }
558 }
559
560 /*
561 * Now parse the config rom. The config rom is a recursive
562 * directory structure so we parse it using a stack of
563 * references to the blocks that make up the structure. We
564 * push a reference to the root directory on the stack to
565 * start things off.
566 */
567 length = i;
568 sp = 0;
569 stack[sp++] = 0xc0000005;
570 while (sp > 0) {
571 /*
572 * Pop the next block reference of the stack. The
573 * lower 24 bits is the offset into the config rom,
574 * the upper 8 bits are the type of the reference the
575 * block.
576 */
577 key = stack[--sp];
578 i = key & 0xffffff;
579 if (WARN_ON(i >= MAX_CONFIG_ROM_SIZE)) {
580 ret = -ENXIO;
581 goto out;
582 }
583
584 /* Read header quadlet for the block to get the length. */
585 ret = read_rom(device, generation, i, &rom[i]);
586 if (ret != RCODE_COMPLETE)
587 goto out;
588 end = i + (rom[i] >> 16) + 1;
589 if (end > MAX_CONFIG_ROM_SIZE) {
590 /*
591 * This block extends outside the config ROM which is
592 * a firmware bug. Ignore this whole block, i.e.
593 * simply set a fake block length of 0.
594 */
595 fw_err(card, "skipped invalid ROM block %x at %llx\n",
596 rom[i],
597 i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM);
598 rom[i] = 0;
599 end = i;
600 }
601 i++;
602
603 /*
604 * Now read in the block. If this is a directory
605 * block, check the entries as we read them to see if
606 * it references another block, and push it in that case.
607 */
608 for (; i < end; i++) {
609 ret = read_rom(device, generation, i, &rom[i]);
610 if (ret != RCODE_COMPLETE)
611 goto out;
612
613 if ((key >> 30) != 3 || (rom[i] >> 30) < 2)
614 continue;
615 /*
616 * Offset points outside the ROM. May be a firmware
617 * bug or an Extended ROM entry (IEEE 1212-2001 clause
618 * 7.7.18). Simply overwrite this pointer here by a
619 * fake immediate entry so that later iterators over
620 * the ROM don't have to check offsets all the time.
621 */
622 if (i + (rom[i] & 0xffffff) >= MAX_CONFIG_ROM_SIZE) {
623 fw_err(card,
624 "skipped unsupported ROM entry %x at %llx\n",
625 rom[i],
626 i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM);
627 rom[i] = 0;
628 continue;
629 }
630 stack[sp++] = i + rom[i];
631 }
632 if (length < i)
633 length = i;
634 }
635
636 old_rom = device->config_rom;
637 new_rom = kmemdup(rom, length * 4, GFP_KERNEL);
638 if (new_rom == NULL) {
639 ret = -ENOMEM;
640 goto out;
641 }
642
643 down_write(&fw_device_rwsem);
644 device->config_rom = new_rom;
645 device->config_rom_length = length;
646 up_write(&fw_device_rwsem);
647
648 kfree(old_rom);
649 ret = RCODE_COMPLETE;
650 device->max_rec = rom[2] >> 12 & 0xf;
651 device->cmc = rom[2] >> 30 & 1;
652 device->irmc = rom[2] >> 31 & 1;
653 out:
654 kfree(rom);
655
656 return ret;
657 }
658
659 static void fw_unit_release(struct device *dev)
660 {
661 struct fw_unit *unit = fw_unit(dev);
662
663 fw_device_put(fw_parent_device(unit));
664 kfree(unit);
665 }
666
667 static struct device_type fw_unit_type = {
668 .uevent = fw_unit_uevent,
669 .release = fw_unit_release,
670 };
671
672 static bool is_fw_unit(struct device *dev)
673 {
674 return dev->type == &fw_unit_type;
675 }
676
677 static void create_units(struct fw_device *device)
678 {
679 struct fw_csr_iterator ci;
680 struct fw_unit *unit;
681 int key, value, i;
682
683 i = 0;
684 fw_csr_iterator_init(&ci, &device->config_rom[5]);
685 while (fw_csr_iterator_next(&ci, &key, &value)) {
686 if (key != (CSR_UNIT | CSR_DIRECTORY))
687 continue;
688
689 /*
690 * Get the address of the unit directory and try to
691 * match the drivers id_tables against it.
692 */
693 unit = kzalloc(sizeof(*unit), GFP_KERNEL);
694 if (unit == NULL) {
695 fw_err(device->card, "out of memory for unit\n");
696 continue;
697 }
698
699 unit->directory = ci.p + value - 1;
700 unit->device.bus = &fw_bus_type;
701 unit->device.type = &fw_unit_type;
702 unit->device.parent = &device->device;
703 dev_set_name(&unit->device, "%s.%d", dev_name(&device->device), i++);
704
705 BUILD_BUG_ON(ARRAY_SIZE(unit->attribute_group.attrs) <
706 ARRAY_SIZE(fw_unit_attributes) +
707 ARRAY_SIZE(config_rom_attributes));
708 init_fw_attribute_group(&unit->device,
709 fw_unit_attributes,
710 &unit->attribute_group);
711
712 if (device_register(&unit->device) < 0)
713 goto skip_unit;
714
715 fw_device_get(device);
716 continue;
717
718 skip_unit:
719 kfree(unit);
720 }
721 }
722
723 static int shutdown_unit(struct device *device, void *data)
724 {
725 device_unregister(device);
726
727 return 0;
728 }
729
730 /*
731 * fw_device_rwsem acts as dual purpose mutex:
732 * - serializes accesses to fw_device_idr,
733 * - serializes accesses to fw_device.config_rom/.config_rom_length and
734 * fw_unit.directory, unless those accesses happen at safe occasions
735 */
736 DECLARE_RWSEM(fw_device_rwsem);
737
738 DEFINE_IDR(fw_device_idr);
739 int fw_cdev_major;
740
741 struct fw_device *fw_device_get_by_devt(dev_t devt)
742 {
743 struct fw_device *device;
744
745 down_read(&fw_device_rwsem);
746 device = idr_find(&fw_device_idr, MINOR(devt));
747 if (device)
748 fw_device_get(device);
749 up_read(&fw_device_rwsem);
750
751 return device;
752 }
753
754 struct workqueue_struct *fw_workqueue;
755 EXPORT_SYMBOL(fw_workqueue);
756
757 static void fw_schedule_device_work(struct fw_device *device,
758 unsigned long delay)
759 {
760 queue_delayed_work(fw_workqueue, &device->work, delay);
761 }
762
763 /*
764 * These defines control the retry behavior for reading the config
765 * rom. It shouldn't be necessary to tweak these; if the device
766 * doesn't respond to a config rom read within 10 seconds, it's not
767 * going to respond at all. As for the initial delay, a lot of
768 * devices will be able to respond within half a second after bus
769 * reset. On the other hand, it's not really worth being more
770 * aggressive than that, since it scales pretty well; if 10 devices
771 * are plugged in, they're all getting read within one second.
772 */
773
774 #define MAX_RETRIES 10
775 #define RETRY_DELAY (3 * HZ)
776 #define INITIAL_DELAY (HZ / 2)
777 #define SHUTDOWN_DELAY (2 * HZ)
778
779 static void fw_device_shutdown(struct work_struct *work)
780 {
781 struct fw_device *device =
782 container_of(work, struct fw_device, work.work);
783 int minor = MINOR(device->device.devt);
784
785 if (time_before64(get_jiffies_64(),
786 device->card->reset_jiffies + SHUTDOWN_DELAY)
787 && !list_empty(&device->card->link)) {
788 fw_schedule_device_work(device, SHUTDOWN_DELAY);
789 return;
790 }
791
792 if (atomic_cmpxchg(&device->state,
793 FW_DEVICE_GONE,
794 FW_DEVICE_SHUTDOWN) != FW_DEVICE_GONE)
795 return;
796
797 fw_device_cdev_remove(device);
798 device_for_each_child(&device->device, NULL, shutdown_unit);
799 device_unregister(&device->device);
800
801 down_write(&fw_device_rwsem);
802 idr_remove(&fw_device_idr, minor);
803 up_write(&fw_device_rwsem);
804
805 fw_device_put(device);
806 }
807
808 static void fw_device_release(struct device *dev)
809 {
810 struct fw_device *device = fw_device(dev);
811 struct fw_card *card = device->card;
812 unsigned long flags;
813
814 /*
815 * Take the card lock so we don't set this to NULL while a
816 * FW_NODE_UPDATED callback is being handled or while the
817 * bus manager work looks at this node.
818 */
819 spin_lock_irqsave(&card->lock, flags);
820 device->node->data = NULL;
821 spin_unlock_irqrestore(&card->lock, flags);
822
823 fw_node_put(device->node);
824 kfree(device->config_rom);
825 kfree(device);
826 fw_card_put(card);
827 }
828
829 static struct device_type fw_device_type = {
830 .release = fw_device_release,
831 };
832
833 static bool is_fw_device(struct device *dev)
834 {
835 return dev->type == &fw_device_type;
836 }
837
838 static int update_unit(struct device *dev, void *data)
839 {
840 struct fw_unit *unit = fw_unit(dev);
841 struct fw_driver *driver = (struct fw_driver *)dev->driver;
842
843 if (is_fw_unit(dev) && driver != NULL && driver->update != NULL) {
844 device_lock(dev);
845 driver->update(unit);
846 device_unlock(dev);
847 }
848
849 return 0;
850 }
851
852 static void fw_device_update(struct work_struct *work)
853 {
854 struct fw_device *device =
855 container_of(work, struct fw_device, work.work);
856
857 fw_device_cdev_update(device);
858 device_for_each_child(&device->device, NULL, update_unit);
859 }
860
861 /*
862 * If a device was pending for deletion because its node went away but its
863 * bus info block and root directory header matches that of a newly discovered
864 * device, revive the existing fw_device.
865 * The newly allocated fw_device becomes obsolete instead.
866 */
867 static int lookup_existing_device(struct device *dev, void *data)
868 {
869 struct fw_device *old = fw_device(dev);
870 struct fw_device *new = data;
871 struct fw_card *card = new->card;
872 int match = 0;
873
874 if (!is_fw_device(dev))
875 return 0;
876
877 down_read(&fw_device_rwsem); /* serialize config_rom access */
878 spin_lock_irq(&card->lock); /* serialize node access */
879
880 if (memcmp(old->config_rom, new->config_rom, 6 * 4) == 0 &&
881 atomic_cmpxchg(&old->state,
882 FW_DEVICE_GONE,
883 FW_DEVICE_RUNNING) == FW_DEVICE_GONE) {
884 struct fw_node *current_node = new->node;
885 struct fw_node *obsolete_node = old->node;
886
887 new->node = obsolete_node;
888 new->node->data = new;
889 old->node = current_node;
890 old->node->data = old;
891
892 old->max_speed = new->max_speed;
893 old->node_id = current_node->node_id;
894 smp_wmb(); /* update node_id before generation */
895 old->generation = card->generation;
896 old->config_rom_retries = 0;
897 fw_notice(card, "rediscovered device %s\n", dev_name(dev));
898
899 PREPARE_DELAYED_WORK(&old->work, fw_device_update);
900 fw_schedule_device_work(old, 0);
901
902 if (current_node == card->root_node)
903 fw_schedule_bm_work(card, 0);
904
905 match = 1;
906 }
907
908 spin_unlock_irq(&card->lock);
909 up_read(&fw_device_rwsem);
910
911 return match;
912 }
913
914 enum { BC_UNKNOWN = 0, BC_UNIMPLEMENTED, BC_IMPLEMENTED, };
915
916 static void set_broadcast_channel(struct fw_device *device, int generation)
917 {
918 struct fw_card *card = device->card;
919 __be32 data;
920 int rcode;
921
922 if (!card->broadcast_channel_allocated)
923 return;
924
925 /*
926 * The Broadcast_Channel Valid bit is required by nodes which want to
927 * transmit on this channel. Such transmissions are practically
928 * exclusive to IP over 1394 (RFC 2734). IP capable nodes are required
929 * to be IRM capable and have a max_rec of 8 or more. We use this fact
930 * to narrow down to which nodes we send Broadcast_Channel updates.
931 */
932 if (!device->irmc || device->max_rec < 8)
933 return;
934
935 /*
936 * Some 1394-1995 nodes crash if this 1394a-2000 register is written.
937 * Perform a read test first.
938 */
939 if (device->bc_implemented == BC_UNKNOWN) {
940 rcode = fw_run_transaction(card, TCODE_READ_QUADLET_REQUEST,
941 device->node_id, generation, device->max_speed,
942 CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL,
943 &data, 4);
944 switch (rcode) {
945 case RCODE_COMPLETE:
946 if (data & cpu_to_be32(1 << 31)) {
947 device->bc_implemented = BC_IMPLEMENTED;
948 break;
949 }
950 /* else fall through to case address error */
951 case RCODE_ADDRESS_ERROR:
952 device->bc_implemented = BC_UNIMPLEMENTED;
953 }
954 }
955
956 if (device->bc_implemented == BC_IMPLEMENTED) {
957 data = cpu_to_be32(BROADCAST_CHANNEL_INITIAL |
958 BROADCAST_CHANNEL_VALID);
959 fw_run_transaction(card, TCODE_WRITE_QUADLET_REQUEST,
960 device->node_id, generation, device->max_speed,
961 CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL,
962 &data, 4);
963 }
964 }
965
966 int fw_device_set_broadcast_channel(struct device *dev, void *gen)
967 {
968 if (is_fw_device(dev))
969 set_broadcast_channel(fw_device(dev), (long)gen);
970
971 return 0;
972 }
973
974 static void fw_device_init(struct work_struct *work)
975 {
976 struct fw_device *device =
977 container_of(work, struct fw_device, work.work);
978 struct fw_card *card = device->card;
979 struct device *revived_dev;
980 int minor, ret;
981
982 /*
983 * All failure paths here set node->data to NULL, so that we
984 * don't try to do device_for_each_child() on a kfree()'d
985 * device.
986 */
987
988 ret = read_config_rom(device, device->generation);
989 if (ret != RCODE_COMPLETE) {
990 if (device->config_rom_retries < MAX_RETRIES &&
991 atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
992 device->config_rom_retries++;
993 fw_schedule_device_work(device, RETRY_DELAY);
994 } else {
995 if (device->node->link_on)
996 fw_notice(card, "giving up on node %x: reading config rom failed: %s\n",
997 device->node_id,
998 fw_rcode_string(ret));
999 if (device->node == card->root_node)
1000 fw_schedule_bm_work(card, 0);
1001 fw_device_release(&device->device);
1002 }
1003 return;
1004 }
1005
1006 revived_dev = device_find_child(card->device,
1007 device, lookup_existing_device);
1008 if (revived_dev) {
1009 put_device(revived_dev);
1010 fw_device_release(&device->device);
1011
1012 return;
1013 }
1014
1015 device_initialize(&device->device);
1016
1017 fw_device_get(device);
1018 down_write(&fw_device_rwsem);
1019 ret = idr_pre_get(&fw_device_idr, GFP_KERNEL) ?
1020 idr_get_new(&fw_device_idr, device, &minor) :
1021 -ENOMEM;
1022 up_write(&fw_device_rwsem);
1023
1024 if (ret < 0)
1025 goto error;
1026
1027 device->device.bus = &fw_bus_type;
1028 device->device.type = &fw_device_type;
1029 device->device.parent = card->device;
1030 device->device.devt = MKDEV(fw_cdev_major, minor);
1031 dev_set_name(&device->device, "fw%d", minor);
1032
1033 BUILD_BUG_ON(ARRAY_SIZE(device->attribute_group.attrs) <
1034 ARRAY_SIZE(fw_device_attributes) +
1035 ARRAY_SIZE(config_rom_attributes));
1036 init_fw_attribute_group(&device->device,
1037 fw_device_attributes,
1038 &device->attribute_group);
1039
1040 if (device_add(&device->device)) {
1041 fw_err(card, "failed to add device\n");
1042 goto error_with_cdev;
1043 }
1044
1045 create_units(device);
1046
1047 /*
1048 * Transition the device to running state. If it got pulled
1049 * out from under us while we did the intialization work, we
1050 * have to shut down the device again here. Normally, though,
1051 * fw_node_event will be responsible for shutting it down when
1052 * necessary. We have to use the atomic cmpxchg here to avoid
1053 * racing with the FW_NODE_DESTROYED case in
1054 * fw_node_event().
1055 */
1056 if (atomic_cmpxchg(&device->state,
1057 FW_DEVICE_INITIALIZING,
1058 FW_DEVICE_RUNNING) == FW_DEVICE_GONE) {
1059 PREPARE_DELAYED_WORK(&device->work, fw_device_shutdown);
1060 fw_schedule_device_work(device, SHUTDOWN_DELAY);
1061 } else {
1062 fw_notice(card, "created device %s: GUID %08x%08x, S%d00\n",
1063 dev_name(&device->device),
1064 device->config_rom[3], device->config_rom[4],
1065 1 << device->max_speed);
1066 device->config_rom_retries = 0;
1067
1068 set_broadcast_channel(device, device->generation);
1069 }
1070
1071 /*
1072 * Reschedule the IRM work if we just finished reading the
1073 * root node config rom. If this races with a bus reset we
1074 * just end up running the IRM work a couple of extra times -
1075 * pretty harmless.
1076 */
1077 if (device->node == card->root_node)
1078 fw_schedule_bm_work(card, 0);
1079
1080 return;
1081
1082 error_with_cdev:
1083 down_write(&fw_device_rwsem);
1084 idr_remove(&fw_device_idr, minor);
1085 up_write(&fw_device_rwsem);
1086 error:
1087 fw_device_put(device); /* fw_device_idr's reference */
1088
1089 put_device(&device->device); /* our reference */
1090 }
1091
1092 /* Reread and compare bus info block and header of root directory */
1093 static int reread_config_rom(struct fw_device *device, int generation,
1094 bool *changed)
1095 {
1096 u32 q;
1097 int i, rcode;
1098
1099 for (i = 0; i < 6; i++) {
1100 rcode = read_rom(device, generation, i, &q);
1101 if (rcode != RCODE_COMPLETE)
1102 return rcode;
1103
1104 if (i == 0 && q == 0)
1105 /* inaccessible (see read_config_rom); retry later */
1106 return RCODE_BUSY;
1107
1108 if (q != device->config_rom[i]) {
1109 *changed = true;
1110 return RCODE_COMPLETE;
1111 }
1112 }
1113
1114 *changed = false;
1115 return RCODE_COMPLETE;
1116 }
1117
1118 static void fw_device_refresh(struct work_struct *work)
1119 {
1120 struct fw_device *device =
1121 container_of(work, struct fw_device, work.work);
1122 struct fw_card *card = device->card;
1123 int ret, node_id = device->node_id;
1124 bool changed;
1125
1126 ret = reread_config_rom(device, device->generation, &changed);
1127 if (ret != RCODE_COMPLETE)
1128 goto failed_config_rom;
1129
1130 if (!changed) {
1131 if (atomic_cmpxchg(&device->state,
1132 FW_DEVICE_INITIALIZING,
1133 FW_DEVICE_RUNNING) == FW_DEVICE_GONE)
1134 goto gone;
1135
1136 fw_device_update(work);
1137 device->config_rom_retries = 0;
1138 goto out;
1139 }
1140
1141 /*
1142 * Something changed. We keep things simple and don't investigate
1143 * further. We just destroy all previous units and create new ones.
1144 */
1145 device_for_each_child(&device->device, NULL, shutdown_unit);
1146
1147 ret = read_config_rom(device, device->generation);
1148 if (ret != RCODE_COMPLETE)
1149 goto failed_config_rom;
1150
1151 fw_device_cdev_update(device);
1152 create_units(device);
1153
1154 /* Userspace may want to re-read attributes. */
1155 kobject_uevent(&device->device.kobj, KOBJ_CHANGE);
1156
1157 if (atomic_cmpxchg(&device->state,
1158 FW_DEVICE_INITIALIZING,
1159 FW_DEVICE_RUNNING) == FW_DEVICE_GONE)
1160 goto gone;
1161
1162 fw_notice(card, "refreshed device %s\n", dev_name(&device->device));
1163 device->config_rom_retries = 0;
1164 goto out;
1165
1166 failed_config_rom:
1167 if (device->config_rom_retries < MAX_RETRIES &&
1168 atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
1169 device->config_rom_retries++;
1170 fw_schedule_device_work(device, RETRY_DELAY);
1171 return;
1172 }
1173
1174 fw_notice(card, "giving up on refresh of device %s: %s\n",
1175 dev_name(&device->device), fw_rcode_string(ret));
1176 gone:
1177 atomic_set(&device->state, FW_DEVICE_GONE);
1178 PREPARE_DELAYED_WORK(&device->work, fw_device_shutdown);
1179 fw_schedule_device_work(device, SHUTDOWN_DELAY);
1180 out:
1181 if (node_id == card->root_node->node_id)
1182 fw_schedule_bm_work(card, 0);
1183 }
1184
1185 void fw_node_event(struct fw_card *card, struct fw_node *node, int event)
1186 {
1187 struct fw_device *device;
1188
1189 switch (event) {
1190 case FW_NODE_CREATED:
1191 /*
1192 * Attempt to scan the node, regardless whether its self ID has
1193 * the L (link active) flag set or not. Some broken devices
1194 * send L=0 but have an up-and-running link; others send L=1
1195 * without actually having a link.
1196 */
1197 create:
1198 device = kzalloc(sizeof(*device), GFP_ATOMIC);
1199 if (device == NULL)
1200 break;
1201
1202 /*
1203 * Do minimal intialization of the device here, the
1204 * rest will happen in fw_device_init().
1205 *
1206 * Attention: A lot of things, even fw_device_get(),
1207 * cannot be done before fw_device_init() finished!
1208 * You can basically just check device->state and
1209 * schedule work until then, but only while holding
1210 * card->lock.
1211 */
1212 atomic_set(&device->state, FW_DEVICE_INITIALIZING);
1213 device->card = fw_card_get(card);
1214 device->node = fw_node_get(node);
1215 device->node_id = node->node_id;
1216 device->generation = card->generation;
1217 device->is_local = node == card->local_node;
1218 mutex_init(&device->client_list_mutex);
1219 INIT_LIST_HEAD(&device->client_list);
1220
1221 /*
1222 * Set the node data to point back to this device so
1223 * FW_NODE_UPDATED callbacks can update the node_id
1224 * and generation for the device.
1225 */
1226 node->data = device;
1227
1228 /*
1229 * Many devices are slow to respond after bus resets,
1230 * especially if they are bus powered and go through
1231 * power-up after getting plugged in. We schedule the
1232 * first config rom scan half a second after bus reset.
1233 */
1234 INIT_DELAYED_WORK(&device->work, fw_device_init);
1235 fw_schedule_device_work(device, INITIAL_DELAY);
1236 break;
1237
1238 case FW_NODE_INITIATED_RESET:
1239 case FW_NODE_LINK_ON:
1240 device = node->data;
1241 if (device == NULL)
1242 goto create;
1243
1244 device->node_id = node->node_id;
1245 smp_wmb(); /* update node_id before generation */
1246 device->generation = card->generation;
1247 if (atomic_cmpxchg(&device->state,
1248 FW_DEVICE_RUNNING,
1249 FW_DEVICE_INITIALIZING) == FW_DEVICE_RUNNING) {
1250 PREPARE_DELAYED_WORK(&device->work, fw_device_refresh);
1251 fw_schedule_device_work(device,
1252 device->is_local ? 0 : INITIAL_DELAY);
1253 }
1254 break;
1255
1256 case FW_NODE_UPDATED:
1257 device = node->data;
1258 if (device == NULL)
1259 break;
1260
1261 device->node_id = node->node_id;
1262 smp_wmb(); /* update node_id before generation */
1263 device->generation = card->generation;
1264 if (atomic_read(&device->state) == FW_DEVICE_RUNNING) {
1265 PREPARE_DELAYED_WORK(&device->work, fw_device_update);
1266 fw_schedule_device_work(device, 0);
1267 }
1268 break;
1269
1270 case FW_NODE_DESTROYED:
1271 case FW_NODE_LINK_OFF:
1272 if (!node->data)
1273 break;
1274
1275 /*
1276 * Destroy the device associated with the node. There
1277 * are two cases here: either the device is fully
1278 * initialized (FW_DEVICE_RUNNING) or we're in the
1279 * process of reading its config rom
1280 * (FW_DEVICE_INITIALIZING). If it is fully
1281 * initialized we can reuse device->work to schedule a
1282 * full fw_device_shutdown(). If not, there's work
1283 * scheduled to read it's config rom, and we just put
1284 * the device in shutdown state to have that code fail
1285 * to create the device.
1286 */
1287 device = node->data;
1288 if (atomic_xchg(&device->state,
1289 FW_DEVICE_GONE) == FW_DEVICE_RUNNING) {
1290 PREPARE_DELAYED_WORK(&device->work, fw_device_shutdown);
1291 fw_schedule_device_work(device,
1292 list_empty(&card->link) ? 0 : SHUTDOWN_DELAY);
1293 }
1294 break;
1295 }
1296 }