]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/firewire/core-device.c
Merge branch 'x86-vdso-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-zesty-kernel.git] / drivers / firewire / core-device.c
1 /*
2 * Device probing and sysfs code.
3 *
4 * Copyright (C) 2005-2006 Kristian Hoegsberg <krh@bitplanet.net>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21 #include <linux/bug.h>
22 #include <linux/ctype.h>
23 #include <linux/delay.h>
24 #include <linux/device.h>
25 #include <linux/errno.h>
26 #include <linux/firewire.h>
27 #include <linux/firewire-constants.h>
28 #include <linux/idr.h>
29 #include <linux/jiffies.h>
30 #include <linux/kobject.h>
31 #include <linux/list.h>
32 #include <linux/mod_devicetable.h>
33 #include <linux/module.h>
34 #include <linux/mutex.h>
35 #include <linux/rwsem.h>
36 #include <linux/slab.h>
37 #include <linux/spinlock.h>
38 #include <linux/string.h>
39 #include <linux/workqueue.h>
40
41 #include <linux/atomic.h>
42 #include <asm/byteorder.h>
43 #include <asm/system.h>
44
45 #include "core.h"
46
47 void fw_csr_iterator_init(struct fw_csr_iterator *ci, const u32 *p)
48 {
49 ci->p = p + 1;
50 ci->end = ci->p + (p[0] >> 16);
51 }
52 EXPORT_SYMBOL(fw_csr_iterator_init);
53
54 int fw_csr_iterator_next(struct fw_csr_iterator *ci, int *key, int *value)
55 {
56 *key = *ci->p >> 24;
57 *value = *ci->p & 0xffffff;
58
59 return ci->p++ < ci->end;
60 }
61 EXPORT_SYMBOL(fw_csr_iterator_next);
62
63 static const u32 *search_leaf(const u32 *directory, int search_key)
64 {
65 struct fw_csr_iterator ci;
66 int last_key = 0, key, value;
67
68 fw_csr_iterator_init(&ci, directory);
69 while (fw_csr_iterator_next(&ci, &key, &value)) {
70 if (last_key == search_key &&
71 key == (CSR_DESCRIPTOR | CSR_LEAF))
72 return ci.p - 1 + value;
73
74 last_key = key;
75 }
76
77 return NULL;
78 }
79
80 static int textual_leaf_to_string(const u32 *block, char *buf, size_t size)
81 {
82 unsigned int quadlets, i;
83 char c;
84
85 if (!size || !buf)
86 return -EINVAL;
87
88 quadlets = min(block[0] >> 16, 256U);
89 if (quadlets < 2)
90 return -ENODATA;
91
92 if (block[1] != 0 || block[2] != 0)
93 /* unknown language/character set */
94 return -ENODATA;
95
96 block += 3;
97 quadlets -= 2;
98 for (i = 0; i < quadlets * 4 && i < size - 1; i++) {
99 c = block[i / 4] >> (24 - 8 * (i % 4));
100 if (c == '\0')
101 break;
102 buf[i] = c;
103 }
104 buf[i] = '\0';
105
106 return i;
107 }
108
109 /**
110 * fw_csr_string() - reads a string from the configuration ROM
111 * @directory: e.g. root directory or unit directory
112 * @key: the key of the preceding directory entry
113 * @buf: where to put the string
114 * @size: size of @buf, in bytes
115 *
116 * The string is taken from a minimal ASCII text descriptor leaf after
117 * the immediate entry with @key. The string is zero-terminated.
118 * Returns strlen(buf) or a negative error code.
119 */
120 int fw_csr_string(const u32 *directory, int key, char *buf, size_t size)
121 {
122 const u32 *leaf = search_leaf(directory, key);
123 if (!leaf)
124 return -ENOENT;
125
126 return textual_leaf_to_string(leaf, buf, size);
127 }
128 EXPORT_SYMBOL(fw_csr_string);
129
130 static void get_ids(const u32 *directory, int *id)
131 {
132 struct fw_csr_iterator ci;
133 int key, value;
134
135 fw_csr_iterator_init(&ci, directory);
136 while (fw_csr_iterator_next(&ci, &key, &value)) {
137 switch (key) {
138 case CSR_VENDOR: id[0] = value; break;
139 case CSR_MODEL: id[1] = value; break;
140 case CSR_SPECIFIER_ID: id[2] = value; break;
141 case CSR_VERSION: id[3] = value; break;
142 }
143 }
144 }
145
146 static void get_modalias_ids(struct fw_unit *unit, int *id)
147 {
148 get_ids(&fw_parent_device(unit)->config_rom[5], id);
149 get_ids(unit->directory, id);
150 }
151
152 static bool match_ids(const struct ieee1394_device_id *id_table, int *id)
153 {
154 int match = 0;
155
156 if (id[0] == id_table->vendor_id)
157 match |= IEEE1394_MATCH_VENDOR_ID;
158 if (id[1] == id_table->model_id)
159 match |= IEEE1394_MATCH_MODEL_ID;
160 if (id[2] == id_table->specifier_id)
161 match |= IEEE1394_MATCH_SPECIFIER_ID;
162 if (id[3] == id_table->version)
163 match |= IEEE1394_MATCH_VERSION;
164
165 return (match & id_table->match_flags) == id_table->match_flags;
166 }
167
168 static bool is_fw_unit(struct device *dev);
169
170 static int fw_unit_match(struct device *dev, struct device_driver *drv)
171 {
172 const struct ieee1394_device_id *id_table =
173 container_of(drv, struct fw_driver, driver)->id_table;
174 int id[] = {0, 0, 0, 0};
175
176 /* We only allow binding to fw_units. */
177 if (!is_fw_unit(dev))
178 return 0;
179
180 get_modalias_ids(fw_unit(dev), id);
181
182 for (; id_table->match_flags != 0; id_table++)
183 if (match_ids(id_table, id))
184 return 1;
185
186 return 0;
187 }
188
189 static int get_modalias(struct fw_unit *unit, char *buffer, size_t buffer_size)
190 {
191 int id[] = {0, 0, 0, 0};
192
193 get_modalias_ids(unit, id);
194
195 return snprintf(buffer, buffer_size,
196 "ieee1394:ven%08Xmo%08Xsp%08Xver%08X",
197 id[0], id[1], id[2], id[3]);
198 }
199
200 static int fw_unit_uevent(struct device *dev, struct kobj_uevent_env *env)
201 {
202 struct fw_unit *unit = fw_unit(dev);
203 char modalias[64];
204
205 get_modalias(unit, modalias, sizeof(modalias));
206
207 if (add_uevent_var(env, "MODALIAS=%s", modalias))
208 return -ENOMEM;
209
210 return 0;
211 }
212
213 struct bus_type fw_bus_type = {
214 .name = "firewire",
215 .match = fw_unit_match,
216 };
217 EXPORT_SYMBOL(fw_bus_type);
218
219 int fw_device_enable_phys_dma(struct fw_device *device)
220 {
221 int generation = device->generation;
222
223 /* device->node_id, accessed below, must not be older than generation */
224 smp_rmb();
225
226 return device->card->driver->enable_phys_dma(device->card,
227 device->node_id,
228 generation);
229 }
230 EXPORT_SYMBOL(fw_device_enable_phys_dma);
231
232 struct config_rom_attribute {
233 struct device_attribute attr;
234 u32 key;
235 };
236
237 static ssize_t show_immediate(struct device *dev,
238 struct device_attribute *dattr, char *buf)
239 {
240 struct config_rom_attribute *attr =
241 container_of(dattr, struct config_rom_attribute, attr);
242 struct fw_csr_iterator ci;
243 const u32 *dir;
244 int key, value, ret = -ENOENT;
245
246 down_read(&fw_device_rwsem);
247
248 if (is_fw_unit(dev))
249 dir = fw_unit(dev)->directory;
250 else
251 dir = fw_device(dev)->config_rom + 5;
252
253 fw_csr_iterator_init(&ci, dir);
254 while (fw_csr_iterator_next(&ci, &key, &value))
255 if (attr->key == key) {
256 ret = snprintf(buf, buf ? PAGE_SIZE : 0,
257 "0x%06x\n", value);
258 break;
259 }
260
261 up_read(&fw_device_rwsem);
262
263 return ret;
264 }
265
266 #define IMMEDIATE_ATTR(name, key) \
267 { __ATTR(name, S_IRUGO, show_immediate, NULL), key }
268
269 static ssize_t show_text_leaf(struct device *dev,
270 struct device_attribute *dattr, char *buf)
271 {
272 struct config_rom_attribute *attr =
273 container_of(dattr, struct config_rom_attribute, attr);
274 const u32 *dir;
275 size_t bufsize;
276 char dummy_buf[2];
277 int ret;
278
279 down_read(&fw_device_rwsem);
280
281 if (is_fw_unit(dev))
282 dir = fw_unit(dev)->directory;
283 else
284 dir = fw_device(dev)->config_rom + 5;
285
286 if (buf) {
287 bufsize = PAGE_SIZE - 1;
288 } else {
289 buf = dummy_buf;
290 bufsize = 1;
291 }
292
293 ret = fw_csr_string(dir, attr->key, buf, bufsize);
294
295 if (ret >= 0) {
296 /* Strip trailing whitespace and add newline. */
297 while (ret > 0 && isspace(buf[ret - 1]))
298 ret--;
299 strcpy(buf + ret, "\n");
300 ret++;
301 }
302
303 up_read(&fw_device_rwsem);
304
305 return ret;
306 }
307
308 #define TEXT_LEAF_ATTR(name, key) \
309 { __ATTR(name, S_IRUGO, show_text_leaf, NULL), key }
310
311 static struct config_rom_attribute config_rom_attributes[] = {
312 IMMEDIATE_ATTR(vendor, CSR_VENDOR),
313 IMMEDIATE_ATTR(hardware_version, CSR_HARDWARE_VERSION),
314 IMMEDIATE_ATTR(specifier_id, CSR_SPECIFIER_ID),
315 IMMEDIATE_ATTR(version, CSR_VERSION),
316 IMMEDIATE_ATTR(model, CSR_MODEL),
317 TEXT_LEAF_ATTR(vendor_name, CSR_VENDOR),
318 TEXT_LEAF_ATTR(model_name, CSR_MODEL),
319 TEXT_LEAF_ATTR(hardware_version_name, CSR_HARDWARE_VERSION),
320 };
321
322 static void init_fw_attribute_group(struct device *dev,
323 struct device_attribute *attrs,
324 struct fw_attribute_group *group)
325 {
326 struct device_attribute *attr;
327 int i, j;
328
329 for (j = 0; attrs[j].attr.name != NULL; j++)
330 group->attrs[j] = &attrs[j].attr;
331
332 for (i = 0; i < ARRAY_SIZE(config_rom_attributes); i++) {
333 attr = &config_rom_attributes[i].attr;
334 if (attr->show(dev, attr, NULL) < 0)
335 continue;
336 group->attrs[j++] = &attr->attr;
337 }
338
339 group->attrs[j] = NULL;
340 group->groups[0] = &group->group;
341 group->groups[1] = NULL;
342 group->group.attrs = group->attrs;
343 dev->groups = (const struct attribute_group **) group->groups;
344 }
345
346 static ssize_t modalias_show(struct device *dev,
347 struct device_attribute *attr, char *buf)
348 {
349 struct fw_unit *unit = fw_unit(dev);
350 int length;
351
352 length = get_modalias(unit, buf, PAGE_SIZE);
353 strcpy(buf + length, "\n");
354
355 return length + 1;
356 }
357
358 static ssize_t rom_index_show(struct device *dev,
359 struct device_attribute *attr, char *buf)
360 {
361 struct fw_device *device = fw_device(dev->parent);
362 struct fw_unit *unit = fw_unit(dev);
363
364 return snprintf(buf, PAGE_SIZE, "%d\n",
365 (int)(unit->directory - device->config_rom));
366 }
367
368 static struct device_attribute fw_unit_attributes[] = {
369 __ATTR_RO(modalias),
370 __ATTR_RO(rom_index),
371 __ATTR_NULL,
372 };
373
374 static ssize_t config_rom_show(struct device *dev,
375 struct device_attribute *attr, char *buf)
376 {
377 struct fw_device *device = fw_device(dev);
378 size_t length;
379
380 down_read(&fw_device_rwsem);
381 length = device->config_rom_length * 4;
382 memcpy(buf, device->config_rom, length);
383 up_read(&fw_device_rwsem);
384
385 return length;
386 }
387
388 static ssize_t guid_show(struct device *dev,
389 struct device_attribute *attr, char *buf)
390 {
391 struct fw_device *device = fw_device(dev);
392 int ret;
393
394 down_read(&fw_device_rwsem);
395 ret = snprintf(buf, PAGE_SIZE, "0x%08x%08x\n",
396 device->config_rom[3], device->config_rom[4]);
397 up_read(&fw_device_rwsem);
398
399 return ret;
400 }
401
402 static int units_sprintf(char *buf, const u32 *directory)
403 {
404 struct fw_csr_iterator ci;
405 int key, value;
406 int specifier_id = 0;
407 int version = 0;
408
409 fw_csr_iterator_init(&ci, directory);
410 while (fw_csr_iterator_next(&ci, &key, &value)) {
411 switch (key) {
412 case CSR_SPECIFIER_ID:
413 specifier_id = value;
414 break;
415 case CSR_VERSION:
416 version = value;
417 break;
418 }
419 }
420
421 return sprintf(buf, "0x%06x:0x%06x ", specifier_id, version);
422 }
423
424 static ssize_t units_show(struct device *dev,
425 struct device_attribute *attr, char *buf)
426 {
427 struct fw_device *device = fw_device(dev);
428 struct fw_csr_iterator ci;
429 int key, value, i = 0;
430
431 down_read(&fw_device_rwsem);
432 fw_csr_iterator_init(&ci, &device->config_rom[5]);
433 while (fw_csr_iterator_next(&ci, &key, &value)) {
434 if (key != (CSR_UNIT | CSR_DIRECTORY))
435 continue;
436 i += units_sprintf(&buf[i], ci.p + value - 1);
437 if (i >= PAGE_SIZE - (8 + 1 + 8 + 1))
438 break;
439 }
440 up_read(&fw_device_rwsem);
441
442 if (i)
443 buf[i - 1] = '\n';
444
445 return i;
446 }
447
448 static struct device_attribute fw_device_attributes[] = {
449 __ATTR_RO(config_rom),
450 __ATTR_RO(guid),
451 __ATTR_RO(units),
452 __ATTR_NULL,
453 };
454
455 static int read_rom(struct fw_device *device,
456 int generation, int index, u32 *data)
457 {
458 int rcode;
459
460 /* device->node_id, accessed below, must not be older than generation */
461 smp_rmb();
462
463 rcode = fw_run_transaction(device->card, TCODE_READ_QUADLET_REQUEST,
464 device->node_id, generation, device->max_speed,
465 (CSR_REGISTER_BASE | CSR_CONFIG_ROM) + index * 4,
466 data, 4);
467 be32_to_cpus(data);
468
469 return rcode;
470 }
471
472 #define MAX_CONFIG_ROM_SIZE 256
473
474 /*
475 * Read the bus info block, perform a speed probe, and read all of the rest of
476 * the config ROM. We do all this with a cached bus generation. If the bus
477 * generation changes under us, read_config_rom will fail and get retried.
478 * It's better to start all over in this case because the node from which we
479 * are reading the ROM may have changed the ROM during the reset.
480 */
481 static int read_config_rom(struct fw_device *device, int generation)
482 {
483 const u32 *old_rom, *new_rom;
484 u32 *rom, *stack;
485 u32 sp, key;
486 int i, end, length, ret = -1;
487
488 rom = kmalloc(sizeof(*rom) * MAX_CONFIG_ROM_SIZE +
489 sizeof(*stack) * MAX_CONFIG_ROM_SIZE, GFP_KERNEL);
490 if (rom == NULL)
491 return -ENOMEM;
492
493 stack = &rom[MAX_CONFIG_ROM_SIZE];
494 memset(rom, 0, sizeof(*rom) * MAX_CONFIG_ROM_SIZE);
495
496 device->max_speed = SCODE_100;
497
498 /* First read the bus info block. */
499 for (i = 0; i < 5; i++) {
500 if (read_rom(device, generation, i, &rom[i]) != RCODE_COMPLETE)
501 goto out;
502 /*
503 * As per IEEE1212 7.2, during power-up, devices can
504 * reply with a 0 for the first quadlet of the config
505 * rom to indicate that they are booting (for example,
506 * if the firmware is on the disk of a external
507 * harddisk). In that case we just fail, and the
508 * retry mechanism will try again later.
509 */
510 if (i == 0 && rom[i] == 0)
511 goto out;
512 }
513
514 device->max_speed = device->node->max_speed;
515
516 /*
517 * Determine the speed of
518 * - devices with link speed less than PHY speed,
519 * - devices with 1394b PHY (unless only connected to 1394a PHYs),
520 * - all devices if there are 1394b repeaters.
521 * Note, we cannot use the bus info block's link_spd as starting point
522 * because some buggy firmwares set it lower than necessary and because
523 * 1394-1995 nodes do not have the field.
524 */
525 if ((rom[2] & 0x7) < device->max_speed ||
526 device->max_speed == SCODE_BETA ||
527 device->card->beta_repeaters_present) {
528 u32 dummy;
529
530 /* for S1600 and S3200 */
531 if (device->max_speed == SCODE_BETA)
532 device->max_speed = device->card->link_speed;
533
534 while (device->max_speed > SCODE_100) {
535 if (read_rom(device, generation, 0, &dummy) ==
536 RCODE_COMPLETE)
537 break;
538 device->max_speed--;
539 }
540 }
541
542 /*
543 * Now parse the config rom. The config rom is a recursive
544 * directory structure so we parse it using a stack of
545 * references to the blocks that make up the structure. We
546 * push a reference to the root directory on the stack to
547 * start things off.
548 */
549 length = i;
550 sp = 0;
551 stack[sp++] = 0xc0000005;
552 while (sp > 0) {
553 /*
554 * Pop the next block reference of the stack. The
555 * lower 24 bits is the offset into the config rom,
556 * the upper 8 bits are the type of the reference the
557 * block.
558 */
559 key = stack[--sp];
560 i = key & 0xffffff;
561 if (WARN_ON(i >= MAX_CONFIG_ROM_SIZE))
562 goto out;
563
564 /* Read header quadlet for the block to get the length. */
565 if (read_rom(device, generation, i, &rom[i]) != RCODE_COMPLETE)
566 goto out;
567 end = i + (rom[i] >> 16) + 1;
568 if (end > MAX_CONFIG_ROM_SIZE) {
569 /*
570 * This block extends outside the config ROM which is
571 * a firmware bug. Ignore this whole block, i.e.
572 * simply set a fake block length of 0.
573 */
574 fw_error("skipped invalid ROM block %x at %llx\n",
575 rom[i],
576 i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM);
577 rom[i] = 0;
578 end = i;
579 }
580 i++;
581
582 /*
583 * Now read in the block. If this is a directory
584 * block, check the entries as we read them to see if
585 * it references another block, and push it in that case.
586 */
587 for (; i < end; i++) {
588 if (read_rom(device, generation, i, &rom[i]) !=
589 RCODE_COMPLETE)
590 goto out;
591
592 if ((key >> 30) != 3 || (rom[i] >> 30) < 2)
593 continue;
594 /*
595 * Offset points outside the ROM. May be a firmware
596 * bug or an Extended ROM entry (IEEE 1212-2001 clause
597 * 7.7.18). Simply overwrite this pointer here by a
598 * fake immediate entry so that later iterators over
599 * the ROM don't have to check offsets all the time.
600 */
601 if (i + (rom[i] & 0xffffff) >= MAX_CONFIG_ROM_SIZE) {
602 fw_error("skipped unsupported ROM entry %x at %llx\n",
603 rom[i],
604 i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM);
605 rom[i] = 0;
606 continue;
607 }
608 stack[sp++] = i + rom[i];
609 }
610 if (length < i)
611 length = i;
612 }
613
614 old_rom = device->config_rom;
615 new_rom = kmemdup(rom, length * 4, GFP_KERNEL);
616 if (new_rom == NULL)
617 goto out;
618
619 down_write(&fw_device_rwsem);
620 device->config_rom = new_rom;
621 device->config_rom_length = length;
622 up_write(&fw_device_rwsem);
623
624 kfree(old_rom);
625 ret = 0;
626 device->max_rec = rom[2] >> 12 & 0xf;
627 device->cmc = rom[2] >> 30 & 1;
628 device->irmc = rom[2] >> 31 & 1;
629 out:
630 kfree(rom);
631
632 return ret;
633 }
634
635 static void fw_unit_release(struct device *dev)
636 {
637 struct fw_unit *unit = fw_unit(dev);
638
639 kfree(unit);
640 }
641
642 static struct device_type fw_unit_type = {
643 .uevent = fw_unit_uevent,
644 .release = fw_unit_release,
645 };
646
647 static bool is_fw_unit(struct device *dev)
648 {
649 return dev->type == &fw_unit_type;
650 }
651
652 static void create_units(struct fw_device *device)
653 {
654 struct fw_csr_iterator ci;
655 struct fw_unit *unit;
656 int key, value, i;
657
658 i = 0;
659 fw_csr_iterator_init(&ci, &device->config_rom[5]);
660 while (fw_csr_iterator_next(&ci, &key, &value)) {
661 if (key != (CSR_UNIT | CSR_DIRECTORY))
662 continue;
663
664 /*
665 * Get the address of the unit directory and try to
666 * match the drivers id_tables against it.
667 */
668 unit = kzalloc(sizeof(*unit), GFP_KERNEL);
669 if (unit == NULL) {
670 fw_error("failed to allocate memory for unit\n");
671 continue;
672 }
673
674 unit->directory = ci.p + value - 1;
675 unit->device.bus = &fw_bus_type;
676 unit->device.type = &fw_unit_type;
677 unit->device.parent = &device->device;
678 dev_set_name(&unit->device, "%s.%d", dev_name(&device->device), i++);
679
680 BUILD_BUG_ON(ARRAY_SIZE(unit->attribute_group.attrs) <
681 ARRAY_SIZE(fw_unit_attributes) +
682 ARRAY_SIZE(config_rom_attributes));
683 init_fw_attribute_group(&unit->device,
684 fw_unit_attributes,
685 &unit->attribute_group);
686
687 if (device_register(&unit->device) < 0)
688 goto skip_unit;
689
690 continue;
691
692 skip_unit:
693 kfree(unit);
694 }
695 }
696
697 static int shutdown_unit(struct device *device, void *data)
698 {
699 device_unregister(device);
700
701 return 0;
702 }
703
704 /*
705 * fw_device_rwsem acts as dual purpose mutex:
706 * - serializes accesses to fw_device_idr,
707 * - serializes accesses to fw_device.config_rom/.config_rom_length and
708 * fw_unit.directory, unless those accesses happen at safe occasions
709 */
710 DECLARE_RWSEM(fw_device_rwsem);
711
712 DEFINE_IDR(fw_device_idr);
713 int fw_cdev_major;
714
715 struct fw_device *fw_device_get_by_devt(dev_t devt)
716 {
717 struct fw_device *device;
718
719 down_read(&fw_device_rwsem);
720 device = idr_find(&fw_device_idr, MINOR(devt));
721 if (device)
722 fw_device_get(device);
723 up_read(&fw_device_rwsem);
724
725 return device;
726 }
727
728 struct workqueue_struct *fw_workqueue;
729 EXPORT_SYMBOL(fw_workqueue);
730
731 static void fw_schedule_device_work(struct fw_device *device,
732 unsigned long delay)
733 {
734 queue_delayed_work(fw_workqueue, &device->work, delay);
735 }
736
737 /*
738 * These defines control the retry behavior for reading the config
739 * rom. It shouldn't be necessary to tweak these; if the device
740 * doesn't respond to a config rom read within 10 seconds, it's not
741 * going to respond at all. As for the initial delay, a lot of
742 * devices will be able to respond within half a second after bus
743 * reset. On the other hand, it's not really worth being more
744 * aggressive than that, since it scales pretty well; if 10 devices
745 * are plugged in, they're all getting read within one second.
746 */
747
748 #define MAX_RETRIES 10
749 #define RETRY_DELAY (3 * HZ)
750 #define INITIAL_DELAY (HZ / 2)
751 #define SHUTDOWN_DELAY (2 * HZ)
752
753 static void fw_device_shutdown(struct work_struct *work)
754 {
755 struct fw_device *device =
756 container_of(work, struct fw_device, work.work);
757 int minor = MINOR(device->device.devt);
758
759 if (time_before64(get_jiffies_64(),
760 device->card->reset_jiffies + SHUTDOWN_DELAY)
761 && !list_empty(&device->card->link)) {
762 fw_schedule_device_work(device, SHUTDOWN_DELAY);
763 return;
764 }
765
766 if (atomic_cmpxchg(&device->state,
767 FW_DEVICE_GONE,
768 FW_DEVICE_SHUTDOWN) != FW_DEVICE_GONE)
769 return;
770
771 fw_device_cdev_remove(device);
772 device_for_each_child(&device->device, NULL, shutdown_unit);
773 device_unregister(&device->device);
774
775 down_write(&fw_device_rwsem);
776 idr_remove(&fw_device_idr, minor);
777 up_write(&fw_device_rwsem);
778
779 fw_device_put(device);
780 }
781
782 static void fw_device_release(struct device *dev)
783 {
784 struct fw_device *device = fw_device(dev);
785 struct fw_card *card = device->card;
786 unsigned long flags;
787
788 /*
789 * Take the card lock so we don't set this to NULL while a
790 * FW_NODE_UPDATED callback is being handled or while the
791 * bus manager work looks at this node.
792 */
793 spin_lock_irqsave(&card->lock, flags);
794 device->node->data = NULL;
795 spin_unlock_irqrestore(&card->lock, flags);
796
797 fw_node_put(device->node);
798 kfree(device->config_rom);
799 kfree(device);
800 fw_card_put(card);
801 }
802
803 static struct device_type fw_device_type = {
804 .release = fw_device_release,
805 };
806
807 static bool is_fw_device(struct device *dev)
808 {
809 return dev->type == &fw_device_type;
810 }
811
812 static int update_unit(struct device *dev, void *data)
813 {
814 struct fw_unit *unit = fw_unit(dev);
815 struct fw_driver *driver = (struct fw_driver *)dev->driver;
816
817 if (is_fw_unit(dev) && driver != NULL && driver->update != NULL) {
818 device_lock(dev);
819 driver->update(unit);
820 device_unlock(dev);
821 }
822
823 return 0;
824 }
825
826 static void fw_device_update(struct work_struct *work)
827 {
828 struct fw_device *device =
829 container_of(work, struct fw_device, work.work);
830
831 fw_device_cdev_update(device);
832 device_for_each_child(&device->device, NULL, update_unit);
833 }
834
835 /*
836 * If a device was pending for deletion because its node went away but its
837 * bus info block and root directory header matches that of a newly discovered
838 * device, revive the existing fw_device.
839 * The newly allocated fw_device becomes obsolete instead.
840 */
841 static int lookup_existing_device(struct device *dev, void *data)
842 {
843 struct fw_device *old = fw_device(dev);
844 struct fw_device *new = data;
845 struct fw_card *card = new->card;
846 int match = 0;
847
848 if (!is_fw_device(dev))
849 return 0;
850
851 down_read(&fw_device_rwsem); /* serialize config_rom access */
852 spin_lock_irq(&card->lock); /* serialize node access */
853
854 if (memcmp(old->config_rom, new->config_rom, 6 * 4) == 0 &&
855 atomic_cmpxchg(&old->state,
856 FW_DEVICE_GONE,
857 FW_DEVICE_RUNNING) == FW_DEVICE_GONE) {
858 struct fw_node *current_node = new->node;
859 struct fw_node *obsolete_node = old->node;
860
861 new->node = obsolete_node;
862 new->node->data = new;
863 old->node = current_node;
864 old->node->data = old;
865
866 old->max_speed = new->max_speed;
867 old->node_id = current_node->node_id;
868 smp_wmb(); /* update node_id before generation */
869 old->generation = card->generation;
870 old->config_rom_retries = 0;
871 fw_notify("rediscovered device %s\n", dev_name(dev));
872
873 PREPARE_DELAYED_WORK(&old->work, fw_device_update);
874 fw_schedule_device_work(old, 0);
875
876 if (current_node == card->root_node)
877 fw_schedule_bm_work(card, 0);
878
879 match = 1;
880 }
881
882 spin_unlock_irq(&card->lock);
883 up_read(&fw_device_rwsem);
884
885 return match;
886 }
887
888 enum { BC_UNKNOWN = 0, BC_UNIMPLEMENTED, BC_IMPLEMENTED, };
889
890 static void set_broadcast_channel(struct fw_device *device, int generation)
891 {
892 struct fw_card *card = device->card;
893 __be32 data;
894 int rcode;
895
896 if (!card->broadcast_channel_allocated)
897 return;
898
899 /*
900 * The Broadcast_Channel Valid bit is required by nodes which want to
901 * transmit on this channel. Such transmissions are practically
902 * exclusive to IP over 1394 (RFC 2734). IP capable nodes are required
903 * to be IRM capable and have a max_rec of 8 or more. We use this fact
904 * to narrow down to which nodes we send Broadcast_Channel updates.
905 */
906 if (!device->irmc || device->max_rec < 8)
907 return;
908
909 /*
910 * Some 1394-1995 nodes crash if this 1394a-2000 register is written.
911 * Perform a read test first.
912 */
913 if (device->bc_implemented == BC_UNKNOWN) {
914 rcode = fw_run_transaction(card, TCODE_READ_QUADLET_REQUEST,
915 device->node_id, generation, device->max_speed,
916 CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL,
917 &data, 4);
918 switch (rcode) {
919 case RCODE_COMPLETE:
920 if (data & cpu_to_be32(1 << 31)) {
921 device->bc_implemented = BC_IMPLEMENTED;
922 break;
923 }
924 /* else fall through to case address error */
925 case RCODE_ADDRESS_ERROR:
926 device->bc_implemented = BC_UNIMPLEMENTED;
927 }
928 }
929
930 if (device->bc_implemented == BC_IMPLEMENTED) {
931 data = cpu_to_be32(BROADCAST_CHANNEL_INITIAL |
932 BROADCAST_CHANNEL_VALID);
933 fw_run_transaction(card, TCODE_WRITE_QUADLET_REQUEST,
934 device->node_id, generation, device->max_speed,
935 CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL,
936 &data, 4);
937 }
938 }
939
940 int fw_device_set_broadcast_channel(struct device *dev, void *gen)
941 {
942 if (is_fw_device(dev))
943 set_broadcast_channel(fw_device(dev), (long)gen);
944
945 return 0;
946 }
947
948 static void fw_device_init(struct work_struct *work)
949 {
950 struct fw_device *device =
951 container_of(work, struct fw_device, work.work);
952 struct device *revived_dev;
953 int minor, ret;
954
955 /*
956 * All failure paths here set node->data to NULL, so that we
957 * don't try to do device_for_each_child() on a kfree()'d
958 * device.
959 */
960
961 if (read_config_rom(device, device->generation) < 0) {
962 if (device->config_rom_retries < MAX_RETRIES &&
963 atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
964 device->config_rom_retries++;
965 fw_schedule_device_work(device, RETRY_DELAY);
966 } else {
967 if (device->node->link_on)
968 fw_notify("giving up on config rom for node id %x\n",
969 device->node_id);
970 if (device->node == device->card->root_node)
971 fw_schedule_bm_work(device->card, 0);
972 fw_device_release(&device->device);
973 }
974 return;
975 }
976
977 revived_dev = device_find_child(device->card->device,
978 device, lookup_existing_device);
979 if (revived_dev) {
980 put_device(revived_dev);
981 fw_device_release(&device->device);
982
983 return;
984 }
985
986 device_initialize(&device->device);
987
988 fw_device_get(device);
989 down_write(&fw_device_rwsem);
990 ret = idr_pre_get(&fw_device_idr, GFP_KERNEL) ?
991 idr_get_new(&fw_device_idr, device, &minor) :
992 -ENOMEM;
993 up_write(&fw_device_rwsem);
994
995 if (ret < 0)
996 goto error;
997
998 device->device.bus = &fw_bus_type;
999 device->device.type = &fw_device_type;
1000 device->device.parent = device->card->device;
1001 device->device.devt = MKDEV(fw_cdev_major, minor);
1002 dev_set_name(&device->device, "fw%d", minor);
1003
1004 BUILD_BUG_ON(ARRAY_SIZE(device->attribute_group.attrs) <
1005 ARRAY_SIZE(fw_device_attributes) +
1006 ARRAY_SIZE(config_rom_attributes));
1007 init_fw_attribute_group(&device->device,
1008 fw_device_attributes,
1009 &device->attribute_group);
1010
1011 if (device_add(&device->device)) {
1012 fw_error("Failed to add device.\n");
1013 goto error_with_cdev;
1014 }
1015
1016 create_units(device);
1017
1018 /*
1019 * Transition the device to running state. If it got pulled
1020 * out from under us while we did the intialization work, we
1021 * have to shut down the device again here. Normally, though,
1022 * fw_node_event will be responsible for shutting it down when
1023 * necessary. We have to use the atomic cmpxchg here to avoid
1024 * racing with the FW_NODE_DESTROYED case in
1025 * fw_node_event().
1026 */
1027 if (atomic_cmpxchg(&device->state,
1028 FW_DEVICE_INITIALIZING,
1029 FW_DEVICE_RUNNING) == FW_DEVICE_GONE) {
1030 PREPARE_DELAYED_WORK(&device->work, fw_device_shutdown);
1031 fw_schedule_device_work(device, SHUTDOWN_DELAY);
1032 } else {
1033 if (device->config_rom_retries)
1034 fw_notify("created device %s: GUID %08x%08x, S%d00, "
1035 "%d config ROM retries\n",
1036 dev_name(&device->device),
1037 device->config_rom[3], device->config_rom[4],
1038 1 << device->max_speed,
1039 device->config_rom_retries);
1040 else
1041 fw_notify("created device %s: GUID %08x%08x, S%d00\n",
1042 dev_name(&device->device),
1043 device->config_rom[3], device->config_rom[4],
1044 1 << device->max_speed);
1045 device->config_rom_retries = 0;
1046
1047 set_broadcast_channel(device, device->generation);
1048 }
1049
1050 /*
1051 * Reschedule the IRM work if we just finished reading the
1052 * root node config rom. If this races with a bus reset we
1053 * just end up running the IRM work a couple of extra times -
1054 * pretty harmless.
1055 */
1056 if (device->node == device->card->root_node)
1057 fw_schedule_bm_work(device->card, 0);
1058
1059 return;
1060
1061 error_with_cdev:
1062 down_write(&fw_device_rwsem);
1063 idr_remove(&fw_device_idr, minor);
1064 up_write(&fw_device_rwsem);
1065 error:
1066 fw_device_put(device); /* fw_device_idr's reference */
1067
1068 put_device(&device->device); /* our reference */
1069 }
1070
1071 enum {
1072 REREAD_BIB_ERROR,
1073 REREAD_BIB_GONE,
1074 REREAD_BIB_UNCHANGED,
1075 REREAD_BIB_CHANGED,
1076 };
1077
1078 /* Reread and compare bus info block and header of root directory */
1079 static int reread_config_rom(struct fw_device *device, int generation)
1080 {
1081 u32 q;
1082 int i;
1083
1084 for (i = 0; i < 6; i++) {
1085 if (read_rom(device, generation, i, &q) != RCODE_COMPLETE)
1086 return REREAD_BIB_ERROR;
1087
1088 if (i == 0 && q == 0)
1089 return REREAD_BIB_GONE;
1090
1091 if (q != device->config_rom[i])
1092 return REREAD_BIB_CHANGED;
1093 }
1094
1095 return REREAD_BIB_UNCHANGED;
1096 }
1097
1098 static void fw_device_refresh(struct work_struct *work)
1099 {
1100 struct fw_device *device =
1101 container_of(work, struct fw_device, work.work);
1102 struct fw_card *card = device->card;
1103 int node_id = device->node_id;
1104
1105 switch (reread_config_rom(device, device->generation)) {
1106 case REREAD_BIB_ERROR:
1107 if (device->config_rom_retries < MAX_RETRIES / 2 &&
1108 atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
1109 device->config_rom_retries++;
1110 fw_schedule_device_work(device, RETRY_DELAY / 2);
1111
1112 return;
1113 }
1114 goto give_up;
1115
1116 case REREAD_BIB_GONE:
1117 goto gone;
1118
1119 case REREAD_BIB_UNCHANGED:
1120 if (atomic_cmpxchg(&device->state,
1121 FW_DEVICE_INITIALIZING,
1122 FW_DEVICE_RUNNING) == FW_DEVICE_GONE)
1123 goto gone;
1124
1125 fw_device_update(work);
1126 device->config_rom_retries = 0;
1127 goto out;
1128
1129 case REREAD_BIB_CHANGED:
1130 break;
1131 }
1132
1133 /*
1134 * Something changed. We keep things simple and don't investigate
1135 * further. We just destroy all previous units and create new ones.
1136 */
1137 device_for_each_child(&device->device, NULL, shutdown_unit);
1138
1139 if (read_config_rom(device, device->generation) < 0) {
1140 if (device->config_rom_retries < MAX_RETRIES &&
1141 atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
1142 device->config_rom_retries++;
1143 fw_schedule_device_work(device, RETRY_DELAY);
1144
1145 return;
1146 }
1147 goto give_up;
1148 }
1149
1150 fw_device_cdev_update(device);
1151 create_units(device);
1152
1153 /* Userspace may want to re-read attributes. */
1154 kobject_uevent(&device->device.kobj, KOBJ_CHANGE);
1155
1156 if (atomic_cmpxchg(&device->state,
1157 FW_DEVICE_INITIALIZING,
1158 FW_DEVICE_RUNNING) == FW_DEVICE_GONE)
1159 goto gone;
1160
1161 fw_notify("refreshed device %s\n", dev_name(&device->device));
1162 device->config_rom_retries = 0;
1163 goto out;
1164
1165 give_up:
1166 fw_notify("giving up on refresh of device %s\n", dev_name(&device->device));
1167 gone:
1168 atomic_set(&device->state, FW_DEVICE_GONE);
1169 PREPARE_DELAYED_WORK(&device->work, fw_device_shutdown);
1170 fw_schedule_device_work(device, SHUTDOWN_DELAY);
1171 out:
1172 if (node_id == card->root_node->node_id)
1173 fw_schedule_bm_work(card, 0);
1174 }
1175
1176 void fw_node_event(struct fw_card *card, struct fw_node *node, int event)
1177 {
1178 struct fw_device *device;
1179
1180 switch (event) {
1181 case FW_NODE_CREATED:
1182 /*
1183 * Attempt to scan the node, regardless whether its self ID has
1184 * the L (link active) flag set or not. Some broken devices
1185 * send L=0 but have an up-and-running link; others send L=1
1186 * without actually having a link.
1187 */
1188 create:
1189 device = kzalloc(sizeof(*device), GFP_ATOMIC);
1190 if (device == NULL)
1191 break;
1192
1193 /*
1194 * Do minimal intialization of the device here, the
1195 * rest will happen in fw_device_init().
1196 *
1197 * Attention: A lot of things, even fw_device_get(),
1198 * cannot be done before fw_device_init() finished!
1199 * You can basically just check device->state and
1200 * schedule work until then, but only while holding
1201 * card->lock.
1202 */
1203 atomic_set(&device->state, FW_DEVICE_INITIALIZING);
1204 device->card = fw_card_get(card);
1205 device->node = fw_node_get(node);
1206 device->node_id = node->node_id;
1207 device->generation = card->generation;
1208 device->is_local = node == card->local_node;
1209 mutex_init(&device->client_list_mutex);
1210 INIT_LIST_HEAD(&device->client_list);
1211
1212 /*
1213 * Set the node data to point back to this device so
1214 * FW_NODE_UPDATED callbacks can update the node_id
1215 * and generation for the device.
1216 */
1217 node->data = device;
1218
1219 /*
1220 * Many devices are slow to respond after bus resets,
1221 * especially if they are bus powered and go through
1222 * power-up after getting plugged in. We schedule the
1223 * first config rom scan half a second after bus reset.
1224 */
1225 INIT_DELAYED_WORK(&device->work, fw_device_init);
1226 fw_schedule_device_work(device, INITIAL_DELAY);
1227 break;
1228
1229 case FW_NODE_INITIATED_RESET:
1230 case FW_NODE_LINK_ON:
1231 device = node->data;
1232 if (device == NULL)
1233 goto create;
1234
1235 device->node_id = node->node_id;
1236 smp_wmb(); /* update node_id before generation */
1237 device->generation = card->generation;
1238 if (atomic_cmpxchg(&device->state,
1239 FW_DEVICE_RUNNING,
1240 FW_DEVICE_INITIALIZING) == FW_DEVICE_RUNNING) {
1241 PREPARE_DELAYED_WORK(&device->work, fw_device_refresh);
1242 fw_schedule_device_work(device,
1243 device->is_local ? 0 : INITIAL_DELAY);
1244 }
1245 break;
1246
1247 case FW_NODE_UPDATED:
1248 device = node->data;
1249 if (device == NULL)
1250 break;
1251
1252 device->node_id = node->node_id;
1253 smp_wmb(); /* update node_id before generation */
1254 device->generation = card->generation;
1255 if (atomic_read(&device->state) == FW_DEVICE_RUNNING) {
1256 PREPARE_DELAYED_WORK(&device->work, fw_device_update);
1257 fw_schedule_device_work(device, 0);
1258 }
1259 break;
1260
1261 case FW_NODE_DESTROYED:
1262 case FW_NODE_LINK_OFF:
1263 if (!node->data)
1264 break;
1265
1266 /*
1267 * Destroy the device associated with the node. There
1268 * are two cases here: either the device is fully
1269 * initialized (FW_DEVICE_RUNNING) or we're in the
1270 * process of reading its config rom
1271 * (FW_DEVICE_INITIALIZING). If it is fully
1272 * initialized we can reuse device->work to schedule a
1273 * full fw_device_shutdown(). If not, there's work
1274 * scheduled to read it's config rom, and we just put
1275 * the device in shutdown state to have that code fail
1276 * to create the device.
1277 */
1278 device = node->data;
1279 if (atomic_xchg(&device->state,
1280 FW_DEVICE_GONE) == FW_DEVICE_RUNNING) {
1281 PREPARE_DELAYED_WORK(&device->work, fw_device_shutdown);
1282 fw_schedule_device_work(device,
1283 list_empty(&card->link) ? 0 : SHUTDOWN_DELAY);
1284 }
1285 break;
1286 }
1287 }