]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/firewire/core-device.c
firewire: core: fix an information leak
[mirror_ubuntu-hirsute-kernel.git] / drivers / firewire / core-device.c
1 /*
2 * Device probing and sysfs code.
3 *
4 * Copyright (C) 2005-2006 Kristian Hoegsberg <krh@bitplanet.net>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21 #include <linux/bug.h>
22 #include <linux/ctype.h>
23 #include <linux/delay.h>
24 #include <linux/device.h>
25 #include <linux/errno.h>
26 #include <linux/firewire.h>
27 #include <linux/firewire-constants.h>
28 #include <linux/idr.h>
29 #include <linux/jiffies.h>
30 #include <linux/kobject.h>
31 #include <linux/list.h>
32 #include <linux/mod_devicetable.h>
33 #include <linux/module.h>
34 #include <linux/mutex.h>
35 #include <linux/rwsem.h>
36 #include <linux/semaphore.h>
37 #include <linux/spinlock.h>
38 #include <linux/string.h>
39 #include <linux/workqueue.h>
40
41 #include <asm/atomic.h>
42 #include <asm/byteorder.h>
43 #include <asm/system.h>
44
45 #include "core.h"
46
47 void fw_csr_iterator_init(struct fw_csr_iterator *ci, const u32 *p)
48 {
49 ci->p = p + 1;
50 ci->end = ci->p + (p[0] >> 16);
51 }
52 EXPORT_SYMBOL(fw_csr_iterator_init);
53
54 int fw_csr_iterator_next(struct fw_csr_iterator *ci, int *key, int *value)
55 {
56 *key = *ci->p >> 24;
57 *value = *ci->p & 0xffffff;
58
59 return ci->p++ < ci->end;
60 }
61 EXPORT_SYMBOL(fw_csr_iterator_next);
62
63 static const u32 *search_leaf(const u32 *directory, int search_key)
64 {
65 struct fw_csr_iterator ci;
66 int last_key = 0, key, value;
67
68 fw_csr_iterator_init(&ci, directory);
69 while (fw_csr_iterator_next(&ci, &key, &value)) {
70 if (last_key == search_key &&
71 key == (CSR_DESCRIPTOR | CSR_LEAF))
72 return ci.p - 1 + value;
73
74 last_key = key;
75 }
76
77 return NULL;
78 }
79
80 static int textual_leaf_to_string(const u32 *block, char *buf, size_t size)
81 {
82 unsigned int quadlets, i;
83 char c;
84
85 if (!size || !buf)
86 return -EINVAL;
87
88 quadlets = min(block[0] >> 16, 256U);
89 if (quadlets < 2)
90 return -ENODATA;
91
92 if (block[1] != 0 || block[2] != 0)
93 /* unknown language/character set */
94 return -ENODATA;
95
96 block += 3;
97 quadlets -= 2;
98 for (i = 0; i < quadlets * 4 && i < size - 1; i++) {
99 c = block[i / 4] >> (24 - 8 * (i % 4));
100 if (c == '\0')
101 break;
102 buf[i] = c;
103 }
104 buf[i] = '\0';
105
106 return i;
107 }
108
109 /**
110 * fw_csr_string - reads a string from the configuration ROM
111 * @directory: e.g. root directory or unit directory
112 * @key: the key of the preceding directory entry
113 * @buf: where to put the string
114 * @size: size of @buf, in bytes
115 *
116 * The string is taken from a minimal ASCII text descriptor leaf after
117 * the immediate entry with @key. The string is zero-terminated.
118 * Returns strlen(buf) or a negative error code.
119 */
120 int fw_csr_string(const u32 *directory, int key, char *buf, size_t size)
121 {
122 const u32 *leaf = search_leaf(directory, key);
123 if (!leaf)
124 return -ENOENT;
125
126 return textual_leaf_to_string(leaf, buf, size);
127 }
128 EXPORT_SYMBOL(fw_csr_string);
129
130 static bool is_fw_unit(struct device *dev);
131
132 static int match_unit_directory(const u32 *directory, u32 match_flags,
133 const struct ieee1394_device_id *id)
134 {
135 struct fw_csr_iterator ci;
136 int key, value, match;
137
138 match = 0;
139 fw_csr_iterator_init(&ci, directory);
140 while (fw_csr_iterator_next(&ci, &key, &value)) {
141 if (key == CSR_VENDOR && value == id->vendor_id)
142 match |= IEEE1394_MATCH_VENDOR_ID;
143 if (key == CSR_MODEL && value == id->model_id)
144 match |= IEEE1394_MATCH_MODEL_ID;
145 if (key == CSR_SPECIFIER_ID && value == id->specifier_id)
146 match |= IEEE1394_MATCH_SPECIFIER_ID;
147 if (key == CSR_VERSION && value == id->version)
148 match |= IEEE1394_MATCH_VERSION;
149 }
150
151 return (match & match_flags) == match_flags;
152 }
153
154 static int fw_unit_match(struct device *dev, struct device_driver *drv)
155 {
156 struct fw_unit *unit = fw_unit(dev);
157 struct fw_device *device;
158 const struct ieee1394_device_id *id;
159
160 /* We only allow binding to fw_units. */
161 if (!is_fw_unit(dev))
162 return 0;
163
164 device = fw_parent_device(unit);
165 id = container_of(drv, struct fw_driver, driver)->id_table;
166
167 for (; id->match_flags != 0; id++) {
168 if (match_unit_directory(unit->directory, id->match_flags, id))
169 return 1;
170
171 /* Also check vendor ID in the root directory. */
172 if ((id->match_flags & IEEE1394_MATCH_VENDOR_ID) &&
173 match_unit_directory(&device->config_rom[5],
174 IEEE1394_MATCH_VENDOR_ID, id) &&
175 match_unit_directory(unit->directory, id->match_flags
176 & ~IEEE1394_MATCH_VENDOR_ID, id))
177 return 1;
178 }
179
180 return 0;
181 }
182
183 static int get_modalias(struct fw_unit *unit, char *buffer, size_t buffer_size)
184 {
185 struct fw_device *device = fw_parent_device(unit);
186 struct fw_csr_iterator ci;
187
188 int key, value;
189 int vendor = 0;
190 int model = 0;
191 int specifier_id = 0;
192 int version = 0;
193
194 fw_csr_iterator_init(&ci, &device->config_rom[5]);
195 while (fw_csr_iterator_next(&ci, &key, &value)) {
196 switch (key) {
197 case CSR_VENDOR:
198 vendor = value;
199 break;
200 case CSR_MODEL:
201 model = value;
202 break;
203 }
204 }
205
206 fw_csr_iterator_init(&ci, unit->directory);
207 while (fw_csr_iterator_next(&ci, &key, &value)) {
208 switch (key) {
209 case CSR_SPECIFIER_ID:
210 specifier_id = value;
211 break;
212 case CSR_VERSION:
213 version = value;
214 break;
215 }
216 }
217
218 return snprintf(buffer, buffer_size,
219 "ieee1394:ven%08Xmo%08Xsp%08Xver%08X",
220 vendor, model, specifier_id, version);
221 }
222
223 static int fw_unit_uevent(struct device *dev, struct kobj_uevent_env *env)
224 {
225 struct fw_unit *unit = fw_unit(dev);
226 char modalias[64];
227
228 get_modalias(unit, modalias, sizeof(modalias));
229
230 if (add_uevent_var(env, "MODALIAS=%s", modalias))
231 return -ENOMEM;
232
233 return 0;
234 }
235
236 struct bus_type fw_bus_type = {
237 .name = "firewire",
238 .match = fw_unit_match,
239 };
240 EXPORT_SYMBOL(fw_bus_type);
241
242 int fw_device_enable_phys_dma(struct fw_device *device)
243 {
244 int generation = device->generation;
245
246 /* device->node_id, accessed below, must not be older than generation */
247 smp_rmb();
248
249 return device->card->driver->enable_phys_dma(device->card,
250 device->node_id,
251 generation);
252 }
253 EXPORT_SYMBOL(fw_device_enable_phys_dma);
254
255 struct config_rom_attribute {
256 struct device_attribute attr;
257 u32 key;
258 };
259
260 static ssize_t show_immediate(struct device *dev,
261 struct device_attribute *dattr, char *buf)
262 {
263 struct config_rom_attribute *attr =
264 container_of(dattr, struct config_rom_attribute, attr);
265 struct fw_csr_iterator ci;
266 const u32 *dir;
267 int key, value, ret = -ENOENT;
268
269 down_read(&fw_device_rwsem);
270
271 if (is_fw_unit(dev))
272 dir = fw_unit(dev)->directory;
273 else
274 dir = fw_device(dev)->config_rom + 5;
275
276 fw_csr_iterator_init(&ci, dir);
277 while (fw_csr_iterator_next(&ci, &key, &value))
278 if (attr->key == key) {
279 ret = snprintf(buf, buf ? PAGE_SIZE : 0,
280 "0x%06x\n", value);
281 break;
282 }
283
284 up_read(&fw_device_rwsem);
285
286 return ret;
287 }
288
289 #define IMMEDIATE_ATTR(name, key) \
290 { __ATTR(name, S_IRUGO, show_immediate, NULL), key }
291
292 static ssize_t show_text_leaf(struct device *dev,
293 struct device_attribute *dattr, char *buf)
294 {
295 struct config_rom_attribute *attr =
296 container_of(dattr, struct config_rom_attribute, attr);
297 const u32 *dir;
298 size_t bufsize;
299 char dummy_buf[2];
300 int ret;
301
302 down_read(&fw_device_rwsem);
303
304 if (is_fw_unit(dev))
305 dir = fw_unit(dev)->directory;
306 else
307 dir = fw_device(dev)->config_rom + 5;
308
309 if (buf) {
310 bufsize = PAGE_SIZE - 1;
311 } else {
312 buf = dummy_buf;
313 bufsize = 1;
314 }
315
316 ret = fw_csr_string(dir, attr->key, buf, bufsize);
317
318 if (ret >= 0) {
319 /* Strip trailing whitespace and add newline. */
320 while (ret > 0 && isspace(buf[ret - 1]))
321 ret--;
322 strcpy(buf + ret, "\n");
323 ret++;
324 }
325
326 up_read(&fw_device_rwsem);
327
328 return ret;
329 }
330
331 #define TEXT_LEAF_ATTR(name, key) \
332 { __ATTR(name, S_IRUGO, show_text_leaf, NULL), key }
333
334 static struct config_rom_attribute config_rom_attributes[] = {
335 IMMEDIATE_ATTR(vendor, CSR_VENDOR),
336 IMMEDIATE_ATTR(hardware_version, CSR_HARDWARE_VERSION),
337 IMMEDIATE_ATTR(specifier_id, CSR_SPECIFIER_ID),
338 IMMEDIATE_ATTR(version, CSR_VERSION),
339 IMMEDIATE_ATTR(model, CSR_MODEL),
340 TEXT_LEAF_ATTR(vendor_name, CSR_VENDOR),
341 TEXT_LEAF_ATTR(model_name, CSR_MODEL),
342 TEXT_LEAF_ATTR(hardware_version_name, CSR_HARDWARE_VERSION),
343 };
344
345 static void init_fw_attribute_group(struct device *dev,
346 struct device_attribute *attrs,
347 struct fw_attribute_group *group)
348 {
349 struct device_attribute *attr;
350 int i, j;
351
352 for (j = 0; attrs[j].attr.name != NULL; j++)
353 group->attrs[j] = &attrs[j].attr;
354
355 for (i = 0; i < ARRAY_SIZE(config_rom_attributes); i++) {
356 attr = &config_rom_attributes[i].attr;
357 if (attr->show(dev, attr, NULL) < 0)
358 continue;
359 group->attrs[j++] = &attr->attr;
360 }
361
362 group->attrs[j] = NULL;
363 group->groups[0] = &group->group;
364 group->groups[1] = NULL;
365 group->group.attrs = group->attrs;
366 dev->groups = (const struct attribute_group **) group->groups;
367 }
368
369 static ssize_t modalias_show(struct device *dev,
370 struct device_attribute *attr, char *buf)
371 {
372 struct fw_unit *unit = fw_unit(dev);
373 int length;
374
375 length = get_modalias(unit, buf, PAGE_SIZE);
376 strcpy(buf + length, "\n");
377
378 return length + 1;
379 }
380
381 static ssize_t rom_index_show(struct device *dev,
382 struct device_attribute *attr, char *buf)
383 {
384 struct fw_device *device = fw_device(dev->parent);
385 struct fw_unit *unit = fw_unit(dev);
386
387 return snprintf(buf, PAGE_SIZE, "%d\n",
388 (int)(unit->directory - device->config_rom));
389 }
390
391 static struct device_attribute fw_unit_attributes[] = {
392 __ATTR_RO(modalias),
393 __ATTR_RO(rom_index),
394 __ATTR_NULL,
395 };
396
397 static ssize_t config_rom_show(struct device *dev,
398 struct device_attribute *attr, char *buf)
399 {
400 struct fw_device *device = fw_device(dev);
401 size_t length;
402
403 down_read(&fw_device_rwsem);
404 length = device->config_rom_length * 4;
405 memcpy(buf, device->config_rom, length);
406 up_read(&fw_device_rwsem);
407
408 return length;
409 }
410
411 static ssize_t guid_show(struct device *dev,
412 struct device_attribute *attr, char *buf)
413 {
414 struct fw_device *device = fw_device(dev);
415 int ret;
416
417 down_read(&fw_device_rwsem);
418 ret = snprintf(buf, PAGE_SIZE, "0x%08x%08x\n",
419 device->config_rom[3], device->config_rom[4]);
420 up_read(&fw_device_rwsem);
421
422 return ret;
423 }
424
425 static int units_sprintf(char *buf, const u32 *directory)
426 {
427 struct fw_csr_iterator ci;
428 int key, value;
429 int specifier_id = 0;
430 int version = 0;
431
432 fw_csr_iterator_init(&ci, directory);
433 while (fw_csr_iterator_next(&ci, &key, &value)) {
434 switch (key) {
435 case CSR_SPECIFIER_ID:
436 specifier_id = value;
437 break;
438 case CSR_VERSION:
439 version = value;
440 break;
441 }
442 }
443
444 return sprintf(buf, "0x%06x:0x%06x ", specifier_id, version);
445 }
446
447 static ssize_t units_show(struct device *dev,
448 struct device_attribute *attr, char *buf)
449 {
450 struct fw_device *device = fw_device(dev);
451 struct fw_csr_iterator ci;
452 int key, value, i = 0;
453
454 down_read(&fw_device_rwsem);
455 fw_csr_iterator_init(&ci, &device->config_rom[5]);
456 while (fw_csr_iterator_next(&ci, &key, &value)) {
457 if (key != (CSR_UNIT | CSR_DIRECTORY))
458 continue;
459 i += units_sprintf(&buf[i], ci.p + value - 1);
460 if (i >= PAGE_SIZE - (8 + 1 + 8 + 1))
461 break;
462 }
463 up_read(&fw_device_rwsem);
464
465 if (i)
466 buf[i - 1] = '\n';
467
468 return i;
469 }
470
471 static struct device_attribute fw_device_attributes[] = {
472 __ATTR_RO(config_rom),
473 __ATTR_RO(guid),
474 __ATTR_RO(units),
475 __ATTR_NULL,
476 };
477
478 static int read_rom(struct fw_device *device,
479 int generation, int index, u32 *data)
480 {
481 int rcode;
482
483 /* device->node_id, accessed below, must not be older than generation */
484 smp_rmb();
485
486 rcode = fw_run_transaction(device->card, TCODE_READ_QUADLET_REQUEST,
487 device->node_id, generation, device->max_speed,
488 (CSR_REGISTER_BASE | CSR_CONFIG_ROM) + index * 4,
489 data, 4);
490 be32_to_cpus(data);
491
492 return rcode;
493 }
494
495 #define READ_BIB_ROM_SIZE 256
496
497 /*
498 * Read the bus info block, perform a speed probe, and read all of the rest of
499 * the config ROM. We do all this with a cached bus generation. If the bus
500 * generation changes under us, read_bus_info_block will fail and get retried.
501 * It's better to start all over in this case because the node from which we
502 * are reading the ROM may have changed the ROM during the reset.
503 */
504 static int read_bus_info_block(struct fw_device *device, int generation)
505 {
506 const u32 *old_rom, *new_rom;
507 u32 *rom, *stack;
508 u32 sp, key;
509 int i, end, length, ret = -1;
510
511 rom = kmalloc(sizeof(*rom) * READ_BIB_ROM_SIZE +
512 sizeof(*stack) * READ_BIB_ROM_SIZE, GFP_KERNEL);
513 if (rom == NULL)
514 return -ENOMEM;
515
516 stack = &rom[READ_BIB_ROM_SIZE];
517 memset(rom, 0, sizeof(*rom) * READ_BIB_ROM_SIZE);
518
519 device->max_speed = SCODE_100;
520
521 /* First read the bus info block. */
522 for (i = 0; i < 5; i++) {
523 if (read_rom(device, generation, i, &rom[i]) != RCODE_COMPLETE)
524 goto out;
525 /*
526 * As per IEEE1212 7.2, during power-up, devices can
527 * reply with a 0 for the first quadlet of the config
528 * rom to indicate that they are booting (for example,
529 * if the firmware is on the disk of a external
530 * harddisk). In that case we just fail, and the
531 * retry mechanism will try again later.
532 */
533 if (i == 0 && rom[i] == 0)
534 goto out;
535 }
536
537 device->max_speed = device->node->max_speed;
538
539 /*
540 * Determine the speed of
541 * - devices with link speed less than PHY speed,
542 * - devices with 1394b PHY (unless only connected to 1394a PHYs),
543 * - all devices if there are 1394b repeaters.
544 * Note, we cannot use the bus info block's link_spd as starting point
545 * because some buggy firmwares set it lower than necessary and because
546 * 1394-1995 nodes do not have the field.
547 */
548 if ((rom[2] & 0x7) < device->max_speed ||
549 device->max_speed == SCODE_BETA ||
550 device->card->beta_repeaters_present) {
551 u32 dummy;
552
553 /* for S1600 and S3200 */
554 if (device->max_speed == SCODE_BETA)
555 device->max_speed = device->card->link_speed;
556
557 while (device->max_speed > SCODE_100) {
558 if (read_rom(device, generation, 0, &dummy) ==
559 RCODE_COMPLETE)
560 break;
561 device->max_speed--;
562 }
563 }
564
565 /*
566 * Now parse the config rom. The config rom is a recursive
567 * directory structure so we parse it using a stack of
568 * references to the blocks that make up the structure. We
569 * push a reference to the root directory on the stack to
570 * start things off.
571 */
572 length = i;
573 sp = 0;
574 stack[sp++] = 0xc0000005;
575 while (sp > 0) {
576 /*
577 * Pop the next block reference of the stack. The
578 * lower 24 bits is the offset into the config rom,
579 * the upper 8 bits are the type of the reference the
580 * block.
581 */
582 key = stack[--sp];
583 i = key & 0xffffff;
584 if (WARN_ON(i >= READ_BIB_ROM_SIZE))
585 goto out;
586
587 /* Read header quadlet for the block to get the length. */
588 if (read_rom(device, generation, i, &rom[i]) != RCODE_COMPLETE)
589 goto out;
590 end = i + (rom[i] >> 16) + 1;
591 if (end > READ_BIB_ROM_SIZE) {
592 /*
593 * This block extends outside the config ROM which is
594 * a firmware bug. Ignore this whole block, i.e.
595 * simply set a fake block length of 0.
596 */
597 fw_error("skipped invalid ROM block %x at %llx\n",
598 rom[i],
599 i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM);
600 rom[i] = 0;
601 end = i;
602 }
603 i++;
604
605 /*
606 * Now read in the block. If this is a directory
607 * block, check the entries as we read them to see if
608 * it references another block, and push it in that case.
609 */
610 for (; i < end; i++) {
611 if (read_rom(device, generation, i, &rom[i]) !=
612 RCODE_COMPLETE)
613 goto out;
614
615 if ((key >> 30) != 3 || (rom[i] >> 30) < 2)
616 continue;
617 /*
618 * Offset points outside the ROM. May be a firmware
619 * bug or an Extended ROM entry (IEEE 1212-2001 clause
620 * 7.7.18). Simply overwrite this pointer here by a
621 * fake immediate entry so that later iterators over
622 * the ROM don't have to check offsets all the time.
623 */
624 if (i + (rom[i] & 0xffffff) >= READ_BIB_ROM_SIZE) {
625 fw_error("skipped unsupported ROM entry %x at %llx\n",
626 rom[i],
627 i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM);
628 rom[i] = 0;
629 continue;
630 }
631 stack[sp++] = i + rom[i];
632 }
633 if (length < i)
634 length = i;
635 }
636
637 old_rom = device->config_rom;
638 new_rom = kmemdup(rom, length * 4, GFP_KERNEL);
639 if (new_rom == NULL)
640 goto out;
641
642 down_write(&fw_device_rwsem);
643 device->config_rom = new_rom;
644 device->config_rom_length = length;
645 up_write(&fw_device_rwsem);
646
647 kfree(old_rom);
648 ret = 0;
649 device->max_rec = rom[2] >> 12 & 0xf;
650 device->cmc = rom[2] >> 30 & 1;
651 device->irmc = rom[2] >> 31 & 1;
652 out:
653 kfree(rom);
654
655 return ret;
656 }
657
658 static void fw_unit_release(struct device *dev)
659 {
660 struct fw_unit *unit = fw_unit(dev);
661
662 kfree(unit);
663 }
664
665 static struct device_type fw_unit_type = {
666 .uevent = fw_unit_uevent,
667 .release = fw_unit_release,
668 };
669
670 static bool is_fw_unit(struct device *dev)
671 {
672 return dev->type == &fw_unit_type;
673 }
674
675 static void create_units(struct fw_device *device)
676 {
677 struct fw_csr_iterator ci;
678 struct fw_unit *unit;
679 int key, value, i;
680
681 i = 0;
682 fw_csr_iterator_init(&ci, &device->config_rom[5]);
683 while (fw_csr_iterator_next(&ci, &key, &value)) {
684 if (key != (CSR_UNIT | CSR_DIRECTORY))
685 continue;
686
687 /*
688 * Get the address of the unit directory and try to
689 * match the drivers id_tables against it.
690 */
691 unit = kzalloc(sizeof(*unit), GFP_KERNEL);
692 if (unit == NULL) {
693 fw_error("failed to allocate memory for unit\n");
694 continue;
695 }
696
697 unit->directory = ci.p + value - 1;
698 unit->device.bus = &fw_bus_type;
699 unit->device.type = &fw_unit_type;
700 unit->device.parent = &device->device;
701 dev_set_name(&unit->device, "%s.%d", dev_name(&device->device), i++);
702
703 BUILD_BUG_ON(ARRAY_SIZE(unit->attribute_group.attrs) <
704 ARRAY_SIZE(fw_unit_attributes) +
705 ARRAY_SIZE(config_rom_attributes));
706 init_fw_attribute_group(&unit->device,
707 fw_unit_attributes,
708 &unit->attribute_group);
709
710 if (device_register(&unit->device) < 0)
711 goto skip_unit;
712
713 continue;
714
715 skip_unit:
716 kfree(unit);
717 }
718 }
719
720 static int shutdown_unit(struct device *device, void *data)
721 {
722 device_unregister(device);
723
724 return 0;
725 }
726
727 /*
728 * fw_device_rwsem acts as dual purpose mutex:
729 * - serializes accesses to fw_device_idr,
730 * - serializes accesses to fw_device.config_rom/.config_rom_length and
731 * fw_unit.directory, unless those accesses happen at safe occasions
732 */
733 DECLARE_RWSEM(fw_device_rwsem);
734
735 DEFINE_IDR(fw_device_idr);
736 int fw_cdev_major;
737
738 struct fw_device *fw_device_get_by_devt(dev_t devt)
739 {
740 struct fw_device *device;
741
742 down_read(&fw_device_rwsem);
743 device = idr_find(&fw_device_idr, MINOR(devt));
744 if (device)
745 fw_device_get(device);
746 up_read(&fw_device_rwsem);
747
748 return device;
749 }
750
751 /*
752 * These defines control the retry behavior for reading the config
753 * rom. It shouldn't be necessary to tweak these; if the device
754 * doesn't respond to a config rom read within 10 seconds, it's not
755 * going to respond at all. As for the initial delay, a lot of
756 * devices will be able to respond within half a second after bus
757 * reset. On the other hand, it's not really worth being more
758 * aggressive than that, since it scales pretty well; if 10 devices
759 * are plugged in, they're all getting read within one second.
760 */
761
762 #define MAX_RETRIES 10
763 #define RETRY_DELAY (3 * HZ)
764 #define INITIAL_DELAY (HZ / 2)
765 #define SHUTDOWN_DELAY (2 * HZ)
766
767 static void fw_device_shutdown(struct work_struct *work)
768 {
769 struct fw_device *device =
770 container_of(work, struct fw_device, work.work);
771 int minor = MINOR(device->device.devt);
772
773 if (time_is_after_jiffies(device->card->reset_jiffies + SHUTDOWN_DELAY)
774 && !list_empty(&device->card->link)) {
775 schedule_delayed_work(&device->work, SHUTDOWN_DELAY);
776 return;
777 }
778
779 if (atomic_cmpxchg(&device->state,
780 FW_DEVICE_GONE,
781 FW_DEVICE_SHUTDOWN) != FW_DEVICE_GONE)
782 return;
783
784 fw_device_cdev_remove(device);
785 device_for_each_child(&device->device, NULL, shutdown_unit);
786 device_unregister(&device->device);
787
788 down_write(&fw_device_rwsem);
789 idr_remove(&fw_device_idr, minor);
790 up_write(&fw_device_rwsem);
791
792 fw_device_put(device);
793 }
794
795 static void fw_device_release(struct device *dev)
796 {
797 struct fw_device *device = fw_device(dev);
798 struct fw_card *card = device->card;
799 unsigned long flags;
800
801 /*
802 * Take the card lock so we don't set this to NULL while a
803 * FW_NODE_UPDATED callback is being handled or while the
804 * bus manager work looks at this node.
805 */
806 spin_lock_irqsave(&card->lock, flags);
807 device->node->data = NULL;
808 spin_unlock_irqrestore(&card->lock, flags);
809
810 fw_node_put(device->node);
811 kfree(device->config_rom);
812 kfree(device);
813 fw_card_put(card);
814 }
815
816 static struct device_type fw_device_type = {
817 .release = fw_device_release,
818 };
819
820 static bool is_fw_device(struct device *dev)
821 {
822 return dev->type == &fw_device_type;
823 }
824
825 static int update_unit(struct device *dev, void *data)
826 {
827 struct fw_unit *unit = fw_unit(dev);
828 struct fw_driver *driver = (struct fw_driver *)dev->driver;
829
830 if (is_fw_unit(dev) && driver != NULL && driver->update != NULL) {
831 down(&dev->sem);
832 driver->update(unit);
833 up(&dev->sem);
834 }
835
836 return 0;
837 }
838
839 static void fw_device_update(struct work_struct *work)
840 {
841 struct fw_device *device =
842 container_of(work, struct fw_device, work.work);
843
844 fw_device_cdev_update(device);
845 device_for_each_child(&device->device, NULL, update_unit);
846 }
847
848 /*
849 * If a device was pending for deletion because its node went away but its
850 * bus info block and root directory header matches that of a newly discovered
851 * device, revive the existing fw_device.
852 * The newly allocated fw_device becomes obsolete instead.
853 */
854 static int lookup_existing_device(struct device *dev, void *data)
855 {
856 struct fw_device *old = fw_device(dev);
857 struct fw_device *new = data;
858 struct fw_card *card = new->card;
859 int match = 0;
860
861 if (!is_fw_device(dev))
862 return 0;
863
864 down_read(&fw_device_rwsem); /* serialize config_rom access */
865 spin_lock_irq(&card->lock); /* serialize node access */
866
867 if (memcmp(old->config_rom, new->config_rom, 6 * 4) == 0 &&
868 atomic_cmpxchg(&old->state,
869 FW_DEVICE_GONE,
870 FW_DEVICE_RUNNING) == FW_DEVICE_GONE) {
871 struct fw_node *current_node = new->node;
872 struct fw_node *obsolete_node = old->node;
873
874 new->node = obsolete_node;
875 new->node->data = new;
876 old->node = current_node;
877 old->node->data = old;
878
879 old->max_speed = new->max_speed;
880 old->node_id = current_node->node_id;
881 smp_wmb(); /* update node_id before generation */
882 old->generation = card->generation;
883 old->config_rom_retries = 0;
884 fw_notify("rediscovered device %s\n", dev_name(dev));
885
886 PREPARE_DELAYED_WORK(&old->work, fw_device_update);
887 schedule_delayed_work(&old->work, 0);
888
889 if (current_node == card->root_node)
890 fw_schedule_bm_work(card, 0);
891
892 match = 1;
893 }
894
895 spin_unlock_irq(&card->lock);
896 up_read(&fw_device_rwsem);
897
898 return match;
899 }
900
901 enum { BC_UNKNOWN = 0, BC_UNIMPLEMENTED, BC_IMPLEMENTED, };
902
903 static void set_broadcast_channel(struct fw_device *device, int generation)
904 {
905 struct fw_card *card = device->card;
906 __be32 data;
907 int rcode;
908
909 if (!card->broadcast_channel_allocated)
910 return;
911
912 /*
913 * The Broadcast_Channel Valid bit is required by nodes which want to
914 * transmit on this channel. Such transmissions are practically
915 * exclusive to IP over 1394 (RFC 2734). IP capable nodes are required
916 * to be IRM capable and have a max_rec of 8 or more. We use this fact
917 * to narrow down to which nodes we send Broadcast_Channel updates.
918 */
919 if (!device->irmc || device->max_rec < 8)
920 return;
921
922 /*
923 * Some 1394-1995 nodes crash if this 1394a-2000 register is written.
924 * Perform a read test first.
925 */
926 if (device->bc_implemented == BC_UNKNOWN) {
927 rcode = fw_run_transaction(card, TCODE_READ_QUADLET_REQUEST,
928 device->node_id, generation, device->max_speed,
929 CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL,
930 &data, 4);
931 switch (rcode) {
932 case RCODE_COMPLETE:
933 if (data & cpu_to_be32(1 << 31)) {
934 device->bc_implemented = BC_IMPLEMENTED;
935 break;
936 }
937 /* else fall through to case address error */
938 case RCODE_ADDRESS_ERROR:
939 device->bc_implemented = BC_UNIMPLEMENTED;
940 }
941 }
942
943 if (device->bc_implemented == BC_IMPLEMENTED) {
944 data = cpu_to_be32(BROADCAST_CHANNEL_INITIAL |
945 BROADCAST_CHANNEL_VALID);
946 fw_run_transaction(card, TCODE_WRITE_QUADLET_REQUEST,
947 device->node_id, generation, device->max_speed,
948 CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL,
949 &data, 4);
950 }
951 }
952
953 int fw_device_set_broadcast_channel(struct device *dev, void *gen)
954 {
955 if (is_fw_device(dev))
956 set_broadcast_channel(fw_device(dev), (long)gen);
957
958 return 0;
959 }
960
961 static void fw_device_init(struct work_struct *work)
962 {
963 struct fw_device *device =
964 container_of(work, struct fw_device, work.work);
965 struct device *revived_dev;
966 int minor, ret;
967
968 /*
969 * All failure paths here set node->data to NULL, so that we
970 * don't try to do device_for_each_child() on a kfree()'d
971 * device.
972 */
973
974 if (read_bus_info_block(device, device->generation) < 0) {
975 if (device->config_rom_retries < MAX_RETRIES &&
976 atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
977 device->config_rom_retries++;
978 schedule_delayed_work(&device->work, RETRY_DELAY);
979 } else {
980 fw_notify("giving up on config rom for node id %x\n",
981 device->node_id);
982 if (device->node == device->card->root_node)
983 fw_schedule_bm_work(device->card, 0);
984 fw_device_release(&device->device);
985 }
986 return;
987 }
988
989 revived_dev = device_find_child(device->card->device,
990 device, lookup_existing_device);
991 if (revived_dev) {
992 put_device(revived_dev);
993 fw_device_release(&device->device);
994
995 return;
996 }
997
998 device_initialize(&device->device);
999
1000 fw_device_get(device);
1001 down_write(&fw_device_rwsem);
1002 ret = idr_pre_get(&fw_device_idr, GFP_KERNEL) ?
1003 idr_get_new(&fw_device_idr, device, &minor) :
1004 -ENOMEM;
1005 up_write(&fw_device_rwsem);
1006
1007 if (ret < 0)
1008 goto error;
1009
1010 device->device.bus = &fw_bus_type;
1011 device->device.type = &fw_device_type;
1012 device->device.parent = device->card->device;
1013 device->device.devt = MKDEV(fw_cdev_major, minor);
1014 dev_set_name(&device->device, "fw%d", minor);
1015
1016 BUILD_BUG_ON(ARRAY_SIZE(device->attribute_group.attrs) <
1017 ARRAY_SIZE(fw_device_attributes) +
1018 ARRAY_SIZE(config_rom_attributes));
1019 init_fw_attribute_group(&device->device,
1020 fw_device_attributes,
1021 &device->attribute_group);
1022
1023 if (device_add(&device->device)) {
1024 fw_error("Failed to add device.\n");
1025 goto error_with_cdev;
1026 }
1027
1028 create_units(device);
1029
1030 /*
1031 * Transition the device to running state. If it got pulled
1032 * out from under us while we did the intialization work, we
1033 * have to shut down the device again here. Normally, though,
1034 * fw_node_event will be responsible for shutting it down when
1035 * necessary. We have to use the atomic cmpxchg here to avoid
1036 * racing with the FW_NODE_DESTROYED case in
1037 * fw_node_event().
1038 */
1039 if (atomic_cmpxchg(&device->state,
1040 FW_DEVICE_INITIALIZING,
1041 FW_DEVICE_RUNNING) == FW_DEVICE_GONE) {
1042 PREPARE_DELAYED_WORK(&device->work, fw_device_shutdown);
1043 schedule_delayed_work(&device->work, SHUTDOWN_DELAY);
1044 } else {
1045 if (device->config_rom_retries)
1046 fw_notify("created device %s: GUID %08x%08x, S%d00, "
1047 "%d config ROM retries\n",
1048 dev_name(&device->device),
1049 device->config_rom[3], device->config_rom[4],
1050 1 << device->max_speed,
1051 device->config_rom_retries);
1052 else
1053 fw_notify("created device %s: GUID %08x%08x, S%d00\n",
1054 dev_name(&device->device),
1055 device->config_rom[3], device->config_rom[4],
1056 1 << device->max_speed);
1057 device->config_rom_retries = 0;
1058
1059 set_broadcast_channel(device, device->generation);
1060 }
1061
1062 /*
1063 * Reschedule the IRM work if we just finished reading the
1064 * root node config rom. If this races with a bus reset we
1065 * just end up running the IRM work a couple of extra times -
1066 * pretty harmless.
1067 */
1068 if (device->node == device->card->root_node)
1069 fw_schedule_bm_work(device->card, 0);
1070
1071 return;
1072
1073 error_with_cdev:
1074 down_write(&fw_device_rwsem);
1075 idr_remove(&fw_device_idr, minor);
1076 up_write(&fw_device_rwsem);
1077 error:
1078 fw_device_put(device); /* fw_device_idr's reference */
1079
1080 put_device(&device->device); /* our reference */
1081 }
1082
1083 enum {
1084 REREAD_BIB_ERROR,
1085 REREAD_BIB_GONE,
1086 REREAD_BIB_UNCHANGED,
1087 REREAD_BIB_CHANGED,
1088 };
1089
1090 /* Reread and compare bus info block and header of root directory */
1091 static int reread_bus_info_block(struct fw_device *device, int generation)
1092 {
1093 u32 q;
1094 int i;
1095
1096 for (i = 0; i < 6; i++) {
1097 if (read_rom(device, generation, i, &q) != RCODE_COMPLETE)
1098 return REREAD_BIB_ERROR;
1099
1100 if (i == 0 && q == 0)
1101 return REREAD_BIB_GONE;
1102
1103 if (q != device->config_rom[i])
1104 return REREAD_BIB_CHANGED;
1105 }
1106
1107 return REREAD_BIB_UNCHANGED;
1108 }
1109
1110 static void fw_device_refresh(struct work_struct *work)
1111 {
1112 struct fw_device *device =
1113 container_of(work, struct fw_device, work.work);
1114 struct fw_card *card = device->card;
1115 int node_id = device->node_id;
1116
1117 switch (reread_bus_info_block(device, device->generation)) {
1118 case REREAD_BIB_ERROR:
1119 if (device->config_rom_retries < MAX_RETRIES / 2 &&
1120 atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
1121 device->config_rom_retries++;
1122 schedule_delayed_work(&device->work, RETRY_DELAY / 2);
1123
1124 return;
1125 }
1126 goto give_up;
1127
1128 case REREAD_BIB_GONE:
1129 goto gone;
1130
1131 case REREAD_BIB_UNCHANGED:
1132 if (atomic_cmpxchg(&device->state,
1133 FW_DEVICE_INITIALIZING,
1134 FW_DEVICE_RUNNING) == FW_DEVICE_GONE)
1135 goto gone;
1136
1137 fw_device_update(work);
1138 device->config_rom_retries = 0;
1139 goto out;
1140
1141 case REREAD_BIB_CHANGED:
1142 break;
1143 }
1144
1145 /*
1146 * Something changed. We keep things simple and don't investigate
1147 * further. We just destroy all previous units and create new ones.
1148 */
1149 device_for_each_child(&device->device, NULL, shutdown_unit);
1150
1151 if (read_bus_info_block(device, device->generation) < 0) {
1152 if (device->config_rom_retries < MAX_RETRIES &&
1153 atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
1154 device->config_rom_retries++;
1155 schedule_delayed_work(&device->work, RETRY_DELAY);
1156
1157 return;
1158 }
1159 goto give_up;
1160 }
1161
1162 create_units(device);
1163
1164 /* Userspace may want to re-read attributes. */
1165 kobject_uevent(&device->device.kobj, KOBJ_CHANGE);
1166
1167 if (atomic_cmpxchg(&device->state,
1168 FW_DEVICE_INITIALIZING,
1169 FW_DEVICE_RUNNING) == FW_DEVICE_GONE)
1170 goto gone;
1171
1172 fw_notify("refreshed device %s\n", dev_name(&device->device));
1173 device->config_rom_retries = 0;
1174 goto out;
1175
1176 give_up:
1177 fw_notify("giving up on refresh of device %s\n", dev_name(&device->device));
1178 gone:
1179 atomic_set(&device->state, FW_DEVICE_GONE);
1180 PREPARE_DELAYED_WORK(&device->work, fw_device_shutdown);
1181 schedule_delayed_work(&device->work, SHUTDOWN_DELAY);
1182 out:
1183 if (node_id == card->root_node->node_id)
1184 fw_schedule_bm_work(card, 0);
1185 }
1186
1187 void fw_node_event(struct fw_card *card, struct fw_node *node, int event)
1188 {
1189 struct fw_device *device;
1190
1191 switch (event) {
1192 case FW_NODE_CREATED:
1193 case FW_NODE_LINK_ON:
1194 if (!node->link_on)
1195 break;
1196 create:
1197 device = kzalloc(sizeof(*device), GFP_ATOMIC);
1198 if (device == NULL)
1199 break;
1200
1201 /*
1202 * Do minimal intialization of the device here, the
1203 * rest will happen in fw_device_init().
1204 *
1205 * Attention: A lot of things, even fw_device_get(),
1206 * cannot be done before fw_device_init() finished!
1207 * You can basically just check device->state and
1208 * schedule work until then, but only while holding
1209 * card->lock.
1210 */
1211 atomic_set(&device->state, FW_DEVICE_INITIALIZING);
1212 device->card = fw_card_get(card);
1213 device->node = fw_node_get(node);
1214 device->node_id = node->node_id;
1215 device->generation = card->generation;
1216 device->is_local = node == card->local_node;
1217 mutex_init(&device->client_list_mutex);
1218 INIT_LIST_HEAD(&device->client_list);
1219
1220 /*
1221 * Set the node data to point back to this device so
1222 * FW_NODE_UPDATED callbacks can update the node_id
1223 * and generation for the device.
1224 */
1225 node->data = device;
1226
1227 /*
1228 * Many devices are slow to respond after bus resets,
1229 * especially if they are bus powered and go through
1230 * power-up after getting plugged in. We schedule the
1231 * first config rom scan half a second after bus reset.
1232 */
1233 INIT_DELAYED_WORK(&device->work, fw_device_init);
1234 schedule_delayed_work(&device->work, INITIAL_DELAY);
1235 break;
1236
1237 case FW_NODE_INITIATED_RESET:
1238 device = node->data;
1239 if (device == NULL)
1240 goto create;
1241
1242 device->node_id = node->node_id;
1243 smp_wmb(); /* update node_id before generation */
1244 device->generation = card->generation;
1245 if (atomic_cmpxchg(&device->state,
1246 FW_DEVICE_RUNNING,
1247 FW_DEVICE_INITIALIZING) == FW_DEVICE_RUNNING) {
1248 PREPARE_DELAYED_WORK(&device->work, fw_device_refresh);
1249 schedule_delayed_work(&device->work,
1250 device->is_local ? 0 : INITIAL_DELAY);
1251 }
1252 break;
1253
1254 case FW_NODE_UPDATED:
1255 if (!node->link_on || node->data == NULL)
1256 break;
1257
1258 device = node->data;
1259 device->node_id = node->node_id;
1260 smp_wmb(); /* update node_id before generation */
1261 device->generation = card->generation;
1262 if (atomic_read(&device->state) == FW_DEVICE_RUNNING) {
1263 PREPARE_DELAYED_WORK(&device->work, fw_device_update);
1264 schedule_delayed_work(&device->work, 0);
1265 }
1266 break;
1267
1268 case FW_NODE_DESTROYED:
1269 case FW_NODE_LINK_OFF:
1270 if (!node->data)
1271 break;
1272
1273 /*
1274 * Destroy the device associated with the node. There
1275 * are two cases here: either the device is fully
1276 * initialized (FW_DEVICE_RUNNING) or we're in the
1277 * process of reading its config rom
1278 * (FW_DEVICE_INITIALIZING). If it is fully
1279 * initialized we can reuse device->work to schedule a
1280 * full fw_device_shutdown(). If not, there's work
1281 * scheduled to read it's config rom, and we just put
1282 * the device in shutdown state to have that code fail
1283 * to create the device.
1284 */
1285 device = node->data;
1286 if (atomic_xchg(&device->state,
1287 FW_DEVICE_GONE) == FW_DEVICE_RUNNING) {
1288 PREPARE_DELAYED_WORK(&device->work, fw_device_shutdown);
1289 schedule_delayed_work(&device->work,
1290 list_empty(&card->link) ? 0 : SHUTDOWN_DELAY);
1291 }
1292 break;
1293 }
1294 }