]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/firewire/fw-card.c
firewire: remove line breaks before function names
[mirror_ubuntu-bionic-kernel.git] / drivers / firewire / fw-card.c
1 /*
2 * Copyright (C) 2005-2007 Kristian Hoegsberg <krh@bitplanet.net>
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software Foundation,
16 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 */
18
19 #include <linux/completion.h>
20 #include <linux/crc-itu-t.h>
21 #include <linux/delay.h>
22 #include <linux/device.h>
23 #include <linux/errno.h>
24 #include <linux/kref.h>
25 #include <linux/module.h>
26 #include <linux/mutex.h>
27
28 #include "fw-transaction.h"
29 #include "fw-topology.h"
30 #include "fw-device.h"
31
32 int fw_compute_block_crc(u32 *block)
33 {
34 __be32 be32_block[256];
35 int i, length;
36
37 length = (*block >> 16) & 0xff;
38 for (i = 0; i < length; i++)
39 be32_block[i] = cpu_to_be32(block[i + 1]);
40 *block |= crc_itu_t(0, (u8 *) be32_block, length * 4);
41
42 return length;
43 }
44
45 static DEFINE_MUTEX(card_mutex);
46 static LIST_HEAD(card_list);
47
48 static LIST_HEAD(descriptor_list);
49 static int descriptor_count;
50
51 #define BIB_CRC(v) ((v) << 0)
52 #define BIB_CRC_LENGTH(v) ((v) << 16)
53 #define BIB_INFO_LENGTH(v) ((v) << 24)
54
55 #define BIB_LINK_SPEED(v) ((v) << 0)
56 #define BIB_GENERATION(v) ((v) << 4)
57 #define BIB_MAX_ROM(v) ((v) << 8)
58 #define BIB_MAX_RECEIVE(v) ((v) << 12)
59 #define BIB_CYC_CLK_ACC(v) ((v) << 16)
60 #define BIB_PMC ((1) << 27)
61 #define BIB_BMC ((1) << 28)
62 #define BIB_ISC ((1) << 29)
63 #define BIB_CMC ((1) << 30)
64 #define BIB_IMC ((1) << 31)
65
66 static u32 *generate_config_rom(struct fw_card *card, size_t *config_rom_length)
67 {
68 struct fw_descriptor *desc;
69 static u32 config_rom[256];
70 int i, j, length;
71
72 /*
73 * Initialize contents of config rom buffer. On the OHCI
74 * controller, block reads to the config rom accesses the host
75 * memory, but quadlet read access the hardware bus info block
76 * registers. That's just crack, but it means we should make
77 * sure the contents of bus info block in host memory matches
78 * the version stored in the OHCI registers.
79 */
80
81 memset(config_rom, 0, sizeof(config_rom));
82 config_rom[0] = BIB_CRC_LENGTH(4) | BIB_INFO_LENGTH(4) | BIB_CRC(0);
83 config_rom[1] = 0x31333934;
84
85 config_rom[2] =
86 BIB_LINK_SPEED(card->link_speed) |
87 BIB_GENERATION(card->config_rom_generation++ % 14 + 2) |
88 BIB_MAX_ROM(2) |
89 BIB_MAX_RECEIVE(card->max_receive) |
90 BIB_BMC | BIB_ISC | BIB_CMC | BIB_IMC;
91 config_rom[3] = card->guid >> 32;
92 config_rom[4] = card->guid;
93
94 /* Generate root directory. */
95 i = 5;
96 config_rom[i++] = 0;
97 config_rom[i++] = 0x0c0083c0; /* node capabilities */
98 j = i + descriptor_count;
99
100 /* Generate root directory entries for descriptors. */
101 list_for_each_entry (desc, &descriptor_list, link) {
102 if (desc->immediate > 0)
103 config_rom[i++] = desc->immediate;
104 config_rom[i] = desc->key | (j - i);
105 i++;
106 j += desc->length;
107 }
108
109 /* Update root directory length. */
110 config_rom[5] = (i - 5 - 1) << 16;
111
112 /* End of root directory, now copy in descriptors. */
113 list_for_each_entry (desc, &descriptor_list, link) {
114 memcpy(&config_rom[i], desc->data, desc->length * 4);
115 i += desc->length;
116 }
117
118 /* Calculate CRCs for all blocks in the config rom. This
119 * assumes that CRC length and info length are identical for
120 * the bus info block, which is always the case for this
121 * implementation. */
122 for (i = 0; i < j; i += length + 1)
123 length = fw_compute_block_crc(config_rom + i);
124
125 *config_rom_length = j;
126
127 return config_rom;
128 }
129
130 static void update_config_roms(void)
131 {
132 struct fw_card *card;
133 u32 *config_rom;
134 size_t length;
135
136 list_for_each_entry (card, &card_list, link) {
137 config_rom = generate_config_rom(card, &length);
138 card->driver->set_config_rom(card, config_rom, length);
139 }
140 }
141
142 int fw_core_add_descriptor(struct fw_descriptor *desc)
143 {
144 size_t i;
145
146 /*
147 * Check descriptor is valid; the length of all blocks in the
148 * descriptor has to add up to exactly the length of the
149 * block.
150 */
151 i = 0;
152 while (i < desc->length)
153 i += (desc->data[i] >> 16) + 1;
154
155 if (i != desc->length)
156 return -EINVAL;
157
158 mutex_lock(&card_mutex);
159
160 list_add_tail(&desc->link, &descriptor_list);
161 descriptor_count++;
162 if (desc->immediate > 0)
163 descriptor_count++;
164 update_config_roms();
165
166 mutex_unlock(&card_mutex);
167
168 return 0;
169 }
170
171 void fw_core_remove_descriptor(struct fw_descriptor *desc)
172 {
173 mutex_lock(&card_mutex);
174
175 list_del(&desc->link);
176 descriptor_count--;
177 if (desc->immediate > 0)
178 descriptor_count--;
179 update_config_roms();
180
181 mutex_unlock(&card_mutex);
182 }
183
184 static const char gap_count_table[] = {
185 63, 5, 7, 8, 10, 13, 16, 18, 21, 24, 26, 29, 32, 35, 37, 40
186 };
187
188 void fw_schedule_bm_work(struct fw_card *card, unsigned long delay)
189 {
190 int scheduled;
191
192 fw_card_get(card);
193 scheduled = schedule_delayed_work(&card->work, delay);
194 if (!scheduled)
195 fw_card_put(card);
196 }
197
198 static void fw_card_bm_work(struct work_struct *work)
199 {
200 struct fw_card *card = container_of(work, struct fw_card, work.work);
201 struct fw_device *root_device;
202 struct fw_node *root_node, *local_node;
203 unsigned long flags;
204 int root_id, new_root_id, irm_id, gap_count, generation, grace, rcode;
205 bool do_reset = false;
206 bool root_device_is_running;
207 bool root_device_is_cmc;
208 __be32 lock_data[2];
209
210 spin_lock_irqsave(&card->lock, flags);
211 local_node = card->local_node;
212 root_node = card->root_node;
213
214 if (local_node == NULL) {
215 spin_unlock_irqrestore(&card->lock, flags);
216 goto out_put_card;
217 }
218 fw_node_get(local_node);
219 fw_node_get(root_node);
220
221 generation = card->generation;
222 root_device = root_node->data;
223 root_device_is_running = root_device &&
224 atomic_read(&root_device->state) == FW_DEVICE_RUNNING;
225 root_device_is_cmc = root_device && root_device->cmc;
226 root_id = root_node->node_id;
227 grace = time_after(jiffies, card->reset_jiffies + DIV_ROUND_UP(HZ, 10));
228
229 if (is_next_generation(generation, card->bm_generation) ||
230 (card->bm_generation != generation && grace)) {
231 /*
232 * This first step is to figure out who is IRM and
233 * then try to become bus manager. If the IRM is not
234 * well defined (e.g. does not have an active link
235 * layer or does not responds to our lock request, we
236 * will have to do a little vigilante bus management.
237 * In that case, we do a goto into the gap count logic
238 * so that when we do the reset, we still optimize the
239 * gap count. That could well save a reset in the
240 * next generation.
241 */
242
243 irm_id = card->irm_node->node_id;
244 if (!card->irm_node->link_on) {
245 new_root_id = local_node->node_id;
246 fw_notify("IRM has link off, making local node (%02x) root.\n",
247 new_root_id);
248 goto pick_me;
249 }
250
251 lock_data[0] = cpu_to_be32(0x3f);
252 lock_data[1] = cpu_to_be32(local_node->node_id);
253
254 spin_unlock_irqrestore(&card->lock, flags);
255
256 rcode = fw_run_transaction(card, TCODE_LOCK_COMPARE_SWAP,
257 irm_id, generation, SCODE_100,
258 CSR_REGISTER_BASE + CSR_BUS_MANAGER_ID,
259 lock_data, sizeof(lock_data));
260
261 if (rcode == RCODE_GENERATION)
262 /* Another bus reset, BM work has been rescheduled. */
263 goto out;
264
265 if (rcode == RCODE_COMPLETE &&
266 lock_data[0] != cpu_to_be32(0x3f))
267 /* Somebody else is BM, let them do the work. */
268 goto out;
269
270 spin_lock_irqsave(&card->lock, flags);
271
272 if (rcode != RCODE_COMPLETE) {
273 /*
274 * The lock request failed, maybe the IRM
275 * isn't really IRM capable after all. Let's
276 * do a bus reset and pick the local node as
277 * root, and thus, IRM.
278 */
279 new_root_id = local_node->node_id;
280 fw_notify("BM lock failed, making local node (%02x) root.\n",
281 new_root_id);
282 goto pick_me;
283 }
284 } else if (card->bm_generation != generation) {
285 /*
286 * OK, we weren't BM in the last generation, and it's
287 * less than 100ms since last bus reset. Reschedule
288 * this task 100ms from now.
289 */
290 spin_unlock_irqrestore(&card->lock, flags);
291 fw_schedule_bm_work(card, DIV_ROUND_UP(HZ, 10));
292 goto out;
293 }
294
295 /*
296 * We're bus manager for this generation, so next step is to
297 * make sure we have an active cycle master and do gap count
298 * optimization.
299 */
300 card->bm_generation = generation;
301
302 if (root_device == NULL) {
303 /*
304 * Either link_on is false, or we failed to read the
305 * config rom. In either case, pick another root.
306 */
307 new_root_id = local_node->node_id;
308 } else if (!root_device_is_running) {
309 /*
310 * If we haven't probed this device yet, bail out now
311 * and let's try again once that's done.
312 */
313 spin_unlock_irqrestore(&card->lock, flags);
314 goto out;
315 } else if (root_device_is_cmc) {
316 /*
317 * FIXME: I suppose we should set the cmstr bit in the
318 * STATE_CLEAR register of this node, as described in
319 * 1394-1995, 8.4.2.6. Also, send out a force root
320 * packet for this node.
321 */
322 new_root_id = root_id;
323 } else {
324 /*
325 * Current root has an active link layer and we
326 * successfully read the config rom, but it's not
327 * cycle master capable.
328 */
329 new_root_id = local_node->node_id;
330 }
331
332 pick_me:
333 /*
334 * Pick a gap count from 1394a table E-1. The table doesn't cover
335 * the typically much larger 1394b beta repeater delays though.
336 */
337 if (!card->beta_repeaters_present &&
338 root_node->max_hops < ARRAY_SIZE(gap_count_table))
339 gap_count = gap_count_table[root_node->max_hops];
340 else
341 gap_count = 63;
342
343 /*
344 * Finally, figure out if we should do a reset or not. If we have
345 * done less than 5 resets with the same physical topology and we
346 * have either a new root or a new gap count setting, let's do it.
347 */
348
349 if (card->bm_retries++ < 5 &&
350 (card->gap_count != gap_count || new_root_id != root_id))
351 do_reset = true;
352
353 spin_unlock_irqrestore(&card->lock, flags);
354
355 if (do_reset) {
356 fw_notify("phy config: card %d, new root=%x, gap_count=%d\n",
357 card->index, new_root_id, gap_count);
358 fw_send_phy_config(card, new_root_id, generation, gap_count);
359 fw_core_initiate_bus_reset(card, 1);
360 }
361 out:
362 fw_node_put(root_node);
363 fw_node_put(local_node);
364 out_put_card:
365 fw_card_put(card);
366 }
367
368 static void flush_timer_callback(unsigned long data)
369 {
370 struct fw_card *card = (struct fw_card *)data;
371
372 fw_flush_transactions(card);
373 }
374
375 void fw_card_initialize(struct fw_card *card,
376 const struct fw_card_driver *driver,
377 struct device *device)
378 {
379 static atomic_t index = ATOMIC_INIT(-1);
380
381 card->index = atomic_inc_return(&index);
382 card->driver = driver;
383 card->device = device;
384 card->current_tlabel = 0;
385 card->tlabel_mask = 0;
386 card->color = 0;
387 card->broadcast_channel = BROADCAST_CHANNEL_INITIAL;
388
389 kref_init(&card->kref);
390 init_completion(&card->done);
391 INIT_LIST_HEAD(&card->transaction_list);
392 spin_lock_init(&card->lock);
393 setup_timer(&card->flush_timer,
394 flush_timer_callback, (unsigned long)card);
395
396 card->local_node = NULL;
397
398 INIT_DELAYED_WORK(&card->work, fw_card_bm_work);
399 }
400 EXPORT_SYMBOL(fw_card_initialize);
401
402 int fw_card_add(struct fw_card *card,
403 u32 max_receive, u32 link_speed, u64 guid)
404 {
405 u32 *config_rom;
406 size_t length;
407 int err;
408
409 card->max_receive = max_receive;
410 card->link_speed = link_speed;
411 card->guid = guid;
412
413 mutex_lock(&card_mutex);
414 config_rom = generate_config_rom(card, &length);
415 list_add_tail(&card->link, &card_list);
416 mutex_unlock(&card_mutex);
417
418 err = card->driver->enable(card, config_rom, length);
419 if (err < 0) {
420 mutex_lock(&card_mutex);
421 list_del(&card->link);
422 mutex_unlock(&card_mutex);
423 }
424 return err;
425 }
426 EXPORT_SYMBOL(fw_card_add);
427
428
429 /*
430 * The next few functions implements a dummy driver that use once a
431 * card driver shuts down an fw_card. This allows the driver to
432 * cleanly unload, as all IO to the card will be handled by the dummy
433 * driver instead of calling into the (possibly) unloaded module. The
434 * dummy driver just fails all IO.
435 */
436
437 static int dummy_enable(struct fw_card *card, u32 *config_rom, size_t length)
438 {
439 BUG();
440 return -1;
441 }
442
443 static int dummy_update_phy_reg(struct fw_card *card, int address,
444 int clear_bits, int set_bits)
445 {
446 return -ENODEV;
447 }
448
449 static int dummy_set_config_rom(struct fw_card *card,
450 u32 *config_rom, size_t length)
451 {
452 /*
453 * We take the card out of card_list before setting the dummy
454 * driver, so this should never get called.
455 */
456 BUG();
457 return -1;
458 }
459
460 static void dummy_send_request(struct fw_card *card, struct fw_packet *packet)
461 {
462 packet->callback(packet, card, -ENODEV);
463 }
464
465 static void dummy_send_response(struct fw_card *card, struct fw_packet *packet)
466 {
467 packet->callback(packet, card, -ENODEV);
468 }
469
470 static int dummy_cancel_packet(struct fw_card *card, struct fw_packet *packet)
471 {
472 return -ENOENT;
473 }
474
475 static int dummy_enable_phys_dma(struct fw_card *card,
476 int node_id, int generation)
477 {
478 return -ENODEV;
479 }
480
481 static struct fw_card_driver dummy_driver = {
482 .enable = dummy_enable,
483 .update_phy_reg = dummy_update_phy_reg,
484 .set_config_rom = dummy_set_config_rom,
485 .send_request = dummy_send_request,
486 .cancel_packet = dummy_cancel_packet,
487 .send_response = dummy_send_response,
488 .enable_phys_dma = dummy_enable_phys_dma,
489 };
490
491 void fw_card_release(struct kref *kref)
492 {
493 struct fw_card *card = container_of(kref, struct fw_card, kref);
494
495 complete(&card->done);
496 }
497
498 void fw_core_remove_card(struct fw_card *card)
499 {
500 card->driver->update_phy_reg(card, 4,
501 PHY_LINK_ACTIVE | PHY_CONTENDER, 0);
502 fw_core_initiate_bus_reset(card, 1);
503
504 mutex_lock(&card_mutex);
505 list_del_init(&card->link);
506 mutex_unlock(&card_mutex);
507
508 /* Set up the dummy driver. */
509 card->driver = &dummy_driver;
510
511 fw_destroy_nodes(card);
512
513 /* Wait for all users, especially device workqueue jobs, to finish. */
514 fw_card_put(card);
515 wait_for_completion(&card->done);
516
517 WARN_ON(!list_empty(&card->transaction_list));
518 del_timer_sync(&card->flush_timer);
519 }
520 EXPORT_SYMBOL(fw_core_remove_card);
521
522 int fw_core_initiate_bus_reset(struct fw_card *card, int short_reset)
523 {
524 int reg = short_reset ? 5 : 1;
525 int bit = short_reset ? PHY_BUS_SHORT_RESET : PHY_BUS_RESET;
526
527 return card->driver->update_phy_reg(card, reg, 0, bit);
528 }
529 EXPORT_SYMBOL(fw_core_initiate_bus_reset);