]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/firewire/fw-card.c
firewire: core: increase bus manager grace period
[mirror_ubuntu-zesty-kernel.git] / drivers / firewire / fw-card.c
1 /*
2 * Copyright (C) 2005-2007 Kristian Hoegsberg <krh@bitplanet.net>
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software Foundation,
16 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 */
18
19 #include <linux/completion.h>
20 #include <linux/crc-itu-t.h>
21 #include <linux/delay.h>
22 #include <linux/device.h>
23 #include <linux/errno.h>
24 #include <linux/kref.h>
25 #include <linux/module.h>
26 #include <linux/mutex.h>
27
28 #include "fw-transaction.h"
29 #include "fw-topology.h"
30 #include "fw-device.h"
31
32 int fw_compute_block_crc(u32 *block)
33 {
34 __be32 be32_block[256];
35 int i, length;
36
37 length = (*block >> 16) & 0xff;
38 for (i = 0; i < length; i++)
39 be32_block[i] = cpu_to_be32(block[i + 1]);
40 *block |= crc_itu_t(0, (u8 *) be32_block, length * 4);
41
42 return length;
43 }
44
45 static DEFINE_MUTEX(card_mutex);
46 static LIST_HEAD(card_list);
47
48 static LIST_HEAD(descriptor_list);
49 static int descriptor_count;
50
51 #define BIB_CRC(v) ((v) << 0)
52 #define BIB_CRC_LENGTH(v) ((v) << 16)
53 #define BIB_INFO_LENGTH(v) ((v) << 24)
54
55 #define BIB_LINK_SPEED(v) ((v) << 0)
56 #define BIB_GENERATION(v) ((v) << 4)
57 #define BIB_MAX_ROM(v) ((v) << 8)
58 #define BIB_MAX_RECEIVE(v) ((v) << 12)
59 #define BIB_CYC_CLK_ACC(v) ((v) << 16)
60 #define BIB_PMC ((1) << 27)
61 #define BIB_BMC ((1) << 28)
62 #define BIB_ISC ((1) << 29)
63 #define BIB_CMC ((1) << 30)
64 #define BIB_IMC ((1) << 31)
65
66 static u32 *generate_config_rom(struct fw_card *card, size_t *config_rom_length)
67 {
68 struct fw_descriptor *desc;
69 static u32 config_rom[256];
70 int i, j, length;
71
72 /*
73 * Initialize contents of config rom buffer. On the OHCI
74 * controller, block reads to the config rom accesses the host
75 * memory, but quadlet read access the hardware bus info block
76 * registers. That's just crack, but it means we should make
77 * sure the contents of bus info block in host memory matches
78 * the version stored in the OHCI registers.
79 */
80
81 memset(config_rom, 0, sizeof(config_rom));
82 config_rom[0] = BIB_CRC_LENGTH(4) | BIB_INFO_LENGTH(4) | BIB_CRC(0);
83 config_rom[1] = 0x31333934;
84
85 config_rom[2] =
86 BIB_LINK_SPEED(card->link_speed) |
87 BIB_GENERATION(card->config_rom_generation++ % 14 + 2) |
88 BIB_MAX_ROM(2) |
89 BIB_MAX_RECEIVE(card->max_receive) |
90 BIB_BMC | BIB_ISC | BIB_CMC | BIB_IMC;
91 config_rom[3] = card->guid >> 32;
92 config_rom[4] = card->guid;
93
94 /* Generate root directory. */
95 i = 5;
96 config_rom[i++] = 0;
97 config_rom[i++] = 0x0c0083c0; /* node capabilities */
98 j = i + descriptor_count;
99
100 /* Generate root directory entries for descriptors. */
101 list_for_each_entry (desc, &descriptor_list, link) {
102 if (desc->immediate > 0)
103 config_rom[i++] = desc->immediate;
104 config_rom[i] = desc->key | (j - i);
105 i++;
106 j += desc->length;
107 }
108
109 /* Update root directory length. */
110 config_rom[5] = (i - 5 - 1) << 16;
111
112 /* End of root directory, now copy in descriptors. */
113 list_for_each_entry (desc, &descriptor_list, link) {
114 memcpy(&config_rom[i], desc->data, desc->length * 4);
115 i += desc->length;
116 }
117
118 /* Calculate CRCs for all blocks in the config rom. This
119 * assumes that CRC length and info length are identical for
120 * the bus info block, which is always the case for this
121 * implementation. */
122 for (i = 0; i < j; i += length + 1)
123 length = fw_compute_block_crc(config_rom + i);
124
125 *config_rom_length = j;
126
127 return config_rom;
128 }
129
130 static void update_config_roms(void)
131 {
132 struct fw_card *card;
133 u32 *config_rom;
134 size_t length;
135
136 list_for_each_entry (card, &card_list, link) {
137 config_rom = generate_config_rom(card, &length);
138 card->driver->set_config_rom(card, config_rom, length);
139 }
140 }
141
142 int fw_core_add_descriptor(struct fw_descriptor *desc)
143 {
144 size_t i;
145
146 /*
147 * Check descriptor is valid; the length of all blocks in the
148 * descriptor has to add up to exactly the length of the
149 * block.
150 */
151 i = 0;
152 while (i < desc->length)
153 i += (desc->data[i] >> 16) + 1;
154
155 if (i != desc->length)
156 return -EINVAL;
157
158 mutex_lock(&card_mutex);
159
160 list_add_tail(&desc->link, &descriptor_list);
161 descriptor_count++;
162 if (desc->immediate > 0)
163 descriptor_count++;
164 update_config_roms();
165
166 mutex_unlock(&card_mutex);
167
168 return 0;
169 }
170
171 void fw_core_remove_descriptor(struct fw_descriptor *desc)
172 {
173 mutex_lock(&card_mutex);
174
175 list_del(&desc->link);
176 descriptor_count--;
177 if (desc->immediate > 0)
178 descriptor_count--;
179 update_config_roms();
180
181 mutex_unlock(&card_mutex);
182 }
183
184 /* ------------------------------------------------------------------ */
185 /* Code to handle 1394a broadcast channel */
186
187 #define THIRTY_TWO_CHANNELS (0xFFFFFFFFU)
188 #define IRM_RETRIES 2
189
190 /*
191 * The abi is set by device_for_each_child(), even though we have no use
192 * for data, nor do we have a meaningful return value.
193 */
194 int fw_irm_set_broadcast_channel_register(struct device *dev, void *data)
195 {
196 struct fw_device *d;
197 int rcode;
198 int node_id;
199 int max_speed;
200 int retries;
201 int generation;
202 __be32 regval;
203 struct fw_card *card;
204
205 d = fw_device(dev);
206 /* FIXME: do we need locking here? */
207 generation = d->generation;
208 smp_rmb(); /* Ensure generation is at least as old as node_id */
209 node_id = d->node_id;
210 max_speed = d->max_speed;
211 retries = IRM_RETRIES;
212 card = d->card;
213 tryagain_r:
214 rcode = fw_run_transaction(card, TCODE_READ_QUADLET_REQUEST,
215 node_id, generation, max_speed,
216 CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL,
217 &regval, 4);
218 switch (rcode) {
219 case RCODE_BUSY:
220 if (retries--)
221 goto tryagain_r;
222 fw_notify("node %x read broadcast channel busy\n",
223 node_id);
224 return 0;
225
226 default:
227 fw_notify("node %x read broadcast channel failed %x\n",
228 node_id, rcode);
229 return 0;
230
231 case RCODE_COMPLETE:
232 /*
233 * Paranoid reporting of nonstandard broadcast channel
234 * contents goes here
235 */
236 if (regval != cpu_to_be32(BROADCAST_CHANNEL_INITIAL))
237 return 0;
238 break;
239 }
240 retries = IRM_RETRIES;
241 regval = cpu_to_be32(BROADCAST_CHANNEL_INITIAL |
242 BROADCAST_CHANNEL_VALID);
243 tryagain_w:
244 rcode = fw_run_transaction(card,
245 TCODE_WRITE_QUADLET_REQUEST, node_id,
246 generation, max_speed,
247 CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL,
248 &regval, 4);
249 switch (rcode) {
250 case RCODE_BUSY:
251 if (retries--)
252 goto tryagain_w;
253 fw_notify("node %x write broadcast channel busy\n",
254 node_id);
255 return 0;
256
257 default:
258 fw_notify("node %x write broadcast channel failed %x\n",
259 node_id, rcode);
260 return 0;
261
262 case RCODE_COMPLETE:
263 return 0;
264 }
265 return 0;
266 }
267
268 static void
269 irm_allocate_broadcast(struct fw_device *irm_dev, struct device *locald)
270 {
271 u32 generation;
272 u32 node_id;
273 u32 max_speed;
274 u32 retries;
275 __be32 old_data;
276 __be32 lock_data[2];
277 int rcode;
278
279 /*
280 * The device we are updating is the IRM, so we must do
281 * some extra work.
282 */
283 retries = IRM_RETRIES;
284 generation = irm_dev->generation;
285 /* FIXME: do we need locking here? */
286 smp_rmb();
287 node_id = irm_dev->node_id;
288 max_speed = irm_dev->max_speed;
289
290 lock_data[0] = cpu_to_be32(THIRTY_TWO_CHANNELS);
291 lock_data[1] = cpu_to_be32(THIRTY_TWO_CHANNELS & ~1);
292 tryagain:
293 old_data = lock_data[0];
294 rcode = fw_run_transaction(irm_dev->card, TCODE_LOCK_COMPARE_SWAP,
295 node_id, generation, max_speed,
296 CSR_REGISTER_BASE+CSR_CHANNELS_AVAILABLE_HI,
297 &lock_data[0], 8);
298 switch (rcode) {
299 case RCODE_BUSY:
300 if (retries--)
301 goto tryagain;
302 /* fallthrough */
303 default:
304 fw_error("node %x: allocate broadcast channel failed (%x)\n",
305 node_id, rcode);
306 return;
307
308 case RCODE_COMPLETE:
309 if (lock_data[0] == old_data)
310 break;
311 if (retries--) {
312 lock_data[1] = cpu_to_be32(be32_to_cpu(lock_data[0])&~1);
313 goto tryagain;
314 }
315 fw_error("node %x: allocate broadcast channel failed: too many"
316 " retries\n", node_id);
317 return;
318 }
319 irm_dev->card->is_irm = true;
320 device_for_each_child(locald, NULL, fw_irm_set_broadcast_channel_register);
321 }
322 /* ------------------------------------------------------------------ */
323
324
325 static const char gap_count_table[] = {
326 63, 5, 7, 8, 10, 13, 16, 18, 21, 24, 26, 29, 32, 35, 37, 40
327 };
328
329 void fw_schedule_bm_work(struct fw_card *card, unsigned long delay)
330 {
331 int scheduled;
332
333 fw_card_get(card);
334 scheduled = schedule_delayed_work(&card->work, delay);
335 if (!scheduled)
336 fw_card_put(card);
337 }
338
339 static void fw_card_bm_work(struct work_struct *work)
340 {
341 struct fw_card *card = container_of(work, struct fw_card, work.work);
342 struct fw_device *root_device, *irm_device, *local_device;
343 struct fw_node *root_node, *local_node, *irm_node;
344 unsigned long flags;
345 int root_id, new_root_id, irm_id, gap_count, generation, grace, rcode;
346 bool do_reset = false;
347 bool root_device_is_running;
348 bool root_device_is_cmc;
349 __be32 lock_data[2];
350
351 spin_lock_irqsave(&card->lock, flags);
352 card->is_irm = false;
353 local_node = card->local_node;
354 root_node = card->root_node;
355 irm_node = card->irm_node;
356
357 if (local_node == NULL) {
358 spin_unlock_irqrestore(&card->lock, flags);
359 goto out_put_card;
360 }
361 fw_node_get(local_node);
362 fw_node_get(root_node);
363 fw_node_get(irm_node);
364
365 generation = card->generation;
366 root_device = root_node->data;
367 root_device_is_running = root_device &&
368 atomic_read(&root_device->state) == FW_DEVICE_RUNNING;
369 root_device_is_cmc = root_device && root_device->cmc;
370 root_id = root_node->node_id;
371 irm_device = irm_node->data;
372 local_device = local_node->data;
373
374 grace = time_after(jiffies, card->reset_jiffies + DIV_ROUND_UP(HZ, 8));
375
376 if (is_next_generation(generation, card->bm_generation) ||
377 (card->bm_generation != generation && grace)) {
378 /*
379 * This first step is to figure out who is IRM and
380 * then try to become bus manager. If the IRM is not
381 * well defined (e.g. does not have an active link
382 * layer or does not responds to our lock request, we
383 * will have to do a little vigilante bus management.
384 * In that case, we do a goto into the gap count logic
385 * so that when we do the reset, we still optimize the
386 * gap count. That could well save a reset in the
387 * next generation.
388 */
389
390 irm_id = irm_node->node_id;
391 if (!irm_node->link_on) {
392 new_root_id = local_node->node_id;
393 fw_notify("IRM has link off, making local node (%02x) root.\n",
394 new_root_id);
395 goto pick_me;
396 }
397
398 lock_data[0] = cpu_to_be32(0x3f);
399 lock_data[1] = cpu_to_be32(local_node->node_id);
400
401 spin_unlock_irqrestore(&card->lock, flags);
402
403 rcode = fw_run_transaction(card, TCODE_LOCK_COMPARE_SWAP,
404 irm_id, generation, SCODE_100,
405 CSR_REGISTER_BASE + CSR_BUS_MANAGER_ID,
406 lock_data, sizeof(lock_data));
407
408 if (rcode == RCODE_GENERATION)
409 /* Another bus reset, BM work has been rescheduled. */
410 goto out;
411
412 if (rcode == RCODE_COMPLETE &&
413 lock_data[0] != cpu_to_be32(0x3f)) {
414 /* Somebody else is BM, let them do the work. */
415 if (irm_id == local_node->node_id) {
416 /* But we are IRM, so do irm-y things */
417 irm_allocate_broadcast(irm_device,
418 card->device);
419 }
420 goto out;
421 }
422
423 spin_lock_irqsave(&card->lock, flags);
424
425 if (rcode != RCODE_COMPLETE) {
426 /*
427 * The lock request failed, maybe the IRM
428 * isn't really IRM capable after all. Let's
429 * do a bus reset and pick the local node as
430 * root, and thus, IRM.
431 */
432 new_root_id = local_node->node_id;
433 fw_notify("BM lock failed, making local node (%02x) root.\n",
434 new_root_id);
435 goto pick_me;
436 }
437 } else if (card->bm_generation != generation) {
438 /*
439 * We weren't BM in the last generation, and the last
440 * bus reset is less than 125ms ago. Reschedule this job.
441 */
442 spin_unlock_irqrestore(&card->lock, flags);
443 fw_schedule_bm_work(card, DIV_ROUND_UP(HZ, 8));
444 goto out;
445 }
446
447 /*
448 * We're bus manager for this generation, so next step is to
449 * make sure we have an active cycle master and do gap count
450 * optimization.
451 */
452 card->bm_generation = generation;
453
454 if (root_device == NULL) {
455 /*
456 * Either link_on is false, or we failed to read the
457 * config rom. In either case, pick another root.
458 */
459 new_root_id = local_node->node_id;
460 } else if (!root_device_is_running) {
461 /*
462 * If we haven't probed this device yet, bail out now
463 * and let's try again once that's done.
464 */
465 spin_unlock_irqrestore(&card->lock, flags);
466 goto out;
467 } else if (root_device_is_cmc) {
468 /*
469 * FIXME: I suppose we should set the cmstr bit in the
470 * STATE_CLEAR register of this node, as described in
471 * 1394-1995, 8.4.2.6. Also, send out a force root
472 * packet for this node.
473 */
474 new_root_id = root_id;
475 } else {
476 /*
477 * Current root has an active link layer and we
478 * successfully read the config rom, but it's not
479 * cycle master capable.
480 */
481 new_root_id = local_node->node_id;
482 }
483
484 pick_me:
485 /*
486 * Pick a gap count from 1394a table E-1. The table doesn't cover
487 * the typically much larger 1394b beta repeater delays though.
488 */
489 if (!card->beta_repeaters_present &&
490 root_node->max_hops < ARRAY_SIZE(gap_count_table))
491 gap_count = gap_count_table[root_node->max_hops];
492 else
493 gap_count = 63;
494
495 /*
496 * Finally, figure out if we should do a reset or not. If we have
497 * done less than 5 resets with the same physical topology and we
498 * have either a new root or a new gap count setting, let's do it.
499 */
500
501 if (card->bm_retries++ < 5 &&
502 (card->gap_count != gap_count || new_root_id != root_id))
503 do_reset = true;
504
505 spin_unlock_irqrestore(&card->lock, flags);
506
507 if (do_reset) {
508 fw_notify("phy config: card %d, new root=%x, gap_count=%d\n",
509 card->index, new_root_id, gap_count);
510 fw_send_phy_config(card, new_root_id, generation, gap_count);
511 fw_core_initiate_bus_reset(card, 1);
512 } else if (irm_node->node_id == local_node->node_id) {
513 /*
514 * We are IRM, so do irm-y things.
515 * There's no reason to do this if we're doing a reset. . .
516 * We'll be back.
517 */
518 irm_allocate_broadcast(irm_device, card->device);
519 }
520
521 out:
522 fw_node_put(root_node);
523 fw_node_put(local_node);
524 fw_node_put(irm_node);
525 out_put_card:
526 fw_card_put(card);
527 }
528
529 static void flush_timer_callback(unsigned long data)
530 {
531 struct fw_card *card = (struct fw_card *)data;
532
533 fw_flush_transactions(card);
534 }
535
536 void fw_card_initialize(struct fw_card *card,
537 const struct fw_card_driver *driver,
538 struct device *device)
539 {
540 static atomic_t index = ATOMIC_INIT(-1);
541
542 card->index = atomic_inc_return(&index);
543 card->driver = driver;
544 card->device = device;
545 card->current_tlabel = 0;
546 card->tlabel_mask = 0;
547 card->color = 0;
548 card->broadcast_channel = BROADCAST_CHANNEL_INITIAL;
549
550 kref_init(&card->kref);
551 init_completion(&card->done);
552 INIT_LIST_HEAD(&card->transaction_list);
553 spin_lock_init(&card->lock);
554 setup_timer(&card->flush_timer,
555 flush_timer_callback, (unsigned long)card);
556
557 card->local_node = NULL;
558
559 INIT_DELAYED_WORK(&card->work, fw_card_bm_work);
560 }
561 EXPORT_SYMBOL(fw_card_initialize);
562
563 int fw_card_add(struct fw_card *card,
564 u32 max_receive, u32 link_speed, u64 guid)
565 {
566 u32 *config_rom;
567 size_t length;
568 int ret;
569
570 card->max_receive = max_receive;
571 card->link_speed = link_speed;
572 card->guid = guid;
573
574 mutex_lock(&card_mutex);
575 config_rom = generate_config_rom(card, &length);
576 list_add_tail(&card->link, &card_list);
577 mutex_unlock(&card_mutex);
578
579 ret = card->driver->enable(card, config_rom, length);
580 if (ret < 0) {
581 mutex_lock(&card_mutex);
582 list_del(&card->link);
583 mutex_unlock(&card_mutex);
584 }
585
586 return ret;
587 }
588 EXPORT_SYMBOL(fw_card_add);
589
590
591 /*
592 * The next few functions implements a dummy driver that use once a
593 * card driver shuts down an fw_card. This allows the driver to
594 * cleanly unload, as all IO to the card will be handled by the dummy
595 * driver instead of calling into the (possibly) unloaded module. The
596 * dummy driver just fails all IO.
597 */
598
599 static int dummy_enable(struct fw_card *card, u32 *config_rom, size_t length)
600 {
601 BUG();
602 return -1;
603 }
604
605 static int dummy_update_phy_reg(struct fw_card *card, int address,
606 int clear_bits, int set_bits)
607 {
608 return -ENODEV;
609 }
610
611 static int dummy_set_config_rom(struct fw_card *card,
612 u32 *config_rom, size_t length)
613 {
614 /*
615 * We take the card out of card_list before setting the dummy
616 * driver, so this should never get called.
617 */
618 BUG();
619 return -1;
620 }
621
622 static void dummy_send_request(struct fw_card *card, struct fw_packet *packet)
623 {
624 packet->callback(packet, card, -ENODEV);
625 }
626
627 static void dummy_send_response(struct fw_card *card, struct fw_packet *packet)
628 {
629 packet->callback(packet, card, -ENODEV);
630 }
631
632 static int dummy_cancel_packet(struct fw_card *card, struct fw_packet *packet)
633 {
634 return -ENOENT;
635 }
636
637 static int dummy_enable_phys_dma(struct fw_card *card,
638 int node_id, int generation)
639 {
640 return -ENODEV;
641 }
642
643 static struct fw_card_driver dummy_driver = {
644 .enable = dummy_enable,
645 .update_phy_reg = dummy_update_phy_reg,
646 .set_config_rom = dummy_set_config_rom,
647 .send_request = dummy_send_request,
648 .cancel_packet = dummy_cancel_packet,
649 .send_response = dummy_send_response,
650 .enable_phys_dma = dummy_enable_phys_dma,
651 };
652
653 void fw_card_release(struct kref *kref)
654 {
655 struct fw_card *card = container_of(kref, struct fw_card, kref);
656
657 complete(&card->done);
658 }
659
660 void fw_core_remove_card(struct fw_card *card)
661 {
662 card->driver->update_phy_reg(card, 4,
663 PHY_LINK_ACTIVE | PHY_CONTENDER, 0);
664 fw_core_initiate_bus_reset(card, 1);
665
666 mutex_lock(&card_mutex);
667 list_del_init(&card->link);
668 mutex_unlock(&card_mutex);
669
670 /* Set up the dummy driver. */
671 card->driver = &dummy_driver;
672
673 fw_destroy_nodes(card);
674
675 /* Wait for all users, especially device workqueue jobs, to finish. */
676 fw_card_put(card);
677 wait_for_completion(&card->done);
678
679 WARN_ON(!list_empty(&card->transaction_list));
680 del_timer_sync(&card->flush_timer);
681 }
682 EXPORT_SYMBOL(fw_core_remove_card);
683
684 int fw_core_initiate_bus_reset(struct fw_card *card, int short_reset)
685 {
686 int reg = short_reset ? 5 : 1;
687 int bit = short_reset ? PHY_BUS_SHORT_RESET : PHY_BUS_RESET;
688
689 return card->driver->update_phy_reg(card, reg, 0, bit);
690 }
691 EXPORT_SYMBOL(fw_core_initiate_bus_reset);