]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/firewire/fw-card.c
firewire: Don't use subsystem rwsem, it's going away.
[mirror_ubuntu-zesty-kernel.git] / drivers / firewire / fw-card.c
1 /* -*- c-basic-offset: 8 -*-
2 *
3 * fw-card.c - card level functions
4 *
5 * Copyright (C) 2005-2006 Kristian Hoegsberg <krh@bitplanet.net>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software Foundation,
19 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
20 */
21
22 #include <linux/module.h>
23 #include <linux/errno.h>
24 #include <linux/device.h>
25 #include <linux/rwsem.h>
26 #include "fw-transaction.h"
27 #include "fw-topology.h"
28 #include "fw-device.h"
29
30 /* The lib/crc16.c implementation uses the standard (0x8005)
31 * polynomial, but we need the ITU-T (or CCITT) polynomial (0x1021).
32 * The implementation below works on an array of host-endian u32
33 * words, assuming they'll be transmited msb first. */
34 u16
35 crc16_itu_t(const u32 *buffer, size_t length)
36 {
37 int shift, i;
38 u32 data;
39 u16 sum, crc = 0;
40
41 for (i = 0; i < length; i++) {
42 data = *buffer++;
43 for (shift = 28; shift >= 0; shift -= 4 ) {
44 sum = ((crc >> 12) ^ (data >> shift)) & 0xf;
45 crc = (crc << 4) ^ (sum << 12) ^ (sum << 5) ^ (sum);
46 }
47 crc &= 0xffff;
48 }
49
50 return crc;
51 }
52
53 static DECLARE_RWSEM(card_rwsem);
54 static LIST_HEAD(card_list);
55
56 static LIST_HEAD(descriptor_list);
57 static int descriptor_count;
58
59 #define bib_crc(v) ((v) << 0)
60 #define bib_crc_length(v) ((v) << 16)
61 #define bib_info_length(v) ((v) << 24)
62
63 #define bib_link_speed(v) ((v) << 0)
64 #define bib_generation(v) ((v) << 4)
65 #define bib_max_rom(v) ((v) << 8)
66 #define bib_max_receive(v) ((v) << 12)
67 #define bib_cyc_clk_acc(v) ((v) << 16)
68 #define bib_pmc ((1) << 27)
69 #define bib_bmc ((1) << 28)
70 #define bib_isc ((1) << 29)
71 #define bib_cmc ((1) << 30)
72 #define bib_imc ((1) << 31)
73
74 static u32 *
75 generate_config_rom (struct fw_card *card, size_t *config_rom_length)
76 {
77 struct fw_descriptor *desc;
78 static u32 config_rom[256];
79 int i, j, length;
80
81 /* Initialize contents of config rom buffer. On the OHCI
82 * controller, block reads to the config rom accesses the host
83 * memory, but quadlet read access the hardware bus info block
84 * registers. That's just crack, but it means we should make
85 * sure the contents of bus info block in host memory mathces
86 * the version stored in the OHCI registers. */
87
88 memset(config_rom, 0, sizeof config_rom);
89 config_rom[0] = bib_crc_length(4) | bib_info_length(4) | bib_crc(0);
90 config_rom[1] = 0x31333934;
91
92 config_rom[2] =
93 bib_link_speed(card->link_speed) |
94 bib_generation(card->config_rom_generation++ % 14 + 2) |
95 bib_max_rom(2) |
96 bib_max_receive(card->max_receive) |
97 bib_bmc | bib_isc | bib_cmc | bib_imc;
98 config_rom[3] = card->guid >> 32;
99 config_rom[4] = card->guid;
100
101 /* Generate root directory. */
102 i = 5;
103 config_rom[i++] = 0;
104 config_rom[i++] = 0x0c0083c0; /* node capabilities */
105 j = i + descriptor_count;
106
107 /* Generate root directory entries for descriptors. */
108 list_for_each_entry (desc, &descriptor_list, link) {
109 if (desc->immediate > 0)
110 config_rom[i++] = desc->immediate;
111 config_rom[i] = desc->key | (j - i);
112 i++;
113 j += desc->length;
114 }
115
116 /* Update root directory length. */
117 config_rom[5] = (i - 5 - 1) << 16;
118
119 /* End of root directory, now copy in descriptors. */
120 list_for_each_entry (desc, &descriptor_list, link) {
121 memcpy(&config_rom[i], desc->data, desc->length * 4);
122 i += desc->length;
123 }
124
125 /* Calculate CRCs for all blocks in the config rom. This
126 * assumes that CRC length and info length are identical for
127 * the bus info block, which is always the case for this
128 * implementation. */
129 for (i = 0; i < j; i += length + 1) {
130 length = (config_rom[i] >> 16) & 0xff;
131 config_rom[i] |= crc16_itu_t(&config_rom[i + 1], length);
132 }
133
134 *config_rom_length = j;
135
136 return config_rom;
137 }
138
139 static void
140 update_config_roms (void)
141 {
142 struct fw_card *card;
143 u32 *config_rom;
144 size_t length;
145
146 list_for_each_entry (card, &card_list, link) {
147 config_rom = generate_config_rom(card, &length);
148 card->driver->set_config_rom(card, config_rom, length);
149 }
150 }
151
152 int
153 fw_core_add_descriptor (struct fw_descriptor *desc)
154 {
155 size_t i;
156
157 /* Check descriptor is valid; the length of all blocks in the
158 * descriptor has to add up to exactly the length of the
159 * block. */
160 i = 0;
161 while (i < desc->length)
162 i += (desc->data[i] >> 16) + 1;
163
164 if (i != desc->length)
165 return -EINVAL;
166
167 down_write(&card_rwsem);
168
169 list_add_tail (&desc->link, &descriptor_list);
170 descriptor_count++;
171 if (desc->immediate > 0)
172 descriptor_count++;
173 update_config_roms();
174
175 up_write(&card_rwsem);
176
177 return 0;
178 }
179 EXPORT_SYMBOL(fw_core_add_descriptor);
180
181 void
182 fw_core_remove_descriptor (struct fw_descriptor *desc)
183 {
184 down_write(&card_rwsem);
185
186 list_del(&desc->link);
187 descriptor_count--;
188 if (desc->immediate > 0)
189 descriptor_count--;
190 update_config_roms();
191
192 up_write(&card_rwsem);
193 }
194 EXPORT_SYMBOL(fw_core_remove_descriptor);
195
196 static const char gap_count_table[] = {
197 63, 5, 7, 8, 10, 13, 16, 18, 21, 24, 26, 29, 32, 35, 37, 40
198 };
199
200 struct bm_data {
201 struct fw_transaction t;
202 struct {
203 __be32 arg;
204 __be32 data;
205 } lock;
206 u32 old;
207 int rcode;
208 struct completion done;
209 };
210
211 static void
212 complete_bm_lock(struct fw_card *card, int rcode,
213 void *payload, size_t length, void *data)
214 {
215 struct bm_data *bmd = data;
216
217 if (rcode == RCODE_COMPLETE)
218 bmd->old = be32_to_cpu(*(__be32 *) payload);
219 bmd->rcode = rcode;
220 complete(&bmd->done);
221 }
222
223 static void
224 fw_card_bm_work(struct work_struct *work)
225 {
226 struct fw_card *card = container_of(work, struct fw_card, work.work);
227 struct fw_device *root;
228 struct bm_data bmd;
229 unsigned long flags;
230 int root_id, new_root_id, irm_id, gap_count, generation, grace;
231 int do_reset = 0;
232
233 spin_lock_irqsave(&card->lock, flags);
234
235 generation = card->generation;
236 root = card->root_node->data;
237 root_id = card->root_node->node_id;
238 grace = time_after(jiffies, card->reset_jiffies + DIV_ROUND_UP(HZ, 10));
239
240 if (card->bm_generation + 1 == generation ||
241 (card->bm_generation != generation && grace)) {
242 /* This first step is to figure out who is IRM and
243 * then try to become bus manager. If the IRM is not
244 * well defined (e.g. does not have an active link
245 * layer or does not responds to our lock request, we
246 * will have to do a little vigilante bus management.
247 * In that case, we do a goto into the gap count logic
248 * so that when we do the reset, we still optimize the
249 * gap count. That could well save a reset in the
250 * next generation. */
251
252 irm_id = card->irm_node->node_id;
253 if (!card->irm_node->link_on) {
254 new_root_id = card->local_node->node_id;
255 fw_notify("IRM has link off, making local node (%02x) root.\n",
256 new_root_id);
257 goto pick_me;
258 }
259
260 bmd.lock.arg = cpu_to_be32(0x3f);
261 bmd.lock.data = cpu_to_be32(card->local_node->node_id);
262
263 spin_unlock_irqrestore(&card->lock, flags);
264
265 init_completion(&bmd.done);
266 fw_send_request(card, &bmd.t, TCODE_LOCK_COMPARE_SWAP,
267 irm_id, generation,
268 SCODE_100, CSR_REGISTER_BASE + CSR_BUS_MANAGER_ID,
269 &bmd.lock, sizeof bmd.lock,
270 complete_bm_lock, &bmd);
271 wait_for_completion(&bmd.done);
272
273 if (bmd.rcode == RCODE_GENERATION) {
274 /* Another bus reset happened. Just return,
275 * the BM work has been rescheduled. */
276 return;
277 }
278
279 if (bmd.rcode == RCODE_COMPLETE && bmd.old != 0x3f)
280 /* Somebody else is BM, let them do the work. */
281 return;
282
283 spin_lock_irqsave(&card->lock, flags);
284 if (bmd.rcode != RCODE_COMPLETE) {
285 /* The lock request failed, maybe the IRM
286 * isn't really IRM capable after all. Let's
287 * do a bus reset and pick the local node as
288 * root, and thus, IRM. */
289 new_root_id = card->local_node->node_id;
290 fw_notify("BM lock failed, making local node (%02x) root.\n",
291 new_root_id);
292 goto pick_me;
293 }
294 } else if (card->bm_generation != generation) {
295 /* OK, we weren't BM in the last generation, and it's
296 * less than 100ms since last bus reset. Reschedule
297 * this task 100ms from now. */
298 spin_unlock_irqrestore(&card->lock, flags);
299 schedule_delayed_work(&card->work, DIV_ROUND_UP(HZ, 10));
300 return;
301 }
302
303 /* We're bus manager for this generation, so next step is to
304 * make sure we have an active cycle master and do gap count
305 * optimization. */
306 card->bm_generation = generation;
307
308 if (root == NULL) {
309 /* Either link_on is false, or we failed to read the
310 * config rom. In either case, pick another root. */
311 new_root_id = card->local_node->node_id;
312 } else if (atomic_read(&root->state) != FW_DEVICE_RUNNING) {
313 /* If we haven't probed this device yet, bail out now
314 * and let's try again once that's done. */
315 spin_unlock_irqrestore(&card->lock, flags);
316 return;
317 } else if (root->config_rom[2] & bib_cmc) {
318 /* FIXME: I suppose we should set the cmstr bit in the
319 * STATE_CLEAR register of this node, as described in
320 * 1394-1995, 8.4.2.6. Also, send out a force root
321 * packet for this node. */
322 new_root_id = root_id;
323 } else {
324 /* Current root has an active link layer and we
325 * successfully read the config rom, but it's not
326 * cycle master capable. */
327 new_root_id = card->local_node->node_id;
328 }
329
330 pick_me:
331 /* Now figure out what gap count to set. */
332 if (card->topology_type == FW_TOPOLOGY_A &&
333 card->root_node->max_hops < ARRAY_SIZE(gap_count_table))
334 gap_count = gap_count_table[card->root_node->max_hops];
335 else
336 gap_count = 63;
337
338 /* Finally, figure out if we should do a reset or not. If we've
339 * done less that 5 resets with the same physical topology and we
340 * have either a new root or a new gap count setting, let's do it. */
341
342 if (card->bm_retries++ < 5 &&
343 (card->gap_count != gap_count || new_root_id != root_id))
344 do_reset = 1;
345
346 spin_unlock_irqrestore(&card->lock, flags);
347
348 if (do_reset) {
349 fw_notify("phy config: card %d, new root=%x, gap_count=%d\n",
350 card->index, new_root_id, gap_count);
351 fw_send_phy_config(card, new_root_id, generation, gap_count);
352 fw_core_initiate_bus_reset(card, 1);
353 }
354 }
355
356 static void
357 flush_timer_callback(unsigned long data)
358 {
359 struct fw_card *card = (struct fw_card *)data;
360
361 fw_flush_transactions(card);
362 }
363
364 void
365 fw_card_initialize(struct fw_card *card, const struct fw_card_driver *driver,
366 struct device *device)
367 {
368 static atomic_t index = ATOMIC_INIT(-1);
369
370 kref_init(&card->kref);
371 card->index = atomic_inc_return(&index);
372 card->driver = driver;
373 card->device = device;
374 card->current_tlabel = 0;
375 card->tlabel_mask = 0;
376 card->color = 0;
377
378 INIT_LIST_HEAD(&card->transaction_list);
379 spin_lock_init(&card->lock);
380 setup_timer(&card->flush_timer,
381 flush_timer_callback, (unsigned long)card);
382
383 card->local_node = NULL;
384
385 INIT_DELAYED_WORK(&card->work, fw_card_bm_work);
386 }
387 EXPORT_SYMBOL(fw_card_initialize);
388
389 int
390 fw_card_add(struct fw_card *card,
391 u32 max_receive, u32 link_speed, u64 guid)
392 {
393 u32 *config_rom;
394 size_t length;
395
396 card->max_receive = max_receive;
397 card->link_speed = link_speed;
398 card->guid = guid;
399
400 /* Activate link_on bit and contender bit in our self ID packets.*/
401 if (card->driver->update_phy_reg(card, 4, 0,
402 PHY_LINK_ACTIVE | PHY_CONTENDER) < 0)
403 return -EIO;
404
405 /* The subsystem grabs a reference when the card is added and
406 * drops it when the driver calls fw_core_remove_card. */
407 fw_card_get(card);
408
409 down_write(&card_rwsem);
410 config_rom = generate_config_rom (card, &length);
411 list_add_tail(&card->link, &card_list);
412 up_write(&card_rwsem);
413
414 return card->driver->enable(card, config_rom, length);
415 }
416 EXPORT_SYMBOL(fw_card_add);
417
418
419 /* The next few functions implements a dummy driver that use once a
420 * card driver shuts down an fw_card. This allows the driver to
421 * cleanly unload, as all IO to the card will be handled by the dummy
422 * driver instead of calling into the (possibly) unloaded module. The
423 * dummy driver just fails all IO. */
424
425 static int
426 dummy_enable(struct fw_card *card, u32 *config_rom, size_t length)
427 {
428 BUG();
429 return -1;
430 }
431
432 static int
433 dummy_update_phy_reg(struct fw_card *card, int address,
434 int clear_bits, int set_bits)
435 {
436 return -ENODEV;
437 }
438
439 static int
440 dummy_set_config_rom(struct fw_card *card,
441 u32 *config_rom, size_t length)
442 {
443 /* We take the card out of card_list before setting the dummy
444 * driver, so this should never get called. */
445 BUG();
446 return -1;
447 }
448
449 static void
450 dummy_send_request(struct fw_card *card, struct fw_packet *packet)
451 {
452 packet->callback(packet, card, -ENODEV);
453 }
454
455 static void
456 dummy_send_response(struct fw_card *card, struct fw_packet *packet)
457 {
458 packet->callback(packet, card, -ENODEV);
459 }
460
461 static int
462 dummy_cancel_packet(struct fw_card *card, struct fw_packet *packet)
463 {
464 return -ENOENT;
465 }
466
467 static int
468 dummy_enable_phys_dma(struct fw_card *card,
469 int node_id, int generation)
470 {
471 return -ENODEV;
472 }
473
474 static struct fw_card_driver dummy_driver = {
475 .name = "dummy",
476 .enable = dummy_enable,
477 .update_phy_reg = dummy_update_phy_reg,
478 .set_config_rom = dummy_set_config_rom,
479 .send_request = dummy_send_request,
480 .cancel_packet = dummy_cancel_packet,
481 .send_response = dummy_send_response,
482 .enable_phys_dma = dummy_enable_phys_dma,
483 };
484
485 void
486 fw_core_remove_card(struct fw_card *card)
487 {
488 card->driver->update_phy_reg(card, 4,
489 PHY_LINK_ACTIVE | PHY_CONTENDER, 0);
490 fw_core_initiate_bus_reset(card, 1);
491
492 down_write(&card_rwsem);
493 list_del(&card->link);
494 up_write(&card_rwsem);
495
496 /* Set up the dummy driver. */
497 card->driver = &dummy_driver;
498
499 fw_flush_transactions(card);
500
501 fw_destroy_nodes(card);
502
503 fw_card_put(card);
504 }
505 EXPORT_SYMBOL(fw_core_remove_card);
506
507 struct fw_card *
508 fw_card_get(struct fw_card *card)
509 {
510 kref_get(&card->kref);
511
512 return card;
513 }
514 EXPORT_SYMBOL(fw_card_get);
515
516 static void
517 release_card(struct kref *kref)
518 {
519 struct fw_card *card = container_of(kref, struct fw_card, kref);
520
521 kfree(card);
522 }
523
524 /* An assumption for fw_card_put() is that the card driver allocates
525 * the fw_card struct with kalloc and that it has been shut down
526 * before the last ref is dropped. */
527 void
528 fw_card_put(struct fw_card *card)
529 {
530 kref_put(&card->kref, release_card);
531 }
532 EXPORT_SYMBOL(fw_card_put);
533
534 int
535 fw_core_initiate_bus_reset(struct fw_card *card, int short_reset)
536 {
537 int reg = short_reset ? 5 : 1;
538 /* The following values happen to be the same bit. However be
539 * explicit for clarity. */
540 int bit = short_reset ? PHY_BUS_SHORT_RESET : PHY_BUS_RESET;
541
542 return card->driver->update_phy_reg(card, reg, 0, bit);
543 }
544 EXPORT_SYMBOL(fw_core_initiate_bus_reset);