]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/firewire/fw-device.c
firewire: broadcast channel support
[mirror_ubuntu-bionic-kernel.git] / drivers / firewire / fw-device.c
1 /*
2 * Device probing and sysfs code.
3 *
4 * Copyright (C) 2005-2006 Kristian Hoegsberg <krh@bitplanet.net>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21 #include <linux/ctype.h>
22 #include <linux/delay.h>
23 #include <linux/device.h>
24 #include <linux/errno.h>
25 #include <linux/idr.h>
26 #include <linux/jiffies.h>
27 #include <linux/kobject.h>
28 #include <linux/list.h>
29 #include <linux/mutex.h>
30 #include <linux/rwsem.h>
31 #include <linux/semaphore.h>
32 #include <linux/spinlock.h>
33 #include <linux/string.h>
34 #include <linux/workqueue.h>
35
36 #include <asm/system.h>
37
38 #include "fw-device.h"
39 #include "fw-topology.h"
40 #include "fw-transaction.h"
41
42 void fw_csr_iterator_init(struct fw_csr_iterator *ci, u32 * p)
43 {
44 ci->p = p + 1;
45 ci->end = ci->p + (p[0] >> 16);
46 }
47 EXPORT_SYMBOL(fw_csr_iterator_init);
48
49 int fw_csr_iterator_next(struct fw_csr_iterator *ci, int *key, int *value)
50 {
51 *key = *ci->p >> 24;
52 *value = *ci->p & 0xffffff;
53
54 return ci->p++ < ci->end;
55 }
56 EXPORT_SYMBOL(fw_csr_iterator_next);
57
58 static int is_fw_unit(struct device *dev);
59
60 static int match_unit_directory(u32 * directory, const struct fw_device_id *id)
61 {
62 struct fw_csr_iterator ci;
63 int key, value, match;
64
65 match = 0;
66 fw_csr_iterator_init(&ci, directory);
67 while (fw_csr_iterator_next(&ci, &key, &value)) {
68 if (key == CSR_VENDOR && value == id->vendor)
69 match |= FW_MATCH_VENDOR;
70 if (key == CSR_MODEL && value == id->model)
71 match |= FW_MATCH_MODEL;
72 if (key == CSR_SPECIFIER_ID && value == id->specifier_id)
73 match |= FW_MATCH_SPECIFIER_ID;
74 if (key == CSR_VERSION && value == id->version)
75 match |= FW_MATCH_VERSION;
76 }
77
78 return (match & id->match_flags) == id->match_flags;
79 }
80
81 static int fw_unit_match(struct device *dev, struct device_driver *drv)
82 {
83 struct fw_unit *unit = fw_unit(dev);
84 struct fw_driver *driver = fw_driver(drv);
85 int i;
86
87 /* We only allow binding to fw_units. */
88 if (!is_fw_unit(dev))
89 return 0;
90
91 for (i = 0; driver->id_table[i].match_flags != 0; i++) {
92 if (match_unit_directory(unit->directory, &driver->id_table[i]))
93 return 1;
94 }
95
96 return 0;
97 }
98
99 static int get_modalias(struct fw_unit *unit, char *buffer, size_t buffer_size)
100 {
101 struct fw_device *device = fw_device(unit->device.parent);
102 struct fw_csr_iterator ci;
103
104 int key, value;
105 int vendor = 0;
106 int model = 0;
107 int specifier_id = 0;
108 int version = 0;
109
110 fw_csr_iterator_init(&ci, &device->config_rom[5]);
111 while (fw_csr_iterator_next(&ci, &key, &value)) {
112 switch (key) {
113 case CSR_VENDOR:
114 vendor = value;
115 break;
116 case CSR_MODEL:
117 model = value;
118 break;
119 }
120 }
121
122 fw_csr_iterator_init(&ci, unit->directory);
123 while (fw_csr_iterator_next(&ci, &key, &value)) {
124 switch (key) {
125 case CSR_SPECIFIER_ID:
126 specifier_id = value;
127 break;
128 case CSR_VERSION:
129 version = value;
130 break;
131 }
132 }
133
134 return snprintf(buffer, buffer_size,
135 "ieee1394:ven%08Xmo%08Xsp%08Xver%08X",
136 vendor, model, specifier_id, version);
137 }
138
139 static int fw_unit_uevent(struct device *dev, struct kobj_uevent_env *env)
140 {
141 struct fw_unit *unit = fw_unit(dev);
142 char modalias[64];
143
144 get_modalias(unit, modalias, sizeof(modalias));
145
146 if (add_uevent_var(env, "MODALIAS=%s", modalias))
147 return -ENOMEM;
148
149 return 0;
150 }
151
152 struct bus_type fw_bus_type = {
153 .name = "firewire",
154 .match = fw_unit_match,
155 };
156 EXPORT_SYMBOL(fw_bus_type);
157
158 int fw_device_enable_phys_dma(struct fw_device *device)
159 {
160 int generation = device->generation;
161
162 /* device->node_id, accessed below, must not be older than generation */
163 smp_rmb();
164
165 return device->card->driver->enable_phys_dma(device->card,
166 device->node_id,
167 generation);
168 }
169 EXPORT_SYMBOL(fw_device_enable_phys_dma);
170
171 struct config_rom_attribute {
172 struct device_attribute attr;
173 u32 key;
174 };
175
176 static ssize_t show_immediate(struct device *dev,
177 struct device_attribute *dattr, char *buf)
178 {
179 struct config_rom_attribute *attr =
180 container_of(dattr, struct config_rom_attribute, attr);
181 struct fw_csr_iterator ci;
182 u32 *dir;
183 int key, value, ret = -ENOENT;
184
185 down_read(&fw_device_rwsem);
186
187 if (is_fw_unit(dev))
188 dir = fw_unit(dev)->directory;
189 else
190 dir = fw_device(dev)->config_rom + 5;
191
192 fw_csr_iterator_init(&ci, dir);
193 while (fw_csr_iterator_next(&ci, &key, &value))
194 if (attr->key == key) {
195 ret = snprintf(buf, buf ? PAGE_SIZE : 0,
196 "0x%06x\n", value);
197 break;
198 }
199
200 up_read(&fw_device_rwsem);
201
202 return ret;
203 }
204
205 #define IMMEDIATE_ATTR(name, key) \
206 { __ATTR(name, S_IRUGO, show_immediate, NULL), key }
207
208 static ssize_t show_text_leaf(struct device *dev,
209 struct device_attribute *dattr, char *buf)
210 {
211 struct config_rom_attribute *attr =
212 container_of(dattr, struct config_rom_attribute, attr);
213 struct fw_csr_iterator ci;
214 u32 *dir, *block = NULL, *p, *end;
215 int length, key, value, last_key = 0, ret = -ENOENT;
216 char *b;
217
218 down_read(&fw_device_rwsem);
219
220 if (is_fw_unit(dev))
221 dir = fw_unit(dev)->directory;
222 else
223 dir = fw_device(dev)->config_rom + 5;
224
225 fw_csr_iterator_init(&ci, dir);
226 while (fw_csr_iterator_next(&ci, &key, &value)) {
227 if (attr->key == last_key &&
228 key == (CSR_DESCRIPTOR | CSR_LEAF))
229 block = ci.p - 1 + value;
230 last_key = key;
231 }
232
233 if (block == NULL)
234 goto out;
235
236 length = min(block[0] >> 16, 256U);
237 if (length < 3)
238 goto out;
239
240 if (block[1] != 0 || block[2] != 0)
241 /* Unknown encoding. */
242 goto out;
243
244 if (buf == NULL) {
245 ret = length * 4;
246 goto out;
247 }
248
249 b = buf;
250 end = &block[length + 1];
251 for (p = &block[3]; p < end; p++, b += 4)
252 * (u32 *) b = (__force u32) __cpu_to_be32(*p);
253
254 /* Strip trailing whitespace and add newline. */
255 while (b--, (isspace(*b) || *b == '\0') && b > buf);
256 strcpy(b + 1, "\n");
257 ret = b + 2 - buf;
258 out:
259 up_read(&fw_device_rwsem);
260
261 return ret;
262 }
263
264 #define TEXT_LEAF_ATTR(name, key) \
265 { __ATTR(name, S_IRUGO, show_text_leaf, NULL), key }
266
267 static struct config_rom_attribute config_rom_attributes[] = {
268 IMMEDIATE_ATTR(vendor, CSR_VENDOR),
269 IMMEDIATE_ATTR(hardware_version, CSR_HARDWARE_VERSION),
270 IMMEDIATE_ATTR(specifier_id, CSR_SPECIFIER_ID),
271 IMMEDIATE_ATTR(version, CSR_VERSION),
272 IMMEDIATE_ATTR(model, CSR_MODEL),
273 TEXT_LEAF_ATTR(vendor_name, CSR_VENDOR),
274 TEXT_LEAF_ATTR(model_name, CSR_MODEL),
275 TEXT_LEAF_ATTR(hardware_version_name, CSR_HARDWARE_VERSION),
276 };
277
278 static void init_fw_attribute_group(struct device *dev,
279 struct device_attribute *attrs,
280 struct fw_attribute_group *group)
281 {
282 struct device_attribute *attr;
283 int i, j;
284
285 for (j = 0; attrs[j].attr.name != NULL; j++)
286 group->attrs[j] = &attrs[j].attr;
287
288 for (i = 0; i < ARRAY_SIZE(config_rom_attributes); i++) {
289 attr = &config_rom_attributes[i].attr;
290 if (attr->show(dev, attr, NULL) < 0)
291 continue;
292 group->attrs[j++] = &attr->attr;
293 }
294
295 BUG_ON(j >= ARRAY_SIZE(group->attrs));
296 group->attrs[j++] = NULL;
297 group->groups[0] = &group->group;
298 group->groups[1] = NULL;
299 group->group.attrs = group->attrs;
300 dev->groups = group->groups;
301 }
302
303 static ssize_t modalias_show(struct device *dev,
304 struct device_attribute *attr, char *buf)
305 {
306 struct fw_unit *unit = fw_unit(dev);
307 int length;
308
309 length = get_modalias(unit, buf, PAGE_SIZE);
310 strcpy(buf + length, "\n");
311
312 return length + 1;
313 }
314
315 static ssize_t rom_index_show(struct device *dev,
316 struct device_attribute *attr, char *buf)
317 {
318 struct fw_device *device = fw_device(dev->parent);
319 struct fw_unit *unit = fw_unit(dev);
320
321 return snprintf(buf, PAGE_SIZE, "%d\n",
322 (int)(unit->directory - device->config_rom));
323 }
324
325 static struct device_attribute fw_unit_attributes[] = {
326 __ATTR_RO(modalias),
327 __ATTR_RO(rom_index),
328 __ATTR_NULL,
329 };
330
331 static ssize_t config_rom_show(struct device *dev,
332 struct device_attribute *attr, char *buf)
333 {
334 struct fw_device *device = fw_device(dev);
335 size_t length;
336
337 down_read(&fw_device_rwsem);
338 length = device->config_rom_length * 4;
339 memcpy(buf, device->config_rom, length);
340 up_read(&fw_device_rwsem);
341
342 return length;
343 }
344
345 static ssize_t guid_show(struct device *dev,
346 struct device_attribute *attr, char *buf)
347 {
348 struct fw_device *device = fw_device(dev);
349 int ret;
350
351 down_read(&fw_device_rwsem);
352 ret = snprintf(buf, PAGE_SIZE, "0x%08x%08x\n",
353 device->config_rom[3], device->config_rom[4]);
354 up_read(&fw_device_rwsem);
355
356 return ret;
357 }
358
359 static struct device_attribute fw_device_attributes[] = {
360 __ATTR_RO(config_rom),
361 __ATTR_RO(guid),
362 __ATTR_NULL,
363 };
364
365 static int read_rom(struct fw_device *device,
366 int generation, int index, u32 *data)
367 {
368 int rcode;
369
370 /* device->node_id, accessed below, must not be older than generation */
371 smp_rmb();
372
373 rcode = fw_run_transaction(device->card, TCODE_READ_QUADLET_REQUEST,
374 device->node_id, generation, device->max_speed,
375 (CSR_REGISTER_BASE | CSR_CONFIG_ROM) + index * 4,
376 data, 4);
377 be32_to_cpus(data);
378
379 return rcode;
380 }
381
382 #define READ_BIB_ROM_SIZE 256
383 #define READ_BIB_STACK_SIZE 16
384
385 /*
386 * Read the bus info block, perform a speed probe, and read all of the rest of
387 * the config ROM. We do all this with a cached bus generation. If the bus
388 * generation changes under us, read_bus_info_block will fail and get retried.
389 * It's better to start all over in this case because the node from which we
390 * are reading the ROM may have changed the ROM during the reset.
391 */
392 static int read_bus_info_block(struct fw_device *device, int generation)
393 {
394 u32 *rom, *stack, *old_rom, *new_rom;
395 u32 sp, key;
396 int i, end, length, ret = -1;
397
398 rom = kmalloc(sizeof(*rom) * READ_BIB_ROM_SIZE +
399 sizeof(*stack) * READ_BIB_STACK_SIZE, GFP_KERNEL);
400 if (rom == NULL)
401 return -ENOMEM;
402
403 stack = &rom[READ_BIB_ROM_SIZE];
404
405 device->max_speed = SCODE_100;
406
407 /* First read the bus info block. */
408 for (i = 0; i < 5; i++) {
409 if (read_rom(device, generation, i, &rom[i]) != RCODE_COMPLETE)
410 goto out;
411 /*
412 * As per IEEE1212 7.2, during power-up, devices can
413 * reply with a 0 for the first quadlet of the config
414 * rom to indicate that they are booting (for example,
415 * if the firmware is on the disk of a external
416 * harddisk). In that case we just fail, and the
417 * retry mechanism will try again later.
418 */
419 if (i == 0 && rom[i] == 0)
420 goto out;
421 }
422
423 device->max_speed = device->node->max_speed;
424
425 /*
426 * Determine the speed of
427 * - devices with link speed less than PHY speed,
428 * - devices with 1394b PHY (unless only connected to 1394a PHYs),
429 * - all devices if there are 1394b repeaters.
430 * Note, we cannot use the bus info block's link_spd as starting point
431 * because some buggy firmwares set it lower than necessary and because
432 * 1394-1995 nodes do not have the field.
433 */
434 if ((rom[2] & 0x7) < device->max_speed ||
435 device->max_speed == SCODE_BETA ||
436 device->card->beta_repeaters_present) {
437 u32 dummy;
438
439 /* for S1600 and S3200 */
440 if (device->max_speed == SCODE_BETA)
441 device->max_speed = device->card->link_speed;
442
443 while (device->max_speed > SCODE_100) {
444 if (read_rom(device, generation, 0, &dummy) ==
445 RCODE_COMPLETE)
446 break;
447 device->max_speed--;
448 }
449 }
450
451 /*
452 * Now parse the config rom. The config rom is a recursive
453 * directory structure so we parse it using a stack of
454 * references to the blocks that make up the structure. We
455 * push a reference to the root directory on the stack to
456 * start things off.
457 */
458 length = i;
459 sp = 0;
460 stack[sp++] = 0xc0000005;
461 while (sp > 0) {
462 /*
463 * Pop the next block reference of the stack. The
464 * lower 24 bits is the offset into the config rom,
465 * the upper 8 bits are the type of the reference the
466 * block.
467 */
468 key = stack[--sp];
469 i = key & 0xffffff;
470 if (i >= READ_BIB_ROM_SIZE)
471 /*
472 * The reference points outside the standard
473 * config rom area, something's fishy.
474 */
475 goto out;
476
477 /* Read header quadlet for the block to get the length. */
478 if (read_rom(device, generation, i, &rom[i]) != RCODE_COMPLETE)
479 goto out;
480 end = i + (rom[i] >> 16) + 1;
481 i++;
482 if (end > READ_BIB_ROM_SIZE)
483 /*
484 * This block extends outside standard config
485 * area (and the array we're reading it
486 * into). That's broken, so ignore this
487 * device.
488 */
489 goto out;
490
491 /*
492 * Now read in the block. If this is a directory
493 * block, check the entries as we read them to see if
494 * it references another block, and push it in that case.
495 */
496 while (i < end) {
497 if (read_rom(device, generation, i, &rom[i]) !=
498 RCODE_COMPLETE)
499 goto out;
500 if ((key >> 30) == 3 && (rom[i] >> 30) > 1 &&
501 sp < READ_BIB_STACK_SIZE)
502 stack[sp++] = i + rom[i];
503 i++;
504 }
505 if (length < i)
506 length = i;
507 }
508
509 old_rom = device->config_rom;
510 new_rom = kmemdup(rom, length * 4, GFP_KERNEL);
511 if (new_rom == NULL)
512 goto out;
513
514 down_write(&fw_device_rwsem);
515 device->config_rom = new_rom;
516 device->config_rom_length = length;
517 up_write(&fw_device_rwsem);
518
519 kfree(old_rom);
520 ret = 0;
521 device->cmc = rom[2] & 1 << 30;
522 out:
523 kfree(rom);
524
525 return ret;
526 }
527
528 static void fw_unit_release(struct device *dev)
529 {
530 struct fw_unit *unit = fw_unit(dev);
531
532 kfree(unit);
533 }
534
535 static struct device_type fw_unit_type = {
536 .uevent = fw_unit_uevent,
537 .release = fw_unit_release,
538 };
539
540 static int is_fw_unit(struct device *dev)
541 {
542 return dev->type == &fw_unit_type;
543 }
544
545 static void create_units(struct fw_device *device)
546 {
547 struct fw_csr_iterator ci;
548 struct fw_unit *unit;
549 int key, value, i;
550
551 i = 0;
552 fw_csr_iterator_init(&ci, &device->config_rom[5]);
553 while (fw_csr_iterator_next(&ci, &key, &value)) {
554 if (key != (CSR_UNIT | CSR_DIRECTORY))
555 continue;
556
557 /*
558 * Get the address of the unit directory and try to
559 * match the drivers id_tables against it.
560 */
561 unit = kzalloc(sizeof(*unit), GFP_KERNEL);
562 if (unit == NULL) {
563 fw_error("failed to allocate memory for unit\n");
564 continue;
565 }
566
567 unit->directory = ci.p + value - 1;
568 unit->device.bus = &fw_bus_type;
569 unit->device.type = &fw_unit_type;
570 unit->device.parent = &device->device;
571 dev_set_name(&unit->device, "%s.%d", dev_name(&device->device), i++);
572
573 init_fw_attribute_group(&unit->device,
574 fw_unit_attributes,
575 &unit->attribute_group);
576 if (device_register(&unit->device) < 0)
577 goto skip_unit;
578
579 continue;
580
581 skip_unit:
582 kfree(unit);
583 }
584 }
585
586 static int shutdown_unit(struct device *device, void *data)
587 {
588 device_unregister(device);
589
590 return 0;
591 }
592
593 /*
594 * fw_device_rwsem acts as dual purpose mutex:
595 * - serializes accesses to fw_device_idr,
596 * - serializes accesses to fw_device.config_rom/.config_rom_length and
597 * fw_unit.directory, unless those accesses happen at safe occasions
598 */
599 DECLARE_RWSEM(fw_device_rwsem);
600
601 DEFINE_IDR(fw_device_idr);
602 int fw_cdev_major;
603
604 struct fw_device *fw_device_get_by_devt(dev_t devt)
605 {
606 struct fw_device *device;
607
608 down_read(&fw_device_rwsem);
609 device = idr_find(&fw_device_idr, MINOR(devt));
610 if (device)
611 fw_device_get(device);
612 up_read(&fw_device_rwsem);
613
614 return device;
615 }
616
617 /*
618 * These defines control the retry behavior for reading the config
619 * rom. It shouldn't be necessary to tweak these; if the device
620 * doesn't respond to a config rom read within 10 seconds, it's not
621 * going to respond at all. As for the initial delay, a lot of
622 * devices will be able to respond within half a second after bus
623 * reset. On the other hand, it's not really worth being more
624 * aggressive than that, since it scales pretty well; if 10 devices
625 * are plugged in, they're all getting read within one second.
626 */
627
628 #define MAX_RETRIES 10
629 #define RETRY_DELAY (3 * HZ)
630 #define INITIAL_DELAY (HZ / 2)
631 #define SHUTDOWN_DELAY (2 * HZ)
632
633 static void fw_device_shutdown(struct work_struct *work)
634 {
635 struct fw_device *device =
636 container_of(work, struct fw_device, work.work);
637 int minor = MINOR(device->device.devt);
638
639 if (time_is_after_jiffies(device->card->reset_jiffies + SHUTDOWN_DELAY)
640 && !list_empty(&device->card->link)) {
641 schedule_delayed_work(&device->work, SHUTDOWN_DELAY);
642 return;
643 }
644
645 if (atomic_cmpxchg(&device->state,
646 FW_DEVICE_GONE,
647 FW_DEVICE_SHUTDOWN) != FW_DEVICE_GONE)
648 return;
649
650 fw_device_cdev_remove(device);
651 device_for_each_child(&device->device, NULL, shutdown_unit);
652 device_unregister(&device->device);
653
654 down_write(&fw_device_rwsem);
655 idr_remove(&fw_device_idr, minor);
656 up_write(&fw_device_rwsem);
657
658 fw_device_put(device);
659 }
660
661 static void fw_device_release(struct device *dev)
662 {
663 struct fw_device *device = fw_device(dev);
664 struct fw_card *card = device->card;
665 unsigned long flags;
666
667 /*
668 * Take the card lock so we don't set this to NULL while a
669 * FW_NODE_UPDATED callback is being handled or while the
670 * bus manager work looks at this node.
671 */
672 spin_lock_irqsave(&card->lock, flags);
673 device->node->data = NULL;
674 spin_unlock_irqrestore(&card->lock, flags);
675
676 fw_node_put(device->node);
677 kfree(device->config_rom);
678 kfree(device);
679 fw_card_put(card);
680 }
681
682 static struct device_type fw_device_type = {
683 .release = fw_device_release,
684 };
685
686 static int update_unit(struct device *dev, void *data)
687 {
688 struct fw_unit *unit = fw_unit(dev);
689 struct fw_driver *driver = (struct fw_driver *)dev->driver;
690
691 if (is_fw_unit(dev) && driver != NULL && driver->update != NULL) {
692 down(&dev->sem);
693 driver->update(unit);
694 up(&dev->sem);
695 }
696
697 return 0;
698 }
699
700 static void fw_device_update(struct work_struct *work)
701 {
702 struct fw_device *device =
703 container_of(work, struct fw_device, work.work);
704
705 fw_device_cdev_update(device);
706 device_for_each_child(&device->device, NULL, update_unit);
707 }
708
709 /*
710 * If a device was pending for deletion because its node went away but its
711 * bus info block and root directory header matches that of a newly discovered
712 * device, revive the existing fw_device.
713 * The newly allocated fw_device becomes obsolete instead.
714 */
715 static int lookup_existing_device(struct device *dev, void *data)
716 {
717 struct fw_device *old = fw_device(dev);
718 struct fw_device *new = data;
719 struct fw_card *card = new->card;
720 int match = 0;
721
722 down_read(&fw_device_rwsem); /* serialize config_rom access */
723 spin_lock_irq(&card->lock); /* serialize node access */
724
725 if (memcmp(old->config_rom, new->config_rom, 6 * 4) == 0 &&
726 atomic_cmpxchg(&old->state,
727 FW_DEVICE_GONE,
728 FW_DEVICE_RUNNING) == FW_DEVICE_GONE) {
729 struct fw_node *current_node = new->node;
730 struct fw_node *obsolete_node = old->node;
731
732 new->node = obsolete_node;
733 new->node->data = new;
734 old->node = current_node;
735 old->node->data = old;
736
737 old->max_speed = new->max_speed;
738 old->node_id = current_node->node_id;
739 smp_wmb(); /* update node_id before generation */
740 old->generation = card->generation;
741 old->config_rom_retries = 0;
742 fw_notify("rediscovered device %s\n", dev_name(dev));
743
744 PREPARE_DELAYED_WORK(&old->work, fw_device_update);
745 schedule_delayed_work(&old->work, 0);
746
747 if (current_node == card->root_node)
748 fw_schedule_bm_work(card, 0);
749
750 match = 1;
751 }
752
753 spin_unlock_irq(&card->lock);
754 up_read(&fw_device_rwsem);
755
756 return match;
757 }
758
759 static void fw_device_init(struct work_struct *work)
760 {
761 struct fw_device *device =
762 container_of(work, struct fw_device, work.work);
763 struct device *revived_dev;
764 int minor, ret;
765
766 /*
767 * All failure paths here set node->data to NULL, so that we
768 * don't try to do device_for_each_child() on a kfree()'d
769 * device.
770 */
771
772 if (read_bus_info_block(device, device->generation) < 0) {
773 if (device->config_rom_retries < MAX_RETRIES &&
774 atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
775 device->config_rom_retries++;
776 schedule_delayed_work(&device->work, RETRY_DELAY);
777 } else {
778 fw_notify("giving up on config rom for node id %x\n",
779 device->node_id);
780 if (device->node == device->card->root_node)
781 fw_schedule_bm_work(device->card, 0);
782 fw_device_release(&device->device);
783 }
784 return;
785 }
786
787 revived_dev = device_find_child(device->card->device,
788 device, lookup_existing_device);
789 if (revived_dev) {
790 put_device(revived_dev);
791 fw_device_release(&device->device);
792
793 return;
794 }
795
796 device_initialize(&device->device);
797
798 fw_device_get(device);
799 down_write(&fw_device_rwsem);
800 ret = idr_pre_get(&fw_device_idr, GFP_KERNEL) ?
801 idr_get_new(&fw_device_idr, device, &minor) :
802 -ENOMEM;
803 up_write(&fw_device_rwsem);
804
805 if (ret < 0)
806 goto error;
807
808 device->device.bus = &fw_bus_type;
809 device->device.type = &fw_device_type;
810 device->device.parent = device->card->device;
811 device->device.devt = MKDEV(fw_cdev_major, minor);
812 dev_set_name(&device->device, "fw%d", minor);
813
814 init_fw_attribute_group(&device->device,
815 fw_device_attributes,
816 &device->attribute_group);
817 if (device_add(&device->device)) {
818 fw_error("Failed to add device.\n");
819 goto error_with_cdev;
820 }
821
822 create_units(device);
823
824 /*
825 * Transition the device to running state. If it got pulled
826 * out from under us while we did the intialization work, we
827 * have to shut down the device again here. Normally, though,
828 * fw_node_event will be responsible for shutting it down when
829 * necessary. We have to use the atomic cmpxchg here to avoid
830 * racing with the FW_NODE_DESTROYED case in
831 * fw_node_event().
832 */
833 if (atomic_cmpxchg(&device->state,
834 FW_DEVICE_INITIALIZING,
835 FW_DEVICE_RUNNING) == FW_DEVICE_GONE) {
836 PREPARE_DELAYED_WORK(&device->work, fw_device_shutdown);
837 schedule_delayed_work(&device->work, SHUTDOWN_DELAY);
838 } else {
839 if (device->config_rom_retries)
840 fw_notify("created device %s: GUID %08x%08x, S%d00, "
841 "%d config ROM retries\n",
842 dev_name(&device->device),
843 device->config_rom[3], device->config_rom[4],
844 1 << device->max_speed,
845 device->config_rom_retries);
846 else
847 fw_notify("created device %s: GUID %08x%08x, S%d00\n",
848 dev_name(&device->device),
849 device->config_rom[3], device->config_rom[4],
850 1 << device->max_speed);
851 device->config_rom_retries = 0;
852 if (device->card->is_irm)
853 fw_irm_set_broadcast_channel_register(&device->device,
854 NULL);
855 }
856
857 /*
858 * Reschedule the IRM work if we just finished reading the
859 * root node config rom. If this races with a bus reset we
860 * just end up running the IRM work a couple of extra times -
861 * pretty harmless.
862 */
863 if (device->node == device->card->root_node)
864 fw_schedule_bm_work(device->card, 0);
865
866 return;
867
868 error_with_cdev:
869 down_write(&fw_device_rwsem);
870 idr_remove(&fw_device_idr, minor);
871 up_write(&fw_device_rwsem);
872 error:
873 fw_device_put(device); /* fw_device_idr's reference */
874
875 put_device(&device->device); /* our reference */
876 }
877
878 enum {
879 REREAD_BIB_ERROR,
880 REREAD_BIB_GONE,
881 REREAD_BIB_UNCHANGED,
882 REREAD_BIB_CHANGED,
883 };
884
885 /* Reread and compare bus info block and header of root directory */
886 static int reread_bus_info_block(struct fw_device *device, int generation)
887 {
888 u32 q;
889 int i;
890
891 for (i = 0; i < 6; i++) {
892 if (read_rom(device, generation, i, &q) != RCODE_COMPLETE)
893 return REREAD_BIB_ERROR;
894
895 if (i == 0 && q == 0)
896 return REREAD_BIB_GONE;
897
898 if (q != device->config_rom[i])
899 return REREAD_BIB_CHANGED;
900 }
901
902 return REREAD_BIB_UNCHANGED;
903 }
904
905 static void fw_device_refresh(struct work_struct *work)
906 {
907 struct fw_device *device =
908 container_of(work, struct fw_device, work.work);
909 struct fw_card *card = device->card;
910 int node_id = device->node_id;
911
912 switch (reread_bus_info_block(device, device->generation)) {
913 case REREAD_BIB_ERROR:
914 if (device->config_rom_retries < MAX_RETRIES / 2 &&
915 atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
916 device->config_rom_retries++;
917 schedule_delayed_work(&device->work, RETRY_DELAY / 2);
918
919 return;
920 }
921 goto give_up;
922
923 case REREAD_BIB_GONE:
924 goto gone;
925
926 case REREAD_BIB_UNCHANGED:
927 if (atomic_cmpxchg(&device->state,
928 FW_DEVICE_INITIALIZING,
929 FW_DEVICE_RUNNING) == FW_DEVICE_GONE)
930 goto gone;
931
932 fw_device_update(work);
933 device->config_rom_retries = 0;
934 goto out;
935
936 case REREAD_BIB_CHANGED:
937 break;
938 }
939
940 /*
941 * Something changed. We keep things simple and don't investigate
942 * further. We just destroy all previous units and create new ones.
943 */
944 device_for_each_child(&device->device, NULL, shutdown_unit);
945
946 if (read_bus_info_block(device, device->generation) < 0) {
947 if (device->config_rom_retries < MAX_RETRIES &&
948 atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
949 device->config_rom_retries++;
950 schedule_delayed_work(&device->work, RETRY_DELAY);
951
952 return;
953 }
954 goto give_up;
955 }
956
957 create_units(device);
958
959 if (atomic_cmpxchg(&device->state,
960 FW_DEVICE_INITIALIZING,
961 FW_DEVICE_RUNNING) == FW_DEVICE_GONE)
962 goto gone;
963
964 fw_notify("refreshed device %s\n", dev_name(&device->device));
965 device->config_rom_retries = 0;
966 goto out;
967
968 give_up:
969 fw_notify("giving up on refresh of device %s\n", dev_name(&device->device));
970 gone:
971 atomic_set(&device->state, FW_DEVICE_GONE);
972 PREPARE_DELAYED_WORK(&device->work, fw_device_shutdown);
973 schedule_delayed_work(&device->work, SHUTDOWN_DELAY);
974 out:
975 if (node_id == card->root_node->node_id)
976 fw_schedule_bm_work(card, 0);
977 }
978
979 void fw_node_event(struct fw_card *card, struct fw_node *node, int event)
980 {
981 struct fw_device *device;
982
983 switch (event) {
984 case FW_NODE_CREATED:
985 case FW_NODE_LINK_ON:
986 if (!node->link_on)
987 break;
988 create:
989 device = kzalloc(sizeof(*device), GFP_ATOMIC);
990 if (device == NULL)
991 break;
992
993 /*
994 * Do minimal intialization of the device here, the
995 * rest will happen in fw_device_init().
996 *
997 * Attention: A lot of things, even fw_device_get(),
998 * cannot be done before fw_device_init() finished!
999 * You can basically just check device->state and
1000 * schedule work until then, but only while holding
1001 * card->lock.
1002 */
1003 atomic_set(&device->state, FW_DEVICE_INITIALIZING);
1004 device->card = fw_card_get(card);
1005 device->node = fw_node_get(node);
1006 device->node_id = node->node_id;
1007 device->generation = card->generation;
1008 mutex_init(&device->client_list_mutex);
1009 INIT_LIST_HEAD(&device->client_list);
1010
1011 /*
1012 * Set the node data to point back to this device so
1013 * FW_NODE_UPDATED callbacks can update the node_id
1014 * and generation for the device.
1015 */
1016 node->data = device;
1017
1018 /*
1019 * Many devices are slow to respond after bus resets,
1020 * especially if they are bus powered and go through
1021 * power-up after getting plugged in. We schedule the
1022 * first config rom scan half a second after bus reset.
1023 */
1024 INIT_DELAYED_WORK(&device->work, fw_device_init);
1025 schedule_delayed_work(&device->work, INITIAL_DELAY);
1026 break;
1027
1028 case FW_NODE_INITIATED_RESET:
1029 device = node->data;
1030 if (device == NULL)
1031 goto create;
1032
1033 device->node_id = node->node_id;
1034 smp_wmb(); /* update node_id before generation */
1035 device->generation = card->generation;
1036 if (atomic_cmpxchg(&device->state,
1037 FW_DEVICE_RUNNING,
1038 FW_DEVICE_INITIALIZING) == FW_DEVICE_RUNNING) {
1039 PREPARE_DELAYED_WORK(&device->work, fw_device_refresh);
1040 schedule_delayed_work(&device->work,
1041 node == card->local_node ? 0 : INITIAL_DELAY);
1042 }
1043 break;
1044
1045 case FW_NODE_UPDATED:
1046 if (!node->link_on || node->data == NULL)
1047 break;
1048
1049 device = node->data;
1050 device->node_id = node->node_id;
1051 smp_wmb(); /* update node_id before generation */
1052 device->generation = card->generation;
1053 if (atomic_read(&device->state) == FW_DEVICE_RUNNING) {
1054 PREPARE_DELAYED_WORK(&device->work, fw_device_update);
1055 schedule_delayed_work(&device->work, 0);
1056 }
1057 break;
1058
1059 case FW_NODE_DESTROYED:
1060 case FW_NODE_LINK_OFF:
1061 if (!node->data)
1062 break;
1063
1064 /*
1065 * Destroy the device associated with the node. There
1066 * are two cases here: either the device is fully
1067 * initialized (FW_DEVICE_RUNNING) or we're in the
1068 * process of reading its config rom
1069 * (FW_DEVICE_INITIALIZING). If it is fully
1070 * initialized we can reuse device->work to schedule a
1071 * full fw_device_shutdown(). If not, there's work
1072 * scheduled to read it's config rom, and we just put
1073 * the device in shutdown state to have that code fail
1074 * to create the device.
1075 */
1076 device = node->data;
1077 if (atomic_xchg(&device->state,
1078 FW_DEVICE_GONE) == FW_DEVICE_RUNNING) {
1079 PREPARE_DELAYED_WORK(&device->work, fw_device_shutdown);
1080 schedule_delayed_work(&device->work,
1081 list_empty(&card->link) ? 0 : SHUTDOWN_DELAY);
1082 }
1083 break;
1084 }
1085 }