]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/firewire/fw-device.c
firewire: Switch cdev code over to use register_chrdev and keep a list of devices.
[mirror_ubuntu-artful-kernel.git] / drivers / firewire / fw-device.c
1 /* -*- c-basic-offset: 8 -*-
2 *
3 * fw-device.c - Device probing and sysfs code.
4 *
5 * Copyright (C) 2005-2006 Kristian Hoegsberg <krh@bitplanet.net>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software Foundation,
19 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
20 */
21
22 #include <linux/module.h>
23 #include <linux/wait.h>
24 #include <linux/errno.h>
25 #include <linux/kthread.h>
26 #include <linux/device.h>
27 #include <linux/delay.h>
28 #include <linux/idr.h>
29 #include "fw-transaction.h"
30 #include "fw-topology.h"
31 #include "fw-device.h"
32
33 void fw_csr_iterator_init(struct fw_csr_iterator *ci, u32 * p)
34 {
35 ci->p = p + 1;
36 ci->end = ci->p + (p[0] >> 16);
37 }
38 EXPORT_SYMBOL(fw_csr_iterator_init);
39
40 int fw_csr_iterator_next(struct fw_csr_iterator *ci, int *key, int *value)
41 {
42 *key = *ci->p >> 24;
43 *value = *ci->p & 0xffffff;
44
45 return ci->p++ < ci->end;
46 }
47 EXPORT_SYMBOL(fw_csr_iterator_next);
48
49 static int is_fw_unit(struct device *dev);
50
51 static int match_unit_directory(u32 * directory, const struct fw_device_id *id)
52 {
53 struct fw_csr_iterator ci;
54 int key, value, match;
55
56 match = 0;
57 fw_csr_iterator_init(&ci, directory);
58 while (fw_csr_iterator_next(&ci, &key, &value)) {
59 if (key == CSR_VENDOR && value == id->vendor)
60 match |= FW_MATCH_VENDOR;
61 if (key == CSR_MODEL && value == id->model)
62 match |= FW_MATCH_MODEL;
63 if (key == CSR_SPECIFIER_ID && value == id->specifier_id)
64 match |= FW_MATCH_SPECIFIER_ID;
65 if (key == CSR_VERSION && value == id->version)
66 match |= FW_MATCH_VERSION;
67 }
68
69 return (match & id->match_flags) == id->match_flags;
70 }
71
72 static int fw_unit_match(struct device *dev, struct device_driver *drv)
73 {
74 struct fw_unit *unit = fw_unit(dev);
75 struct fw_driver *driver = fw_driver(drv);
76 int i;
77
78 /* We only allow binding to fw_units. */
79 if (!is_fw_unit(dev))
80 return 0;
81
82 for (i = 0; driver->id_table[i].match_flags != 0; i++) {
83 if (match_unit_directory(unit->directory, &driver->id_table[i]))
84 return 1;
85 }
86
87 return 0;
88 }
89
90 static int get_modalias(struct fw_unit *unit, char *buffer, size_t buffer_size)
91 {
92 struct fw_device *device = fw_device(unit->device.parent);
93 struct fw_csr_iterator ci;
94
95 int key, value;
96 int vendor = 0;
97 int model = 0;
98 int specifier_id = 0;
99 int version = 0;
100
101 fw_csr_iterator_init(&ci, &device->config_rom[5]);
102 while (fw_csr_iterator_next(&ci, &key, &value)) {
103 switch (key) {
104 case CSR_VENDOR:
105 vendor = value;
106 break;
107 case CSR_MODEL:
108 model = value;
109 break;
110 }
111 }
112
113 fw_csr_iterator_init(&ci, unit->directory);
114 while (fw_csr_iterator_next(&ci, &key, &value)) {
115 switch (key) {
116 case CSR_SPECIFIER_ID:
117 specifier_id = value;
118 break;
119 case CSR_VERSION:
120 version = value;
121 break;
122 }
123 }
124
125 return snprintf(buffer, buffer_size,
126 "ieee1394:ven%08Xmo%08Xsp%08Xver%08X",
127 vendor, model, specifier_id, version);
128 }
129
130 static int
131 fw_unit_uevent(struct device *dev, char **envp, int num_envp,
132 char *buffer, int buffer_size)
133 {
134 struct fw_unit *unit = fw_unit(dev);
135 char modalias[64];
136 int length = 0;
137 int i = 0;
138
139 if (!is_fw_unit(dev))
140 goto out;
141
142 get_modalias(unit, modalias, sizeof modalias);
143
144 if (add_uevent_var(envp, num_envp, &i,
145 buffer, buffer_size, &length,
146 "MODALIAS=%s", modalias))
147 return -ENOMEM;
148
149 out:
150 envp[i] = NULL;
151
152 return 0;
153 }
154
155 struct bus_type fw_bus_type = {
156 .name = "firewire",
157 .match = fw_unit_match,
158 .uevent = fw_unit_uevent,
159 };
160 EXPORT_SYMBOL(fw_bus_type);
161
162 extern struct fw_device *fw_device_get(struct fw_device *device)
163 {
164 get_device(&device->device);
165
166 return device;
167 }
168
169 extern void fw_device_put(struct fw_device *device)
170 {
171 put_device(&device->device);
172 }
173
174 static void fw_device_release(struct device *dev)
175 {
176 struct fw_device *device = fw_device(dev);
177 unsigned long flags;
178
179 /* Take the card lock so we don't set this to NULL while a
180 * FW_NODE_UPDATED callback is being handled. */
181 spin_lock_irqsave(&device->card->lock, flags);
182 device->node->data = NULL;
183 spin_unlock_irqrestore(&device->card->lock, flags);
184
185 fw_node_put(device->node);
186 fw_card_put(device->card);
187 kfree(device->config_rom);
188 kfree(device);
189 }
190
191 int fw_device_enable_phys_dma(struct fw_device *device)
192 {
193 return device->card->driver->enable_phys_dma(device->card,
194 device->node_id,
195 device->generation);
196 }
197 EXPORT_SYMBOL(fw_device_enable_phys_dma);
198
199 static ssize_t
200 show_modalias_attribute(struct device *dev,
201 struct device_attribute *attr, char *buf)
202 {
203 struct fw_unit *unit = fw_unit(dev);
204 int length;
205
206 length = get_modalias(unit, buf, PAGE_SIZE);
207 strcpy(buf + length, "\n");
208
209 return length + 1;
210 }
211
212 static struct device_attribute modalias_attribute = {
213 .attr = { .name = "modalias", .mode = S_IRUGO, },
214 .show = show_modalias_attribute,
215 };
216
217 static ssize_t
218 show_config_rom_attribute(struct device *dev,
219 struct device_attribute *attr, char *buf)
220 {
221 struct fw_device *device = fw_device(dev);
222
223 memcpy(buf, device->config_rom, device->config_rom_length * 4);
224
225 return device->config_rom_length * 4;
226 }
227
228 static struct device_attribute config_rom_attribute = {
229 .attr = {.name = "config_rom", .mode = S_IRUGO,},
230 .show = show_config_rom_attribute,
231 };
232
233 struct read_quadlet_callback_data {
234 struct completion done;
235 int rcode;
236 u32 data;
237 };
238
239 static void
240 complete_transaction(struct fw_card *card, int rcode,
241 void *payload, size_t length, void *data)
242 {
243 struct read_quadlet_callback_data *callback_data = data;
244
245 if (rcode == RCODE_COMPLETE)
246 callback_data->data = be32_to_cpu(*(__be32 *)payload);
247 callback_data->rcode = rcode;
248 complete(&callback_data->done);
249 }
250
251 static int read_rom(struct fw_device *device, int index, u32 * data)
252 {
253 struct read_quadlet_callback_data callback_data;
254 struct fw_transaction t;
255 u64 offset;
256
257 init_completion(&callback_data.done);
258
259 offset = 0xfffff0000400ULL + index * 4;
260 fw_send_request(device->card, &t, TCODE_READ_QUADLET_REQUEST,
261 device->node_id,
262 device->generation, SCODE_100,
263 offset, NULL, 4, complete_transaction, &callback_data);
264
265 wait_for_completion(&callback_data.done);
266
267 *data = callback_data.data;
268
269 return callback_data.rcode;
270 }
271
272 static int read_bus_info_block(struct fw_device *device)
273 {
274 static u32 rom[256];
275 u32 stack[16], sp, key;
276 int i, end, length;
277
278 /* First read the bus info block. */
279 for (i = 0; i < 5; i++) {
280 if (read_rom(device, i, &rom[i]) != RCODE_COMPLETE)
281 return -1;
282 /* As per IEEE1212 7.2, during power-up, devices can
283 * reply with a 0 for the first quadlet of the config
284 * rom to indicate that they are booting (for example,
285 * if the firmware is on the disk of a external
286 * harddisk). In that case we just fail, and the
287 * retry mechanism will try again later. */
288 if (i == 0 && rom[i] == 0)
289 return -1;
290 }
291
292 /* Now parse the config rom. The config rom is a recursive
293 * directory structure so we parse it using a stack of
294 * references to the blocks that make up the structure. We
295 * push a reference to the root directory on the stack to
296 * start things off. */
297 length = i;
298 sp = 0;
299 stack[sp++] = 0xc0000005;
300 while (sp > 0) {
301 /* Pop the next block reference of the stack. The
302 * lower 24 bits is the offset into the config rom,
303 * the upper 8 bits are the type of the reference the
304 * block. */
305 key = stack[--sp];
306 i = key & 0xffffff;
307 if (i >= ARRAY_SIZE(rom))
308 /* The reference points outside the standard
309 * config rom area, something's fishy. */
310 return -1;
311
312 /* Read header quadlet for the block to get the length. */
313 if (read_rom(device, i, &rom[i]) != RCODE_COMPLETE)
314 return -1;
315 end = i + (rom[i] >> 16) + 1;
316 i++;
317 if (end > ARRAY_SIZE(rom))
318 /* This block extends outside standard config
319 * area (and the array we're reading it
320 * into). That's broken, so ignore this
321 * device. */
322 return -1;
323
324 /* Now read in the block. If this is a directory
325 * block, check the entries as we read them to see if
326 * it references another block, and push it in that case. */
327 while (i < end) {
328 if (read_rom(device, i, &rom[i]) != RCODE_COMPLETE)
329 return -1;
330 if ((key >> 30) == 3 && (rom[i] >> 30) > 1 &&
331 sp < ARRAY_SIZE(stack))
332 stack[sp++] = i + rom[i];
333 i++;
334 }
335 if (length < i)
336 length = i;
337 }
338
339 device->config_rom = kmalloc(length * 4, GFP_KERNEL);
340 if (device->config_rom == NULL)
341 return -1;
342 memcpy(device->config_rom, rom, length * 4);
343 device->config_rom_length = length;
344
345 return 0;
346 }
347
348 static void fw_unit_release(struct device *dev)
349 {
350 struct fw_unit *unit = fw_unit(dev);
351
352 kfree(unit);
353 }
354
355 static int is_fw_unit(struct device *dev)
356 {
357 return dev->release == fw_unit_release;
358 }
359
360 static void create_units(struct fw_device *device)
361 {
362 struct fw_csr_iterator ci;
363 struct fw_unit *unit;
364 int key, value, i;
365
366 i = 0;
367 fw_csr_iterator_init(&ci, &device->config_rom[5]);
368 while (fw_csr_iterator_next(&ci, &key, &value)) {
369 if (key != (CSR_UNIT | CSR_DIRECTORY))
370 continue;
371
372 /* Get the address of the unit directory and try to
373 * match the drivers id_tables against it. */
374 unit = kzalloc(sizeof *unit, GFP_KERNEL);
375 if (unit == NULL) {
376 fw_error("failed to allocate memory for unit\n");
377 continue;
378 }
379
380 unit->directory = ci.p + value - 1;
381 unit->device.bus = &fw_bus_type;
382 unit->device.release = fw_unit_release;
383 unit->device.parent = &device->device;
384 snprintf(unit->device.bus_id, sizeof unit->device.bus_id,
385 "%s.%d", device->device.bus_id, i++);
386
387 if (device_register(&unit->device) < 0) {
388 kfree(unit);
389 continue;
390 }
391
392 if (device_create_file(&unit->device, &modalias_attribute) < 0) {
393 device_unregister(&unit->device);
394 kfree(unit);
395 }
396 }
397 }
398
399 static int shutdown_unit(struct device *device, void *data)
400 {
401 struct fw_unit *unit = fw_unit(device);
402
403 if (is_fw_unit(device)) {
404 device_remove_file(&unit->device, &modalias_attribute);
405 device_unregister(&unit->device);
406 }
407
408 return 0;
409 }
410
411 static DEFINE_IDR(fw_device_idr);
412 int fw_cdev_major;
413
414 struct fw_device *fw_device_from_devt(dev_t devt)
415 {
416 struct fw_device *device;
417
418 down_read(&fw_bus_type.subsys.rwsem);
419 device = idr_find(&fw_device_idr, MINOR(devt));
420 up_read(&fw_bus_type.subsys.rwsem);
421
422 return device;
423 }
424
425 static void fw_device_shutdown(struct work_struct *work)
426 {
427 struct fw_device *device =
428 container_of(work, struct fw_device, work.work);
429 int minor = MINOR(device->device.devt);
430
431 down_write(&fw_bus_type.subsys.rwsem);
432 idr_remove(&fw_device_idr, minor);
433 up_write(&fw_bus_type.subsys.rwsem);
434
435 device_remove_file(&device->device, &config_rom_attribute);
436 device_for_each_child(&device->device, NULL, shutdown_unit);
437 device_unregister(&device->device);
438 }
439
440 /* These defines control the retry behavior for reading the config
441 * rom. It shouldn't be necessary to tweak these; if the device
442 * doesn't respond to a config rom read within 10 seconds, it's not
443 * going to respond at all. As for the initial delay, a lot of
444 * devices will be able to respond within half a second after bus
445 * reset. On the other hand, it's not really worth being more
446 * aggressive than that, since it scales pretty well; if 10 devices
447 * are plugged in, they're all getting read within one second. */
448
449 #define MAX_RETRIES 5
450 #define RETRY_DELAY (2 * HZ)
451 #define INITIAL_DELAY (HZ / 2)
452
453 static void fw_device_init(struct work_struct *work)
454 {
455 struct fw_device *device =
456 container_of(work, struct fw_device, work.work);
457 int minor, err;
458
459 /* All failure paths here set node->data to NULL, so that we
460 * don't try to do device_for_each_child() on a kfree()'d
461 * device. */
462
463 if (read_bus_info_block(device) < 0) {
464 if (device->config_rom_retries < MAX_RETRIES) {
465 device->config_rom_retries++;
466 schedule_delayed_work(&device->work, RETRY_DELAY);
467 } else {
468 fw_notify("giving up on config rom for node id %x\n",
469 device->node_id);
470 if (device->node == device->card->root_node)
471 schedule_delayed_work(&device->card->work, 0);
472 fw_device_release(&device->device);
473 }
474 return;
475 }
476
477 err = -ENOMEM;
478 down_write(&fw_bus_type.subsys.rwsem);
479 if (idr_pre_get(&fw_device_idr, GFP_KERNEL))
480 err = idr_get_new(&fw_device_idr, device, &minor);
481 up_write(&fw_bus_type.subsys.rwsem);
482 if (err < 0)
483 goto error;
484
485 device->device.bus = &fw_bus_type;
486 device->device.release = fw_device_release;
487 device->device.parent = device->card->device;
488 device->device.devt = MKDEV(fw_cdev_major, minor);
489 snprintf(device->device.bus_id, sizeof device->device.bus_id,
490 "fw%d", minor);
491
492 if (device_add(&device->device)) {
493 fw_error("Failed to add device.\n");
494 goto error_with_cdev;
495 }
496
497 if (device_create_file(&device->device, &config_rom_attribute) < 0) {
498 fw_error("Failed to create config rom file.\n");
499 goto error_with_device;
500 }
501
502 create_units(device);
503
504 /* Transition the device to running state. If it got pulled
505 * out from under us while we did the intialization work, we
506 * have to shut down the device again here. Normally, though,
507 * fw_node_event will be responsible for shutting it down when
508 * necessary. We have to use the atomic cmpxchg here to avoid
509 * racing with the FW_NODE_DESTROYED case in
510 * fw_node_event(). */
511 if (atomic_cmpxchg(&device->state,
512 FW_DEVICE_INITIALIZING,
513 FW_DEVICE_RUNNING) == FW_DEVICE_SHUTDOWN)
514 fw_device_shutdown(&device->work.work);
515 else
516 fw_notify("created new fw device %s (%d config rom retries)\n",
517 device->device.bus_id, device->config_rom_retries);
518
519 /* Reschedule the IRM work if we just finished reading the
520 * root node config rom. If this races with a bus reset we
521 * just end up running the IRM work a couple of extra times -
522 * pretty harmless. */
523 if (device->node == device->card->root_node)
524 schedule_delayed_work(&device->card->work, 0);
525
526 return;
527
528 error_with_device:
529 device_del(&device->device);
530 error_with_cdev:
531 down_write(&fw_bus_type.subsys.rwsem);
532 idr_remove(&fw_device_idr, minor);
533 up_write(&fw_bus_type.subsys.rwsem);
534 error:
535 put_device(&device->device);
536 }
537
538 static int update_unit(struct device *dev, void *data)
539 {
540 struct fw_unit *unit = fw_unit(dev);
541 struct fw_driver *driver = (struct fw_driver *)dev->driver;
542
543 if (is_fw_unit(dev) && driver != NULL && driver->update != NULL)
544 driver->update(unit);
545
546 return 0;
547 }
548
549 static void fw_device_update(struct work_struct *work)
550 {
551 struct fw_device *device =
552 container_of(work, struct fw_device, work.work);
553
554 fw_device_cdev_update(device);
555 device_for_each_child(&device->device, NULL, update_unit);
556 }
557
558 void fw_node_event(struct fw_card *card, struct fw_node *node, int event)
559 {
560 struct fw_device *device;
561
562 switch (event) {
563 case FW_NODE_CREATED:
564 case FW_NODE_LINK_ON:
565 if (!node->link_on)
566 break;
567
568 device = kzalloc(sizeof(*device), GFP_ATOMIC);
569 if (device == NULL)
570 break;
571
572 /* Do minimal intialization of the device here, the
573 * rest will happen in fw_device_init(). We need the
574 * card and node so we can read the config rom and we
575 * need to do device_initialize() now so
576 * device_for_each_child() in FW_NODE_UPDATED is
577 * doesn't freak out. */
578 device_initialize(&device->device);
579 atomic_set(&device->state, FW_DEVICE_INITIALIZING);
580 device->card = fw_card_get(card);
581 device->node = fw_node_get(node);
582 device->node_id = node->node_id;
583 device->generation = card->generation;
584 INIT_LIST_HEAD(&device->client_list);
585
586 /* Set the node data to point back to this device so
587 * FW_NODE_UPDATED callbacks can update the node_id
588 * and generation for the device. */
589 node->data = device;
590
591 /* Many devices are slow to respond after bus resets,
592 * especially if they are bus powered and go through
593 * power-up after getting plugged in. We schedule the
594 * first config rom scan half a second after bus reset. */
595 INIT_DELAYED_WORK(&device->work, fw_device_init);
596 schedule_delayed_work(&device->work, INITIAL_DELAY);
597 break;
598
599 case FW_NODE_UPDATED:
600 if (!node->link_on || node->data == NULL)
601 break;
602
603 device = node->data;
604 device->node_id = node->node_id;
605 device->generation = card->generation;
606 if (atomic_read(&device->state) == FW_DEVICE_RUNNING) {
607 PREPARE_DELAYED_WORK(&device->work, fw_device_update);
608 schedule_delayed_work(&device->work, 0);
609 }
610 break;
611
612 case FW_NODE_DESTROYED:
613 case FW_NODE_LINK_OFF:
614 if (!node->data)
615 break;
616
617 /* Destroy the device associated with the node. There
618 * are two cases here: either the device is fully
619 * initialized (FW_DEVICE_RUNNING) or we're in the
620 * process of reading its config rom
621 * (FW_DEVICE_INITIALIZING). If it is fully
622 * initialized we can reuse device->work to schedule a
623 * full fw_device_shutdown(). If not, there's work
624 * scheduled to read it's config rom, and we just put
625 * the device in shutdown state to have that code fail
626 * to create the device. */
627 device = node->data;
628 if (atomic_xchg(&device->state,
629 FW_DEVICE_SHUTDOWN) == FW_DEVICE_RUNNING) {
630 PREPARE_DELAYED_WORK(&device->work, fw_device_shutdown);
631 schedule_delayed_work(&device->work, 0);
632 }
633 break;
634 }
635 }