]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/firewire/fw-ohci.c
firewire: fw-ohci: catch self_id_count == 0
[mirror_ubuntu-artful-kernel.git] / drivers / firewire / fw-ohci.c
1 /*
2 * Driver for OHCI 1394 controllers
3 *
4 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21 #include <linux/compiler.h>
22 #include <linux/delay.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/gfp.h>
25 #include <linux/init.h>
26 #include <linux/interrupt.h>
27 #include <linux/kernel.h>
28 #include <linux/mm.h>
29 #include <linux/module.h>
30 #include <linux/pci.h>
31 #include <linux/spinlock.h>
32
33 #include <asm/page.h>
34 #include <asm/system.h>
35
36 #ifdef CONFIG_PPC_PMAC
37 #include <asm/pmac_feature.h>
38 #endif
39
40 #include "fw-ohci.h"
41 #include "fw-transaction.h"
42
43 #define DESCRIPTOR_OUTPUT_MORE 0
44 #define DESCRIPTOR_OUTPUT_LAST (1 << 12)
45 #define DESCRIPTOR_INPUT_MORE (2 << 12)
46 #define DESCRIPTOR_INPUT_LAST (3 << 12)
47 #define DESCRIPTOR_STATUS (1 << 11)
48 #define DESCRIPTOR_KEY_IMMEDIATE (2 << 8)
49 #define DESCRIPTOR_PING (1 << 7)
50 #define DESCRIPTOR_YY (1 << 6)
51 #define DESCRIPTOR_NO_IRQ (0 << 4)
52 #define DESCRIPTOR_IRQ_ERROR (1 << 4)
53 #define DESCRIPTOR_IRQ_ALWAYS (3 << 4)
54 #define DESCRIPTOR_BRANCH_ALWAYS (3 << 2)
55 #define DESCRIPTOR_WAIT (3 << 0)
56
57 struct descriptor {
58 __le16 req_count;
59 __le16 control;
60 __le32 data_address;
61 __le32 branch_address;
62 __le16 res_count;
63 __le16 transfer_status;
64 } __attribute__((aligned(16)));
65
66 struct db_descriptor {
67 __le16 first_size;
68 __le16 control;
69 __le16 second_req_count;
70 __le16 first_req_count;
71 __le32 branch_address;
72 __le16 second_res_count;
73 __le16 first_res_count;
74 __le32 reserved0;
75 __le32 first_buffer;
76 __le32 second_buffer;
77 __le32 reserved1;
78 } __attribute__((aligned(16)));
79
80 #define CONTROL_SET(regs) (regs)
81 #define CONTROL_CLEAR(regs) ((regs) + 4)
82 #define COMMAND_PTR(regs) ((regs) + 12)
83 #define CONTEXT_MATCH(regs) ((regs) + 16)
84
85 struct ar_buffer {
86 struct descriptor descriptor;
87 struct ar_buffer *next;
88 __le32 data[0];
89 };
90
91 struct ar_context {
92 struct fw_ohci *ohci;
93 struct ar_buffer *current_buffer;
94 struct ar_buffer *last_buffer;
95 void *pointer;
96 u32 regs;
97 struct tasklet_struct tasklet;
98 };
99
100 struct context;
101
102 typedef int (*descriptor_callback_t)(struct context *ctx,
103 struct descriptor *d,
104 struct descriptor *last);
105
106 /*
107 * A buffer that contains a block of DMA-able coherent memory used for
108 * storing a portion of a DMA descriptor program.
109 */
110 struct descriptor_buffer {
111 struct list_head list;
112 dma_addr_t buffer_bus;
113 size_t buffer_size;
114 size_t used;
115 struct descriptor buffer[0];
116 };
117
118 struct context {
119 struct fw_ohci *ohci;
120 u32 regs;
121 int total_allocation;
122
123 /*
124 * List of page-sized buffers for storing DMA descriptors.
125 * Head of list contains buffers in use and tail of list contains
126 * free buffers.
127 */
128 struct list_head buffer_list;
129
130 /*
131 * Pointer to a buffer inside buffer_list that contains the tail
132 * end of the current DMA program.
133 */
134 struct descriptor_buffer *buffer_tail;
135
136 /*
137 * The descriptor containing the branch address of the first
138 * descriptor that has not yet been filled by the device.
139 */
140 struct descriptor *last;
141
142 /*
143 * The last descriptor in the DMA program. It contains the branch
144 * address that must be updated upon appending a new descriptor.
145 */
146 struct descriptor *prev;
147
148 descriptor_callback_t callback;
149
150 struct tasklet_struct tasklet;
151 };
152
153 #define IT_HEADER_SY(v) ((v) << 0)
154 #define IT_HEADER_TCODE(v) ((v) << 4)
155 #define IT_HEADER_CHANNEL(v) ((v) << 8)
156 #define IT_HEADER_TAG(v) ((v) << 14)
157 #define IT_HEADER_SPEED(v) ((v) << 16)
158 #define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
159
160 struct iso_context {
161 struct fw_iso_context base;
162 struct context context;
163 int excess_bytes;
164 void *header;
165 size_t header_length;
166 };
167
168 #define CONFIG_ROM_SIZE 1024
169
170 struct fw_ohci {
171 struct fw_card card;
172
173 u32 version;
174 __iomem char *registers;
175 dma_addr_t self_id_bus;
176 __le32 *self_id_cpu;
177 struct tasklet_struct bus_reset_tasklet;
178 int node_id;
179 int generation;
180 int request_generation;
181 u32 bus_seconds;
182 bool old_uninorth;
183
184 /*
185 * Spinlock for accessing fw_ohci data. Never call out of
186 * this driver with this lock held.
187 */
188 spinlock_t lock;
189 u32 self_id_buffer[512];
190
191 /* Config rom buffers */
192 __be32 *config_rom;
193 dma_addr_t config_rom_bus;
194 __be32 *next_config_rom;
195 dma_addr_t next_config_rom_bus;
196 u32 next_header;
197
198 struct ar_context ar_request_ctx;
199 struct ar_context ar_response_ctx;
200 struct context at_request_ctx;
201 struct context at_response_ctx;
202
203 u32 it_context_mask;
204 struct iso_context *it_context_list;
205 u32 ir_context_mask;
206 struct iso_context *ir_context_list;
207 };
208
209 static inline struct fw_ohci *fw_ohci(struct fw_card *card)
210 {
211 return container_of(card, struct fw_ohci, card);
212 }
213
214 #define IT_CONTEXT_CYCLE_MATCH_ENABLE 0x80000000
215 #define IR_CONTEXT_BUFFER_FILL 0x80000000
216 #define IR_CONTEXT_ISOCH_HEADER 0x40000000
217 #define IR_CONTEXT_CYCLE_MATCH_ENABLE 0x20000000
218 #define IR_CONTEXT_MULTI_CHANNEL_MODE 0x10000000
219 #define IR_CONTEXT_DUAL_BUFFER_MODE 0x08000000
220
221 #define CONTEXT_RUN 0x8000
222 #define CONTEXT_WAKE 0x1000
223 #define CONTEXT_DEAD 0x0800
224 #define CONTEXT_ACTIVE 0x0400
225
226 #define OHCI1394_MAX_AT_REQ_RETRIES 0x2
227 #define OHCI1394_MAX_AT_RESP_RETRIES 0x2
228 #define OHCI1394_MAX_PHYS_RESP_RETRIES 0x8
229
230 #define FW_OHCI_MAJOR 240
231 #define OHCI1394_REGISTER_SIZE 0x800
232 #define OHCI_LOOP_COUNT 500
233 #define OHCI1394_PCI_HCI_Control 0x40
234 #define SELF_ID_BUF_SIZE 0x800
235 #define OHCI_TCODE_PHY_PACKET 0x0e
236 #define OHCI_VERSION_1_1 0x010010
237
238 static char ohci_driver_name[] = KBUILD_MODNAME;
239
240 static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
241 {
242 writel(data, ohci->registers + offset);
243 }
244
245 static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
246 {
247 return readl(ohci->registers + offset);
248 }
249
250 static inline void flush_writes(const struct fw_ohci *ohci)
251 {
252 /* Do a dummy read to flush writes. */
253 reg_read(ohci, OHCI1394_Version);
254 }
255
256 static int
257 ohci_update_phy_reg(struct fw_card *card, int addr,
258 int clear_bits, int set_bits)
259 {
260 struct fw_ohci *ohci = fw_ohci(card);
261 u32 val, old;
262
263 reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
264 flush_writes(ohci);
265 msleep(2);
266 val = reg_read(ohci, OHCI1394_PhyControl);
267 if ((val & OHCI1394_PhyControl_ReadDone) == 0) {
268 fw_error("failed to set phy reg bits.\n");
269 return -EBUSY;
270 }
271
272 old = OHCI1394_PhyControl_ReadData(val);
273 old = (old & ~clear_bits) | set_bits;
274 reg_write(ohci, OHCI1394_PhyControl,
275 OHCI1394_PhyControl_Write(addr, old));
276
277 return 0;
278 }
279
280 static int ar_context_add_page(struct ar_context *ctx)
281 {
282 struct device *dev = ctx->ohci->card.device;
283 struct ar_buffer *ab;
284 dma_addr_t uninitialized_var(ab_bus);
285 size_t offset;
286
287 ab = dma_alloc_coherent(dev, PAGE_SIZE, &ab_bus, GFP_ATOMIC);
288 if (ab == NULL)
289 return -ENOMEM;
290
291 memset(&ab->descriptor, 0, sizeof(ab->descriptor));
292 ab->descriptor.control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
293 DESCRIPTOR_STATUS |
294 DESCRIPTOR_BRANCH_ALWAYS);
295 offset = offsetof(struct ar_buffer, data);
296 ab->descriptor.req_count = cpu_to_le16(PAGE_SIZE - offset);
297 ab->descriptor.data_address = cpu_to_le32(ab_bus + offset);
298 ab->descriptor.res_count = cpu_to_le16(PAGE_SIZE - offset);
299 ab->descriptor.branch_address = 0;
300
301 ctx->last_buffer->descriptor.branch_address = cpu_to_le32(ab_bus | 1);
302 ctx->last_buffer->next = ab;
303 ctx->last_buffer = ab;
304
305 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
306 flush_writes(ctx->ohci);
307
308 return 0;
309 }
310
311 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
312 #define cond_le32_to_cpu(v) \
313 (ohci->old_uninorth ? (__force __u32)(v) : le32_to_cpu(v))
314 #else
315 #define cond_le32_to_cpu(v) le32_to_cpu(v)
316 #endif
317
318 static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
319 {
320 struct fw_ohci *ohci = ctx->ohci;
321 struct fw_packet p;
322 u32 status, length, tcode;
323
324 p.header[0] = cond_le32_to_cpu(buffer[0]);
325 p.header[1] = cond_le32_to_cpu(buffer[1]);
326 p.header[2] = cond_le32_to_cpu(buffer[2]);
327
328 tcode = (p.header[0] >> 4) & 0x0f;
329 switch (tcode) {
330 case TCODE_WRITE_QUADLET_REQUEST:
331 case TCODE_READ_QUADLET_RESPONSE:
332 p.header[3] = (__force __u32) buffer[3];
333 p.header_length = 16;
334 p.payload_length = 0;
335 break;
336
337 case TCODE_READ_BLOCK_REQUEST :
338 p.header[3] = cond_le32_to_cpu(buffer[3]);
339 p.header_length = 16;
340 p.payload_length = 0;
341 break;
342
343 case TCODE_WRITE_BLOCK_REQUEST:
344 case TCODE_READ_BLOCK_RESPONSE:
345 case TCODE_LOCK_REQUEST:
346 case TCODE_LOCK_RESPONSE:
347 p.header[3] = cond_le32_to_cpu(buffer[3]);
348 p.header_length = 16;
349 p.payload_length = p.header[3] >> 16;
350 break;
351
352 case TCODE_WRITE_RESPONSE:
353 case TCODE_READ_QUADLET_REQUEST:
354 case OHCI_TCODE_PHY_PACKET:
355 p.header_length = 12;
356 p.payload_length = 0;
357 break;
358 }
359
360 p.payload = (void *) buffer + p.header_length;
361
362 /* FIXME: What to do about evt_* errors? */
363 length = (p.header_length + p.payload_length + 3) / 4;
364 status = cond_le32_to_cpu(buffer[length]);
365
366 p.ack = ((status >> 16) & 0x1f) - 16;
367 p.speed = (status >> 21) & 0x7;
368 p.timestamp = status & 0xffff;
369 p.generation = ohci->request_generation;
370
371 /*
372 * The OHCI bus reset handler synthesizes a phy packet with
373 * the new generation number when a bus reset happens (see
374 * section 8.4.2.3). This helps us determine when a request
375 * was received and make sure we send the response in the same
376 * generation. We only need this for requests; for responses
377 * we use the unique tlabel for finding the matching
378 * request.
379 */
380
381 if (p.ack + 16 == 0x09)
382 ohci->request_generation = (p.header[2] >> 16) & 0xff;
383 else if (ctx == &ohci->ar_request_ctx)
384 fw_core_handle_request(&ohci->card, &p);
385 else
386 fw_core_handle_response(&ohci->card, &p);
387
388 return buffer + length + 1;
389 }
390
391 static void ar_context_tasklet(unsigned long data)
392 {
393 struct ar_context *ctx = (struct ar_context *)data;
394 struct fw_ohci *ohci = ctx->ohci;
395 struct ar_buffer *ab;
396 struct descriptor *d;
397 void *buffer, *end;
398
399 ab = ctx->current_buffer;
400 d = &ab->descriptor;
401
402 if (d->res_count == 0) {
403 size_t size, rest, offset;
404 dma_addr_t start_bus;
405 void *start;
406
407 /*
408 * This descriptor is finished and we may have a
409 * packet split across this and the next buffer. We
410 * reuse the page for reassembling the split packet.
411 */
412
413 offset = offsetof(struct ar_buffer, data);
414 start = buffer = ab;
415 start_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
416
417 ab = ab->next;
418 d = &ab->descriptor;
419 size = buffer + PAGE_SIZE - ctx->pointer;
420 rest = le16_to_cpu(d->req_count) - le16_to_cpu(d->res_count);
421 memmove(buffer, ctx->pointer, size);
422 memcpy(buffer + size, ab->data, rest);
423 ctx->current_buffer = ab;
424 ctx->pointer = (void *) ab->data + rest;
425 end = buffer + size + rest;
426
427 while (buffer < end)
428 buffer = handle_ar_packet(ctx, buffer);
429
430 dma_free_coherent(ohci->card.device, PAGE_SIZE,
431 start, start_bus);
432 ar_context_add_page(ctx);
433 } else {
434 buffer = ctx->pointer;
435 ctx->pointer = end =
436 (void *) ab + PAGE_SIZE - le16_to_cpu(d->res_count);
437
438 while (buffer < end)
439 buffer = handle_ar_packet(ctx, buffer);
440 }
441 }
442
443 static int
444 ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci, u32 regs)
445 {
446 struct ar_buffer ab;
447
448 ctx->regs = regs;
449 ctx->ohci = ohci;
450 ctx->last_buffer = &ab;
451 tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
452
453 ar_context_add_page(ctx);
454 ar_context_add_page(ctx);
455 ctx->current_buffer = ab.next;
456 ctx->pointer = ctx->current_buffer->data;
457
458 return 0;
459 }
460
461 static void ar_context_run(struct ar_context *ctx)
462 {
463 struct ar_buffer *ab = ctx->current_buffer;
464 dma_addr_t ab_bus;
465 size_t offset;
466
467 offset = offsetof(struct ar_buffer, data);
468 ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
469
470 reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ab_bus | 1);
471 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
472 flush_writes(ctx->ohci);
473 }
474
475 static struct descriptor *
476 find_branch_descriptor(struct descriptor *d, int z)
477 {
478 int b, key;
479
480 b = (le16_to_cpu(d->control) & DESCRIPTOR_BRANCH_ALWAYS) >> 2;
481 key = (le16_to_cpu(d->control) & DESCRIPTOR_KEY_IMMEDIATE) >> 8;
482
483 /* figure out which descriptor the branch address goes in */
484 if (z == 2 && (b == 3 || key == 2))
485 return d;
486 else
487 return d + z - 1;
488 }
489
490 static void context_tasklet(unsigned long data)
491 {
492 struct context *ctx = (struct context *) data;
493 struct descriptor *d, *last;
494 u32 address;
495 int z;
496 struct descriptor_buffer *desc;
497
498 desc = list_entry(ctx->buffer_list.next,
499 struct descriptor_buffer, list);
500 last = ctx->last;
501 while (last->branch_address != 0) {
502 struct descriptor_buffer *old_desc = desc;
503 address = le32_to_cpu(last->branch_address);
504 z = address & 0xf;
505 address &= ~0xf;
506
507 /* If the branch address points to a buffer outside of the
508 * current buffer, advance to the next buffer. */
509 if (address < desc->buffer_bus ||
510 address >= desc->buffer_bus + desc->used)
511 desc = list_entry(desc->list.next,
512 struct descriptor_buffer, list);
513 d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
514 last = find_branch_descriptor(d, z);
515
516 if (!ctx->callback(ctx, d, last))
517 break;
518
519 if (old_desc != desc) {
520 /* If we've advanced to the next buffer, move the
521 * previous buffer to the free list. */
522 unsigned long flags;
523 old_desc->used = 0;
524 spin_lock_irqsave(&ctx->ohci->lock, flags);
525 list_move_tail(&old_desc->list, &ctx->buffer_list);
526 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
527 }
528 ctx->last = last;
529 }
530 }
531
532 /*
533 * Allocate a new buffer and add it to the list of free buffers for this
534 * context. Must be called with ohci->lock held.
535 */
536 static int
537 context_add_buffer(struct context *ctx)
538 {
539 struct descriptor_buffer *desc;
540 dma_addr_t uninitialized_var(bus_addr);
541 int offset;
542
543 /*
544 * 16MB of descriptors should be far more than enough for any DMA
545 * program. This will catch run-away userspace or DoS attacks.
546 */
547 if (ctx->total_allocation >= 16*1024*1024)
548 return -ENOMEM;
549
550 desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
551 &bus_addr, GFP_ATOMIC);
552 if (!desc)
553 return -ENOMEM;
554
555 offset = (void *)&desc->buffer - (void *)desc;
556 desc->buffer_size = PAGE_SIZE - offset;
557 desc->buffer_bus = bus_addr + offset;
558 desc->used = 0;
559
560 list_add_tail(&desc->list, &ctx->buffer_list);
561 ctx->total_allocation += PAGE_SIZE;
562
563 return 0;
564 }
565
566 static int
567 context_init(struct context *ctx, struct fw_ohci *ohci,
568 u32 regs, descriptor_callback_t callback)
569 {
570 ctx->ohci = ohci;
571 ctx->regs = regs;
572 ctx->total_allocation = 0;
573
574 INIT_LIST_HEAD(&ctx->buffer_list);
575 if (context_add_buffer(ctx) < 0)
576 return -ENOMEM;
577
578 ctx->buffer_tail = list_entry(ctx->buffer_list.next,
579 struct descriptor_buffer, list);
580
581 tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
582 ctx->callback = callback;
583
584 /*
585 * We put a dummy descriptor in the buffer that has a NULL
586 * branch address and looks like it's been sent. That way we
587 * have a descriptor to append DMA programs to.
588 */
589 memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
590 ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
591 ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
592 ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
593 ctx->last = ctx->buffer_tail->buffer;
594 ctx->prev = ctx->buffer_tail->buffer;
595
596 return 0;
597 }
598
599 static void
600 context_release(struct context *ctx)
601 {
602 struct fw_card *card = &ctx->ohci->card;
603 struct descriptor_buffer *desc, *tmp;
604
605 list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
606 dma_free_coherent(card->device, PAGE_SIZE, desc,
607 desc->buffer_bus -
608 ((void *)&desc->buffer - (void *)desc));
609 }
610
611 /* Must be called with ohci->lock held */
612 static struct descriptor *
613 context_get_descriptors(struct context *ctx, int z, dma_addr_t *d_bus)
614 {
615 struct descriptor *d = NULL;
616 struct descriptor_buffer *desc = ctx->buffer_tail;
617
618 if (z * sizeof(*d) > desc->buffer_size)
619 return NULL;
620
621 if (z * sizeof(*d) > desc->buffer_size - desc->used) {
622 /* No room for the descriptor in this buffer, so advance to the
623 * next one. */
624
625 if (desc->list.next == &ctx->buffer_list) {
626 /* If there is no free buffer next in the list,
627 * allocate one. */
628 if (context_add_buffer(ctx) < 0)
629 return NULL;
630 }
631 desc = list_entry(desc->list.next,
632 struct descriptor_buffer, list);
633 ctx->buffer_tail = desc;
634 }
635
636 d = desc->buffer + desc->used / sizeof(*d);
637 memset(d, 0, z * sizeof(*d));
638 *d_bus = desc->buffer_bus + desc->used;
639
640 return d;
641 }
642
643 static void context_run(struct context *ctx, u32 extra)
644 {
645 struct fw_ohci *ohci = ctx->ohci;
646
647 reg_write(ohci, COMMAND_PTR(ctx->regs),
648 le32_to_cpu(ctx->last->branch_address));
649 reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
650 reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
651 flush_writes(ohci);
652 }
653
654 static void context_append(struct context *ctx,
655 struct descriptor *d, int z, int extra)
656 {
657 dma_addr_t d_bus;
658 struct descriptor_buffer *desc = ctx->buffer_tail;
659
660 d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
661
662 desc->used += (z + extra) * sizeof(*d);
663 ctx->prev->branch_address = cpu_to_le32(d_bus | z);
664 ctx->prev = find_branch_descriptor(d, z);
665
666 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
667 flush_writes(ctx->ohci);
668 }
669
670 static void context_stop(struct context *ctx)
671 {
672 u32 reg;
673 int i;
674
675 reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
676 flush_writes(ctx->ohci);
677
678 for (i = 0; i < 10; i++) {
679 reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
680 if ((reg & CONTEXT_ACTIVE) == 0)
681 break;
682
683 fw_notify("context_stop: still active (0x%08x)\n", reg);
684 mdelay(1);
685 }
686 }
687
688 struct driver_data {
689 struct fw_packet *packet;
690 };
691
692 /*
693 * This function apppends a packet to the DMA queue for transmission.
694 * Must always be called with the ochi->lock held to ensure proper
695 * generation handling and locking around packet queue manipulation.
696 */
697 static int
698 at_context_queue_packet(struct context *ctx, struct fw_packet *packet)
699 {
700 struct fw_ohci *ohci = ctx->ohci;
701 dma_addr_t d_bus, uninitialized_var(payload_bus);
702 struct driver_data *driver_data;
703 struct descriptor *d, *last;
704 __le32 *header;
705 int z, tcode;
706 u32 reg;
707
708 d = context_get_descriptors(ctx, 4, &d_bus);
709 if (d == NULL) {
710 packet->ack = RCODE_SEND_ERROR;
711 return -1;
712 }
713
714 d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
715 d[0].res_count = cpu_to_le16(packet->timestamp);
716
717 /*
718 * The DMA format for asyncronous link packets is different
719 * from the IEEE1394 layout, so shift the fields around
720 * accordingly. If header_length is 8, it's a PHY packet, to
721 * which we need to prepend an extra quadlet.
722 */
723
724 header = (__le32 *) &d[1];
725 if (packet->header_length > 8) {
726 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
727 (packet->speed << 16));
728 header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
729 (packet->header[0] & 0xffff0000));
730 header[2] = cpu_to_le32(packet->header[2]);
731
732 tcode = (packet->header[0] >> 4) & 0x0f;
733 if (TCODE_IS_BLOCK_PACKET(tcode))
734 header[3] = cpu_to_le32(packet->header[3]);
735 else
736 header[3] = (__force __le32) packet->header[3];
737
738 d[0].req_count = cpu_to_le16(packet->header_length);
739 } else {
740 header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
741 (packet->speed << 16));
742 header[1] = cpu_to_le32(packet->header[0]);
743 header[2] = cpu_to_le32(packet->header[1]);
744 d[0].req_count = cpu_to_le16(12);
745 }
746
747 driver_data = (struct driver_data *) &d[3];
748 driver_data->packet = packet;
749 packet->driver_data = driver_data;
750
751 if (packet->payload_length > 0) {
752 payload_bus =
753 dma_map_single(ohci->card.device, packet->payload,
754 packet->payload_length, DMA_TO_DEVICE);
755 if (dma_mapping_error(payload_bus)) {
756 packet->ack = RCODE_SEND_ERROR;
757 return -1;
758 }
759
760 d[2].req_count = cpu_to_le16(packet->payload_length);
761 d[2].data_address = cpu_to_le32(payload_bus);
762 last = &d[2];
763 z = 3;
764 } else {
765 last = &d[0];
766 z = 2;
767 }
768
769 last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
770 DESCRIPTOR_IRQ_ALWAYS |
771 DESCRIPTOR_BRANCH_ALWAYS);
772
773 /* FIXME: Document how the locking works. */
774 if (ohci->generation != packet->generation) {
775 if (packet->payload_length > 0)
776 dma_unmap_single(ohci->card.device, payload_bus,
777 packet->payload_length, DMA_TO_DEVICE);
778 packet->ack = RCODE_GENERATION;
779 return -1;
780 }
781
782 context_append(ctx, d, z, 4 - z);
783
784 /* If the context isn't already running, start it up. */
785 reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
786 if ((reg & CONTEXT_RUN) == 0)
787 context_run(ctx, 0);
788
789 return 0;
790 }
791
792 static int handle_at_packet(struct context *context,
793 struct descriptor *d,
794 struct descriptor *last)
795 {
796 struct driver_data *driver_data;
797 struct fw_packet *packet;
798 struct fw_ohci *ohci = context->ohci;
799 dma_addr_t payload_bus;
800 int evt;
801
802 if (last->transfer_status == 0)
803 /* This descriptor isn't done yet, stop iteration. */
804 return 0;
805
806 driver_data = (struct driver_data *) &d[3];
807 packet = driver_data->packet;
808 if (packet == NULL)
809 /* This packet was cancelled, just continue. */
810 return 1;
811
812 payload_bus = le32_to_cpu(last->data_address);
813 if (payload_bus != 0)
814 dma_unmap_single(ohci->card.device, payload_bus,
815 packet->payload_length, DMA_TO_DEVICE);
816
817 evt = le16_to_cpu(last->transfer_status) & 0x1f;
818 packet->timestamp = le16_to_cpu(last->res_count);
819
820 switch (evt) {
821 case OHCI1394_evt_timeout:
822 /* Async response transmit timed out. */
823 packet->ack = RCODE_CANCELLED;
824 break;
825
826 case OHCI1394_evt_flushed:
827 /*
828 * The packet was flushed should give same error as
829 * when we try to use a stale generation count.
830 */
831 packet->ack = RCODE_GENERATION;
832 break;
833
834 case OHCI1394_evt_missing_ack:
835 /*
836 * Using a valid (current) generation count, but the
837 * node is not on the bus or not sending acks.
838 */
839 packet->ack = RCODE_NO_ACK;
840 break;
841
842 case ACK_COMPLETE + 0x10:
843 case ACK_PENDING + 0x10:
844 case ACK_BUSY_X + 0x10:
845 case ACK_BUSY_A + 0x10:
846 case ACK_BUSY_B + 0x10:
847 case ACK_DATA_ERROR + 0x10:
848 case ACK_TYPE_ERROR + 0x10:
849 packet->ack = evt - 0x10;
850 break;
851
852 default:
853 packet->ack = RCODE_SEND_ERROR;
854 break;
855 }
856
857 packet->callback(packet, &ohci->card, packet->ack);
858
859 return 1;
860 }
861
862 #define HEADER_GET_DESTINATION(q) (((q) >> 16) & 0xffff)
863 #define HEADER_GET_TCODE(q) (((q) >> 4) & 0x0f)
864 #define HEADER_GET_OFFSET_HIGH(q) (((q) >> 0) & 0xffff)
865 #define HEADER_GET_DATA_LENGTH(q) (((q) >> 16) & 0xffff)
866 #define HEADER_GET_EXTENDED_TCODE(q) (((q) >> 0) & 0xffff)
867
868 static void
869 handle_local_rom(struct fw_ohci *ohci, struct fw_packet *packet, u32 csr)
870 {
871 struct fw_packet response;
872 int tcode, length, i;
873
874 tcode = HEADER_GET_TCODE(packet->header[0]);
875 if (TCODE_IS_BLOCK_PACKET(tcode))
876 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
877 else
878 length = 4;
879
880 i = csr - CSR_CONFIG_ROM;
881 if (i + length > CONFIG_ROM_SIZE) {
882 fw_fill_response(&response, packet->header,
883 RCODE_ADDRESS_ERROR, NULL, 0);
884 } else if (!TCODE_IS_READ_REQUEST(tcode)) {
885 fw_fill_response(&response, packet->header,
886 RCODE_TYPE_ERROR, NULL, 0);
887 } else {
888 fw_fill_response(&response, packet->header, RCODE_COMPLETE,
889 (void *) ohci->config_rom + i, length);
890 }
891
892 fw_core_handle_response(&ohci->card, &response);
893 }
894
895 static void
896 handle_local_lock(struct fw_ohci *ohci, struct fw_packet *packet, u32 csr)
897 {
898 struct fw_packet response;
899 int tcode, length, ext_tcode, sel;
900 __be32 *payload, lock_old;
901 u32 lock_arg, lock_data;
902
903 tcode = HEADER_GET_TCODE(packet->header[0]);
904 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
905 payload = packet->payload;
906 ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
907
908 if (tcode == TCODE_LOCK_REQUEST &&
909 ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
910 lock_arg = be32_to_cpu(payload[0]);
911 lock_data = be32_to_cpu(payload[1]);
912 } else if (tcode == TCODE_READ_QUADLET_REQUEST) {
913 lock_arg = 0;
914 lock_data = 0;
915 } else {
916 fw_fill_response(&response, packet->header,
917 RCODE_TYPE_ERROR, NULL, 0);
918 goto out;
919 }
920
921 sel = (csr - CSR_BUS_MANAGER_ID) / 4;
922 reg_write(ohci, OHCI1394_CSRData, lock_data);
923 reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
924 reg_write(ohci, OHCI1394_CSRControl, sel);
925
926 if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000)
927 lock_old = cpu_to_be32(reg_read(ohci, OHCI1394_CSRData));
928 else
929 fw_notify("swap not done yet\n");
930
931 fw_fill_response(&response, packet->header,
932 RCODE_COMPLETE, &lock_old, sizeof(lock_old));
933 out:
934 fw_core_handle_response(&ohci->card, &response);
935 }
936
937 static void
938 handle_local_request(struct context *ctx, struct fw_packet *packet)
939 {
940 u64 offset;
941 u32 csr;
942
943 if (ctx == &ctx->ohci->at_request_ctx) {
944 packet->ack = ACK_PENDING;
945 packet->callback(packet, &ctx->ohci->card, packet->ack);
946 }
947
948 offset =
949 ((unsigned long long)
950 HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
951 packet->header[2];
952 csr = offset - CSR_REGISTER_BASE;
953
954 /* Handle config rom reads. */
955 if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
956 handle_local_rom(ctx->ohci, packet, csr);
957 else switch (csr) {
958 case CSR_BUS_MANAGER_ID:
959 case CSR_BANDWIDTH_AVAILABLE:
960 case CSR_CHANNELS_AVAILABLE_HI:
961 case CSR_CHANNELS_AVAILABLE_LO:
962 handle_local_lock(ctx->ohci, packet, csr);
963 break;
964 default:
965 if (ctx == &ctx->ohci->at_request_ctx)
966 fw_core_handle_request(&ctx->ohci->card, packet);
967 else
968 fw_core_handle_response(&ctx->ohci->card, packet);
969 break;
970 }
971
972 if (ctx == &ctx->ohci->at_response_ctx) {
973 packet->ack = ACK_COMPLETE;
974 packet->callback(packet, &ctx->ohci->card, packet->ack);
975 }
976 }
977
978 static void
979 at_context_transmit(struct context *ctx, struct fw_packet *packet)
980 {
981 unsigned long flags;
982 int retval;
983
984 spin_lock_irqsave(&ctx->ohci->lock, flags);
985
986 if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
987 ctx->ohci->generation == packet->generation) {
988 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
989 handle_local_request(ctx, packet);
990 return;
991 }
992
993 retval = at_context_queue_packet(ctx, packet);
994 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
995
996 if (retval < 0)
997 packet->callback(packet, &ctx->ohci->card, packet->ack);
998
999 }
1000
1001 static void bus_reset_tasklet(unsigned long data)
1002 {
1003 struct fw_ohci *ohci = (struct fw_ohci *)data;
1004 int self_id_count, i, j, reg;
1005 int generation, new_generation;
1006 unsigned long flags;
1007 void *free_rom = NULL;
1008 dma_addr_t free_rom_bus = 0;
1009
1010 reg = reg_read(ohci, OHCI1394_NodeID);
1011 if (!(reg & OHCI1394_NodeID_idValid)) {
1012 fw_notify("node ID not valid, new bus reset in progress\n");
1013 return;
1014 }
1015 if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
1016 fw_notify("malconfigured bus\n");
1017 return;
1018 }
1019 ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
1020 OHCI1394_NodeID_nodeNumber);
1021
1022 reg = reg_read(ohci, OHCI1394_SelfIDCount);
1023 if (reg & OHCI1394_SelfIDCount_selfIDError) {
1024 fw_notify("inconsistent self IDs\n");
1025 return;
1026 }
1027 /*
1028 * The count in the SelfIDCount register is the number of
1029 * bytes in the self ID receive buffer. Since we also receive
1030 * the inverted quadlets and a header quadlet, we shift one
1031 * bit extra to get the actual number of self IDs.
1032 */
1033 self_id_count = (reg >> 3) & 0x3ff;
1034 if (self_id_count == 0) {
1035 fw_notify("inconsistent self IDs\n");
1036 return;
1037 }
1038 generation = (cond_le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
1039 rmb();
1040
1041 for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1042 if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1]) {
1043 fw_notify("inconsistent self IDs\n");
1044 return;
1045 }
1046 ohci->self_id_buffer[j] =
1047 cond_le32_to_cpu(ohci->self_id_cpu[i]);
1048 }
1049 rmb();
1050
1051 /*
1052 * Check the consistency of the self IDs we just read. The
1053 * problem we face is that a new bus reset can start while we
1054 * read out the self IDs from the DMA buffer. If this happens,
1055 * the DMA buffer will be overwritten with new self IDs and we
1056 * will read out inconsistent data. The OHCI specification
1057 * (section 11.2) recommends a technique similar to
1058 * linux/seqlock.h, where we remember the generation of the
1059 * self IDs in the buffer before reading them out and compare
1060 * it to the current generation after reading them out. If
1061 * the two generations match we know we have a consistent set
1062 * of self IDs.
1063 */
1064
1065 new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
1066 if (new_generation != generation) {
1067 fw_notify("recursive bus reset detected, "
1068 "discarding self ids\n");
1069 return;
1070 }
1071
1072 /* FIXME: Document how the locking works. */
1073 spin_lock_irqsave(&ohci->lock, flags);
1074
1075 ohci->generation = generation;
1076 context_stop(&ohci->at_request_ctx);
1077 context_stop(&ohci->at_response_ctx);
1078 reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
1079
1080 /*
1081 * This next bit is unrelated to the AT context stuff but we
1082 * have to do it under the spinlock also. If a new config rom
1083 * was set up before this reset, the old one is now no longer
1084 * in use and we can free it. Update the config rom pointers
1085 * to point to the current config rom and clear the
1086 * next_config_rom pointer so a new udpate can take place.
1087 */
1088
1089 if (ohci->next_config_rom != NULL) {
1090 if (ohci->next_config_rom != ohci->config_rom) {
1091 free_rom = ohci->config_rom;
1092 free_rom_bus = ohci->config_rom_bus;
1093 }
1094 ohci->config_rom = ohci->next_config_rom;
1095 ohci->config_rom_bus = ohci->next_config_rom_bus;
1096 ohci->next_config_rom = NULL;
1097
1098 /*
1099 * Restore config_rom image and manually update
1100 * config_rom registers. Writing the header quadlet
1101 * will indicate that the config rom is ready, so we
1102 * do that last.
1103 */
1104 reg_write(ohci, OHCI1394_BusOptions,
1105 be32_to_cpu(ohci->config_rom[2]));
1106 ohci->config_rom[0] = cpu_to_be32(ohci->next_header);
1107 reg_write(ohci, OHCI1394_ConfigROMhdr, ohci->next_header);
1108 }
1109
1110 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1111 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
1112 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
1113 #endif
1114
1115 spin_unlock_irqrestore(&ohci->lock, flags);
1116
1117 if (free_rom)
1118 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1119 free_rom, free_rom_bus);
1120
1121 fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
1122 self_id_count, ohci->self_id_buffer);
1123 }
1124
1125 static irqreturn_t irq_handler(int irq, void *data)
1126 {
1127 struct fw_ohci *ohci = data;
1128 u32 event, iso_event, cycle_time;
1129 int i;
1130
1131 event = reg_read(ohci, OHCI1394_IntEventClear);
1132
1133 if (!event || !~event)
1134 return IRQ_NONE;
1135
1136 reg_write(ohci, OHCI1394_IntEventClear, event);
1137
1138 if (event & OHCI1394_selfIDComplete)
1139 tasklet_schedule(&ohci->bus_reset_tasklet);
1140
1141 if (event & OHCI1394_RQPkt)
1142 tasklet_schedule(&ohci->ar_request_ctx.tasklet);
1143
1144 if (event & OHCI1394_RSPkt)
1145 tasklet_schedule(&ohci->ar_response_ctx.tasklet);
1146
1147 if (event & OHCI1394_reqTxComplete)
1148 tasklet_schedule(&ohci->at_request_ctx.tasklet);
1149
1150 if (event & OHCI1394_respTxComplete)
1151 tasklet_schedule(&ohci->at_response_ctx.tasklet);
1152
1153 iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
1154 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
1155
1156 while (iso_event) {
1157 i = ffs(iso_event) - 1;
1158 tasklet_schedule(&ohci->ir_context_list[i].context.tasklet);
1159 iso_event &= ~(1 << i);
1160 }
1161
1162 iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
1163 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
1164
1165 while (iso_event) {
1166 i = ffs(iso_event) - 1;
1167 tasklet_schedule(&ohci->it_context_list[i].context.tasklet);
1168 iso_event &= ~(1 << i);
1169 }
1170
1171 if (unlikely(event & OHCI1394_postedWriteErr))
1172 fw_error("PCI posted write error\n");
1173
1174 if (unlikely(event & OHCI1394_cycleTooLong)) {
1175 if (printk_ratelimit())
1176 fw_notify("isochronous cycle too long\n");
1177 reg_write(ohci, OHCI1394_LinkControlSet,
1178 OHCI1394_LinkControl_cycleMaster);
1179 }
1180
1181 if (event & OHCI1394_cycle64Seconds) {
1182 cycle_time = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1183 if ((cycle_time & 0x80000000) == 0)
1184 ohci->bus_seconds++;
1185 }
1186
1187 return IRQ_HANDLED;
1188 }
1189
1190 static int software_reset(struct fw_ohci *ohci)
1191 {
1192 int i;
1193
1194 reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
1195
1196 for (i = 0; i < OHCI_LOOP_COUNT; i++) {
1197 if ((reg_read(ohci, OHCI1394_HCControlSet) &
1198 OHCI1394_HCControl_softReset) == 0)
1199 return 0;
1200 msleep(1);
1201 }
1202
1203 return -EBUSY;
1204 }
1205
1206 static int ohci_enable(struct fw_card *card, u32 *config_rom, size_t length)
1207 {
1208 struct fw_ohci *ohci = fw_ohci(card);
1209 struct pci_dev *dev = to_pci_dev(card->device);
1210
1211 if (software_reset(ohci)) {
1212 fw_error("Failed to reset ohci card.\n");
1213 return -EBUSY;
1214 }
1215
1216 /*
1217 * Now enable LPS, which we need in order to start accessing
1218 * most of the registers. In fact, on some cards (ALI M5251),
1219 * accessing registers in the SClk domain without LPS enabled
1220 * will lock up the machine. Wait 50msec to make sure we have
1221 * full link enabled.
1222 */
1223 reg_write(ohci, OHCI1394_HCControlSet,
1224 OHCI1394_HCControl_LPS |
1225 OHCI1394_HCControl_postedWriteEnable);
1226 flush_writes(ohci);
1227 msleep(50);
1228
1229 reg_write(ohci, OHCI1394_HCControlClear,
1230 OHCI1394_HCControl_noByteSwapData);
1231
1232 reg_write(ohci, OHCI1394_LinkControlSet,
1233 OHCI1394_LinkControl_rcvSelfID |
1234 OHCI1394_LinkControl_cycleTimerEnable |
1235 OHCI1394_LinkControl_cycleMaster);
1236
1237 reg_write(ohci, OHCI1394_ATRetries,
1238 OHCI1394_MAX_AT_REQ_RETRIES |
1239 (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
1240 (OHCI1394_MAX_PHYS_RESP_RETRIES << 8));
1241
1242 ar_context_run(&ohci->ar_request_ctx);
1243 ar_context_run(&ohci->ar_response_ctx);
1244
1245 reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
1246 reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
1247 reg_write(ohci, OHCI1394_IntEventClear, ~0);
1248 reg_write(ohci, OHCI1394_IntMaskClear, ~0);
1249 reg_write(ohci, OHCI1394_IntMaskSet,
1250 OHCI1394_selfIDComplete |
1251 OHCI1394_RQPkt | OHCI1394_RSPkt |
1252 OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
1253 OHCI1394_isochRx | OHCI1394_isochTx |
1254 OHCI1394_postedWriteErr | OHCI1394_cycleTooLong |
1255 OHCI1394_cycle64Seconds | OHCI1394_masterIntEnable);
1256
1257 /* Activate link_on bit and contender bit in our self ID packets.*/
1258 if (ohci_update_phy_reg(card, 4, 0,
1259 PHY_LINK_ACTIVE | PHY_CONTENDER) < 0)
1260 return -EIO;
1261
1262 /*
1263 * When the link is not yet enabled, the atomic config rom
1264 * update mechanism described below in ohci_set_config_rom()
1265 * is not active. We have to update ConfigRomHeader and
1266 * BusOptions manually, and the write to ConfigROMmap takes
1267 * effect immediately. We tie this to the enabling of the
1268 * link, so we have a valid config rom before enabling - the
1269 * OHCI requires that ConfigROMhdr and BusOptions have valid
1270 * values before enabling.
1271 *
1272 * However, when the ConfigROMmap is written, some controllers
1273 * always read back quadlets 0 and 2 from the config rom to
1274 * the ConfigRomHeader and BusOptions registers on bus reset.
1275 * They shouldn't do that in this initial case where the link
1276 * isn't enabled. This means we have to use the same
1277 * workaround here, setting the bus header to 0 and then write
1278 * the right values in the bus reset tasklet.
1279 */
1280
1281 if (config_rom) {
1282 ohci->next_config_rom =
1283 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1284 &ohci->next_config_rom_bus,
1285 GFP_KERNEL);
1286 if (ohci->next_config_rom == NULL)
1287 return -ENOMEM;
1288
1289 memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
1290 fw_memcpy_to_be32(ohci->next_config_rom, config_rom, length * 4);
1291 } else {
1292 /*
1293 * In the suspend case, config_rom is NULL, which
1294 * means that we just reuse the old config rom.
1295 */
1296 ohci->next_config_rom = ohci->config_rom;
1297 ohci->next_config_rom_bus = ohci->config_rom_bus;
1298 }
1299
1300 ohci->next_header = be32_to_cpu(ohci->next_config_rom[0]);
1301 ohci->next_config_rom[0] = 0;
1302 reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
1303 reg_write(ohci, OHCI1394_BusOptions,
1304 be32_to_cpu(ohci->next_config_rom[2]));
1305 reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
1306
1307 reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
1308
1309 if (request_irq(dev->irq, irq_handler,
1310 IRQF_SHARED, ohci_driver_name, ohci)) {
1311 fw_error("Failed to allocate shared interrupt %d.\n",
1312 dev->irq);
1313 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1314 ohci->config_rom, ohci->config_rom_bus);
1315 return -EIO;
1316 }
1317
1318 reg_write(ohci, OHCI1394_HCControlSet,
1319 OHCI1394_HCControl_linkEnable |
1320 OHCI1394_HCControl_BIBimageValid);
1321 flush_writes(ohci);
1322
1323 /*
1324 * We are ready to go, initiate bus reset to finish the
1325 * initialization.
1326 */
1327
1328 fw_core_initiate_bus_reset(&ohci->card, 1);
1329
1330 return 0;
1331 }
1332
1333 static int
1334 ohci_set_config_rom(struct fw_card *card, u32 *config_rom, size_t length)
1335 {
1336 struct fw_ohci *ohci;
1337 unsigned long flags;
1338 int retval = -EBUSY;
1339 __be32 *next_config_rom;
1340 dma_addr_t uninitialized_var(next_config_rom_bus);
1341
1342 ohci = fw_ohci(card);
1343
1344 /*
1345 * When the OHCI controller is enabled, the config rom update
1346 * mechanism is a bit tricky, but easy enough to use. See
1347 * section 5.5.6 in the OHCI specification.
1348 *
1349 * The OHCI controller caches the new config rom address in a
1350 * shadow register (ConfigROMmapNext) and needs a bus reset
1351 * for the changes to take place. When the bus reset is
1352 * detected, the controller loads the new values for the
1353 * ConfigRomHeader and BusOptions registers from the specified
1354 * config rom and loads ConfigROMmap from the ConfigROMmapNext
1355 * shadow register. All automatically and atomically.
1356 *
1357 * Now, there's a twist to this story. The automatic load of
1358 * ConfigRomHeader and BusOptions doesn't honor the
1359 * noByteSwapData bit, so with a be32 config rom, the
1360 * controller will load be32 values in to these registers
1361 * during the atomic update, even on litte endian
1362 * architectures. The workaround we use is to put a 0 in the
1363 * header quadlet; 0 is endian agnostic and means that the
1364 * config rom isn't ready yet. In the bus reset tasklet we
1365 * then set up the real values for the two registers.
1366 *
1367 * We use ohci->lock to avoid racing with the code that sets
1368 * ohci->next_config_rom to NULL (see bus_reset_tasklet).
1369 */
1370
1371 next_config_rom =
1372 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1373 &next_config_rom_bus, GFP_KERNEL);
1374 if (next_config_rom == NULL)
1375 return -ENOMEM;
1376
1377 spin_lock_irqsave(&ohci->lock, flags);
1378
1379 if (ohci->next_config_rom == NULL) {
1380 ohci->next_config_rom = next_config_rom;
1381 ohci->next_config_rom_bus = next_config_rom_bus;
1382
1383 memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
1384 fw_memcpy_to_be32(ohci->next_config_rom, config_rom,
1385 length * 4);
1386
1387 ohci->next_header = config_rom[0];
1388 ohci->next_config_rom[0] = 0;
1389
1390 reg_write(ohci, OHCI1394_ConfigROMmap,
1391 ohci->next_config_rom_bus);
1392 retval = 0;
1393 }
1394
1395 spin_unlock_irqrestore(&ohci->lock, flags);
1396
1397 /*
1398 * Now initiate a bus reset to have the changes take
1399 * effect. We clean up the old config rom memory and DMA
1400 * mappings in the bus reset tasklet, since the OHCI
1401 * controller could need to access it before the bus reset
1402 * takes effect.
1403 */
1404 if (retval == 0)
1405 fw_core_initiate_bus_reset(&ohci->card, 1);
1406 else
1407 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1408 next_config_rom, next_config_rom_bus);
1409
1410 return retval;
1411 }
1412
1413 static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
1414 {
1415 struct fw_ohci *ohci = fw_ohci(card);
1416
1417 at_context_transmit(&ohci->at_request_ctx, packet);
1418 }
1419
1420 static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
1421 {
1422 struct fw_ohci *ohci = fw_ohci(card);
1423
1424 at_context_transmit(&ohci->at_response_ctx, packet);
1425 }
1426
1427 static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
1428 {
1429 struct fw_ohci *ohci = fw_ohci(card);
1430 struct context *ctx = &ohci->at_request_ctx;
1431 struct driver_data *driver_data = packet->driver_data;
1432 int retval = -ENOENT;
1433
1434 tasklet_disable(&ctx->tasklet);
1435
1436 if (packet->ack != 0)
1437 goto out;
1438
1439 driver_data->packet = NULL;
1440 packet->ack = RCODE_CANCELLED;
1441 packet->callback(packet, &ohci->card, packet->ack);
1442 retval = 0;
1443
1444 out:
1445 tasklet_enable(&ctx->tasklet);
1446
1447 return retval;
1448 }
1449
1450 static int
1451 ohci_enable_phys_dma(struct fw_card *card, int node_id, int generation)
1452 {
1453 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1454 return 0;
1455 #else
1456 struct fw_ohci *ohci = fw_ohci(card);
1457 unsigned long flags;
1458 int n, retval = 0;
1459
1460 /*
1461 * FIXME: Make sure this bitmask is cleared when we clear the busReset
1462 * interrupt bit. Clear physReqResourceAllBuses on bus reset.
1463 */
1464
1465 spin_lock_irqsave(&ohci->lock, flags);
1466
1467 if (ohci->generation != generation) {
1468 retval = -ESTALE;
1469 goto out;
1470 }
1471
1472 /*
1473 * Note, if the node ID contains a non-local bus ID, physical DMA is
1474 * enabled for _all_ nodes on remote buses.
1475 */
1476
1477 n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
1478 if (n < 32)
1479 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
1480 else
1481 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
1482
1483 flush_writes(ohci);
1484 out:
1485 spin_unlock_irqrestore(&ohci->lock, flags);
1486 return retval;
1487 #endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
1488 }
1489
1490 static u64
1491 ohci_get_bus_time(struct fw_card *card)
1492 {
1493 struct fw_ohci *ohci = fw_ohci(card);
1494 u32 cycle_time;
1495 u64 bus_time;
1496
1497 cycle_time = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1498 bus_time = ((u64) ohci->bus_seconds << 32) | cycle_time;
1499
1500 return bus_time;
1501 }
1502
1503 static int handle_ir_dualbuffer_packet(struct context *context,
1504 struct descriptor *d,
1505 struct descriptor *last)
1506 {
1507 struct iso_context *ctx =
1508 container_of(context, struct iso_context, context);
1509 struct db_descriptor *db = (struct db_descriptor *) d;
1510 __le32 *ir_header;
1511 size_t header_length;
1512 void *p, *end;
1513 int i;
1514
1515 if (db->first_res_count != 0 && db->second_res_count != 0) {
1516 if (ctx->excess_bytes <= le16_to_cpu(db->second_req_count)) {
1517 /* This descriptor isn't done yet, stop iteration. */
1518 return 0;
1519 }
1520 ctx->excess_bytes -= le16_to_cpu(db->second_req_count);
1521 }
1522
1523 header_length = le16_to_cpu(db->first_req_count) -
1524 le16_to_cpu(db->first_res_count);
1525
1526 i = ctx->header_length;
1527 p = db + 1;
1528 end = p + header_length;
1529 while (p < end && i + ctx->base.header_size <= PAGE_SIZE) {
1530 /*
1531 * The iso header is byteswapped to little endian by
1532 * the controller, but the remaining header quadlets
1533 * are big endian. We want to present all the headers
1534 * as big endian, so we have to swap the first
1535 * quadlet.
1536 */
1537 *(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
1538 memcpy(ctx->header + i + 4, p + 8, ctx->base.header_size - 4);
1539 i += ctx->base.header_size;
1540 ctx->excess_bytes +=
1541 (le32_to_cpu(*(__le32 *)(p + 4)) >> 16) & 0xffff;
1542 p += ctx->base.header_size + 4;
1543 }
1544 ctx->header_length = i;
1545
1546 ctx->excess_bytes -= le16_to_cpu(db->second_req_count) -
1547 le16_to_cpu(db->second_res_count);
1548
1549 if (le16_to_cpu(db->control) & DESCRIPTOR_IRQ_ALWAYS) {
1550 ir_header = (__le32 *) (db + 1);
1551 ctx->base.callback(&ctx->base,
1552 le32_to_cpu(ir_header[0]) & 0xffff,
1553 ctx->header_length, ctx->header,
1554 ctx->base.callback_data);
1555 ctx->header_length = 0;
1556 }
1557
1558 return 1;
1559 }
1560
1561 static int handle_ir_packet_per_buffer(struct context *context,
1562 struct descriptor *d,
1563 struct descriptor *last)
1564 {
1565 struct iso_context *ctx =
1566 container_of(context, struct iso_context, context);
1567 struct descriptor *pd;
1568 __le32 *ir_header;
1569 void *p;
1570 int i;
1571
1572 for (pd = d; pd <= last; pd++) {
1573 if (pd->transfer_status)
1574 break;
1575 }
1576 if (pd > last)
1577 /* Descriptor(s) not done yet, stop iteration */
1578 return 0;
1579
1580 i = ctx->header_length;
1581 p = last + 1;
1582
1583 if (ctx->base.header_size > 0 &&
1584 i + ctx->base.header_size <= PAGE_SIZE) {
1585 /*
1586 * The iso header is byteswapped to little endian by
1587 * the controller, but the remaining header quadlets
1588 * are big endian. We want to present all the headers
1589 * as big endian, so we have to swap the first quadlet.
1590 */
1591 *(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
1592 memcpy(ctx->header + i + 4, p + 8, ctx->base.header_size - 4);
1593 ctx->header_length += ctx->base.header_size;
1594 }
1595
1596 if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
1597 ir_header = (__le32 *) p;
1598 ctx->base.callback(&ctx->base,
1599 le32_to_cpu(ir_header[0]) & 0xffff,
1600 ctx->header_length, ctx->header,
1601 ctx->base.callback_data);
1602 ctx->header_length = 0;
1603 }
1604
1605 return 1;
1606 }
1607
1608 static int handle_it_packet(struct context *context,
1609 struct descriptor *d,
1610 struct descriptor *last)
1611 {
1612 struct iso_context *ctx =
1613 container_of(context, struct iso_context, context);
1614
1615 if (last->transfer_status == 0)
1616 /* This descriptor isn't done yet, stop iteration. */
1617 return 0;
1618
1619 if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS)
1620 ctx->base.callback(&ctx->base, le16_to_cpu(last->res_count),
1621 0, NULL, ctx->base.callback_data);
1622
1623 return 1;
1624 }
1625
1626 static struct fw_iso_context *
1627 ohci_allocate_iso_context(struct fw_card *card, int type, size_t header_size)
1628 {
1629 struct fw_ohci *ohci = fw_ohci(card);
1630 struct iso_context *ctx, *list;
1631 descriptor_callback_t callback;
1632 u32 *mask, regs;
1633 unsigned long flags;
1634 int index, retval = -ENOMEM;
1635
1636 if (type == FW_ISO_CONTEXT_TRANSMIT) {
1637 mask = &ohci->it_context_mask;
1638 list = ohci->it_context_list;
1639 callback = handle_it_packet;
1640 } else {
1641 mask = &ohci->ir_context_mask;
1642 list = ohci->ir_context_list;
1643 if (ohci->version >= OHCI_VERSION_1_1)
1644 callback = handle_ir_dualbuffer_packet;
1645 else
1646 callback = handle_ir_packet_per_buffer;
1647 }
1648
1649 spin_lock_irqsave(&ohci->lock, flags);
1650 index = ffs(*mask) - 1;
1651 if (index >= 0)
1652 *mask &= ~(1 << index);
1653 spin_unlock_irqrestore(&ohci->lock, flags);
1654
1655 if (index < 0)
1656 return ERR_PTR(-EBUSY);
1657
1658 if (type == FW_ISO_CONTEXT_TRANSMIT)
1659 regs = OHCI1394_IsoXmitContextBase(index);
1660 else
1661 regs = OHCI1394_IsoRcvContextBase(index);
1662
1663 ctx = &list[index];
1664 memset(ctx, 0, sizeof(*ctx));
1665 ctx->header_length = 0;
1666 ctx->header = (void *) __get_free_page(GFP_KERNEL);
1667 if (ctx->header == NULL)
1668 goto out;
1669
1670 retval = context_init(&ctx->context, ohci, regs, callback);
1671 if (retval < 0)
1672 goto out_with_header;
1673
1674 return &ctx->base;
1675
1676 out_with_header:
1677 free_page((unsigned long)ctx->header);
1678 out:
1679 spin_lock_irqsave(&ohci->lock, flags);
1680 *mask |= 1 << index;
1681 spin_unlock_irqrestore(&ohci->lock, flags);
1682
1683 return ERR_PTR(retval);
1684 }
1685
1686 static int ohci_start_iso(struct fw_iso_context *base,
1687 s32 cycle, u32 sync, u32 tags)
1688 {
1689 struct iso_context *ctx = container_of(base, struct iso_context, base);
1690 struct fw_ohci *ohci = ctx->context.ohci;
1691 u32 control, match;
1692 int index;
1693
1694 if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
1695 index = ctx - ohci->it_context_list;
1696 match = 0;
1697 if (cycle >= 0)
1698 match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
1699 (cycle & 0x7fff) << 16;
1700
1701 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
1702 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
1703 context_run(&ctx->context, match);
1704 } else {
1705 index = ctx - ohci->ir_context_list;
1706 control = IR_CONTEXT_ISOCH_HEADER;
1707 if (ohci->version >= OHCI_VERSION_1_1)
1708 control |= IR_CONTEXT_DUAL_BUFFER_MODE;
1709 match = (tags << 28) | (sync << 8) | ctx->base.channel;
1710 if (cycle >= 0) {
1711 match |= (cycle & 0x07fff) << 12;
1712 control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
1713 }
1714
1715 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
1716 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
1717 reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
1718 context_run(&ctx->context, control);
1719 }
1720
1721 return 0;
1722 }
1723
1724 static int ohci_stop_iso(struct fw_iso_context *base)
1725 {
1726 struct fw_ohci *ohci = fw_ohci(base->card);
1727 struct iso_context *ctx = container_of(base, struct iso_context, base);
1728 int index;
1729
1730 if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
1731 index = ctx - ohci->it_context_list;
1732 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
1733 } else {
1734 index = ctx - ohci->ir_context_list;
1735 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
1736 }
1737 flush_writes(ohci);
1738 context_stop(&ctx->context);
1739
1740 return 0;
1741 }
1742
1743 static void ohci_free_iso_context(struct fw_iso_context *base)
1744 {
1745 struct fw_ohci *ohci = fw_ohci(base->card);
1746 struct iso_context *ctx = container_of(base, struct iso_context, base);
1747 unsigned long flags;
1748 int index;
1749
1750 ohci_stop_iso(base);
1751 context_release(&ctx->context);
1752 free_page((unsigned long)ctx->header);
1753
1754 spin_lock_irqsave(&ohci->lock, flags);
1755
1756 if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
1757 index = ctx - ohci->it_context_list;
1758 ohci->it_context_mask |= 1 << index;
1759 } else {
1760 index = ctx - ohci->ir_context_list;
1761 ohci->ir_context_mask |= 1 << index;
1762 }
1763
1764 spin_unlock_irqrestore(&ohci->lock, flags);
1765 }
1766
1767 static int
1768 ohci_queue_iso_transmit(struct fw_iso_context *base,
1769 struct fw_iso_packet *packet,
1770 struct fw_iso_buffer *buffer,
1771 unsigned long payload)
1772 {
1773 struct iso_context *ctx = container_of(base, struct iso_context, base);
1774 struct descriptor *d, *last, *pd;
1775 struct fw_iso_packet *p;
1776 __le32 *header;
1777 dma_addr_t d_bus, page_bus;
1778 u32 z, header_z, payload_z, irq;
1779 u32 payload_index, payload_end_index, next_page_index;
1780 int page, end_page, i, length, offset;
1781
1782 /*
1783 * FIXME: Cycle lost behavior should be configurable: lose
1784 * packet, retransmit or terminate..
1785 */
1786
1787 p = packet;
1788 payload_index = payload;
1789
1790 if (p->skip)
1791 z = 1;
1792 else
1793 z = 2;
1794 if (p->header_length > 0)
1795 z++;
1796
1797 /* Determine the first page the payload isn't contained in. */
1798 end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
1799 if (p->payload_length > 0)
1800 payload_z = end_page - (payload_index >> PAGE_SHIFT);
1801 else
1802 payload_z = 0;
1803
1804 z += payload_z;
1805
1806 /* Get header size in number of descriptors. */
1807 header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
1808
1809 d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
1810 if (d == NULL)
1811 return -ENOMEM;
1812
1813 if (!p->skip) {
1814 d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1815 d[0].req_count = cpu_to_le16(8);
1816
1817 header = (__le32 *) &d[1];
1818 header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
1819 IT_HEADER_TAG(p->tag) |
1820 IT_HEADER_TCODE(TCODE_STREAM_DATA) |
1821 IT_HEADER_CHANNEL(ctx->base.channel) |
1822 IT_HEADER_SPEED(ctx->base.speed));
1823 header[1] =
1824 cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
1825 p->payload_length));
1826 }
1827
1828 if (p->header_length > 0) {
1829 d[2].req_count = cpu_to_le16(p->header_length);
1830 d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
1831 memcpy(&d[z], p->header, p->header_length);
1832 }
1833
1834 pd = d + z - payload_z;
1835 payload_end_index = payload_index + p->payload_length;
1836 for (i = 0; i < payload_z; i++) {
1837 page = payload_index >> PAGE_SHIFT;
1838 offset = payload_index & ~PAGE_MASK;
1839 next_page_index = (page + 1) << PAGE_SHIFT;
1840 length =
1841 min(next_page_index, payload_end_index) - payload_index;
1842 pd[i].req_count = cpu_to_le16(length);
1843
1844 page_bus = page_private(buffer->pages[page]);
1845 pd[i].data_address = cpu_to_le32(page_bus + offset);
1846
1847 payload_index += length;
1848 }
1849
1850 if (p->interrupt)
1851 irq = DESCRIPTOR_IRQ_ALWAYS;
1852 else
1853 irq = DESCRIPTOR_NO_IRQ;
1854
1855 last = z == 2 ? d : d + z - 1;
1856 last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
1857 DESCRIPTOR_STATUS |
1858 DESCRIPTOR_BRANCH_ALWAYS |
1859 irq);
1860
1861 context_append(&ctx->context, d, z, header_z);
1862
1863 return 0;
1864 }
1865
1866 static int
1867 ohci_queue_iso_receive_dualbuffer(struct fw_iso_context *base,
1868 struct fw_iso_packet *packet,
1869 struct fw_iso_buffer *buffer,
1870 unsigned long payload)
1871 {
1872 struct iso_context *ctx = container_of(base, struct iso_context, base);
1873 struct db_descriptor *db = NULL;
1874 struct descriptor *d;
1875 struct fw_iso_packet *p;
1876 dma_addr_t d_bus, page_bus;
1877 u32 z, header_z, length, rest;
1878 int page, offset, packet_count, header_size;
1879
1880 /*
1881 * FIXME: Cycle lost behavior should be configurable: lose
1882 * packet, retransmit or terminate..
1883 */
1884
1885 p = packet;
1886 z = 2;
1887
1888 /*
1889 * The OHCI controller puts the status word in the header
1890 * buffer too, so we need 4 extra bytes per packet.
1891 */
1892 packet_count = p->header_length / ctx->base.header_size;
1893 header_size = packet_count * (ctx->base.header_size + 4);
1894
1895 /* Get header size in number of descriptors. */
1896 header_z = DIV_ROUND_UP(header_size, sizeof(*d));
1897 page = payload >> PAGE_SHIFT;
1898 offset = payload & ~PAGE_MASK;
1899 rest = p->payload_length;
1900
1901 /* FIXME: make packet-per-buffer/dual-buffer a context option */
1902 while (rest > 0) {
1903 d = context_get_descriptors(&ctx->context,
1904 z + header_z, &d_bus);
1905 if (d == NULL)
1906 return -ENOMEM;
1907
1908 db = (struct db_descriptor *) d;
1909 db->control = cpu_to_le16(DESCRIPTOR_STATUS |
1910 DESCRIPTOR_BRANCH_ALWAYS);
1911 db->first_size = cpu_to_le16(ctx->base.header_size + 4);
1912 if (p->skip && rest == p->payload_length) {
1913 db->control |= cpu_to_le16(DESCRIPTOR_WAIT);
1914 db->first_req_count = db->first_size;
1915 } else {
1916 db->first_req_count = cpu_to_le16(header_size);
1917 }
1918 db->first_res_count = db->first_req_count;
1919 db->first_buffer = cpu_to_le32(d_bus + sizeof(*db));
1920
1921 if (p->skip && rest == p->payload_length)
1922 length = 4;
1923 else if (offset + rest < PAGE_SIZE)
1924 length = rest;
1925 else
1926 length = PAGE_SIZE - offset;
1927
1928 db->second_req_count = cpu_to_le16(length);
1929 db->second_res_count = db->second_req_count;
1930 page_bus = page_private(buffer->pages[page]);
1931 db->second_buffer = cpu_to_le32(page_bus + offset);
1932
1933 if (p->interrupt && length == rest)
1934 db->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
1935
1936 context_append(&ctx->context, d, z, header_z);
1937 offset = (offset + length) & ~PAGE_MASK;
1938 rest -= length;
1939 if (offset == 0)
1940 page++;
1941 }
1942
1943 return 0;
1944 }
1945
1946 static int
1947 ohci_queue_iso_receive_packet_per_buffer(struct fw_iso_context *base,
1948 struct fw_iso_packet *packet,
1949 struct fw_iso_buffer *buffer,
1950 unsigned long payload)
1951 {
1952 struct iso_context *ctx = container_of(base, struct iso_context, base);
1953 struct descriptor *d = NULL, *pd = NULL;
1954 struct fw_iso_packet *p = packet;
1955 dma_addr_t d_bus, page_bus;
1956 u32 z, header_z, rest;
1957 int i, j, length;
1958 int page, offset, packet_count, header_size, payload_per_buffer;
1959
1960 /*
1961 * The OHCI controller puts the status word in the
1962 * buffer too, so we need 4 extra bytes per packet.
1963 */
1964 packet_count = p->header_length / ctx->base.header_size;
1965 header_size = ctx->base.header_size + 4;
1966
1967 /* Get header size in number of descriptors. */
1968 header_z = DIV_ROUND_UP(header_size, sizeof(*d));
1969 page = payload >> PAGE_SHIFT;
1970 offset = payload & ~PAGE_MASK;
1971 payload_per_buffer = p->payload_length / packet_count;
1972
1973 for (i = 0; i < packet_count; i++) {
1974 /* d points to the header descriptor */
1975 z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
1976 d = context_get_descriptors(&ctx->context,
1977 z + header_z, &d_bus);
1978 if (d == NULL)
1979 return -ENOMEM;
1980
1981 d->control = cpu_to_le16(DESCRIPTOR_STATUS |
1982 DESCRIPTOR_INPUT_MORE);
1983 if (p->skip && i == 0)
1984 d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
1985 d->req_count = cpu_to_le16(header_size);
1986 d->res_count = d->req_count;
1987 d->transfer_status = 0;
1988 d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
1989
1990 rest = payload_per_buffer;
1991 for (j = 1; j < z; j++) {
1992 pd = d + j;
1993 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
1994 DESCRIPTOR_INPUT_MORE);
1995
1996 if (offset + rest < PAGE_SIZE)
1997 length = rest;
1998 else
1999 length = PAGE_SIZE - offset;
2000 pd->req_count = cpu_to_le16(length);
2001 pd->res_count = pd->req_count;
2002 pd->transfer_status = 0;
2003
2004 page_bus = page_private(buffer->pages[page]);
2005 pd->data_address = cpu_to_le32(page_bus + offset);
2006
2007 offset = (offset + length) & ~PAGE_MASK;
2008 rest -= length;
2009 if (offset == 0)
2010 page++;
2011 }
2012 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
2013 DESCRIPTOR_INPUT_LAST |
2014 DESCRIPTOR_BRANCH_ALWAYS);
2015 if (p->interrupt && i == packet_count - 1)
2016 pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
2017
2018 context_append(&ctx->context, d, z, header_z);
2019 }
2020
2021 return 0;
2022 }
2023
2024 static int
2025 ohci_queue_iso(struct fw_iso_context *base,
2026 struct fw_iso_packet *packet,
2027 struct fw_iso_buffer *buffer,
2028 unsigned long payload)
2029 {
2030 struct iso_context *ctx = container_of(base, struct iso_context, base);
2031 unsigned long flags;
2032 int retval;
2033
2034 spin_lock_irqsave(&ctx->context.ohci->lock, flags);
2035 if (base->type == FW_ISO_CONTEXT_TRANSMIT)
2036 retval = ohci_queue_iso_transmit(base, packet, buffer, payload);
2037 else if (ctx->context.ohci->version >= OHCI_VERSION_1_1)
2038 retval = ohci_queue_iso_receive_dualbuffer(base, packet,
2039 buffer, payload);
2040 else
2041 retval = ohci_queue_iso_receive_packet_per_buffer(base, packet,
2042 buffer,
2043 payload);
2044 spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);
2045
2046 return retval;
2047 }
2048
2049 static const struct fw_card_driver ohci_driver = {
2050 .name = ohci_driver_name,
2051 .enable = ohci_enable,
2052 .update_phy_reg = ohci_update_phy_reg,
2053 .set_config_rom = ohci_set_config_rom,
2054 .send_request = ohci_send_request,
2055 .send_response = ohci_send_response,
2056 .cancel_packet = ohci_cancel_packet,
2057 .enable_phys_dma = ohci_enable_phys_dma,
2058 .get_bus_time = ohci_get_bus_time,
2059
2060 .allocate_iso_context = ohci_allocate_iso_context,
2061 .free_iso_context = ohci_free_iso_context,
2062 .queue_iso = ohci_queue_iso,
2063 .start_iso = ohci_start_iso,
2064 .stop_iso = ohci_stop_iso,
2065 };
2066
2067 #ifdef CONFIG_PPC_PMAC
2068 static void ohci_pmac_on(struct pci_dev *dev)
2069 {
2070 if (machine_is(powermac)) {
2071 struct device_node *ofn = pci_device_to_OF_node(dev);
2072
2073 if (ofn) {
2074 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
2075 pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
2076 }
2077 }
2078 }
2079
2080 static void ohci_pmac_off(struct pci_dev *dev)
2081 {
2082 if (machine_is(powermac)) {
2083 struct device_node *ofn = pci_device_to_OF_node(dev);
2084
2085 if (ofn) {
2086 pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
2087 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
2088 }
2089 }
2090 }
2091 #else
2092 #define ohci_pmac_on(dev)
2093 #define ohci_pmac_off(dev)
2094 #endif /* CONFIG_PPC_PMAC */
2095
2096 static int __devinit
2097 pci_probe(struct pci_dev *dev, const struct pci_device_id *ent)
2098 {
2099 struct fw_ohci *ohci;
2100 u32 bus_options, max_receive, link_speed;
2101 u64 guid;
2102 int err;
2103 size_t size;
2104
2105 ohci_pmac_on(dev);
2106
2107 ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
2108 if (ohci == NULL) {
2109 fw_error("Could not malloc fw_ohci data.\n");
2110 return -ENOMEM;
2111 }
2112
2113 fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
2114
2115 err = pci_enable_device(dev);
2116 if (err) {
2117 fw_error("Failed to enable OHCI hardware.\n");
2118 goto fail_free;
2119 }
2120
2121 pci_set_master(dev);
2122 pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
2123 pci_set_drvdata(dev, ohci);
2124
2125 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
2126 ohci->old_uninorth = dev->vendor == PCI_VENDOR_ID_APPLE &&
2127 dev->device == PCI_DEVICE_ID_APPLE_UNI_N_FW;
2128 #endif
2129 spin_lock_init(&ohci->lock);
2130
2131 tasklet_init(&ohci->bus_reset_tasklet,
2132 bus_reset_tasklet, (unsigned long)ohci);
2133
2134 err = pci_request_region(dev, 0, ohci_driver_name);
2135 if (err) {
2136 fw_error("MMIO resource unavailable\n");
2137 goto fail_disable;
2138 }
2139
2140 ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
2141 if (ohci->registers == NULL) {
2142 fw_error("Failed to remap registers\n");
2143 err = -ENXIO;
2144 goto fail_iomem;
2145 }
2146
2147 ar_context_init(&ohci->ar_request_ctx, ohci,
2148 OHCI1394_AsReqRcvContextControlSet);
2149
2150 ar_context_init(&ohci->ar_response_ctx, ohci,
2151 OHCI1394_AsRspRcvContextControlSet);
2152
2153 context_init(&ohci->at_request_ctx, ohci,
2154 OHCI1394_AsReqTrContextControlSet, handle_at_packet);
2155
2156 context_init(&ohci->at_response_ctx, ohci,
2157 OHCI1394_AsRspTrContextControlSet, handle_at_packet);
2158
2159 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
2160 ohci->it_context_mask = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
2161 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
2162 size = sizeof(struct iso_context) * hweight32(ohci->it_context_mask);
2163 ohci->it_context_list = kzalloc(size, GFP_KERNEL);
2164
2165 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
2166 ohci->ir_context_mask = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
2167 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
2168 size = sizeof(struct iso_context) * hweight32(ohci->ir_context_mask);
2169 ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
2170
2171 if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
2172 fw_error("Out of memory for it/ir contexts.\n");
2173 err = -ENOMEM;
2174 goto fail_registers;
2175 }
2176
2177 /* self-id dma buffer allocation */
2178 ohci->self_id_cpu = dma_alloc_coherent(ohci->card.device,
2179 SELF_ID_BUF_SIZE,
2180 &ohci->self_id_bus,
2181 GFP_KERNEL);
2182 if (ohci->self_id_cpu == NULL) {
2183 fw_error("Out of memory for self ID buffer.\n");
2184 err = -ENOMEM;
2185 goto fail_registers;
2186 }
2187
2188 bus_options = reg_read(ohci, OHCI1394_BusOptions);
2189 max_receive = (bus_options >> 12) & 0xf;
2190 link_speed = bus_options & 0x7;
2191 guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
2192 reg_read(ohci, OHCI1394_GUIDLo);
2193
2194 err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
2195 if (err < 0)
2196 goto fail_self_id;
2197
2198 ohci->version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2199 fw_notify("Added fw-ohci device %s, OHCI version %x.%x\n",
2200 dev->dev.bus_id, ohci->version >> 16, ohci->version & 0xff);
2201 return 0;
2202
2203 fail_self_id:
2204 dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
2205 ohci->self_id_cpu, ohci->self_id_bus);
2206 fail_registers:
2207 kfree(ohci->it_context_list);
2208 kfree(ohci->ir_context_list);
2209 pci_iounmap(dev, ohci->registers);
2210 fail_iomem:
2211 pci_release_region(dev, 0);
2212 fail_disable:
2213 pci_disable_device(dev);
2214 fail_free:
2215 kfree(&ohci->card);
2216
2217 return err;
2218 }
2219
2220 static void pci_remove(struct pci_dev *dev)
2221 {
2222 struct fw_ohci *ohci;
2223
2224 ohci = pci_get_drvdata(dev);
2225 reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2226 flush_writes(ohci);
2227 fw_core_remove_card(&ohci->card);
2228
2229 /*
2230 * FIXME: Fail all pending packets here, now that the upper
2231 * layers can't queue any more.
2232 */
2233
2234 software_reset(ohci);
2235 free_irq(dev->irq, ohci);
2236 dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
2237 ohci->self_id_cpu, ohci->self_id_bus);
2238 kfree(ohci->it_context_list);
2239 kfree(ohci->ir_context_list);
2240 pci_iounmap(dev, ohci->registers);
2241 pci_release_region(dev, 0);
2242 pci_disable_device(dev);
2243 kfree(&ohci->card);
2244 ohci_pmac_off(dev);
2245
2246 fw_notify("Removed fw-ohci device.\n");
2247 }
2248
2249 #ifdef CONFIG_PM
2250 static int pci_suspend(struct pci_dev *dev, pm_message_t state)
2251 {
2252 struct fw_ohci *ohci = pci_get_drvdata(dev);
2253 int err;
2254
2255 software_reset(ohci);
2256 free_irq(dev->irq, ohci);
2257 err = pci_save_state(dev);
2258 if (err) {
2259 fw_error("pci_save_state failed\n");
2260 return err;
2261 }
2262 err = pci_set_power_state(dev, pci_choose_state(dev, state));
2263 if (err)
2264 fw_error("pci_set_power_state failed with %d\n", err);
2265 ohci_pmac_off(dev);
2266
2267 return 0;
2268 }
2269
2270 static int pci_resume(struct pci_dev *dev)
2271 {
2272 struct fw_ohci *ohci = pci_get_drvdata(dev);
2273 int err;
2274
2275 ohci_pmac_on(dev);
2276 pci_set_power_state(dev, PCI_D0);
2277 pci_restore_state(dev);
2278 err = pci_enable_device(dev);
2279 if (err) {
2280 fw_error("pci_enable_device failed\n");
2281 return err;
2282 }
2283
2284 return ohci_enable(&ohci->card, NULL, 0);
2285 }
2286 #endif
2287
2288 static struct pci_device_id pci_table[] = {
2289 { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
2290 { }
2291 };
2292
2293 MODULE_DEVICE_TABLE(pci, pci_table);
2294
2295 static struct pci_driver fw_ohci_pci_driver = {
2296 .name = ohci_driver_name,
2297 .id_table = pci_table,
2298 .probe = pci_probe,
2299 .remove = pci_remove,
2300 #ifdef CONFIG_PM
2301 .resume = pci_resume,
2302 .suspend = pci_suspend,
2303 #endif
2304 };
2305
2306 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
2307 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
2308 MODULE_LICENSE("GPL");
2309
2310 /* Provide a module alias so root-on-sbp2 initrds don't break. */
2311 #ifndef CONFIG_IEEE1394_OHCI1394_MODULE
2312 MODULE_ALIAS("ohci1394");
2313 #endif
2314
2315 static int __init fw_ohci_init(void)
2316 {
2317 return pci_register_driver(&fw_ohci_pci_driver);
2318 }
2319
2320 static void __exit fw_ohci_cleanup(void)
2321 {
2322 pci_unregister_driver(&fw_ohci_pci_driver);
2323 }
2324
2325 module_init(fw_ohci_init);
2326 module_exit(fw_ohci_cleanup);