]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/firewire/fw-sbp2.c
[ARM] pxa: add e750 MFP config
[mirror_ubuntu-zesty-kernel.git] / drivers / firewire / fw-sbp2.c
1 /*
2 * SBP2 driver (SCSI over IEEE1394)
3 *
4 * Copyright (C) 2005-2007 Kristian Hoegsberg <krh@bitplanet.net>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21 /*
22 * The basic structure of this driver is based on the old storage driver,
23 * drivers/ieee1394/sbp2.c, originally written by
24 * James Goodwin <jamesg@filanet.com>
25 * with later contributions and ongoing maintenance from
26 * Ben Collins <bcollins@debian.org>,
27 * Stefan Richter <stefanr@s5r6.in-berlin.de>
28 * and many others.
29 */
30
31 #include <linux/blkdev.h>
32 #include <linux/bug.h>
33 #include <linux/delay.h>
34 #include <linux/device.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/kernel.h>
37 #include <linux/mod_devicetable.h>
38 #include <linux/module.h>
39 #include <linux/moduleparam.h>
40 #include <linux/scatterlist.h>
41 #include <linux/string.h>
42 #include <linux/stringify.h>
43 #include <linux/timer.h>
44 #include <linux/workqueue.h>
45 #include <asm/system.h>
46
47 #include <scsi/scsi.h>
48 #include <scsi/scsi_cmnd.h>
49 #include <scsi/scsi_device.h>
50 #include <scsi/scsi_host.h>
51
52 #include "fw-device.h"
53 #include "fw-topology.h"
54 #include "fw-transaction.h"
55
56 /*
57 * So far only bridges from Oxford Semiconductor are known to support
58 * concurrent logins. Depending on firmware, four or two concurrent logins
59 * are possible on OXFW911 and newer Oxsemi bridges.
60 *
61 * Concurrent logins are useful together with cluster filesystems.
62 */
63 static int sbp2_param_exclusive_login = 1;
64 module_param_named(exclusive_login, sbp2_param_exclusive_login, bool, 0644);
65 MODULE_PARM_DESC(exclusive_login, "Exclusive login to sbp2 device "
66 "(default = Y, use N for concurrent initiators)");
67
68 /*
69 * Flags for firmware oddities
70 *
71 * - 128kB max transfer
72 * Limit transfer size. Necessary for some old bridges.
73 *
74 * - 36 byte inquiry
75 * When scsi_mod probes the device, let the inquiry command look like that
76 * from MS Windows.
77 *
78 * - skip mode page 8
79 * Suppress sending of mode_sense for mode page 8 if the device pretends to
80 * support the SCSI Primary Block commands instead of Reduced Block Commands.
81 *
82 * - fix capacity
83 * Tell sd_mod to correct the last sector number reported by read_capacity.
84 * Avoids access beyond actual disk limits on devices with an off-by-one bug.
85 * Don't use this with devices which don't have this bug.
86 *
87 * - delay inquiry
88 * Wait extra SBP2_INQUIRY_DELAY seconds after login before SCSI inquiry.
89 *
90 * - power condition
91 * Set the power condition field in the START STOP UNIT commands sent by
92 * sd_mod on suspend, resume, and shutdown (if manage_start_stop is on).
93 * Some disks need this to spin down or to resume properly.
94 *
95 * - override internal blacklist
96 * Instead of adding to the built-in blacklist, use only the workarounds
97 * specified in the module load parameter.
98 * Useful if a blacklist entry interfered with a non-broken device.
99 */
100 #define SBP2_WORKAROUND_128K_MAX_TRANS 0x1
101 #define SBP2_WORKAROUND_INQUIRY_36 0x2
102 #define SBP2_WORKAROUND_MODE_SENSE_8 0x4
103 #define SBP2_WORKAROUND_FIX_CAPACITY 0x8
104 #define SBP2_WORKAROUND_DELAY_INQUIRY 0x10
105 #define SBP2_INQUIRY_DELAY 12
106 #define SBP2_WORKAROUND_POWER_CONDITION 0x20
107 #define SBP2_WORKAROUND_OVERRIDE 0x100
108
109 static int sbp2_param_workarounds;
110 module_param_named(workarounds, sbp2_param_workarounds, int, 0644);
111 MODULE_PARM_DESC(workarounds, "Work around device bugs (default = 0"
112 ", 128kB max transfer = " __stringify(SBP2_WORKAROUND_128K_MAX_TRANS)
113 ", 36 byte inquiry = " __stringify(SBP2_WORKAROUND_INQUIRY_36)
114 ", skip mode page 8 = " __stringify(SBP2_WORKAROUND_MODE_SENSE_8)
115 ", fix capacity = " __stringify(SBP2_WORKAROUND_FIX_CAPACITY)
116 ", delay inquiry = " __stringify(SBP2_WORKAROUND_DELAY_INQUIRY)
117 ", set power condition in start stop unit = "
118 __stringify(SBP2_WORKAROUND_POWER_CONDITION)
119 ", override internal blacklist = " __stringify(SBP2_WORKAROUND_OVERRIDE)
120 ", or a combination)");
121
122 /* I don't know why the SCSI stack doesn't define something like this... */
123 typedef void (*scsi_done_fn_t)(struct scsi_cmnd *);
124
125 static const char sbp2_driver_name[] = "sbp2";
126
127 /*
128 * We create one struct sbp2_logical_unit per SBP-2 Logical Unit Number Entry
129 * and one struct scsi_device per sbp2_logical_unit.
130 */
131 struct sbp2_logical_unit {
132 struct sbp2_target *tgt;
133 struct list_head link;
134 struct fw_address_handler address_handler;
135 struct list_head orb_list;
136
137 u64 command_block_agent_address;
138 u16 lun;
139 int login_id;
140
141 /*
142 * The generation is updated once we've logged in or reconnected
143 * to the logical unit. Thus, I/O to the device will automatically
144 * fail and get retried if it happens in a window where the device
145 * is not ready, e.g. after a bus reset but before we reconnect.
146 */
147 int generation;
148 int retries;
149 struct delayed_work work;
150 bool has_sdev;
151 bool blocked;
152 };
153
154 /*
155 * We create one struct sbp2_target per IEEE 1212 Unit Directory
156 * and one struct Scsi_Host per sbp2_target.
157 */
158 struct sbp2_target {
159 struct kref kref;
160 struct fw_unit *unit;
161 const char *bus_id;
162 struct list_head lu_list;
163
164 u64 management_agent_address;
165 u64 guid;
166 int directory_id;
167 int node_id;
168 int address_high;
169 unsigned int workarounds;
170 unsigned int mgt_orb_timeout;
171
172 int dont_block; /* counter for each logical unit */
173 int blocked; /* ditto */
174 };
175
176 /* Impossible login_id, to detect logout attempt before successful login */
177 #define INVALID_LOGIN_ID 0x10000
178
179 /*
180 * Per section 7.4.8 of the SBP-2 spec, a mgt_ORB_timeout value can be
181 * provided in the config rom. Most devices do provide a value, which
182 * we'll use for login management orbs, but with some sane limits.
183 */
184 #define SBP2_MIN_LOGIN_ORB_TIMEOUT 5000U /* Timeout in ms */
185 #define SBP2_MAX_LOGIN_ORB_TIMEOUT 40000U /* Timeout in ms */
186 #define SBP2_ORB_TIMEOUT 2000U /* Timeout in ms */
187 #define SBP2_ORB_NULL 0x80000000
188 #define SBP2_RETRY_LIMIT 0xf /* 15 retries */
189 #define SBP2_CYCLE_LIMIT (0xc8 << 12) /* 200 125us cycles */
190
191 /*
192 * The default maximum s/g segment size of a FireWire controller is
193 * usually 0x10000, but SBP-2 only allows 0xffff. Since buffers have to
194 * be quadlet-aligned, we set the length limit to 0xffff & ~3.
195 */
196 #define SBP2_MAX_SEG_SIZE 0xfffc
197
198 /* Unit directory keys */
199 #define SBP2_CSR_UNIT_CHARACTERISTICS 0x3a
200 #define SBP2_CSR_FIRMWARE_REVISION 0x3c
201 #define SBP2_CSR_LOGICAL_UNIT_NUMBER 0x14
202 #define SBP2_CSR_LOGICAL_UNIT_DIRECTORY 0xd4
203
204 /* Management orb opcodes */
205 #define SBP2_LOGIN_REQUEST 0x0
206 #define SBP2_QUERY_LOGINS_REQUEST 0x1
207 #define SBP2_RECONNECT_REQUEST 0x3
208 #define SBP2_SET_PASSWORD_REQUEST 0x4
209 #define SBP2_LOGOUT_REQUEST 0x7
210 #define SBP2_ABORT_TASK_REQUEST 0xb
211 #define SBP2_ABORT_TASK_SET 0xc
212 #define SBP2_LOGICAL_UNIT_RESET 0xe
213 #define SBP2_TARGET_RESET_REQUEST 0xf
214
215 /* Offsets for command block agent registers */
216 #define SBP2_AGENT_STATE 0x00
217 #define SBP2_AGENT_RESET 0x04
218 #define SBP2_ORB_POINTER 0x08
219 #define SBP2_DOORBELL 0x10
220 #define SBP2_UNSOLICITED_STATUS_ENABLE 0x14
221
222 /* Status write response codes */
223 #define SBP2_STATUS_REQUEST_COMPLETE 0x0
224 #define SBP2_STATUS_TRANSPORT_FAILURE 0x1
225 #define SBP2_STATUS_ILLEGAL_REQUEST 0x2
226 #define SBP2_STATUS_VENDOR_DEPENDENT 0x3
227
228 #define STATUS_GET_ORB_HIGH(v) ((v).status & 0xffff)
229 #define STATUS_GET_SBP_STATUS(v) (((v).status >> 16) & 0xff)
230 #define STATUS_GET_LEN(v) (((v).status >> 24) & 0x07)
231 #define STATUS_GET_DEAD(v) (((v).status >> 27) & 0x01)
232 #define STATUS_GET_RESPONSE(v) (((v).status >> 28) & 0x03)
233 #define STATUS_GET_SOURCE(v) (((v).status >> 30) & 0x03)
234 #define STATUS_GET_ORB_LOW(v) ((v).orb_low)
235 #define STATUS_GET_DATA(v) ((v).data)
236
237 struct sbp2_status {
238 u32 status;
239 u32 orb_low;
240 u8 data[24];
241 };
242
243 struct sbp2_pointer {
244 __be32 high;
245 __be32 low;
246 };
247
248 struct sbp2_orb {
249 struct fw_transaction t;
250 struct kref kref;
251 dma_addr_t request_bus;
252 int rcode;
253 struct sbp2_pointer pointer;
254 void (*callback)(struct sbp2_orb * orb, struct sbp2_status * status);
255 struct list_head link;
256 };
257
258 #define MANAGEMENT_ORB_LUN(v) ((v))
259 #define MANAGEMENT_ORB_FUNCTION(v) ((v) << 16)
260 #define MANAGEMENT_ORB_RECONNECT(v) ((v) << 20)
261 #define MANAGEMENT_ORB_EXCLUSIVE(v) ((v) ? 1 << 28 : 0)
262 #define MANAGEMENT_ORB_REQUEST_FORMAT(v) ((v) << 29)
263 #define MANAGEMENT_ORB_NOTIFY ((1) << 31)
264
265 #define MANAGEMENT_ORB_RESPONSE_LENGTH(v) ((v))
266 #define MANAGEMENT_ORB_PASSWORD_LENGTH(v) ((v) << 16)
267
268 struct sbp2_management_orb {
269 struct sbp2_orb base;
270 struct {
271 struct sbp2_pointer password;
272 struct sbp2_pointer response;
273 __be32 misc;
274 __be32 length;
275 struct sbp2_pointer status_fifo;
276 } request;
277 __be32 response[4];
278 dma_addr_t response_bus;
279 struct completion done;
280 struct sbp2_status status;
281 };
282
283 struct sbp2_login_response {
284 __be32 misc;
285 struct sbp2_pointer command_block_agent;
286 __be32 reconnect_hold;
287 };
288 #define COMMAND_ORB_DATA_SIZE(v) ((v))
289 #define COMMAND_ORB_PAGE_SIZE(v) ((v) << 16)
290 #define COMMAND_ORB_PAGE_TABLE_PRESENT ((1) << 19)
291 #define COMMAND_ORB_MAX_PAYLOAD(v) ((v) << 20)
292 #define COMMAND_ORB_SPEED(v) ((v) << 24)
293 #define COMMAND_ORB_DIRECTION ((1) << 27)
294 #define COMMAND_ORB_REQUEST_FORMAT(v) ((v) << 29)
295 #define COMMAND_ORB_NOTIFY ((1) << 31)
296
297 struct sbp2_command_orb {
298 struct sbp2_orb base;
299 struct {
300 struct sbp2_pointer next;
301 struct sbp2_pointer data_descriptor;
302 __be32 misc;
303 u8 command_block[12];
304 } request;
305 struct scsi_cmnd *cmd;
306 scsi_done_fn_t done;
307 struct sbp2_logical_unit *lu;
308
309 struct sbp2_pointer page_table[SG_ALL] __attribute__((aligned(8)));
310 dma_addr_t page_table_bus;
311 };
312
313 /*
314 * List of devices with known bugs.
315 *
316 * The firmware_revision field, masked with 0xffff00, is the best
317 * indicator for the type of bridge chip of a device. It yields a few
318 * false positives but this did not break correctly behaving devices
319 * so far. We use ~0 as a wildcard, since the 24 bit values we get
320 * from the config rom can never match that.
321 */
322 static const struct {
323 u32 firmware_revision;
324 u32 model;
325 unsigned int workarounds;
326 } sbp2_workarounds_table[] = {
327 /* DViCO Momobay CX-1 with TSB42AA9 bridge */ {
328 .firmware_revision = 0x002800,
329 .model = 0x001010,
330 .workarounds = SBP2_WORKAROUND_INQUIRY_36 |
331 SBP2_WORKAROUND_MODE_SENSE_8 |
332 SBP2_WORKAROUND_POWER_CONDITION,
333 },
334 /* DViCO Momobay FX-3A with TSB42AA9A bridge */ {
335 .firmware_revision = 0x002800,
336 .model = 0x000000,
337 .workarounds = SBP2_WORKAROUND_DELAY_INQUIRY |
338 SBP2_WORKAROUND_POWER_CONDITION,
339 },
340 /* Initio bridges, actually only needed for some older ones */ {
341 .firmware_revision = 0x000200,
342 .model = ~0,
343 .workarounds = SBP2_WORKAROUND_INQUIRY_36,
344 },
345 /* PL-3507 bridge with Prolific firmware */ {
346 .firmware_revision = 0x012800,
347 .model = ~0,
348 .workarounds = SBP2_WORKAROUND_POWER_CONDITION,
349 },
350 /* Symbios bridge */ {
351 .firmware_revision = 0xa0b800,
352 .model = ~0,
353 .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS,
354 },
355 /* Datafab MD2-FW2 with Symbios/LSILogic SYM13FW500 bridge */ {
356 .firmware_revision = 0x002600,
357 .model = ~0,
358 .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS,
359 },
360
361 /*
362 * There are iPods (2nd gen, 3rd gen) with model_id == 0, but
363 * these iPods do not feature the read_capacity bug according
364 * to one report. Read_capacity behaviour as well as model_id
365 * could change due to Apple-supplied firmware updates though.
366 */
367
368 /* iPod 4th generation. */ {
369 .firmware_revision = 0x0a2700,
370 .model = 0x000021,
371 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
372 },
373 /* iPod mini */ {
374 .firmware_revision = 0x0a2700,
375 .model = 0x000023,
376 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
377 },
378 /* iPod Photo */ {
379 .firmware_revision = 0x0a2700,
380 .model = 0x00007e,
381 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
382 }
383 };
384
385 static void
386 free_orb(struct kref *kref)
387 {
388 struct sbp2_orb *orb = container_of(kref, struct sbp2_orb, kref);
389
390 kfree(orb);
391 }
392
393 static void
394 sbp2_status_write(struct fw_card *card, struct fw_request *request,
395 int tcode, int destination, int source,
396 int generation, int speed,
397 unsigned long long offset,
398 void *payload, size_t length, void *callback_data)
399 {
400 struct sbp2_logical_unit *lu = callback_data;
401 struct sbp2_orb *orb;
402 struct sbp2_status status;
403 size_t header_size;
404 unsigned long flags;
405
406 if (tcode != TCODE_WRITE_BLOCK_REQUEST ||
407 length == 0 || length > sizeof(status)) {
408 fw_send_response(card, request, RCODE_TYPE_ERROR);
409 return;
410 }
411
412 header_size = min(length, 2 * sizeof(u32));
413 fw_memcpy_from_be32(&status, payload, header_size);
414 if (length > header_size)
415 memcpy(status.data, payload + 8, length - header_size);
416 if (STATUS_GET_SOURCE(status) == 2 || STATUS_GET_SOURCE(status) == 3) {
417 fw_notify("non-orb related status write, not handled\n");
418 fw_send_response(card, request, RCODE_COMPLETE);
419 return;
420 }
421
422 /* Lookup the orb corresponding to this status write. */
423 spin_lock_irqsave(&card->lock, flags);
424 list_for_each_entry(orb, &lu->orb_list, link) {
425 if (STATUS_GET_ORB_HIGH(status) == 0 &&
426 STATUS_GET_ORB_LOW(status) == orb->request_bus) {
427 orb->rcode = RCODE_COMPLETE;
428 list_del(&orb->link);
429 break;
430 }
431 }
432 spin_unlock_irqrestore(&card->lock, flags);
433
434 if (&orb->link != &lu->orb_list)
435 orb->callback(orb, &status);
436 else
437 fw_error("status write for unknown orb\n");
438
439 kref_put(&orb->kref, free_orb);
440
441 fw_send_response(card, request, RCODE_COMPLETE);
442 }
443
444 static void
445 complete_transaction(struct fw_card *card, int rcode,
446 void *payload, size_t length, void *data)
447 {
448 struct sbp2_orb *orb = data;
449 unsigned long flags;
450
451 /*
452 * This is a little tricky. We can get the status write for
453 * the orb before we get this callback. The status write
454 * handler above will assume the orb pointer transaction was
455 * successful and set the rcode to RCODE_COMPLETE for the orb.
456 * So this callback only sets the rcode if it hasn't already
457 * been set and only does the cleanup if the transaction
458 * failed and we didn't already get a status write.
459 */
460 spin_lock_irqsave(&card->lock, flags);
461
462 if (orb->rcode == -1)
463 orb->rcode = rcode;
464 if (orb->rcode != RCODE_COMPLETE) {
465 list_del(&orb->link);
466 spin_unlock_irqrestore(&card->lock, flags);
467 orb->callback(orb, NULL);
468 } else {
469 spin_unlock_irqrestore(&card->lock, flags);
470 }
471
472 kref_put(&orb->kref, free_orb);
473 }
474
475 static void
476 sbp2_send_orb(struct sbp2_orb *orb, struct sbp2_logical_unit *lu,
477 int node_id, int generation, u64 offset)
478 {
479 struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
480 unsigned long flags;
481
482 orb->pointer.high = 0;
483 orb->pointer.low = cpu_to_be32(orb->request_bus);
484
485 spin_lock_irqsave(&device->card->lock, flags);
486 list_add_tail(&orb->link, &lu->orb_list);
487 spin_unlock_irqrestore(&device->card->lock, flags);
488
489 /* Take a ref for the orb list and for the transaction callback. */
490 kref_get(&orb->kref);
491 kref_get(&orb->kref);
492
493 fw_send_request(device->card, &orb->t, TCODE_WRITE_BLOCK_REQUEST,
494 node_id, generation, device->max_speed, offset,
495 &orb->pointer, sizeof(orb->pointer),
496 complete_transaction, orb);
497 }
498
499 static int sbp2_cancel_orbs(struct sbp2_logical_unit *lu)
500 {
501 struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
502 struct sbp2_orb *orb, *next;
503 struct list_head list;
504 unsigned long flags;
505 int retval = -ENOENT;
506
507 INIT_LIST_HEAD(&list);
508 spin_lock_irqsave(&device->card->lock, flags);
509 list_splice_init(&lu->orb_list, &list);
510 spin_unlock_irqrestore(&device->card->lock, flags);
511
512 list_for_each_entry_safe(orb, next, &list, link) {
513 retval = 0;
514 if (fw_cancel_transaction(device->card, &orb->t) == 0)
515 continue;
516
517 orb->rcode = RCODE_CANCELLED;
518 orb->callback(orb, NULL);
519 }
520
521 return retval;
522 }
523
524 static void
525 complete_management_orb(struct sbp2_orb *base_orb, struct sbp2_status *status)
526 {
527 struct sbp2_management_orb *orb =
528 container_of(base_orb, struct sbp2_management_orb, base);
529
530 if (status)
531 memcpy(&orb->status, status, sizeof(*status));
532 complete(&orb->done);
533 }
534
535 static int
536 sbp2_send_management_orb(struct sbp2_logical_unit *lu, int node_id,
537 int generation, int function, int lun_or_login_id,
538 void *response)
539 {
540 struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
541 struct sbp2_management_orb *orb;
542 unsigned int timeout;
543 int retval = -ENOMEM;
544
545 if (function == SBP2_LOGOUT_REQUEST && fw_device_is_shutdown(device))
546 return 0;
547
548 orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
549 if (orb == NULL)
550 return -ENOMEM;
551
552 kref_init(&orb->base.kref);
553 orb->response_bus =
554 dma_map_single(device->card->device, &orb->response,
555 sizeof(orb->response), DMA_FROM_DEVICE);
556 if (dma_mapping_error(device->card->device, orb->response_bus))
557 goto fail_mapping_response;
558
559 orb->request.response.high = 0;
560 orb->request.response.low = cpu_to_be32(orb->response_bus);
561
562 orb->request.misc = cpu_to_be32(
563 MANAGEMENT_ORB_NOTIFY |
564 MANAGEMENT_ORB_FUNCTION(function) |
565 MANAGEMENT_ORB_LUN(lun_or_login_id));
566 orb->request.length = cpu_to_be32(
567 MANAGEMENT_ORB_RESPONSE_LENGTH(sizeof(orb->response)));
568
569 orb->request.status_fifo.high =
570 cpu_to_be32(lu->address_handler.offset >> 32);
571 orb->request.status_fifo.low =
572 cpu_to_be32(lu->address_handler.offset);
573
574 if (function == SBP2_LOGIN_REQUEST) {
575 /* Ask for 2^2 == 4 seconds reconnect grace period */
576 orb->request.misc |= cpu_to_be32(
577 MANAGEMENT_ORB_RECONNECT(2) |
578 MANAGEMENT_ORB_EXCLUSIVE(sbp2_param_exclusive_login));
579 timeout = lu->tgt->mgt_orb_timeout;
580 } else {
581 timeout = SBP2_ORB_TIMEOUT;
582 }
583
584 init_completion(&orb->done);
585 orb->base.callback = complete_management_orb;
586
587 orb->base.request_bus =
588 dma_map_single(device->card->device, &orb->request,
589 sizeof(orb->request), DMA_TO_DEVICE);
590 if (dma_mapping_error(device->card->device, orb->base.request_bus))
591 goto fail_mapping_request;
592
593 sbp2_send_orb(&orb->base, lu, node_id, generation,
594 lu->tgt->management_agent_address);
595
596 wait_for_completion_timeout(&orb->done, msecs_to_jiffies(timeout));
597
598 retval = -EIO;
599 if (sbp2_cancel_orbs(lu) == 0) {
600 fw_error("%s: orb reply timed out, rcode=0x%02x\n",
601 lu->tgt->bus_id, orb->base.rcode);
602 goto out;
603 }
604
605 if (orb->base.rcode != RCODE_COMPLETE) {
606 fw_error("%s: management write failed, rcode 0x%02x\n",
607 lu->tgt->bus_id, orb->base.rcode);
608 goto out;
609 }
610
611 if (STATUS_GET_RESPONSE(orb->status) != 0 ||
612 STATUS_GET_SBP_STATUS(orb->status) != 0) {
613 fw_error("%s: error status: %d:%d\n", lu->tgt->bus_id,
614 STATUS_GET_RESPONSE(orb->status),
615 STATUS_GET_SBP_STATUS(orb->status));
616 goto out;
617 }
618
619 retval = 0;
620 out:
621 dma_unmap_single(device->card->device, orb->base.request_bus,
622 sizeof(orb->request), DMA_TO_DEVICE);
623 fail_mapping_request:
624 dma_unmap_single(device->card->device, orb->response_bus,
625 sizeof(orb->response), DMA_FROM_DEVICE);
626 fail_mapping_response:
627 if (response)
628 memcpy(response, orb->response, sizeof(orb->response));
629 kref_put(&orb->base.kref, free_orb);
630
631 return retval;
632 }
633
634 static void sbp2_agent_reset(struct sbp2_logical_unit *lu)
635 {
636 struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
637 __be32 d = 0;
638
639 fw_run_transaction(device->card, TCODE_WRITE_QUADLET_REQUEST,
640 lu->tgt->node_id, lu->generation, device->max_speed,
641 lu->command_block_agent_address + SBP2_AGENT_RESET,
642 &d, sizeof(d));
643 }
644
645 static void
646 complete_agent_reset_write_no_wait(struct fw_card *card, int rcode,
647 void *payload, size_t length, void *data)
648 {
649 kfree(data);
650 }
651
652 static void sbp2_agent_reset_no_wait(struct sbp2_logical_unit *lu)
653 {
654 struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
655 struct fw_transaction *t;
656 static __be32 d;
657
658 t = kmalloc(sizeof(*t), GFP_ATOMIC);
659 if (t == NULL)
660 return;
661
662 fw_send_request(device->card, t, TCODE_WRITE_QUADLET_REQUEST,
663 lu->tgt->node_id, lu->generation, device->max_speed,
664 lu->command_block_agent_address + SBP2_AGENT_RESET,
665 &d, sizeof(d), complete_agent_reset_write_no_wait, t);
666 }
667
668 static void sbp2_set_generation(struct sbp2_logical_unit *lu, int generation)
669 {
670 struct fw_card *card = fw_device(lu->tgt->unit->device.parent)->card;
671 unsigned long flags;
672
673 /* serialize with comparisons of lu->generation and card->generation */
674 spin_lock_irqsave(&card->lock, flags);
675 lu->generation = generation;
676 spin_unlock_irqrestore(&card->lock, flags);
677 }
678
679 static inline void sbp2_allow_block(struct sbp2_logical_unit *lu)
680 {
681 /*
682 * We may access dont_block without taking card->lock here:
683 * All callers of sbp2_allow_block() and all callers of sbp2_unblock()
684 * are currently serialized against each other.
685 * And a wrong result in sbp2_conditionally_block()'s access of
686 * dont_block is rather harmless, it simply misses its first chance.
687 */
688 --lu->tgt->dont_block;
689 }
690
691 /*
692 * Blocks lu->tgt if all of the following conditions are met:
693 * - Login, INQUIRY, and high-level SCSI setup of all of the target's
694 * logical units have been finished (indicated by dont_block == 0).
695 * - lu->generation is stale.
696 *
697 * Note, scsi_block_requests() must be called while holding card->lock,
698 * otherwise it might foil sbp2_[conditionally_]unblock()'s attempt to
699 * unblock the target.
700 */
701 static void sbp2_conditionally_block(struct sbp2_logical_unit *lu)
702 {
703 struct sbp2_target *tgt = lu->tgt;
704 struct fw_card *card = fw_device(tgt->unit->device.parent)->card;
705 struct Scsi_Host *shost =
706 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
707 unsigned long flags;
708
709 spin_lock_irqsave(&card->lock, flags);
710 if (!tgt->dont_block && !lu->blocked &&
711 lu->generation != card->generation) {
712 lu->blocked = true;
713 if (++tgt->blocked == 1)
714 scsi_block_requests(shost);
715 }
716 spin_unlock_irqrestore(&card->lock, flags);
717 }
718
719 /*
720 * Unblocks lu->tgt as soon as all its logical units can be unblocked.
721 * Note, it is harmless to run scsi_unblock_requests() outside the
722 * card->lock protected section. On the other hand, running it inside
723 * the section might clash with shost->host_lock.
724 */
725 static void sbp2_conditionally_unblock(struct sbp2_logical_unit *lu)
726 {
727 struct sbp2_target *tgt = lu->tgt;
728 struct fw_card *card = fw_device(tgt->unit->device.parent)->card;
729 struct Scsi_Host *shost =
730 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
731 unsigned long flags;
732 bool unblock = false;
733
734 spin_lock_irqsave(&card->lock, flags);
735 if (lu->blocked && lu->generation == card->generation) {
736 lu->blocked = false;
737 unblock = --tgt->blocked == 0;
738 }
739 spin_unlock_irqrestore(&card->lock, flags);
740
741 if (unblock)
742 scsi_unblock_requests(shost);
743 }
744
745 /*
746 * Prevents future blocking of tgt and unblocks it.
747 * Note, it is harmless to run scsi_unblock_requests() outside the
748 * card->lock protected section. On the other hand, running it inside
749 * the section might clash with shost->host_lock.
750 */
751 static void sbp2_unblock(struct sbp2_target *tgt)
752 {
753 struct fw_card *card = fw_device(tgt->unit->device.parent)->card;
754 struct Scsi_Host *shost =
755 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
756 unsigned long flags;
757
758 spin_lock_irqsave(&card->lock, flags);
759 ++tgt->dont_block;
760 spin_unlock_irqrestore(&card->lock, flags);
761
762 scsi_unblock_requests(shost);
763 }
764
765 static int sbp2_lun2int(u16 lun)
766 {
767 struct scsi_lun eight_bytes_lun;
768
769 memset(&eight_bytes_lun, 0, sizeof(eight_bytes_lun));
770 eight_bytes_lun.scsi_lun[0] = (lun >> 8) & 0xff;
771 eight_bytes_lun.scsi_lun[1] = lun & 0xff;
772
773 return scsilun_to_int(&eight_bytes_lun);
774 }
775
776 static void sbp2_release_target(struct kref *kref)
777 {
778 struct sbp2_target *tgt = container_of(kref, struct sbp2_target, kref);
779 struct sbp2_logical_unit *lu, *next;
780 struct Scsi_Host *shost =
781 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
782 struct scsi_device *sdev;
783 struct fw_device *device = fw_device(tgt->unit->device.parent);
784
785 /* prevent deadlocks */
786 sbp2_unblock(tgt);
787
788 list_for_each_entry_safe(lu, next, &tgt->lu_list, link) {
789 sdev = scsi_device_lookup(shost, 0, 0, sbp2_lun2int(lu->lun));
790 if (sdev) {
791 scsi_remove_device(sdev);
792 scsi_device_put(sdev);
793 }
794 if (lu->login_id != INVALID_LOGIN_ID) {
795 int generation, node_id;
796 /*
797 * tgt->node_id may be obsolete here if we failed
798 * during initial login or after a bus reset where
799 * the topology changed.
800 */
801 generation = device->generation;
802 smp_rmb(); /* node_id vs. generation */
803 node_id = device->node_id;
804 sbp2_send_management_orb(lu, node_id, generation,
805 SBP2_LOGOUT_REQUEST,
806 lu->login_id, NULL);
807 }
808 fw_core_remove_address_handler(&lu->address_handler);
809 list_del(&lu->link);
810 kfree(lu);
811 }
812 scsi_remove_host(shost);
813 fw_notify("released %s, target %d:0:0\n", tgt->bus_id, shost->host_no);
814
815 fw_unit_put(tgt->unit);
816 scsi_host_put(shost);
817 fw_device_put(device);
818 }
819
820 static struct workqueue_struct *sbp2_wq;
821
822 static void sbp2_target_put(struct sbp2_target *tgt)
823 {
824 kref_put(&tgt->kref, sbp2_release_target);
825 }
826
827 /*
828 * Always get the target's kref when scheduling work on one its units.
829 * Each workqueue job is responsible to call sbp2_target_put() upon return.
830 */
831 static void sbp2_queue_work(struct sbp2_logical_unit *lu, unsigned long delay)
832 {
833 kref_get(&lu->tgt->kref);
834 if (!queue_delayed_work(sbp2_wq, &lu->work, delay))
835 sbp2_target_put(lu->tgt);
836 }
837
838 /*
839 * Write retransmit retry values into the BUSY_TIMEOUT register.
840 * - The single-phase retry protocol is supported by all SBP-2 devices, but the
841 * default retry_limit value is 0 (i.e. never retry transmission). We write a
842 * saner value after logging into the device.
843 * - The dual-phase retry protocol is optional to implement, and if not
844 * supported, writes to the dual-phase portion of the register will be
845 * ignored. We try to write the original 1394-1995 default here.
846 * - In the case of devices that are also SBP-3-compliant, all writes are
847 * ignored, as the register is read-only, but contains single-phase retry of
848 * 15, which is what we're trying to set for all SBP-2 device anyway, so this
849 * write attempt is safe and yields more consistent behavior for all devices.
850 *
851 * See section 8.3.2.3.5 of the 1394-1995 spec, section 6.2 of the SBP-2 spec,
852 * and section 6.4 of the SBP-3 spec for further details.
853 */
854 static void sbp2_set_busy_timeout(struct sbp2_logical_unit *lu)
855 {
856 struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
857 __be32 d = cpu_to_be32(SBP2_CYCLE_LIMIT | SBP2_RETRY_LIMIT);
858
859 fw_run_transaction(device->card, TCODE_WRITE_QUADLET_REQUEST,
860 lu->tgt->node_id, lu->generation, device->max_speed,
861 CSR_REGISTER_BASE + CSR_BUSY_TIMEOUT,
862 &d, sizeof(d));
863 }
864
865 static void sbp2_reconnect(struct work_struct *work);
866
867 static void sbp2_login(struct work_struct *work)
868 {
869 struct sbp2_logical_unit *lu =
870 container_of(work, struct sbp2_logical_unit, work.work);
871 struct sbp2_target *tgt = lu->tgt;
872 struct fw_device *device = fw_device(tgt->unit->device.parent);
873 struct Scsi_Host *shost;
874 struct scsi_device *sdev;
875 struct sbp2_login_response response;
876 int generation, node_id, local_node_id;
877
878 if (fw_device_is_shutdown(device))
879 goto out;
880
881 generation = device->generation;
882 smp_rmb(); /* node_id must not be older than generation */
883 node_id = device->node_id;
884 local_node_id = device->card->node_id;
885
886 /* If this is a re-login attempt, log out, or we might be rejected. */
887 if (lu->has_sdev)
888 sbp2_send_management_orb(lu, device->node_id, generation,
889 SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
890
891 if (sbp2_send_management_orb(lu, node_id, generation,
892 SBP2_LOGIN_REQUEST, lu->lun, &response) < 0) {
893 if (lu->retries++ < 5) {
894 sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
895 } else {
896 fw_error("%s: failed to login to LUN %04x\n",
897 tgt->bus_id, lu->lun);
898 /* Let any waiting I/O fail from now on. */
899 sbp2_unblock(lu->tgt);
900 }
901 goto out;
902 }
903
904 tgt->node_id = node_id;
905 tgt->address_high = local_node_id << 16;
906 sbp2_set_generation(lu, generation);
907
908 lu->command_block_agent_address =
909 ((u64)(be32_to_cpu(response.command_block_agent.high) & 0xffff)
910 << 32) | be32_to_cpu(response.command_block_agent.low);
911 lu->login_id = be32_to_cpu(response.misc) & 0xffff;
912
913 fw_notify("%s: logged in to LUN %04x (%d retries)\n",
914 tgt->bus_id, lu->lun, lu->retries);
915
916 /* set appropriate retry limit(s) in BUSY_TIMEOUT register */
917 sbp2_set_busy_timeout(lu);
918
919 PREPARE_DELAYED_WORK(&lu->work, sbp2_reconnect);
920 sbp2_agent_reset(lu);
921
922 /* This was a re-login. */
923 if (lu->has_sdev) {
924 sbp2_cancel_orbs(lu);
925 sbp2_conditionally_unblock(lu);
926 goto out;
927 }
928
929 if (lu->tgt->workarounds & SBP2_WORKAROUND_DELAY_INQUIRY)
930 ssleep(SBP2_INQUIRY_DELAY);
931
932 shost = container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
933 sdev = __scsi_add_device(shost, 0, 0, sbp2_lun2int(lu->lun), lu);
934 /*
935 * FIXME: We are unable to perform reconnects while in sbp2_login().
936 * Therefore __scsi_add_device() will get into trouble if a bus reset
937 * happens in parallel. It will either fail or leave us with an
938 * unusable sdev. As a workaround we check for this and retry the
939 * whole login and SCSI probing.
940 */
941
942 /* Reported error during __scsi_add_device() */
943 if (IS_ERR(sdev))
944 goto out_logout_login;
945
946 /* Unreported error during __scsi_add_device() */
947 smp_rmb(); /* get current card generation */
948 if (generation != device->card->generation) {
949 scsi_remove_device(sdev);
950 scsi_device_put(sdev);
951 goto out_logout_login;
952 }
953
954 /* No error during __scsi_add_device() */
955 lu->has_sdev = true;
956 scsi_device_put(sdev);
957 sbp2_allow_block(lu);
958 goto out;
959
960 out_logout_login:
961 smp_rmb(); /* generation may have changed */
962 generation = device->generation;
963 smp_rmb(); /* node_id must not be older than generation */
964
965 sbp2_send_management_orb(lu, device->node_id, generation,
966 SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
967 /*
968 * If a bus reset happened, sbp2_update will have requeued
969 * lu->work already. Reset the work from reconnect to login.
970 */
971 PREPARE_DELAYED_WORK(&lu->work, sbp2_login);
972 out:
973 sbp2_target_put(tgt);
974 }
975
976 static int sbp2_add_logical_unit(struct sbp2_target *tgt, int lun_entry)
977 {
978 struct sbp2_logical_unit *lu;
979
980 lu = kmalloc(sizeof(*lu), GFP_KERNEL);
981 if (!lu)
982 return -ENOMEM;
983
984 lu->address_handler.length = 0x100;
985 lu->address_handler.address_callback = sbp2_status_write;
986 lu->address_handler.callback_data = lu;
987
988 if (fw_core_add_address_handler(&lu->address_handler,
989 &fw_high_memory_region) < 0) {
990 kfree(lu);
991 return -ENOMEM;
992 }
993
994 lu->tgt = tgt;
995 lu->lun = lun_entry & 0xffff;
996 lu->login_id = INVALID_LOGIN_ID;
997 lu->retries = 0;
998 lu->has_sdev = false;
999 lu->blocked = false;
1000 ++tgt->dont_block;
1001 INIT_LIST_HEAD(&lu->orb_list);
1002 INIT_DELAYED_WORK(&lu->work, sbp2_login);
1003
1004 list_add_tail(&lu->link, &tgt->lu_list);
1005 return 0;
1006 }
1007
1008 static int sbp2_scan_logical_unit_dir(struct sbp2_target *tgt, u32 *directory)
1009 {
1010 struct fw_csr_iterator ci;
1011 int key, value;
1012
1013 fw_csr_iterator_init(&ci, directory);
1014 while (fw_csr_iterator_next(&ci, &key, &value))
1015 if (key == SBP2_CSR_LOGICAL_UNIT_NUMBER &&
1016 sbp2_add_logical_unit(tgt, value) < 0)
1017 return -ENOMEM;
1018 return 0;
1019 }
1020
1021 static int sbp2_scan_unit_dir(struct sbp2_target *tgt, u32 *directory,
1022 u32 *model, u32 *firmware_revision)
1023 {
1024 struct fw_csr_iterator ci;
1025 int key, value;
1026 unsigned int timeout;
1027
1028 fw_csr_iterator_init(&ci, directory);
1029 while (fw_csr_iterator_next(&ci, &key, &value)) {
1030 switch (key) {
1031
1032 case CSR_DEPENDENT_INFO | CSR_OFFSET:
1033 tgt->management_agent_address =
1034 CSR_REGISTER_BASE + 4 * value;
1035 break;
1036
1037 case CSR_DIRECTORY_ID:
1038 tgt->directory_id = value;
1039 break;
1040
1041 case CSR_MODEL:
1042 *model = value;
1043 break;
1044
1045 case SBP2_CSR_FIRMWARE_REVISION:
1046 *firmware_revision = value;
1047 break;
1048
1049 case SBP2_CSR_UNIT_CHARACTERISTICS:
1050 /* the timeout value is stored in 500ms units */
1051 timeout = ((unsigned int) value >> 8 & 0xff) * 500;
1052 timeout = max(timeout, SBP2_MIN_LOGIN_ORB_TIMEOUT);
1053 tgt->mgt_orb_timeout =
1054 min(timeout, SBP2_MAX_LOGIN_ORB_TIMEOUT);
1055
1056 if (timeout > tgt->mgt_orb_timeout)
1057 fw_notify("%s: config rom contains %ds "
1058 "management ORB timeout, limiting "
1059 "to %ds\n", tgt->bus_id,
1060 timeout / 1000,
1061 tgt->mgt_orb_timeout / 1000);
1062 break;
1063
1064 case SBP2_CSR_LOGICAL_UNIT_NUMBER:
1065 if (sbp2_add_logical_unit(tgt, value) < 0)
1066 return -ENOMEM;
1067 break;
1068
1069 case SBP2_CSR_LOGICAL_UNIT_DIRECTORY:
1070 /* Adjust for the increment in the iterator */
1071 if (sbp2_scan_logical_unit_dir(tgt, ci.p - 1 + value) < 0)
1072 return -ENOMEM;
1073 break;
1074 }
1075 }
1076 return 0;
1077 }
1078
1079 static void sbp2_init_workarounds(struct sbp2_target *tgt, u32 model,
1080 u32 firmware_revision)
1081 {
1082 int i;
1083 unsigned int w = sbp2_param_workarounds;
1084
1085 if (w)
1086 fw_notify("Please notify linux1394-devel@lists.sourceforge.net "
1087 "if you need the workarounds parameter for %s\n",
1088 tgt->bus_id);
1089
1090 if (w & SBP2_WORKAROUND_OVERRIDE)
1091 goto out;
1092
1093 for (i = 0; i < ARRAY_SIZE(sbp2_workarounds_table); i++) {
1094
1095 if (sbp2_workarounds_table[i].firmware_revision !=
1096 (firmware_revision & 0xffffff00))
1097 continue;
1098
1099 if (sbp2_workarounds_table[i].model != model &&
1100 sbp2_workarounds_table[i].model != ~0)
1101 continue;
1102
1103 w |= sbp2_workarounds_table[i].workarounds;
1104 break;
1105 }
1106 out:
1107 if (w)
1108 fw_notify("Workarounds for %s: 0x%x "
1109 "(firmware_revision 0x%06x, model_id 0x%06x)\n",
1110 tgt->bus_id, w, firmware_revision, model);
1111 tgt->workarounds = w;
1112 }
1113
1114 static struct scsi_host_template scsi_driver_template;
1115
1116 static int sbp2_probe(struct device *dev)
1117 {
1118 struct fw_unit *unit = fw_unit(dev);
1119 struct fw_device *device = fw_device(unit->device.parent);
1120 struct sbp2_target *tgt;
1121 struct sbp2_logical_unit *lu;
1122 struct Scsi_Host *shost;
1123 u32 model, firmware_revision;
1124
1125 if (dma_get_max_seg_size(device->card->device) > SBP2_MAX_SEG_SIZE)
1126 BUG_ON(dma_set_max_seg_size(device->card->device,
1127 SBP2_MAX_SEG_SIZE));
1128
1129 shost = scsi_host_alloc(&scsi_driver_template, sizeof(*tgt));
1130 if (shost == NULL)
1131 return -ENOMEM;
1132
1133 tgt = (struct sbp2_target *)shost->hostdata;
1134 unit->device.driver_data = tgt;
1135 tgt->unit = unit;
1136 kref_init(&tgt->kref);
1137 INIT_LIST_HEAD(&tgt->lu_list);
1138 tgt->bus_id = dev_name(&unit->device);
1139 tgt->guid = (u64)device->config_rom[3] << 32 | device->config_rom[4];
1140
1141 if (fw_device_enable_phys_dma(device) < 0)
1142 goto fail_shost_put;
1143
1144 if (scsi_add_host(shost, &unit->device) < 0)
1145 goto fail_shost_put;
1146
1147 fw_device_get(device);
1148 fw_unit_get(unit);
1149
1150 /* Initialize to values that won't match anything in our table. */
1151 firmware_revision = 0xff000000;
1152 model = 0xff000000;
1153
1154 /* implicit directory ID */
1155 tgt->directory_id = ((unit->directory - device->config_rom) * 4
1156 + CSR_CONFIG_ROM) & 0xffffff;
1157
1158 if (sbp2_scan_unit_dir(tgt, unit->directory, &model,
1159 &firmware_revision) < 0)
1160 goto fail_tgt_put;
1161
1162 sbp2_init_workarounds(tgt, model, firmware_revision);
1163
1164 /* Do the login in a workqueue so we can easily reschedule retries. */
1165 list_for_each_entry(lu, &tgt->lu_list, link)
1166 sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
1167 return 0;
1168
1169 fail_tgt_put:
1170 sbp2_target_put(tgt);
1171 return -ENOMEM;
1172
1173 fail_shost_put:
1174 scsi_host_put(shost);
1175 return -ENOMEM;
1176 }
1177
1178 static int sbp2_remove(struct device *dev)
1179 {
1180 struct fw_unit *unit = fw_unit(dev);
1181 struct sbp2_target *tgt = unit->device.driver_data;
1182
1183 sbp2_target_put(tgt);
1184 return 0;
1185 }
1186
1187 static void sbp2_reconnect(struct work_struct *work)
1188 {
1189 struct sbp2_logical_unit *lu =
1190 container_of(work, struct sbp2_logical_unit, work.work);
1191 struct sbp2_target *tgt = lu->tgt;
1192 struct fw_device *device = fw_device(tgt->unit->device.parent);
1193 int generation, node_id, local_node_id;
1194
1195 if (fw_device_is_shutdown(device))
1196 goto out;
1197
1198 generation = device->generation;
1199 smp_rmb(); /* node_id must not be older than generation */
1200 node_id = device->node_id;
1201 local_node_id = device->card->node_id;
1202
1203 if (sbp2_send_management_orb(lu, node_id, generation,
1204 SBP2_RECONNECT_REQUEST,
1205 lu->login_id, NULL) < 0) {
1206 /*
1207 * If reconnect was impossible even though we are in the
1208 * current generation, fall back and try to log in again.
1209 *
1210 * We could check for "Function rejected" status, but
1211 * looking at the bus generation as simpler and more general.
1212 */
1213 smp_rmb(); /* get current card generation */
1214 if (generation == device->card->generation ||
1215 lu->retries++ >= 5) {
1216 fw_error("%s: failed to reconnect\n", tgt->bus_id);
1217 lu->retries = 0;
1218 PREPARE_DELAYED_WORK(&lu->work, sbp2_login);
1219 }
1220 sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
1221 goto out;
1222 }
1223
1224 tgt->node_id = node_id;
1225 tgt->address_high = local_node_id << 16;
1226 sbp2_set_generation(lu, generation);
1227
1228 fw_notify("%s: reconnected to LUN %04x (%d retries)\n",
1229 tgt->bus_id, lu->lun, lu->retries);
1230
1231 sbp2_agent_reset(lu);
1232 sbp2_cancel_orbs(lu);
1233 sbp2_conditionally_unblock(lu);
1234 out:
1235 sbp2_target_put(tgt);
1236 }
1237
1238 static void sbp2_update(struct fw_unit *unit)
1239 {
1240 struct sbp2_target *tgt = unit->device.driver_data;
1241 struct sbp2_logical_unit *lu;
1242
1243 fw_device_enable_phys_dma(fw_device(unit->device.parent));
1244
1245 /*
1246 * Fw-core serializes sbp2_update() against sbp2_remove().
1247 * Iteration over tgt->lu_list is therefore safe here.
1248 */
1249 list_for_each_entry(lu, &tgt->lu_list, link) {
1250 sbp2_conditionally_block(lu);
1251 lu->retries = 0;
1252 sbp2_queue_work(lu, 0);
1253 }
1254 }
1255
1256 #define SBP2_UNIT_SPEC_ID_ENTRY 0x0000609e
1257 #define SBP2_SW_VERSION_ENTRY 0x00010483
1258
1259 static const struct fw_device_id sbp2_id_table[] = {
1260 {
1261 .match_flags = FW_MATCH_SPECIFIER_ID | FW_MATCH_VERSION,
1262 .specifier_id = SBP2_UNIT_SPEC_ID_ENTRY,
1263 .version = SBP2_SW_VERSION_ENTRY,
1264 },
1265 { }
1266 };
1267
1268 static struct fw_driver sbp2_driver = {
1269 .driver = {
1270 .owner = THIS_MODULE,
1271 .name = sbp2_driver_name,
1272 .bus = &fw_bus_type,
1273 .probe = sbp2_probe,
1274 .remove = sbp2_remove,
1275 },
1276 .update = sbp2_update,
1277 .id_table = sbp2_id_table,
1278 };
1279
1280 static unsigned int
1281 sbp2_status_to_sense_data(u8 *sbp2_status, u8 *sense_data)
1282 {
1283 int sam_status;
1284
1285 sense_data[0] = 0x70;
1286 sense_data[1] = 0x0;
1287 sense_data[2] = sbp2_status[1];
1288 sense_data[3] = sbp2_status[4];
1289 sense_data[4] = sbp2_status[5];
1290 sense_data[5] = sbp2_status[6];
1291 sense_data[6] = sbp2_status[7];
1292 sense_data[7] = 10;
1293 sense_data[8] = sbp2_status[8];
1294 sense_data[9] = sbp2_status[9];
1295 sense_data[10] = sbp2_status[10];
1296 sense_data[11] = sbp2_status[11];
1297 sense_data[12] = sbp2_status[2];
1298 sense_data[13] = sbp2_status[3];
1299 sense_data[14] = sbp2_status[12];
1300 sense_data[15] = sbp2_status[13];
1301
1302 sam_status = sbp2_status[0] & 0x3f;
1303
1304 switch (sam_status) {
1305 case SAM_STAT_GOOD:
1306 case SAM_STAT_CHECK_CONDITION:
1307 case SAM_STAT_CONDITION_MET:
1308 case SAM_STAT_BUSY:
1309 case SAM_STAT_RESERVATION_CONFLICT:
1310 case SAM_STAT_COMMAND_TERMINATED:
1311 return DID_OK << 16 | sam_status;
1312
1313 default:
1314 return DID_ERROR << 16;
1315 }
1316 }
1317
1318 static void
1319 complete_command_orb(struct sbp2_orb *base_orb, struct sbp2_status *status)
1320 {
1321 struct sbp2_command_orb *orb =
1322 container_of(base_orb, struct sbp2_command_orb, base);
1323 struct fw_device *device = fw_device(orb->lu->tgt->unit->device.parent);
1324 int result;
1325
1326 if (status != NULL) {
1327 if (STATUS_GET_DEAD(*status))
1328 sbp2_agent_reset_no_wait(orb->lu);
1329
1330 switch (STATUS_GET_RESPONSE(*status)) {
1331 case SBP2_STATUS_REQUEST_COMPLETE:
1332 result = DID_OK << 16;
1333 break;
1334 case SBP2_STATUS_TRANSPORT_FAILURE:
1335 result = DID_BUS_BUSY << 16;
1336 break;
1337 case SBP2_STATUS_ILLEGAL_REQUEST:
1338 case SBP2_STATUS_VENDOR_DEPENDENT:
1339 default:
1340 result = DID_ERROR << 16;
1341 break;
1342 }
1343
1344 if (result == DID_OK << 16 && STATUS_GET_LEN(*status) > 1)
1345 result = sbp2_status_to_sense_data(STATUS_GET_DATA(*status),
1346 orb->cmd->sense_buffer);
1347 } else {
1348 /*
1349 * If the orb completes with status == NULL, something
1350 * went wrong, typically a bus reset happened mid-orb
1351 * or when sending the write (less likely).
1352 */
1353 result = DID_BUS_BUSY << 16;
1354 sbp2_conditionally_block(orb->lu);
1355 }
1356
1357 dma_unmap_single(device->card->device, orb->base.request_bus,
1358 sizeof(orb->request), DMA_TO_DEVICE);
1359
1360 if (scsi_sg_count(orb->cmd) > 0)
1361 dma_unmap_sg(device->card->device, scsi_sglist(orb->cmd),
1362 scsi_sg_count(orb->cmd),
1363 orb->cmd->sc_data_direction);
1364
1365 if (orb->page_table_bus != 0)
1366 dma_unmap_single(device->card->device, orb->page_table_bus,
1367 sizeof(orb->page_table), DMA_TO_DEVICE);
1368
1369 orb->cmd->result = result;
1370 orb->done(orb->cmd);
1371 }
1372
1373 static int
1374 sbp2_map_scatterlist(struct sbp2_command_orb *orb, struct fw_device *device,
1375 struct sbp2_logical_unit *lu)
1376 {
1377 struct scatterlist *sg = scsi_sglist(orb->cmd);
1378 int i, n;
1379
1380 n = dma_map_sg(device->card->device, sg, scsi_sg_count(orb->cmd),
1381 orb->cmd->sc_data_direction);
1382 if (n == 0)
1383 goto fail;
1384
1385 /*
1386 * Handle the special case where there is only one element in
1387 * the scatter list by converting it to an immediate block
1388 * request. This is also a workaround for broken devices such
1389 * as the second generation iPod which doesn't support page
1390 * tables.
1391 */
1392 if (n == 1) {
1393 orb->request.data_descriptor.high =
1394 cpu_to_be32(lu->tgt->address_high);
1395 orb->request.data_descriptor.low =
1396 cpu_to_be32(sg_dma_address(sg));
1397 orb->request.misc |=
1398 cpu_to_be32(COMMAND_ORB_DATA_SIZE(sg_dma_len(sg)));
1399 return 0;
1400 }
1401
1402 for_each_sg(sg, sg, n, i) {
1403 orb->page_table[i].high = cpu_to_be32(sg_dma_len(sg) << 16);
1404 orb->page_table[i].low = cpu_to_be32(sg_dma_address(sg));
1405 }
1406
1407 orb->page_table_bus =
1408 dma_map_single(device->card->device, orb->page_table,
1409 sizeof(orb->page_table), DMA_TO_DEVICE);
1410 if (dma_mapping_error(device->card->device, orb->page_table_bus))
1411 goto fail_page_table;
1412
1413 /*
1414 * The data_descriptor pointer is the one case where we need
1415 * to fill in the node ID part of the address. All other
1416 * pointers assume that the data referenced reside on the
1417 * initiator (i.e. us), but data_descriptor can refer to data
1418 * on other nodes so we need to put our ID in descriptor.high.
1419 */
1420 orb->request.data_descriptor.high = cpu_to_be32(lu->tgt->address_high);
1421 orb->request.data_descriptor.low = cpu_to_be32(orb->page_table_bus);
1422 orb->request.misc |= cpu_to_be32(COMMAND_ORB_PAGE_TABLE_PRESENT |
1423 COMMAND_ORB_DATA_SIZE(n));
1424
1425 return 0;
1426
1427 fail_page_table:
1428 dma_unmap_sg(device->card->device, scsi_sglist(orb->cmd),
1429 scsi_sg_count(orb->cmd), orb->cmd->sc_data_direction);
1430 fail:
1431 return -ENOMEM;
1432 }
1433
1434 /* SCSI stack integration */
1435
1436 static int sbp2_scsi_queuecommand(struct scsi_cmnd *cmd, scsi_done_fn_t done)
1437 {
1438 struct sbp2_logical_unit *lu = cmd->device->hostdata;
1439 struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
1440 struct sbp2_command_orb *orb;
1441 unsigned int max_payload;
1442 int generation, retval = SCSI_MLQUEUE_HOST_BUSY;
1443
1444 /*
1445 * Bidirectional commands are not yet implemented, and unknown
1446 * transfer direction not handled.
1447 */
1448 if (cmd->sc_data_direction == DMA_BIDIRECTIONAL) {
1449 fw_error("Can't handle DMA_BIDIRECTIONAL, rejecting command\n");
1450 cmd->result = DID_ERROR << 16;
1451 done(cmd);
1452 return 0;
1453 }
1454
1455 orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
1456 if (orb == NULL) {
1457 fw_notify("failed to alloc orb\n");
1458 return SCSI_MLQUEUE_HOST_BUSY;
1459 }
1460
1461 /* Initialize rcode to something not RCODE_COMPLETE. */
1462 orb->base.rcode = -1;
1463 kref_init(&orb->base.kref);
1464
1465 orb->lu = lu;
1466 orb->done = done;
1467 orb->cmd = cmd;
1468
1469 orb->request.next.high = cpu_to_be32(SBP2_ORB_NULL);
1470 /*
1471 * At speed 100 we can do 512 bytes per packet, at speed 200,
1472 * 1024 bytes per packet etc. The SBP-2 max_payload field
1473 * specifies the max payload size as 2 ^ (max_payload + 2), so
1474 * if we set this to max_speed + 7, we get the right value.
1475 */
1476 max_payload = min(device->max_speed + 7,
1477 device->card->max_receive - 1);
1478 orb->request.misc = cpu_to_be32(
1479 COMMAND_ORB_MAX_PAYLOAD(max_payload) |
1480 COMMAND_ORB_SPEED(device->max_speed) |
1481 COMMAND_ORB_NOTIFY);
1482
1483 if (cmd->sc_data_direction == DMA_FROM_DEVICE)
1484 orb->request.misc |= cpu_to_be32(COMMAND_ORB_DIRECTION);
1485
1486 generation = device->generation;
1487 smp_rmb(); /* sbp2_map_scatterlist looks at tgt->address_high */
1488
1489 if (scsi_sg_count(cmd) && sbp2_map_scatterlist(orb, device, lu) < 0)
1490 goto out;
1491
1492 memcpy(orb->request.command_block, cmd->cmnd, cmd->cmd_len);
1493
1494 orb->base.callback = complete_command_orb;
1495 orb->base.request_bus =
1496 dma_map_single(device->card->device, &orb->request,
1497 sizeof(orb->request), DMA_TO_DEVICE);
1498 if (dma_mapping_error(device->card->device, orb->base.request_bus))
1499 goto out;
1500
1501 sbp2_send_orb(&orb->base, lu, lu->tgt->node_id, generation,
1502 lu->command_block_agent_address + SBP2_ORB_POINTER);
1503 retval = 0;
1504 out:
1505 kref_put(&orb->base.kref, free_orb);
1506 return retval;
1507 }
1508
1509 static int sbp2_scsi_slave_alloc(struct scsi_device *sdev)
1510 {
1511 struct sbp2_logical_unit *lu = sdev->hostdata;
1512
1513 /* (Re-)Adding logical units via the SCSI stack is not supported. */
1514 if (!lu)
1515 return -ENOSYS;
1516
1517 sdev->allow_restart = 1;
1518
1519 /* SBP-2 requires quadlet alignment of the data buffers. */
1520 blk_queue_update_dma_alignment(sdev->request_queue, 4 - 1);
1521
1522 if (lu->tgt->workarounds & SBP2_WORKAROUND_INQUIRY_36)
1523 sdev->inquiry_len = 36;
1524
1525 return 0;
1526 }
1527
1528 static int sbp2_scsi_slave_configure(struct scsi_device *sdev)
1529 {
1530 struct sbp2_logical_unit *lu = sdev->hostdata;
1531
1532 sdev->use_10_for_rw = 1;
1533
1534 if (sbp2_param_exclusive_login)
1535 sdev->manage_start_stop = 1;
1536
1537 if (sdev->type == TYPE_ROM)
1538 sdev->use_10_for_ms = 1;
1539
1540 if (sdev->type == TYPE_DISK &&
1541 lu->tgt->workarounds & SBP2_WORKAROUND_MODE_SENSE_8)
1542 sdev->skip_ms_page_8 = 1;
1543
1544 if (lu->tgt->workarounds & SBP2_WORKAROUND_FIX_CAPACITY)
1545 sdev->fix_capacity = 1;
1546
1547 if (lu->tgt->workarounds & SBP2_WORKAROUND_POWER_CONDITION)
1548 sdev->start_stop_pwr_cond = 1;
1549
1550 if (lu->tgt->workarounds & SBP2_WORKAROUND_128K_MAX_TRANS)
1551 blk_queue_max_sectors(sdev->request_queue, 128 * 1024 / 512);
1552
1553 blk_queue_max_segment_size(sdev->request_queue, SBP2_MAX_SEG_SIZE);
1554
1555 return 0;
1556 }
1557
1558 /*
1559 * Called by scsi stack when something has really gone wrong. Usually
1560 * called when a command has timed-out for some reason.
1561 */
1562 static int sbp2_scsi_abort(struct scsi_cmnd *cmd)
1563 {
1564 struct sbp2_logical_unit *lu = cmd->device->hostdata;
1565
1566 fw_notify("%s: sbp2_scsi_abort\n", lu->tgt->bus_id);
1567 sbp2_agent_reset(lu);
1568 sbp2_cancel_orbs(lu);
1569
1570 return SUCCESS;
1571 }
1572
1573 /*
1574 * Format of /sys/bus/scsi/devices/.../ieee1394_id:
1575 * u64 EUI-64 : u24 directory_ID : u16 LUN (all printed in hexadecimal)
1576 *
1577 * This is the concatenation of target port identifier and logical unit
1578 * identifier as per SAM-2...SAM-4 annex A.
1579 */
1580 static ssize_t
1581 sbp2_sysfs_ieee1394_id_show(struct device *dev, struct device_attribute *attr,
1582 char *buf)
1583 {
1584 struct scsi_device *sdev = to_scsi_device(dev);
1585 struct sbp2_logical_unit *lu;
1586
1587 if (!sdev)
1588 return 0;
1589
1590 lu = sdev->hostdata;
1591
1592 return sprintf(buf, "%016llx:%06x:%04x\n",
1593 (unsigned long long)lu->tgt->guid,
1594 lu->tgt->directory_id, lu->lun);
1595 }
1596
1597 static DEVICE_ATTR(ieee1394_id, S_IRUGO, sbp2_sysfs_ieee1394_id_show, NULL);
1598
1599 static struct device_attribute *sbp2_scsi_sysfs_attrs[] = {
1600 &dev_attr_ieee1394_id,
1601 NULL
1602 };
1603
1604 static struct scsi_host_template scsi_driver_template = {
1605 .module = THIS_MODULE,
1606 .name = "SBP-2 IEEE-1394",
1607 .proc_name = sbp2_driver_name,
1608 .queuecommand = sbp2_scsi_queuecommand,
1609 .slave_alloc = sbp2_scsi_slave_alloc,
1610 .slave_configure = sbp2_scsi_slave_configure,
1611 .eh_abort_handler = sbp2_scsi_abort,
1612 .this_id = -1,
1613 .sg_tablesize = SG_ALL,
1614 .use_clustering = ENABLE_CLUSTERING,
1615 .cmd_per_lun = 1,
1616 .can_queue = 1,
1617 .sdev_attrs = sbp2_scsi_sysfs_attrs,
1618 };
1619
1620 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1621 MODULE_DESCRIPTION("SCSI over IEEE1394");
1622 MODULE_LICENSE("GPL");
1623 MODULE_DEVICE_TABLE(ieee1394, sbp2_id_table);
1624
1625 /* Provide a module alias so root-on-sbp2 initrds don't break. */
1626 #ifndef CONFIG_IEEE1394_SBP2_MODULE
1627 MODULE_ALIAS("sbp2");
1628 #endif
1629
1630 static int __init sbp2_init(void)
1631 {
1632 sbp2_wq = create_singlethread_workqueue(KBUILD_MODNAME);
1633 if (!sbp2_wq)
1634 return -ENOMEM;
1635
1636 return driver_register(&sbp2_driver.driver);
1637 }
1638
1639 static void __exit sbp2_cleanup(void)
1640 {
1641 driver_unregister(&sbp2_driver.driver);
1642 destroy_workqueue(sbp2_wq);
1643 }
1644
1645 module_init(sbp2_init);
1646 module_exit(sbp2_cleanup);