]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/firewire/fw-sbp2.c
Merge branch 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso/ext4
[mirror_ubuntu-artful-kernel.git] / drivers / firewire / fw-sbp2.c
1 /*
2 * SBP2 driver (SCSI over IEEE1394)
3 *
4 * Copyright (C) 2005-2007 Kristian Hoegsberg <krh@bitplanet.net>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21 /*
22 * The basic structure of this driver is based on the old storage driver,
23 * drivers/ieee1394/sbp2.c, originally written by
24 * James Goodwin <jamesg@filanet.com>
25 * with later contributions and ongoing maintenance from
26 * Ben Collins <bcollins@debian.org>,
27 * Stefan Richter <stefanr@s5r6.in-berlin.de>
28 * and many others.
29 */
30
31 #include <linux/blkdev.h>
32 #include <linux/bug.h>
33 #include <linux/delay.h>
34 #include <linux/device.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/kernel.h>
37 #include <linux/mod_devicetable.h>
38 #include <linux/module.h>
39 #include <linux/moduleparam.h>
40 #include <linux/scatterlist.h>
41 #include <linux/string.h>
42 #include <linux/stringify.h>
43 #include <linux/timer.h>
44 #include <linux/workqueue.h>
45 #include <asm/system.h>
46
47 #include <scsi/scsi.h>
48 #include <scsi/scsi_cmnd.h>
49 #include <scsi/scsi_device.h>
50 #include <scsi/scsi_host.h>
51
52 #include "fw-device.h"
53 #include "fw-topology.h"
54 #include "fw-transaction.h"
55
56 /*
57 * So far only bridges from Oxford Semiconductor are known to support
58 * concurrent logins. Depending on firmware, four or two concurrent logins
59 * are possible on OXFW911 and newer Oxsemi bridges.
60 *
61 * Concurrent logins are useful together with cluster filesystems.
62 */
63 static int sbp2_param_exclusive_login = 1;
64 module_param_named(exclusive_login, sbp2_param_exclusive_login, bool, 0644);
65 MODULE_PARM_DESC(exclusive_login, "Exclusive login to sbp2 device "
66 "(default = Y, use N for concurrent initiators)");
67
68 /*
69 * Flags for firmware oddities
70 *
71 * - 128kB max transfer
72 * Limit transfer size. Necessary for some old bridges.
73 *
74 * - 36 byte inquiry
75 * When scsi_mod probes the device, let the inquiry command look like that
76 * from MS Windows.
77 *
78 * - skip mode page 8
79 * Suppress sending of mode_sense for mode page 8 if the device pretends to
80 * support the SCSI Primary Block commands instead of Reduced Block Commands.
81 *
82 * - fix capacity
83 * Tell sd_mod to correct the last sector number reported by read_capacity.
84 * Avoids access beyond actual disk limits on devices with an off-by-one bug.
85 * Don't use this with devices which don't have this bug.
86 *
87 * - delay inquiry
88 * Wait extra SBP2_INQUIRY_DELAY seconds after login before SCSI inquiry.
89 *
90 * - power condition
91 * Set the power condition field in the START STOP UNIT commands sent by
92 * sd_mod on suspend, resume, and shutdown (if manage_start_stop is on).
93 * Some disks need this to spin down or to resume properly.
94 *
95 * - override internal blacklist
96 * Instead of adding to the built-in blacklist, use only the workarounds
97 * specified in the module load parameter.
98 * Useful if a blacklist entry interfered with a non-broken device.
99 */
100 #define SBP2_WORKAROUND_128K_MAX_TRANS 0x1
101 #define SBP2_WORKAROUND_INQUIRY_36 0x2
102 #define SBP2_WORKAROUND_MODE_SENSE_8 0x4
103 #define SBP2_WORKAROUND_FIX_CAPACITY 0x8
104 #define SBP2_WORKAROUND_DELAY_INQUIRY 0x10
105 #define SBP2_INQUIRY_DELAY 12
106 #define SBP2_WORKAROUND_POWER_CONDITION 0x20
107 #define SBP2_WORKAROUND_OVERRIDE 0x100
108
109 static int sbp2_param_workarounds;
110 module_param_named(workarounds, sbp2_param_workarounds, int, 0644);
111 MODULE_PARM_DESC(workarounds, "Work around device bugs (default = 0"
112 ", 128kB max transfer = " __stringify(SBP2_WORKAROUND_128K_MAX_TRANS)
113 ", 36 byte inquiry = " __stringify(SBP2_WORKAROUND_INQUIRY_36)
114 ", skip mode page 8 = " __stringify(SBP2_WORKAROUND_MODE_SENSE_8)
115 ", fix capacity = " __stringify(SBP2_WORKAROUND_FIX_CAPACITY)
116 ", delay inquiry = " __stringify(SBP2_WORKAROUND_DELAY_INQUIRY)
117 ", set power condition in start stop unit = "
118 __stringify(SBP2_WORKAROUND_POWER_CONDITION)
119 ", override internal blacklist = " __stringify(SBP2_WORKAROUND_OVERRIDE)
120 ", or a combination)");
121
122 /* I don't know why the SCSI stack doesn't define something like this... */
123 typedef void (*scsi_done_fn_t)(struct scsi_cmnd *);
124
125 static const char sbp2_driver_name[] = "sbp2";
126
127 /*
128 * We create one struct sbp2_logical_unit per SBP-2 Logical Unit Number Entry
129 * and one struct scsi_device per sbp2_logical_unit.
130 */
131 struct sbp2_logical_unit {
132 struct sbp2_target *tgt;
133 struct list_head link;
134 struct fw_address_handler address_handler;
135 struct list_head orb_list;
136
137 u64 command_block_agent_address;
138 u16 lun;
139 int login_id;
140
141 /*
142 * The generation is updated once we've logged in or reconnected
143 * to the logical unit. Thus, I/O to the device will automatically
144 * fail and get retried if it happens in a window where the device
145 * is not ready, e.g. after a bus reset but before we reconnect.
146 */
147 int generation;
148 int retries;
149 struct delayed_work work;
150 bool has_sdev;
151 bool blocked;
152 };
153
154 /*
155 * We create one struct sbp2_target per IEEE 1212 Unit Directory
156 * and one struct Scsi_Host per sbp2_target.
157 */
158 struct sbp2_target {
159 struct kref kref;
160 struct fw_unit *unit;
161 const char *bus_id;
162 struct list_head lu_list;
163
164 u64 management_agent_address;
165 u64 guid;
166 int directory_id;
167 int node_id;
168 int address_high;
169 unsigned int workarounds;
170 unsigned int mgt_orb_timeout;
171
172 int dont_block; /* counter for each logical unit */
173 int blocked; /* ditto */
174 };
175
176 /* Impossible login_id, to detect logout attempt before successful login */
177 #define INVALID_LOGIN_ID 0x10000
178
179 /*
180 * Per section 7.4.8 of the SBP-2 spec, a mgt_ORB_timeout value can be
181 * provided in the config rom. Most devices do provide a value, which
182 * we'll use for login management orbs, but with some sane limits.
183 */
184 #define SBP2_MIN_LOGIN_ORB_TIMEOUT 5000U /* Timeout in ms */
185 #define SBP2_MAX_LOGIN_ORB_TIMEOUT 40000U /* Timeout in ms */
186 #define SBP2_ORB_TIMEOUT 2000U /* Timeout in ms */
187 #define SBP2_ORB_NULL 0x80000000
188 #define SBP2_RETRY_LIMIT 0xf /* 15 retries */
189 #define SBP2_CYCLE_LIMIT (0xc8 << 12) /* 200 125us cycles */
190
191 /*
192 * The default maximum s/g segment size of a FireWire controller is
193 * usually 0x10000, but SBP-2 only allows 0xffff. Since buffers have to
194 * be quadlet-aligned, we set the length limit to 0xffff & ~3.
195 */
196 #define SBP2_MAX_SEG_SIZE 0xfffc
197
198 /* Unit directory keys */
199 #define SBP2_CSR_UNIT_CHARACTERISTICS 0x3a
200 #define SBP2_CSR_FIRMWARE_REVISION 0x3c
201 #define SBP2_CSR_LOGICAL_UNIT_NUMBER 0x14
202 #define SBP2_CSR_LOGICAL_UNIT_DIRECTORY 0xd4
203
204 /* Management orb opcodes */
205 #define SBP2_LOGIN_REQUEST 0x0
206 #define SBP2_QUERY_LOGINS_REQUEST 0x1
207 #define SBP2_RECONNECT_REQUEST 0x3
208 #define SBP2_SET_PASSWORD_REQUEST 0x4
209 #define SBP2_LOGOUT_REQUEST 0x7
210 #define SBP2_ABORT_TASK_REQUEST 0xb
211 #define SBP2_ABORT_TASK_SET 0xc
212 #define SBP2_LOGICAL_UNIT_RESET 0xe
213 #define SBP2_TARGET_RESET_REQUEST 0xf
214
215 /* Offsets for command block agent registers */
216 #define SBP2_AGENT_STATE 0x00
217 #define SBP2_AGENT_RESET 0x04
218 #define SBP2_ORB_POINTER 0x08
219 #define SBP2_DOORBELL 0x10
220 #define SBP2_UNSOLICITED_STATUS_ENABLE 0x14
221
222 /* Status write response codes */
223 #define SBP2_STATUS_REQUEST_COMPLETE 0x0
224 #define SBP2_STATUS_TRANSPORT_FAILURE 0x1
225 #define SBP2_STATUS_ILLEGAL_REQUEST 0x2
226 #define SBP2_STATUS_VENDOR_DEPENDENT 0x3
227
228 #define STATUS_GET_ORB_HIGH(v) ((v).status & 0xffff)
229 #define STATUS_GET_SBP_STATUS(v) (((v).status >> 16) & 0xff)
230 #define STATUS_GET_LEN(v) (((v).status >> 24) & 0x07)
231 #define STATUS_GET_DEAD(v) (((v).status >> 27) & 0x01)
232 #define STATUS_GET_RESPONSE(v) (((v).status >> 28) & 0x03)
233 #define STATUS_GET_SOURCE(v) (((v).status >> 30) & 0x03)
234 #define STATUS_GET_ORB_LOW(v) ((v).orb_low)
235 #define STATUS_GET_DATA(v) ((v).data)
236
237 struct sbp2_status {
238 u32 status;
239 u32 orb_low;
240 u8 data[24];
241 };
242
243 struct sbp2_pointer {
244 __be32 high;
245 __be32 low;
246 };
247
248 struct sbp2_orb {
249 struct fw_transaction t;
250 struct kref kref;
251 dma_addr_t request_bus;
252 int rcode;
253 struct sbp2_pointer pointer;
254 void (*callback)(struct sbp2_orb * orb, struct sbp2_status * status);
255 struct list_head link;
256 };
257
258 #define MANAGEMENT_ORB_LUN(v) ((v))
259 #define MANAGEMENT_ORB_FUNCTION(v) ((v) << 16)
260 #define MANAGEMENT_ORB_RECONNECT(v) ((v) << 20)
261 #define MANAGEMENT_ORB_EXCLUSIVE(v) ((v) ? 1 << 28 : 0)
262 #define MANAGEMENT_ORB_REQUEST_FORMAT(v) ((v) << 29)
263 #define MANAGEMENT_ORB_NOTIFY ((1) << 31)
264
265 #define MANAGEMENT_ORB_RESPONSE_LENGTH(v) ((v))
266 #define MANAGEMENT_ORB_PASSWORD_LENGTH(v) ((v) << 16)
267
268 struct sbp2_management_orb {
269 struct sbp2_orb base;
270 struct {
271 struct sbp2_pointer password;
272 struct sbp2_pointer response;
273 __be32 misc;
274 __be32 length;
275 struct sbp2_pointer status_fifo;
276 } request;
277 __be32 response[4];
278 dma_addr_t response_bus;
279 struct completion done;
280 struct sbp2_status status;
281 };
282
283 struct sbp2_login_response {
284 __be32 misc;
285 struct sbp2_pointer command_block_agent;
286 __be32 reconnect_hold;
287 };
288 #define COMMAND_ORB_DATA_SIZE(v) ((v))
289 #define COMMAND_ORB_PAGE_SIZE(v) ((v) << 16)
290 #define COMMAND_ORB_PAGE_TABLE_PRESENT ((1) << 19)
291 #define COMMAND_ORB_MAX_PAYLOAD(v) ((v) << 20)
292 #define COMMAND_ORB_SPEED(v) ((v) << 24)
293 #define COMMAND_ORB_DIRECTION ((1) << 27)
294 #define COMMAND_ORB_REQUEST_FORMAT(v) ((v) << 29)
295 #define COMMAND_ORB_NOTIFY ((1) << 31)
296
297 struct sbp2_command_orb {
298 struct sbp2_orb base;
299 struct {
300 struct sbp2_pointer next;
301 struct sbp2_pointer data_descriptor;
302 __be32 misc;
303 u8 command_block[12];
304 } request;
305 struct scsi_cmnd *cmd;
306 scsi_done_fn_t done;
307 struct sbp2_logical_unit *lu;
308
309 struct sbp2_pointer page_table[SG_ALL] __attribute__((aligned(8)));
310 dma_addr_t page_table_bus;
311 };
312
313 /*
314 * List of devices with known bugs.
315 *
316 * The firmware_revision field, masked with 0xffff00, is the best
317 * indicator for the type of bridge chip of a device. It yields a few
318 * false positives but this did not break correctly behaving devices
319 * so far. We use ~0 as a wildcard, since the 24 bit values we get
320 * from the config rom can never match that.
321 */
322 static const struct {
323 u32 firmware_revision;
324 u32 model;
325 unsigned int workarounds;
326 } sbp2_workarounds_table[] = {
327 /* DViCO Momobay CX-1 with TSB42AA9 bridge */ {
328 .firmware_revision = 0x002800,
329 .model = 0x001010,
330 .workarounds = SBP2_WORKAROUND_INQUIRY_36 |
331 SBP2_WORKAROUND_MODE_SENSE_8 |
332 SBP2_WORKAROUND_POWER_CONDITION,
333 },
334 /* DViCO Momobay FX-3A with TSB42AA9A bridge */ {
335 .firmware_revision = 0x002800,
336 .model = 0x000000,
337 .workarounds = SBP2_WORKAROUND_DELAY_INQUIRY |
338 SBP2_WORKAROUND_POWER_CONDITION,
339 },
340 /* Initio bridges, actually only needed for some older ones */ {
341 .firmware_revision = 0x000200,
342 .model = ~0,
343 .workarounds = SBP2_WORKAROUND_INQUIRY_36,
344 },
345 /* PL-3507 bridge with Prolific firmware */ {
346 .firmware_revision = 0x012800,
347 .model = ~0,
348 .workarounds = SBP2_WORKAROUND_POWER_CONDITION,
349 },
350 /* Symbios bridge */ {
351 .firmware_revision = 0xa0b800,
352 .model = ~0,
353 .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS,
354 },
355 /* Datafab MD2-FW2 with Symbios/LSILogic SYM13FW500 bridge */ {
356 .firmware_revision = 0x002600,
357 .model = ~0,
358 .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS,
359 },
360
361 /*
362 * There are iPods (2nd gen, 3rd gen) with model_id == 0, but
363 * these iPods do not feature the read_capacity bug according
364 * to one report. Read_capacity behaviour as well as model_id
365 * could change due to Apple-supplied firmware updates though.
366 */
367
368 /* iPod 4th generation. */ {
369 .firmware_revision = 0x0a2700,
370 .model = 0x000021,
371 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
372 },
373 /* iPod mini */ {
374 .firmware_revision = 0x0a2700,
375 .model = 0x000022,
376 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
377 },
378 /* iPod mini */ {
379 .firmware_revision = 0x0a2700,
380 .model = 0x000023,
381 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
382 },
383 /* iPod Photo */ {
384 .firmware_revision = 0x0a2700,
385 .model = 0x00007e,
386 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
387 }
388 };
389
390 static void
391 free_orb(struct kref *kref)
392 {
393 struct sbp2_orb *orb = container_of(kref, struct sbp2_orb, kref);
394
395 kfree(orb);
396 }
397
398 static void
399 sbp2_status_write(struct fw_card *card, struct fw_request *request,
400 int tcode, int destination, int source,
401 int generation, int speed,
402 unsigned long long offset,
403 void *payload, size_t length, void *callback_data)
404 {
405 struct sbp2_logical_unit *lu = callback_data;
406 struct sbp2_orb *orb;
407 struct sbp2_status status;
408 size_t header_size;
409 unsigned long flags;
410
411 if (tcode != TCODE_WRITE_BLOCK_REQUEST ||
412 length == 0 || length > sizeof(status)) {
413 fw_send_response(card, request, RCODE_TYPE_ERROR);
414 return;
415 }
416
417 header_size = min(length, 2 * sizeof(u32));
418 fw_memcpy_from_be32(&status, payload, header_size);
419 if (length > header_size)
420 memcpy(status.data, payload + 8, length - header_size);
421 if (STATUS_GET_SOURCE(status) == 2 || STATUS_GET_SOURCE(status) == 3) {
422 fw_notify("non-orb related status write, not handled\n");
423 fw_send_response(card, request, RCODE_COMPLETE);
424 return;
425 }
426
427 /* Lookup the orb corresponding to this status write. */
428 spin_lock_irqsave(&card->lock, flags);
429 list_for_each_entry(orb, &lu->orb_list, link) {
430 if (STATUS_GET_ORB_HIGH(status) == 0 &&
431 STATUS_GET_ORB_LOW(status) == orb->request_bus) {
432 orb->rcode = RCODE_COMPLETE;
433 list_del(&orb->link);
434 break;
435 }
436 }
437 spin_unlock_irqrestore(&card->lock, flags);
438
439 if (&orb->link != &lu->orb_list)
440 orb->callback(orb, &status);
441 else
442 fw_error("status write for unknown orb\n");
443
444 kref_put(&orb->kref, free_orb);
445
446 fw_send_response(card, request, RCODE_COMPLETE);
447 }
448
449 static void
450 complete_transaction(struct fw_card *card, int rcode,
451 void *payload, size_t length, void *data)
452 {
453 struct sbp2_orb *orb = data;
454 unsigned long flags;
455
456 /*
457 * This is a little tricky. We can get the status write for
458 * the orb before we get this callback. The status write
459 * handler above will assume the orb pointer transaction was
460 * successful and set the rcode to RCODE_COMPLETE for the orb.
461 * So this callback only sets the rcode if it hasn't already
462 * been set and only does the cleanup if the transaction
463 * failed and we didn't already get a status write.
464 */
465 spin_lock_irqsave(&card->lock, flags);
466
467 if (orb->rcode == -1)
468 orb->rcode = rcode;
469 if (orb->rcode != RCODE_COMPLETE) {
470 list_del(&orb->link);
471 spin_unlock_irqrestore(&card->lock, flags);
472 orb->callback(orb, NULL);
473 } else {
474 spin_unlock_irqrestore(&card->lock, flags);
475 }
476
477 kref_put(&orb->kref, free_orb);
478 }
479
480 static void
481 sbp2_send_orb(struct sbp2_orb *orb, struct sbp2_logical_unit *lu,
482 int node_id, int generation, u64 offset)
483 {
484 struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
485 unsigned long flags;
486
487 orb->pointer.high = 0;
488 orb->pointer.low = cpu_to_be32(orb->request_bus);
489
490 spin_lock_irqsave(&device->card->lock, flags);
491 list_add_tail(&orb->link, &lu->orb_list);
492 spin_unlock_irqrestore(&device->card->lock, flags);
493
494 /* Take a ref for the orb list and for the transaction callback. */
495 kref_get(&orb->kref);
496 kref_get(&orb->kref);
497
498 fw_send_request(device->card, &orb->t, TCODE_WRITE_BLOCK_REQUEST,
499 node_id, generation, device->max_speed, offset,
500 &orb->pointer, sizeof(orb->pointer),
501 complete_transaction, orb);
502 }
503
504 static int sbp2_cancel_orbs(struct sbp2_logical_unit *lu)
505 {
506 struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
507 struct sbp2_orb *orb, *next;
508 struct list_head list;
509 unsigned long flags;
510 int retval = -ENOENT;
511
512 INIT_LIST_HEAD(&list);
513 spin_lock_irqsave(&device->card->lock, flags);
514 list_splice_init(&lu->orb_list, &list);
515 spin_unlock_irqrestore(&device->card->lock, flags);
516
517 list_for_each_entry_safe(orb, next, &list, link) {
518 retval = 0;
519 if (fw_cancel_transaction(device->card, &orb->t) == 0)
520 continue;
521
522 orb->rcode = RCODE_CANCELLED;
523 orb->callback(orb, NULL);
524 }
525
526 return retval;
527 }
528
529 static void
530 complete_management_orb(struct sbp2_orb *base_orb, struct sbp2_status *status)
531 {
532 struct sbp2_management_orb *orb =
533 container_of(base_orb, struct sbp2_management_orb, base);
534
535 if (status)
536 memcpy(&orb->status, status, sizeof(*status));
537 complete(&orb->done);
538 }
539
540 static int
541 sbp2_send_management_orb(struct sbp2_logical_unit *lu, int node_id,
542 int generation, int function, int lun_or_login_id,
543 void *response)
544 {
545 struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
546 struct sbp2_management_orb *orb;
547 unsigned int timeout;
548 int retval = -ENOMEM;
549
550 if (function == SBP2_LOGOUT_REQUEST && fw_device_is_shutdown(device))
551 return 0;
552
553 orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
554 if (orb == NULL)
555 return -ENOMEM;
556
557 kref_init(&orb->base.kref);
558 orb->response_bus =
559 dma_map_single(device->card->device, &orb->response,
560 sizeof(orb->response), DMA_FROM_DEVICE);
561 if (dma_mapping_error(device->card->device, orb->response_bus))
562 goto fail_mapping_response;
563
564 orb->request.response.high = 0;
565 orb->request.response.low = cpu_to_be32(orb->response_bus);
566
567 orb->request.misc = cpu_to_be32(
568 MANAGEMENT_ORB_NOTIFY |
569 MANAGEMENT_ORB_FUNCTION(function) |
570 MANAGEMENT_ORB_LUN(lun_or_login_id));
571 orb->request.length = cpu_to_be32(
572 MANAGEMENT_ORB_RESPONSE_LENGTH(sizeof(orb->response)));
573
574 orb->request.status_fifo.high =
575 cpu_to_be32(lu->address_handler.offset >> 32);
576 orb->request.status_fifo.low =
577 cpu_to_be32(lu->address_handler.offset);
578
579 if (function == SBP2_LOGIN_REQUEST) {
580 /* Ask for 2^2 == 4 seconds reconnect grace period */
581 orb->request.misc |= cpu_to_be32(
582 MANAGEMENT_ORB_RECONNECT(2) |
583 MANAGEMENT_ORB_EXCLUSIVE(sbp2_param_exclusive_login));
584 timeout = lu->tgt->mgt_orb_timeout;
585 } else {
586 timeout = SBP2_ORB_TIMEOUT;
587 }
588
589 init_completion(&orb->done);
590 orb->base.callback = complete_management_orb;
591
592 orb->base.request_bus =
593 dma_map_single(device->card->device, &orb->request,
594 sizeof(orb->request), DMA_TO_DEVICE);
595 if (dma_mapping_error(device->card->device, orb->base.request_bus))
596 goto fail_mapping_request;
597
598 sbp2_send_orb(&orb->base, lu, node_id, generation,
599 lu->tgt->management_agent_address);
600
601 wait_for_completion_timeout(&orb->done, msecs_to_jiffies(timeout));
602
603 retval = -EIO;
604 if (sbp2_cancel_orbs(lu) == 0) {
605 fw_error("%s: orb reply timed out, rcode=0x%02x\n",
606 lu->tgt->bus_id, orb->base.rcode);
607 goto out;
608 }
609
610 if (orb->base.rcode != RCODE_COMPLETE) {
611 fw_error("%s: management write failed, rcode 0x%02x\n",
612 lu->tgt->bus_id, orb->base.rcode);
613 goto out;
614 }
615
616 if (STATUS_GET_RESPONSE(orb->status) != 0 ||
617 STATUS_GET_SBP_STATUS(orb->status) != 0) {
618 fw_error("%s: error status: %d:%d\n", lu->tgt->bus_id,
619 STATUS_GET_RESPONSE(orb->status),
620 STATUS_GET_SBP_STATUS(orb->status));
621 goto out;
622 }
623
624 retval = 0;
625 out:
626 dma_unmap_single(device->card->device, orb->base.request_bus,
627 sizeof(orb->request), DMA_TO_DEVICE);
628 fail_mapping_request:
629 dma_unmap_single(device->card->device, orb->response_bus,
630 sizeof(orb->response), DMA_FROM_DEVICE);
631 fail_mapping_response:
632 if (response)
633 memcpy(response, orb->response, sizeof(orb->response));
634 kref_put(&orb->base.kref, free_orb);
635
636 return retval;
637 }
638
639 static void sbp2_agent_reset(struct sbp2_logical_unit *lu)
640 {
641 struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
642 __be32 d = 0;
643
644 fw_run_transaction(device->card, TCODE_WRITE_QUADLET_REQUEST,
645 lu->tgt->node_id, lu->generation, device->max_speed,
646 lu->command_block_agent_address + SBP2_AGENT_RESET,
647 &d, sizeof(d));
648 }
649
650 static void
651 complete_agent_reset_write_no_wait(struct fw_card *card, int rcode,
652 void *payload, size_t length, void *data)
653 {
654 kfree(data);
655 }
656
657 static void sbp2_agent_reset_no_wait(struct sbp2_logical_unit *lu)
658 {
659 struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
660 struct fw_transaction *t;
661 static __be32 d;
662
663 t = kmalloc(sizeof(*t), GFP_ATOMIC);
664 if (t == NULL)
665 return;
666
667 fw_send_request(device->card, t, TCODE_WRITE_QUADLET_REQUEST,
668 lu->tgt->node_id, lu->generation, device->max_speed,
669 lu->command_block_agent_address + SBP2_AGENT_RESET,
670 &d, sizeof(d), complete_agent_reset_write_no_wait, t);
671 }
672
673 static inline void sbp2_allow_block(struct sbp2_logical_unit *lu)
674 {
675 /*
676 * We may access dont_block without taking card->lock here:
677 * All callers of sbp2_allow_block() and all callers of sbp2_unblock()
678 * are currently serialized against each other.
679 * And a wrong result in sbp2_conditionally_block()'s access of
680 * dont_block is rather harmless, it simply misses its first chance.
681 */
682 --lu->tgt->dont_block;
683 }
684
685 /*
686 * Blocks lu->tgt if all of the following conditions are met:
687 * - Login, INQUIRY, and high-level SCSI setup of all of the target's
688 * logical units have been finished (indicated by dont_block == 0).
689 * - lu->generation is stale.
690 *
691 * Note, scsi_block_requests() must be called while holding card->lock,
692 * otherwise it might foil sbp2_[conditionally_]unblock()'s attempt to
693 * unblock the target.
694 */
695 static void sbp2_conditionally_block(struct sbp2_logical_unit *lu)
696 {
697 struct sbp2_target *tgt = lu->tgt;
698 struct fw_card *card = fw_device(tgt->unit->device.parent)->card;
699 struct Scsi_Host *shost =
700 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
701 unsigned long flags;
702
703 spin_lock_irqsave(&card->lock, flags);
704 if (!tgt->dont_block && !lu->blocked &&
705 lu->generation != card->generation) {
706 lu->blocked = true;
707 if (++tgt->blocked == 1)
708 scsi_block_requests(shost);
709 }
710 spin_unlock_irqrestore(&card->lock, flags);
711 }
712
713 /*
714 * Unblocks lu->tgt as soon as all its logical units can be unblocked.
715 * Note, it is harmless to run scsi_unblock_requests() outside the
716 * card->lock protected section. On the other hand, running it inside
717 * the section might clash with shost->host_lock.
718 */
719 static void sbp2_conditionally_unblock(struct sbp2_logical_unit *lu)
720 {
721 struct sbp2_target *tgt = lu->tgt;
722 struct fw_card *card = fw_device(tgt->unit->device.parent)->card;
723 struct Scsi_Host *shost =
724 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
725 unsigned long flags;
726 bool unblock = false;
727
728 spin_lock_irqsave(&card->lock, flags);
729 if (lu->blocked && lu->generation == card->generation) {
730 lu->blocked = false;
731 unblock = --tgt->blocked == 0;
732 }
733 spin_unlock_irqrestore(&card->lock, flags);
734
735 if (unblock)
736 scsi_unblock_requests(shost);
737 }
738
739 /*
740 * Prevents future blocking of tgt and unblocks it.
741 * Note, it is harmless to run scsi_unblock_requests() outside the
742 * card->lock protected section. On the other hand, running it inside
743 * the section might clash with shost->host_lock.
744 */
745 static void sbp2_unblock(struct sbp2_target *tgt)
746 {
747 struct fw_card *card = fw_device(tgt->unit->device.parent)->card;
748 struct Scsi_Host *shost =
749 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
750 unsigned long flags;
751
752 spin_lock_irqsave(&card->lock, flags);
753 ++tgt->dont_block;
754 spin_unlock_irqrestore(&card->lock, flags);
755
756 scsi_unblock_requests(shost);
757 }
758
759 static int sbp2_lun2int(u16 lun)
760 {
761 struct scsi_lun eight_bytes_lun;
762
763 memset(&eight_bytes_lun, 0, sizeof(eight_bytes_lun));
764 eight_bytes_lun.scsi_lun[0] = (lun >> 8) & 0xff;
765 eight_bytes_lun.scsi_lun[1] = lun & 0xff;
766
767 return scsilun_to_int(&eight_bytes_lun);
768 }
769
770 static void sbp2_release_target(struct kref *kref)
771 {
772 struct sbp2_target *tgt = container_of(kref, struct sbp2_target, kref);
773 struct sbp2_logical_unit *lu, *next;
774 struct Scsi_Host *shost =
775 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
776 struct scsi_device *sdev;
777 struct fw_device *device = fw_device(tgt->unit->device.parent);
778
779 /* prevent deadlocks */
780 sbp2_unblock(tgt);
781
782 list_for_each_entry_safe(lu, next, &tgt->lu_list, link) {
783 sdev = scsi_device_lookup(shost, 0, 0, sbp2_lun2int(lu->lun));
784 if (sdev) {
785 scsi_remove_device(sdev);
786 scsi_device_put(sdev);
787 }
788 if (lu->login_id != INVALID_LOGIN_ID) {
789 int generation, node_id;
790 /*
791 * tgt->node_id may be obsolete here if we failed
792 * during initial login or after a bus reset where
793 * the topology changed.
794 */
795 generation = device->generation;
796 smp_rmb(); /* node_id vs. generation */
797 node_id = device->node_id;
798 sbp2_send_management_orb(lu, node_id, generation,
799 SBP2_LOGOUT_REQUEST,
800 lu->login_id, NULL);
801 }
802 fw_core_remove_address_handler(&lu->address_handler);
803 list_del(&lu->link);
804 kfree(lu);
805 }
806 scsi_remove_host(shost);
807 fw_notify("released %s, target %d:0:0\n", tgt->bus_id, shost->host_no);
808
809 fw_unit_put(tgt->unit);
810 scsi_host_put(shost);
811 fw_device_put(device);
812 }
813
814 static struct workqueue_struct *sbp2_wq;
815
816 static void sbp2_target_put(struct sbp2_target *tgt)
817 {
818 kref_put(&tgt->kref, sbp2_release_target);
819 }
820
821 /*
822 * Always get the target's kref when scheduling work on one its units.
823 * Each workqueue job is responsible to call sbp2_target_put() upon return.
824 */
825 static void sbp2_queue_work(struct sbp2_logical_unit *lu, unsigned long delay)
826 {
827 kref_get(&lu->tgt->kref);
828 if (!queue_delayed_work(sbp2_wq, &lu->work, delay))
829 sbp2_target_put(lu->tgt);
830 }
831
832 /*
833 * Write retransmit retry values into the BUSY_TIMEOUT register.
834 * - The single-phase retry protocol is supported by all SBP-2 devices, but the
835 * default retry_limit value is 0 (i.e. never retry transmission). We write a
836 * saner value after logging into the device.
837 * - The dual-phase retry protocol is optional to implement, and if not
838 * supported, writes to the dual-phase portion of the register will be
839 * ignored. We try to write the original 1394-1995 default here.
840 * - In the case of devices that are also SBP-3-compliant, all writes are
841 * ignored, as the register is read-only, but contains single-phase retry of
842 * 15, which is what we're trying to set for all SBP-2 device anyway, so this
843 * write attempt is safe and yields more consistent behavior for all devices.
844 *
845 * See section 8.3.2.3.5 of the 1394-1995 spec, section 6.2 of the SBP-2 spec,
846 * and section 6.4 of the SBP-3 spec for further details.
847 */
848 static void sbp2_set_busy_timeout(struct sbp2_logical_unit *lu)
849 {
850 struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
851 __be32 d = cpu_to_be32(SBP2_CYCLE_LIMIT | SBP2_RETRY_LIMIT);
852
853 fw_run_transaction(device->card, TCODE_WRITE_QUADLET_REQUEST,
854 lu->tgt->node_id, lu->generation, device->max_speed,
855 CSR_REGISTER_BASE + CSR_BUSY_TIMEOUT,
856 &d, sizeof(d));
857 }
858
859 static void sbp2_reconnect(struct work_struct *work);
860
861 static void sbp2_login(struct work_struct *work)
862 {
863 struct sbp2_logical_unit *lu =
864 container_of(work, struct sbp2_logical_unit, work.work);
865 struct sbp2_target *tgt = lu->tgt;
866 struct fw_device *device = fw_device(tgt->unit->device.parent);
867 struct Scsi_Host *shost;
868 struct scsi_device *sdev;
869 struct sbp2_login_response response;
870 int generation, node_id, local_node_id;
871
872 if (fw_device_is_shutdown(device))
873 goto out;
874
875 generation = device->generation;
876 smp_rmb(); /* node IDs must not be older than generation */
877 node_id = device->node_id;
878 local_node_id = device->card->node_id;
879
880 /* If this is a re-login attempt, log out, or we might be rejected. */
881 if (lu->has_sdev)
882 sbp2_send_management_orb(lu, device->node_id, generation,
883 SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
884
885 if (sbp2_send_management_orb(lu, node_id, generation,
886 SBP2_LOGIN_REQUEST, lu->lun, &response) < 0) {
887 if (lu->retries++ < 5) {
888 sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
889 } else {
890 fw_error("%s: failed to login to LUN %04x\n",
891 tgt->bus_id, lu->lun);
892 /* Let any waiting I/O fail from now on. */
893 sbp2_unblock(lu->tgt);
894 }
895 goto out;
896 }
897
898 tgt->node_id = node_id;
899 tgt->address_high = local_node_id << 16;
900 smp_wmb(); /* node IDs must not be older than generation */
901 lu->generation = generation;
902
903 lu->command_block_agent_address =
904 ((u64)(be32_to_cpu(response.command_block_agent.high) & 0xffff)
905 << 32) | be32_to_cpu(response.command_block_agent.low);
906 lu->login_id = be32_to_cpu(response.misc) & 0xffff;
907
908 fw_notify("%s: logged in to LUN %04x (%d retries)\n",
909 tgt->bus_id, lu->lun, lu->retries);
910
911 /* set appropriate retry limit(s) in BUSY_TIMEOUT register */
912 sbp2_set_busy_timeout(lu);
913
914 PREPARE_DELAYED_WORK(&lu->work, sbp2_reconnect);
915 sbp2_agent_reset(lu);
916
917 /* This was a re-login. */
918 if (lu->has_sdev) {
919 sbp2_cancel_orbs(lu);
920 sbp2_conditionally_unblock(lu);
921 goto out;
922 }
923
924 if (lu->tgt->workarounds & SBP2_WORKAROUND_DELAY_INQUIRY)
925 ssleep(SBP2_INQUIRY_DELAY);
926
927 shost = container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
928 sdev = __scsi_add_device(shost, 0, 0, sbp2_lun2int(lu->lun), lu);
929 /*
930 * FIXME: We are unable to perform reconnects while in sbp2_login().
931 * Therefore __scsi_add_device() will get into trouble if a bus reset
932 * happens in parallel. It will either fail or leave us with an
933 * unusable sdev. As a workaround we check for this and retry the
934 * whole login and SCSI probing.
935 */
936
937 /* Reported error during __scsi_add_device() */
938 if (IS_ERR(sdev))
939 goto out_logout_login;
940
941 /* Unreported error during __scsi_add_device() */
942 smp_rmb(); /* get current card generation */
943 if (generation != device->card->generation) {
944 scsi_remove_device(sdev);
945 scsi_device_put(sdev);
946 goto out_logout_login;
947 }
948
949 /* No error during __scsi_add_device() */
950 lu->has_sdev = true;
951 scsi_device_put(sdev);
952 sbp2_allow_block(lu);
953 goto out;
954
955 out_logout_login:
956 smp_rmb(); /* generation may have changed */
957 generation = device->generation;
958 smp_rmb(); /* node_id must not be older than generation */
959
960 sbp2_send_management_orb(lu, device->node_id, generation,
961 SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
962 /*
963 * If a bus reset happened, sbp2_update will have requeued
964 * lu->work already. Reset the work from reconnect to login.
965 */
966 PREPARE_DELAYED_WORK(&lu->work, sbp2_login);
967 out:
968 sbp2_target_put(tgt);
969 }
970
971 static int sbp2_add_logical_unit(struct sbp2_target *tgt, int lun_entry)
972 {
973 struct sbp2_logical_unit *lu;
974
975 lu = kmalloc(sizeof(*lu), GFP_KERNEL);
976 if (!lu)
977 return -ENOMEM;
978
979 lu->address_handler.length = 0x100;
980 lu->address_handler.address_callback = sbp2_status_write;
981 lu->address_handler.callback_data = lu;
982
983 if (fw_core_add_address_handler(&lu->address_handler,
984 &fw_high_memory_region) < 0) {
985 kfree(lu);
986 return -ENOMEM;
987 }
988
989 lu->tgt = tgt;
990 lu->lun = lun_entry & 0xffff;
991 lu->login_id = INVALID_LOGIN_ID;
992 lu->retries = 0;
993 lu->has_sdev = false;
994 lu->blocked = false;
995 ++tgt->dont_block;
996 INIT_LIST_HEAD(&lu->orb_list);
997 INIT_DELAYED_WORK(&lu->work, sbp2_login);
998
999 list_add_tail(&lu->link, &tgt->lu_list);
1000 return 0;
1001 }
1002
1003 static int sbp2_scan_logical_unit_dir(struct sbp2_target *tgt, u32 *directory)
1004 {
1005 struct fw_csr_iterator ci;
1006 int key, value;
1007
1008 fw_csr_iterator_init(&ci, directory);
1009 while (fw_csr_iterator_next(&ci, &key, &value))
1010 if (key == SBP2_CSR_LOGICAL_UNIT_NUMBER &&
1011 sbp2_add_logical_unit(tgt, value) < 0)
1012 return -ENOMEM;
1013 return 0;
1014 }
1015
1016 static int sbp2_scan_unit_dir(struct sbp2_target *tgt, u32 *directory,
1017 u32 *model, u32 *firmware_revision)
1018 {
1019 struct fw_csr_iterator ci;
1020 int key, value;
1021 unsigned int timeout;
1022
1023 fw_csr_iterator_init(&ci, directory);
1024 while (fw_csr_iterator_next(&ci, &key, &value)) {
1025 switch (key) {
1026
1027 case CSR_DEPENDENT_INFO | CSR_OFFSET:
1028 tgt->management_agent_address =
1029 CSR_REGISTER_BASE + 4 * value;
1030 break;
1031
1032 case CSR_DIRECTORY_ID:
1033 tgt->directory_id = value;
1034 break;
1035
1036 case CSR_MODEL:
1037 *model = value;
1038 break;
1039
1040 case SBP2_CSR_FIRMWARE_REVISION:
1041 *firmware_revision = value;
1042 break;
1043
1044 case SBP2_CSR_UNIT_CHARACTERISTICS:
1045 /* the timeout value is stored in 500ms units */
1046 timeout = ((unsigned int) value >> 8 & 0xff) * 500;
1047 timeout = max(timeout, SBP2_MIN_LOGIN_ORB_TIMEOUT);
1048 tgt->mgt_orb_timeout =
1049 min(timeout, SBP2_MAX_LOGIN_ORB_TIMEOUT);
1050
1051 if (timeout > tgt->mgt_orb_timeout)
1052 fw_notify("%s: config rom contains %ds "
1053 "management ORB timeout, limiting "
1054 "to %ds\n", tgt->bus_id,
1055 timeout / 1000,
1056 tgt->mgt_orb_timeout / 1000);
1057 break;
1058
1059 case SBP2_CSR_LOGICAL_UNIT_NUMBER:
1060 if (sbp2_add_logical_unit(tgt, value) < 0)
1061 return -ENOMEM;
1062 break;
1063
1064 case SBP2_CSR_LOGICAL_UNIT_DIRECTORY:
1065 /* Adjust for the increment in the iterator */
1066 if (sbp2_scan_logical_unit_dir(tgt, ci.p - 1 + value) < 0)
1067 return -ENOMEM;
1068 break;
1069 }
1070 }
1071 return 0;
1072 }
1073
1074 static void sbp2_init_workarounds(struct sbp2_target *tgt, u32 model,
1075 u32 firmware_revision)
1076 {
1077 int i;
1078 unsigned int w = sbp2_param_workarounds;
1079
1080 if (w)
1081 fw_notify("Please notify linux1394-devel@lists.sourceforge.net "
1082 "if you need the workarounds parameter for %s\n",
1083 tgt->bus_id);
1084
1085 if (w & SBP2_WORKAROUND_OVERRIDE)
1086 goto out;
1087
1088 for (i = 0; i < ARRAY_SIZE(sbp2_workarounds_table); i++) {
1089
1090 if (sbp2_workarounds_table[i].firmware_revision !=
1091 (firmware_revision & 0xffffff00))
1092 continue;
1093
1094 if (sbp2_workarounds_table[i].model != model &&
1095 sbp2_workarounds_table[i].model != ~0)
1096 continue;
1097
1098 w |= sbp2_workarounds_table[i].workarounds;
1099 break;
1100 }
1101 out:
1102 if (w)
1103 fw_notify("Workarounds for %s: 0x%x "
1104 "(firmware_revision 0x%06x, model_id 0x%06x)\n",
1105 tgt->bus_id, w, firmware_revision, model);
1106 tgt->workarounds = w;
1107 }
1108
1109 static struct scsi_host_template scsi_driver_template;
1110
1111 static int sbp2_probe(struct device *dev)
1112 {
1113 struct fw_unit *unit = fw_unit(dev);
1114 struct fw_device *device = fw_device(unit->device.parent);
1115 struct sbp2_target *tgt;
1116 struct sbp2_logical_unit *lu;
1117 struct Scsi_Host *shost;
1118 u32 model, firmware_revision;
1119
1120 if (dma_get_max_seg_size(device->card->device) > SBP2_MAX_SEG_SIZE)
1121 BUG_ON(dma_set_max_seg_size(device->card->device,
1122 SBP2_MAX_SEG_SIZE));
1123
1124 shost = scsi_host_alloc(&scsi_driver_template, sizeof(*tgt));
1125 if (shost == NULL)
1126 return -ENOMEM;
1127
1128 tgt = (struct sbp2_target *)shost->hostdata;
1129 unit->device.driver_data = tgt;
1130 tgt->unit = unit;
1131 kref_init(&tgt->kref);
1132 INIT_LIST_HEAD(&tgt->lu_list);
1133 tgt->bus_id = dev_name(&unit->device);
1134 tgt->guid = (u64)device->config_rom[3] << 32 | device->config_rom[4];
1135
1136 if (fw_device_enable_phys_dma(device) < 0)
1137 goto fail_shost_put;
1138
1139 if (scsi_add_host(shost, &unit->device) < 0)
1140 goto fail_shost_put;
1141
1142 fw_device_get(device);
1143 fw_unit_get(unit);
1144
1145 /* Initialize to values that won't match anything in our table. */
1146 firmware_revision = 0xff000000;
1147 model = 0xff000000;
1148
1149 /* implicit directory ID */
1150 tgt->directory_id = ((unit->directory - device->config_rom) * 4
1151 + CSR_CONFIG_ROM) & 0xffffff;
1152
1153 if (sbp2_scan_unit_dir(tgt, unit->directory, &model,
1154 &firmware_revision) < 0)
1155 goto fail_tgt_put;
1156
1157 sbp2_init_workarounds(tgt, model, firmware_revision);
1158
1159 /* Do the login in a workqueue so we can easily reschedule retries. */
1160 list_for_each_entry(lu, &tgt->lu_list, link)
1161 sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
1162 return 0;
1163
1164 fail_tgt_put:
1165 sbp2_target_put(tgt);
1166 return -ENOMEM;
1167
1168 fail_shost_put:
1169 scsi_host_put(shost);
1170 return -ENOMEM;
1171 }
1172
1173 static int sbp2_remove(struct device *dev)
1174 {
1175 struct fw_unit *unit = fw_unit(dev);
1176 struct sbp2_target *tgt = unit->device.driver_data;
1177
1178 sbp2_target_put(tgt);
1179 return 0;
1180 }
1181
1182 static void sbp2_reconnect(struct work_struct *work)
1183 {
1184 struct sbp2_logical_unit *lu =
1185 container_of(work, struct sbp2_logical_unit, work.work);
1186 struct sbp2_target *tgt = lu->tgt;
1187 struct fw_device *device = fw_device(tgt->unit->device.parent);
1188 int generation, node_id, local_node_id;
1189
1190 if (fw_device_is_shutdown(device))
1191 goto out;
1192
1193 generation = device->generation;
1194 smp_rmb(); /* node IDs must not be older than generation */
1195 node_id = device->node_id;
1196 local_node_id = device->card->node_id;
1197
1198 if (sbp2_send_management_orb(lu, node_id, generation,
1199 SBP2_RECONNECT_REQUEST,
1200 lu->login_id, NULL) < 0) {
1201 /*
1202 * If reconnect was impossible even though we are in the
1203 * current generation, fall back and try to log in again.
1204 *
1205 * We could check for "Function rejected" status, but
1206 * looking at the bus generation as simpler and more general.
1207 */
1208 smp_rmb(); /* get current card generation */
1209 if (generation == device->card->generation ||
1210 lu->retries++ >= 5) {
1211 fw_error("%s: failed to reconnect\n", tgt->bus_id);
1212 lu->retries = 0;
1213 PREPARE_DELAYED_WORK(&lu->work, sbp2_login);
1214 }
1215 sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
1216 goto out;
1217 }
1218
1219 tgt->node_id = node_id;
1220 tgt->address_high = local_node_id << 16;
1221 smp_wmb(); /* node IDs must not be older than generation */
1222 lu->generation = generation;
1223
1224 fw_notify("%s: reconnected to LUN %04x (%d retries)\n",
1225 tgt->bus_id, lu->lun, lu->retries);
1226
1227 sbp2_agent_reset(lu);
1228 sbp2_cancel_orbs(lu);
1229 sbp2_conditionally_unblock(lu);
1230 out:
1231 sbp2_target_put(tgt);
1232 }
1233
1234 static void sbp2_update(struct fw_unit *unit)
1235 {
1236 struct sbp2_target *tgt = unit->device.driver_data;
1237 struct sbp2_logical_unit *lu;
1238
1239 fw_device_enable_phys_dma(fw_device(unit->device.parent));
1240
1241 /*
1242 * Fw-core serializes sbp2_update() against sbp2_remove().
1243 * Iteration over tgt->lu_list is therefore safe here.
1244 */
1245 list_for_each_entry(lu, &tgt->lu_list, link) {
1246 sbp2_conditionally_block(lu);
1247 lu->retries = 0;
1248 sbp2_queue_work(lu, 0);
1249 }
1250 }
1251
1252 #define SBP2_UNIT_SPEC_ID_ENTRY 0x0000609e
1253 #define SBP2_SW_VERSION_ENTRY 0x00010483
1254
1255 static const struct fw_device_id sbp2_id_table[] = {
1256 {
1257 .match_flags = FW_MATCH_SPECIFIER_ID | FW_MATCH_VERSION,
1258 .specifier_id = SBP2_UNIT_SPEC_ID_ENTRY,
1259 .version = SBP2_SW_VERSION_ENTRY,
1260 },
1261 { }
1262 };
1263
1264 static struct fw_driver sbp2_driver = {
1265 .driver = {
1266 .owner = THIS_MODULE,
1267 .name = sbp2_driver_name,
1268 .bus = &fw_bus_type,
1269 .probe = sbp2_probe,
1270 .remove = sbp2_remove,
1271 },
1272 .update = sbp2_update,
1273 .id_table = sbp2_id_table,
1274 };
1275
1276 static unsigned int
1277 sbp2_status_to_sense_data(u8 *sbp2_status, u8 *sense_data)
1278 {
1279 int sam_status;
1280
1281 sense_data[0] = 0x70;
1282 sense_data[1] = 0x0;
1283 sense_data[2] = sbp2_status[1];
1284 sense_data[3] = sbp2_status[4];
1285 sense_data[4] = sbp2_status[5];
1286 sense_data[5] = sbp2_status[6];
1287 sense_data[6] = sbp2_status[7];
1288 sense_data[7] = 10;
1289 sense_data[8] = sbp2_status[8];
1290 sense_data[9] = sbp2_status[9];
1291 sense_data[10] = sbp2_status[10];
1292 sense_data[11] = sbp2_status[11];
1293 sense_data[12] = sbp2_status[2];
1294 sense_data[13] = sbp2_status[3];
1295 sense_data[14] = sbp2_status[12];
1296 sense_data[15] = sbp2_status[13];
1297
1298 sam_status = sbp2_status[0] & 0x3f;
1299
1300 switch (sam_status) {
1301 case SAM_STAT_GOOD:
1302 case SAM_STAT_CHECK_CONDITION:
1303 case SAM_STAT_CONDITION_MET:
1304 case SAM_STAT_BUSY:
1305 case SAM_STAT_RESERVATION_CONFLICT:
1306 case SAM_STAT_COMMAND_TERMINATED:
1307 return DID_OK << 16 | sam_status;
1308
1309 default:
1310 return DID_ERROR << 16;
1311 }
1312 }
1313
1314 static void
1315 complete_command_orb(struct sbp2_orb *base_orb, struct sbp2_status *status)
1316 {
1317 struct sbp2_command_orb *orb =
1318 container_of(base_orb, struct sbp2_command_orb, base);
1319 struct fw_device *device = fw_device(orb->lu->tgt->unit->device.parent);
1320 int result;
1321
1322 if (status != NULL) {
1323 if (STATUS_GET_DEAD(*status))
1324 sbp2_agent_reset_no_wait(orb->lu);
1325
1326 switch (STATUS_GET_RESPONSE(*status)) {
1327 case SBP2_STATUS_REQUEST_COMPLETE:
1328 result = DID_OK << 16;
1329 break;
1330 case SBP2_STATUS_TRANSPORT_FAILURE:
1331 result = DID_BUS_BUSY << 16;
1332 break;
1333 case SBP2_STATUS_ILLEGAL_REQUEST:
1334 case SBP2_STATUS_VENDOR_DEPENDENT:
1335 default:
1336 result = DID_ERROR << 16;
1337 break;
1338 }
1339
1340 if (result == DID_OK << 16 && STATUS_GET_LEN(*status) > 1)
1341 result = sbp2_status_to_sense_data(STATUS_GET_DATA(*status),
1342 orb->cmd->sense_buffer);
1343 } else {
1344 /*
1345 * If the orb completes with status == NULL, something
1346 * went wrong, typically a bus reset happened mid-orb
1347 * or when sending the write (less likely).
1348 */
1349 result = DID_BUS_BUSY << 16;
1350 sbp2_conditionally_block(orb->lu);
1351 }
1352
1353 dma_unmap_single(device->card->device, orb->base.request_bus,
1354 sizeof(orb->request), DMA_TO_DEVICE);
1355
1356 if (scsi_sg_count(orb->cmd) > 0)
1357 dma_unmap_sg(device->card->device, scsi_sglist(orb->cmd),
1358 scsi_sg_count(orb->cmd),
1359 orb->cmd->sc_data_direction);
1360
1361 if (orb->page_table_bus != 0)
1362 dma_unmap_single(device->card->device, orb->page_table_bus,
1363 sizeof(orb->page_table), DMA_TO_DEVICE);
1364
1365 orb->cmd->result = result;
1366 orb->done(orb->cmd);
1367 }
1368
1369 static int
1370 sbp2_map_scatterlist(struct sbp2_command_orb *orb, struct fw_device *device,
1371 struct sbp2_logical_unit *lu)
1372 {
1373 struct scatterlist *sg = scsi_sglist(orb->cmd);
1374 int i, n;
1375
1376 n = dma_map_sg(device->card->device, sg, scsi_sg_count(orb->cmd),
1377 orb->cmd->sc_data_direction);
1378 if (n == 0)
1379 goto fail;
1380
1381 /*
1382 * Handle the special case where there is only one element in
1383 * the scatter list by converting it to an immediate block
1384 * request. This is also a workaround for broken devices such
1385 * as the second generation iPod which doesn't support page
1386 * tables.
1387 */
1388 if (n == 1) {
1389 orb->request.data_descriptor.high =
1390 cpu_to_be32(lu->tgt->address_high);
1391 orb->request.data_descriptor.low =
1392 cpu_to_be32(sg_dma_address(sg));
1393 orb->request.misc |=
1394 cpu_to_be32(COMMAND_ORB_DATA_SIZE(sg_dma_len(sg)));
1395 return 0;
1396 }
1397
1398 for_each_sg(sg, sg, n, i) {
1399 orb->page_table[i].high = cpu_to_be32(sg_dma_len(sg) << 16);
1400 orb->page_table[i].low = cpu_to_be32(sg_dma_address(sg));
1401 }
1402
1403 orb->page_table_bus =
1404 dma_map_single(device->card->device, orb->page_table,
1405 sizeof(orb->page_table), DMA_TO_DEVICE);
1406 if (dma_mapping_error(device->card->device, orb->page_table_bus))
1407 goto fail_page_table;
1408
1409 /*
1410 * The data_descriptor pointer is the one case where we need
1411 * to fill in the node ID part of the address. All other
1412 * pointers assume that the data referenced reside on the
1413 * initiator (i.e. us), but data_descriptor can refer to data
1414 * on other nodes so we need to put our ID in descriptor.high.
1415 */
1416 orb->request.data_descriptor.high = cpu_to_be32(lu->tgt->address_high);
1417 orb->request.data_descriptor.low = cpu_to_be32(orb->page_table_bus);
1418 orb->request.misc |= cpu_to_be32(COMMAND_ORB_PAGE_TABLE_PRESENT |
1419 COMMAND_ORB_DATA_SIZE(n));
1420
1421 return 0;
1422
1423 fail_page_table:
1424 dma_unmap_sg(device->card->device, scsi_sglist(orb->cmd),
1425 scsi_sg_count(orb->cmd), orb->cmd->sc_data_direction);
1426 fail:
1427 return -ENOMEM;
1428 }
1429
1430 /* SCSI stack integration */
1431
1432 static int sbp2_scsi_queuecommand(struct scsi_cmnd *cmd, scsi_done_fn_t done)
1433 {
1434 struct sbp2_logical_unit *lu = cmd->device->hostdata;
1435 struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
1436 struct sbp2_command_orb *orb;
1437 unsigned int max_payload;
1438 int generation, retval = SCSI_MLQUEUE_HOST_BUSY;
1439
1440 /*
1441 * Bidirectional commands are not yet implemented, and unknown
1442 * transfer direction not handled.
1443 */
1444 if (cmd->sc_data_direction == DMA_BIDIRECTIONAL) {
1445 fw_error("Can't handle DMA_BIDIRECTIONAL, rejecting command\n");
1446 cmd->result = DID_ERROR << 16;
1447 done(cmd);
1448 return 0;
1449 }
1450
1451 orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
1452 if (orb == NULL) {
1453 fw_notify("failed to alloc orb\n");
1454 return SCSI_MLQUEUE_HOST_BUSY;
1455 }
1456
1457 /* Initialize rcode to something not RCODE_COMPLETE. */
1458 orb->base.rcode = -1;
1459 kref_init(&orb->base.kref);
1460
1461 orb->lu = lu;
1462 orb->done = done;
1463 orb->cmd = cmd;
1464
1465 orb->request.next.high = cpu_to_be32(SBP2_ORB_NULL);
1466 /*
1467 * At speed 100 we can do 512 bytes per packet, at speed 200,
1468 * 1024 bytes per packet etc. The SBP-2 max_payload field
1469 * specifies the max payload size as 2 ^ (max_payload + 2), so
1470 * if we set this to max_speed + 7, we get the right value.
1471 */
1472 max_payload = min(device->max_speed + 7,
1473 device->card->max_receive - 1);
1474 orb->request.misc = cpu_to_be32(
1475 COMMAND_ORB_MAX_PAYLOAD(max_payload) |
1476 COMMAND_ORB_SPEED(device->max_speed) |
1477 COMMAND_ORB_NOTIFY);
1478
1479 if (cmd->sc_data_direction == DMA_FROM_DEVICE)
1480 orb->request.misc |= cpu_to_be32(COMMAND_ORB_DIRECTION);
1481
1482 generation = device->generation;
1483 smp_rmb(); /* sbp2_map_scatterlist looks at tgt->address_high */
1484
1485 if (scsi_sg_count(cmd) && sbp2_map_scatterlist(orb, device, lu) < 0)
1486 goto out;
1487
1488 memcpy(orb->request.command_block, cmd->cmnd, cmd->cmd_len);
1489
1490 orb->base.callback = complete_command_orb;
1491 orb->base.request_bus =
1492 dma_map_single(device->card->device, &orb->request,
1493 sizeof(orb->request), DMA_TO_DEVICE);
1494 if (dma_mapping_error(device->card->device, orb->base.request_bus))
1495 goto out;
1496
1497 sbp2_send_orb(&orb->base, lu, lu->tgt->node_id, generation,
1498 lu->command_block_agent_address + SBP2_ORB_POINTER);
1499 retval = 0;
1500 out:
1501 kref_put(&orb->base.kref, free_orb);
1502 return retval;
1503 }
1504
1505 static int sbp2_scsi_slave_alloc(struct scsi_device *sdev)
1506 {
1507 struct sbp2_logical_unit *lu = sdev->hostdata;
1508
1509 /* (Re-)Adding logical units via the SCSI stack is not supported. */
1510 if (!lu)
1511 return -ENOSYS;
1512
1513 sdev->allow_restart = 1;
1514
1515 /* SBP-2 requires quadlet alignment of the data buffers. */
1516 blk_queue_update_dma_alignment(sdev->request_queue, 4 - 1);
1517
1518 if (lu->tgt->workarounds & SBP2_WORKAROUND_INQUIRY_36)
1519 sdev->inquiry_len = 36;
1520
1521 return 0;
1522 }
1523
1524 static int sbp2_scsi_slave_configure(struct scsi_device *sdev)
1525 {
1526 struct sbp2_logical_unit *lu = sdev->hostdata;
1527
1528 sdev->use_10_for_rw = 1;
1529
1530 if (sbp2_param_exclusive_login)
1531 sdev->manage_start_stop = 1;
1532
1533 if (sdev->type == TYPE_ROM)
1534 sdev->use_10_for_ms = 1;
1535
1536 if (sdev->type == TYPE_DISK &&
1537 lu->tgt->workarounds & SBP2_WORKAROUND_MODE_SENSE_8)
1538 sdev->skip_ms_page_8 = 1;
1539
1540 if (lu->tgt->workarounds & SBP2_WORKAROUND_FIX_CAPACITY)
1541 sdev->fix_capacity = 1;
1542
1543 if (lu->tgt->workarounds & SBP2_WORKAROUND_POWER_CONDITION)
1544 sdev->start_stop_pwr_cond = 1;
1545
1546 if (lu->tgt->workarounds & SBP2_WORKAROUND_128K_MAX_TRANS)
1547 blk_queue_max_sectors(sdev->request_queue, 128 * 1024 / 512);
1548
1549 blk_queue_max_segment_size(sdev->request_queue, SBP2_MAX_SEG_SIZE);
1550
1551 return 0;
1552 }
1553
1554 /*
1555 * Called by scsi stack when something has really gone wrong. Usually
1556 * called when a command has timed-out for some reason.
1557 */
1558 static int sbp2_scsi_abort(struct scsi_cmnd *cmd)
1559 {
1560 struct sbp2_logical_unit *lu = cmd->device->hostdata;
1561
1562 fw_notify("%s: sbp2_scsi_abort\n", lu->tgt->bus_id);
1563 sbp2_agent_reset(lu);
1564 sbp2_cancel_orbs(lu);
1565
1566 return SUCCESS;
1567 }
1568
1569 /*
1570 * Format of /sys/bus/scsi/devices/.../ieee1394_id:
1571 * u64 EUI-64 : u24 directory_ID : u16 LUN (all printed in hexadecimal)
1572 *
1573 * This is the concatenation of target port identifier and logical unit
1574 * identifier as per SAM-2...SAM-4 annex A.
1575 */
1576 static ssize_t
1577 sbp2_sysfs_ieee1394_id_show(struct device *dev, struct device_attribute *attr,
1578 char *buf)
1579 {
1580 struct scsi_device *sdev = to_scsi_device(dev);
1581 struct sbp2_logical_unit *lu;
1582
1583 if (!sdev)
1584 return 0;
1585
1586 lu = sdev->hostdata;
1587
1588 return sprintf(buf, "%016llx:%06x:%04x\n",
1589 (unsigned long long)lu->tgt->guid,
1590 lu->tgt->directory_id, lu->lun);
1591 }
1592
1593 static DEVICE_ATTR(ieee1394_id, S_IRUGO, sbp2_sysfs_ieee1394_id_show, NULL);
1594
1595 static struct device_attribute *sbp2_scsi_sysfs_attrs[] = {
1596 &dev_attr_ieee1394_id,
1597 NULL
1598 };
1599
1600 static struct scsi_host_template scsi_driver_template = {
1601 .module = THIS_MODULE,
1602 .name = "SBP-2 IEEE-1394",
1603 .proc_name = sbp2_driver_name,
1604 .queuecommand = sbp2_scsi_queuecommand,
1605 .slave_alloc = sbp2_scsi_slave_alloc,
1606 .slave_configure = sbp2_scsi_slave_configure,
1607 .eh_abort_handler = sbp2_scsi_abort,
1608 .this_id = -1,
1609 .sg_tablesize = SG_ALL,
1610 .use_clustering = ENABLE_CLUSTERING,
1611 .cmd_per_lun = 1,
1612 .can_queue = 1,
1613 .sdev_attrs = sbp2_scsi_sysfs_attrs,
1614 };
1615
1616 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1617 MODULE_DESCRIPTION("SCSI over IEEE1394");
1618 MODULE_LICENSE("GPL");
1619 MODULE_DEVICE_TABLE(ieee1394, sbp2_id_table);
1620
1621 /* Provide a module alias so root-on-sbp2 initrds don't break. */
1622 #ifndef CONFIG_IEEE1394_SBP2_MODULE
1623 MODULE_ALIAS("sbp2");
1624 #endif
1625
1626 static int __init sbp2_init(void)
1627 {
1628 sbp2_wq = create_singlethread_workqueue(KBUILD_MODNAME);
1629 if (!sbp2_wq)
1630 return -ENOMEM;
1631
1632 return driver_register(&sbp2_driver.driver);
1633 }
1634
1635 static void __exit sbp2_cleanup(void)
1636 {
1637 driver_unregister(&sbp2_driver.driver);
1638 destroy_workqueue(sbp2_wq);
1639 }
1640
1641 module_init(sbp2_init);
1642 module_exit(sbp2_cleanup);