]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/firewire/fw-sbp2.c
Merge branch 'isdn-fix' of master.kernel.org:/pub/scm/linux/kernel/git/jgarzik/misc-2.6
[mirror_ubuntu-zesty-kernel.git] / drivers / firewire / fw-sbp2.c
1 /*
2 * SBP2 driver (SCSI over IEEE1394)
3 *
4 * Copyright (C) 2005-2007 Kristian Hoegsberg <krh@bitplanet.net>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21 /*
22 * The basic structure of this driver is based on the old storage driver,
23 * drivers/ieee1394/sbp2.c, originally written by
24 * James Goodwin <jamesg@filanet.com>
25 * with later contributions and ongoing maintenance from
26 * Ben Collins <bcollins@debian.org>,
27 * Stefan Richter <stefanr@s5r6.in-berlin.de>
28 * and many others.
29 */
30
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/moduleparam.h>
34 #include <linux/mod_devicetable.h>
35 #include <linux/device.h>
36 #include <linux/scatterlist.h>
37 #include <linux/dma-mapping.h>
38 #include <linux/blkdev.h>
39 #include <linux/string.h>
40 #include <linux/timer.h>
41
42 #include <scsi/scsi.h>
43 #include <scsi/scsi_cmnd.h>
44 #include <scsi/scsi_dbg.h>
45 #include <scsi/scsi_device.h>
46 #include <scsi/scsi_host.h>
47
48 #include "fw-transaction.h"
49 #include "fw-topology.h"
50 #include "fw-device.h"
51
52 /*
53 * So far only bridges from Oxford Semiconductor are known to support
54 * concurrent logins. Depending on firmware, four or two concurrent logins
55 * are possible on OXFW911 and newer Oxsemi bridges.
56 *
57 * Concurrent logins are useful together with cluster filesystems.
58 */
59 static int sbp2_param_exclusive_login = 1;
60 module_param_named(exclusive_login, sbp2_param_exclusive_login, bool, 0644);
61 MODULE_PARM_DESC(exclusive_login, "Exclusive login to sbp2 device "
62 "(default = Y, use N for concurrent initiators)");
63
64 /* I don't know why the SCSI stack doesn't define something like this... */
65 typedef void (*scsi_done_fn_t)(struct scsi_cmnd *);
66
67 static const char sbp2_driver_name[] = "sbp2";
68
69 struct sbp2_device {
70 struct kref kref;
71 struct fw_unit *unit;
72 struct fw_address_handler address_handler;
73 struct list_head orb_list;
74 u64 management_agent_address;
75 u64 command_block_agent_address;
76 u32 workarounds;
77 int login_id;
78
79 /*
80 * We cache these addresses and only update them once we've
81 * logged in or reconnected to the sbp2 device. That way, any
82 * IO to the device will automatically fail and get retried if
83 * it happens in a window where the device is not ready to
84 * handle it (e.g. after a bus reset but before we reconnect).
85 */
86 int node_id;
87 int address_high;
88 int generation;
89
90 int retries;
91 struct delayed_work work;
92 };
93
94 #define SBP2_MAX_SG_ELEMENT_LENGTH 0xf000
95 #define SBP2_MAX_SECTORS 255 /* Max sectors supported */
96 #define SBP2_ORB_TIMEOUT 2000 /* Timeout in ms */
97
98 #define SBP2_ORB_NULL 0x80000000
99
100 #define SBP2_DIRECTION_TO_MEDIA 0x0
101 #define SBP2_DIRECTION_FROM_MEDIA 0x1
102
103 /* Unit directory keys */
104 #define SBP2_COMMAND_SET_SPECIFIER 0x38
105 #define SBP2_COMMAND_SET 0x39
106 #define SBP2_COMMAND_SET_REVISION 0x3b
107 #define SBP2_FIRMWARE_REVISION 0x3c
108
109 /* Flags for detected oddities and brokeness */
110 #define SBP2_WORKAROUND_128K_MAX_TRANS 0x1
111 #define SBP2_WORKAROUND_INQUIRY_36 0x2
112 #define SBP2_WORKAROUND_MODE_SENSE_8 0x4
113 #define SBP2_WORKAROUND_FIX_CAPACITY 0x8
114 #define SBP2_WORKAROUND_OVERRIDE 0x100
115
116 /* Management orb opcodes */
117 #define SBP2_LOGIN_REQUEST 0x0
118 #define SBP2_QUERY_LOGINS_REQUEST 0x1
119 #define SBP2_RECONNECT_REQUEST 0x3
120 #define SBP2_SET_PASSWORD_REQUEST 0x4
121 #define SBP2_LOGOUT_REQUEST 0x7
122 #define SBP2_ABORT_TASK_REQUEST 0xb
123 #define SBP2_ABORT_TASK_SET 0xc
124 #define SBP2_LOGICAL_UNIT_RESET 0xe
125 #define SBP2_TARGET_RESET_REQUEST 0xf
126
127 /* Offsets for command block agent registers */
128 #define SBP2_AGENT_STATE 0x00
129 #define SBP2_AGENT_RESET 0x04
130 #define SBP2_ORB_POINTER 0x08
131 #define SBP2_DOORBELL 0x10
132 #define SBP2_UNSOLICITED_STATUS_ENABLE 0x14
133
134 /* Status write response codes */
135 #define SBP2_STATUS_REQUEST_COMPLETE 0x0
136 #define SBP2_STATUS_TRANSPORT_FAILURE 0x1
137 #define SBP2_STATUS_ILLEGAL_REQUEST 0x2
138 #define SBP2_STATUS_VENDOR_DEPENDENT 0x3
139
140 #define STATUS_GET_ORB_HIGH(v) ((v).status & 0xffff)
141 #define STATUS_GET_SBP_STATUS(v) (((v).status >> 16) & 0xff)
142 #define STATUS_GET_LEN(v) (((v).status >> 24) & 0x07)
143 #define STATUS_GET_DEAD(v) (((v).status >> 27) & 0x01)
144 #define STATUS_GET_RESPONSE(v) (((v).status >> 28) & 0x03)
145 #define STATUS_GET_SOURCE(v) (((v).status >> 30) & 0x03)
146 #define STATUS_GET_ORB_LOW(v) ((v).orb_low)
147 #define STATUS_GET_DATA(v) ((v).data)
148
149 struct sbp2_status {
150 u32 status;
151 u32 orb_low;
152 u8 data[24];
153 };
154
155 struct sbp2_pointer {
156 u32 high;
157 u32 low;
158 };
159
160 struct sbp2_orb {
161 struct fw_transaction t;
162 dma_addr_t request_bus;
163 int rcode;
164 struct sbp2_pointer pointer;
165 void (*callback)(struct sbp2_orb * orb, struct sbp2_status * status);
166 struct list_head link;
167 };
168
169 #define MANAGEMENT_ORB_LUN(v) ((v))
170 #define MANAGEMENT_ORB_FUNCTION(v) ((v) << 16)
171 #define MANAGEMENT_ORB_RECONNECT(v) ((v) << 20)
172 #define MANAGEMENT_ORB_EXCLUSIVE(v) ((v) ? 1 << 28 : 0)
173 #define MANAGEMENT_ORB_REQUEST_FORMAT(v) ((v) << 29)
174 #define MANAGEMENT_ORB_NOTIFY ((1) << 31)
175
176 #define MANAGEMENT_ORB_RESPONSE_LENGTH(v) ((v))
177 #define MANAGEMENT_ORB_PASSWORD_LENGTH(v) ((v) << 16)
178
179 struct sbp2_management_orb {
180 struct sbp2_orb base;
181 struct {
182 struct sbp2_pointer password;
183 struct sbp2_pointer response;
184 u32 misc;
185 u32 length;
186 struct sbp2_pointer status_fifo;
187 } request;
188 __be32 response[4];
189 dma_addr_t response_bus;
190 struct completion done;
191 struct sbp2_status status;
192 };
193
194 #define LOGIN_RESPONSE_GET_LOGIN_ID(v) ((v).misc & 0xffff)
195 #define LOGIN_RESPONSE_GET_LENGTH(v) (((v).misc >> 16) & 0xffff)
196
197 struct sbp2_login_response {
198 u32 misc;
199 struct sbp2_pointer command_block_agent;
200 u32 reconnect_hold;
201 };
202 #define COMMAND_ORB_DATA_SIZE(v) ((v))
203 #define COMMAND_ORB_PAGE_SIZE(v) ((v) << 16)
204 #define COMMAND_ORB_PAGE_TABLE_PRESENT ((1) << 19)
205 #define COMMAND_ORB_MAX_PAYLOAD(v) ((v) << 20)
206 #define COMMAND_ORB_SPEED(v) ((v) << 24)
207 #define COMMAND_ORB_DIRECTION(v) ((v) << 27)
208 #define COMMAND_ORB_REQUEST_FORMAT(v) ((v) << 29)
209 #define COMMAND_ORB_NOTIFY ((1) << 31)
210
211 struct sbp2_command_orb {
212 struct sbp2_orb base;
213 struct {
214 struct sbp2_pointer next;
215 struct sbp2_pointer data_descriptor;
216 u32 misc;
217 u8 command_block[12];
218 } request;
219 struct scsi_cmnd *cmd;
220 scsi_done_fn_t done;
221 struct fw_unit *unit;
222
223 struct sbp2_pointer page_table[SG_ALL] __attribute__((aligned(8)));
224 dma_addr_t page_table_bus;
225 };
226
227 /*
228 * List of devices with known bugs.
229 *
230 * The firmware_revision field, masked with 0xffff00, is the best
231 * indicator for the type of bridge chip of a device. It yields a few
232 * false positives but this did not break correctly behaving devices
233 * so far. We use ~0 as a wildcard, since the 24 bit values we get
234 * from the config rom can never match that.
235 */
236 static const struct {
237 u32 firmware_revision;
238 u32 model;
239 unsigned workarounds;
240 } sbp2_workarounds_table[] = {
241 /* DViCO Momobay CX-1 with TSB42AA9 bridge */ {
242 .firmware_revision = 0x002800,
243 .model = 0x001010,
244 .workarounds = SBP2_WORKAROUND_INQUIRY_36 |
245 SBP2_WORKAROUND_MODE_SENSE_8,
246 },
247 /* Initio bridges, actually only needed for some older ones */ {
248 .firmware_revision = 0x000200,
249 .model = ~0,
250 .workarounds = SBP2_WORKAROUND_INQUIRY_36,
251 },
252 /* Symbios bridge */ {
253 .firmware_revision = 0xa0b800,
254 .model = ~0,
255 .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS,
256 },
257
258 /*
259 * There are iPods (2nd gen, 3rd gen) with model_id == 0, but
260 * these iPods do not feature the read_capacity bug according
261 * to one report. Read_capacity behaviour as well as model_id
262 * could change due to Apple-supplied firmware updates though.
263 */
264
265 /* iPod 4th generation. */ {
266 .firmware_revision = 0x0a2700,
267 .model = 0x000021,
268 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
269 },
270 /* iPod mini */ {
271 .firmware_revision = 0x0a2700,
272 .model = 0x000023,
273 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
274 },
275 /* iPod Photo */ {
276 .firmware_revision = 0x0a2700,
277 .model = 0x00007e,
278 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
279 }
280 };
281
282 static void
283 sbp2_status_write(struct fw_card *card, struct fw_request *request,
284 int tcode, int destination, int source,
285 int generation, int speed,
286 unsigned long long offset,
287 void *payload, size_t length, void *callback_data)
288 {
289 struct sbp2_device *sd = callback_data;
290 struct sbp2_orb *orb;
291 struct sbp2_status status;
292 size_t header_size;
293 unsigned long flags;
294
295 if (tcode != TCODE_WRITE_BLOCK_REQUEST ||
296 length == 0 || length > sizeof(status)) {
297 fw_send_response(card, request, RCODE_TYPE_ERROR);
298 return;
299 }
300
301 header_size = min(length, 2 * sizeof(u32));
302 fw_memcpy_from_be32(&status, payload, header_size);
303 if (length > header_size)
304 memcpy(status.data, payload + 8, length - header_size);
305 if (STATUS_GET_SOURCE(status) == 2 || STATUS_GET_SOURCE(status) == 3) {
306 fw_notify("non-orb related status write, not handled\n");
307 fw_send_response(card, request, RCODE_COMPLETE);
308 return;
309 }
310
311 /* Lookup the orb corresponding to this status write. */
312 spin_lock_irqsave(&card->lock, flags);
313 list_for_each_entry(orb, &sd->orb_list, link) {
314 if (STATUS_GET_ORB_HIGH(status) == 0 &&
315 STATUS_GET_ORB_LOW(status) == orb->request_bus &&
316 orb->rcode == RCODE_COMPLETE) {
317 list_del(&orb->link);
318 break;
319 }
320 }
321 spin_unlock_irqrestore(&card->lock, flags);
322
323 if (&orb->link != &sd->orb_list)
324 orb->callback(orb, &status);
325 else
326 fw_error("status write for unknown orb\n");
327
328 fw_send_response(card, request, RCODE_COMPLETE);
329 }
330
331 static void
332 complete_transaction(struct fw_card *card, int rcode,
333 void *payload, size_t length, void *data)
334 {
335 struct sbp2_orb *orb = data;
336 unsigned long flags;
337
338 orb->rcode = rcode;
339 if (rcode != RCODE_COMPLETE) {
340 spin_lock_irqsave(&card->lock, flags);
341 list_del(&orb->link);
342 spin_unlock_irqrestore(&card->lock, flags);
343 orb->callback(orb, NULL);
344 }
345 }
346
347 static void
348 sbp2_send_orb(struct sbp2_orb *orb, struct fw_unit *unit,
349 int node_id, int generation, u64 offset)
350 {
351 struct fw_device *device = fw_device(unit->device.parent);
352 struct sbp2_device *sd = unit->device.driver_data;
353 unsigned long flags;
354
355 orb->pointer.high = 0;
356 orb->pointer.low = orb->request_bus;
357 fw_memcpy_to_be32(&orb->pointer, &orb->pointer, sizeof(orb->pointer));
358
359 spin_lock_irqsave(&device->card->lock, flags);
360 list_add_tail(&orb->link, &sd->orb_list);
361 spin_unlock_irqrestore(&device->card->lock, flags);
362
363 fw_send_request(device->card, &orb->t, TCODE_WRITE_BLOCK_REQUEST,
364 node_id, generation, device->max_speed, offset,
365 &orb->pointer, sizeof(orb->pointer),
366 complete_transaction, orb);
367 }
368
369 static int sbp2_cancel_orbs(struct fw_unit *unit)
370 {
371 struct fw_device *device = fw_device(unit->device.parent);
372 struct sbp2_device *sd = unit->device.driver_data;
373 struct sbp2_orb *orb, *next;
374 struct list_head list;
375 unsigned long flags;
376 int retval = -ENOENT;
377
378 INIT_LIST_HEAD(&list);
379 spin_lock_irqsave(&device->card->lock, flags);
380 list_splice_init(&sd->orb_list, &list);
381 spin_unlock_irqrestore(&device->card->lock, flags);
382
383 list_for_each_entry_safe(orb, next, &list, link) {
384 retval = 0;
385 if (fw_cancel_transaction(device->card, &orb->t) == 0)
386 continue;
387
388 orb->rcode = RCODE_CANCELLED;
389 orb->callback(orb, NULL);
390 }
391
392 return retval;
393 }
394
395 static void
396 complete_management_orb(struct sbp2_orb *base_orb, struct sbp2_status *status)
397 {
398 struct sbp2_management_orb *orb =
399 container_of(base_orb, struct sbp2_management_orb, base);
400
401 if (status)
402 memcpy(&orb->status, status, sizeof(*status));
403 complete(&orb->done);
404 }
405
406 static int
407 sbp2_send_management_orb(struct fw_unit *unit, int node_id, int generation,
408 int function, int lun, void *response)
409 {
410 struct fw_device *device = fw_device(unit->device.parent);
411 struct sbp2_device *sd = unit->device.driver_data;
412 struct sbp2_management_orb *orb;
413 int retval = -ENOMEM;
414
415 orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
416 if (orb == NULL)
417 return -ENOMEM;
418
419 orb->response_bus =
420 dma_map_single(device->card->device, &orb->response,
421 sizeof(orb->response), DMA_FROM_DEVICE);
422 if (dma_mapping_error(orb->response_bus))
423 goto fail_mapping_response;
424
425 orb->request.response.high = 0;
426 orb->request.response.low = orb->response_bus;
427
428 orb->request.misc =
429 MANAGEMENT_ORB_NOTIFY |
430 MANAGEMENT_ORB_FUNCTION(function) |
431 MANAGEMENT_ORB_LUN(lun);
432 orb->request.length =
433 MANAGEMENT_ORB_RESPONSE_LENGTH(sizeof(orb->response));
434
435 orb->request.status_fifo.high = sd->address_handler.offset >> 32;
436 orb->request.status_fifo.low = sd->address_handler.offset;
437
438 if (function == SBP2_LOGIN_REQUEST) {
439 orb->request.misc |=
440 MANAGEMENT_ORB_EXCLUSIVE(sbp2_param_exclusive_login) |
441 MANAGEMENT_ORB_RECONNECT(0);
442 }
443
444 fw_memcpy_to_be32(&orb->request, &orb->request, sizeof(orb->request));
445
446 init_completion(&orb->done);
447 orb->base.callback = complete_management_orb;
448
449 orb->base.request_bus =
450 dma_map_single(device->card->device, &orb->request,
451 sizeof(orb->request), DMA_TO_DEVICE);
452 if (dma_mapping_error(orb->base.request_bus))
453 goto fail_mapping_request;
454
455 sbp2_send_orb(&orb->base, unit,
456 node_id, generation, sd->management_agent_address);
457
458 wait_for_completion_timeout(&orb->done,
459 msecs_to_jiffies(SBP2_ORB_TIMEOUT));
460
461 retval = -EIO;
462 if (sbp2_cancel_orbs(unit) == 0) {
463 fw_error("orb reply timed out, rcode=0x%02x\n",
464 orb->base.rcode);
465 goto out;
466 }
467
468 if (orb->base.rcode != RCODE_COMPLETE) {
469 fw_error("management write failed, rcode 0x%02x\n",
470 orb->base.rcode);
471 goto out;
472 }
473
474 if (STATUS_GET_RESPONSE(orb->status) != 0 ||
475 STATUS_GET_SBP_STATUS(orb->status) != 0) {
476 fw_error("error status: %d:%d\n",
477 STATUS_GET_RESPONSE(orb->status),
478 STATUS_GET_SBP_STATUS(orb->status));
479 goto out;
480 }
481
482 retval = 0;
483 out:
484 dma_unmap_single(device->card->device, orb->base.request_bus,
485 sizeof(orb->request), DMA_TO_DEVICE);
486 fail_mapping_request:
487 dma_unmap_single(device->card->device, orb->response_bus,
488 sizeof(orb->response), DMA_FROM_DEVICE);
489 fail_mapping_response:
490 if (response)
491 fw_memcpy_from_be32(response,
492 orb->response, sizeof(orb->response));
493 kfree(orb);
494
495 return retval;
496 }
497
498 static void
499 complete_agent_reset_write(struct fw_card *card, int rcode,
500 void *payload, size_t length, void *data)
501 {
502 struct fw_transaction *t = data;
503
504 kfree(t);
505 }
506
507 static int sbp2_agent_reset(struct fw_unit *unit)
508 {
509 struct fw_device *device = fw_device(unit->device.parent);
510 struct sbp2_device *sd = unit->device.driver_data;
511 struct fw_transaction *t;
512 static u32 zero;
513
514 t = kzalloc(sizeof(*t), GFP_ATOMIC);
515 if (t == NULL)
516 return -ENOMEM;
517
518 fw_send_request(device->card, t, TCODE_WRITE_QUADLET_REQUEST,
519 sd->node_id, sd->generation, device->max_speed,
520 sd->command_block_agent_address + SBP2_AGENT_RESET,
521 &zero, sizeof(zero), complete_agent_reset_write, t);
522
523 return 0;
524 }
525
526 static void sbp2_reconnect(struct work_struct *work);
527 static struct scsi_host_template scsi_driver_template;
528
529 static void release_sbp2_device(struct kref *kref)
530 {
531 struct sbp2_device *sd = container_of(kref, struct sbp2_device, kref);
532 struct Scsi_Host *host =
533 container_of((void *)sd, struct Scsi_Host, hostdata[0]);
534
535 scsi_remove_host(host);
536 sbp2_send_management_orb(sd->unit, sd->node_id, sd->generation,
537 SBP2_LOGOUT_REQUEST, sd->login_id, NULL);
538 fw_core_remove_address_handler(&sd->address_handler);
539 fw_notify("removed sbp2 unit %s\n", sd->unit->device.bus_id);
540 put_device(&sd->unit->device);
541 scsi_host_put(host);
542 }
543
544 static void sbp2_login(struct work_struct *work)
545 {
546 struct sbp2_device *sd =
547 container_of(work, struct sbp2_device, work.work);
548 struct Scsi_Host *host =
549 container_of((void *)sd, struct Scsi_Host, hostdata[0]);
550 struct fw_unit *unit = sd->unit;
551 struct fw_device *device = fw_device(unit->device.parent);
552 struct sbp2_login_response response;
553 int generation, node_id, local_node_id, lun, retval;
554
555 /* FIXME: Make this work for multi-lun devices. */
556 lun = 0;
557
558 generation = device->card->generation;
559 node_id = device->node->node_id;
560 local_node_id = device->card->local_node->node_id;
561
562 if (sbp2_send_management_orb(unit, node_id, generation,
563 SBP2_LOGIN_REQUEST, lun, &response) < 0) {
564 if (sd->retries++ < 5) {
565 schedule_delayed_work(&sd->work, DIV_ROUND_UP(HZ, 5));
566 } else {
567 fw_error("failed to login to %s\n",
568 unit->device.bus_id);
569 kref_put(&sd->kref, release_sbp2_device);
570 }
571 return;
572 }
573
574 sd->generation = generation;
575 sd->node_id = node_id;
576 sd->address_high = local_node_id << 16;
577
578 /* Get command block agent offset and login id. */
579 sd->command_block_agent_address =
580 ((u64) (response.command_block_agent.high & 0xffff) << 32) |
581 response.command_block_agent.low;
582 sd->login_id = LOGIN_RESPONSE_GET_LOGIN_ID(response);
583
584 fw_notify("logged in to sbp2 unit %s (%d retries)\n",
585 unit->device.bus_id, sd->retries);
586 fw_notify(" - management_agent_address: 0x%012llx\n",
587 (unsigned long long) sd->management_agent_address);
588 fw_notify(" - command_block_agent_address: 0x%012llx\n",
589 (unsigned long long) sd->command_block_agent_address);
590 fw_notify(" - status write address: 0x%012llx\n",
591 (unsigned long long) sd->address_handler.offset);
592
593 #if 0
594 /* FIXME: The linux1394 sbp2 does this last step. */
595 sbp2_set_busy_timeout(scsi_id);
596 #endif
597
598 PREPARE_DELAYED_WORK(&sd->work, sbp2_reconnect);
599 sbp2_agent_reset(unit);
600
601 /* FIXME: Loop over luns here. */
602 lun = 0;
603 retval = scsi_add_device(host, 0, 0, lun);
604 if (retval < 0) {
605 sbp2_send_management_orb(unit, sd->node_id, sd->generation,
606 SBP2_LOGOUT_REQUEST, sd->login_id,
607 NULL);
608 /*
609 * Set this back to sbp2_login so we fall back and
610 * retry login on bus reset.
611 */
612 PREPARE_DELAYED_WORK(&sd->work, sbp2_login);
613 }
614 kref_put(&sd->kref, release_sbp2_device);
615 }
616
617 static int sbp2_probe(struct device *dev)
618 {
619 struct fw_unit *unit = fw_unit(dev);
620 struct fw_device *device = fw_device(unit->device.parent);
621 struct sbp2_device *sd;
622 struct fw_csr_iterator ci;
623 struct Scsi_Host *host;
624 int i, key, value, err;
625 u32 model, firmware_revision;
626
627 err = -ENOMEM;
628 host = scsi_host_alloc(&scsi_driver_template, sizeof(*sd));
629 if (host == NULL)
630 goto fail;
631
632 sd = (struct sbp2_device *) host->hostdata;
633 unit->device.driver_data = sd;
634 sd->unit = unit;
635 INIT_LIST_HEAD(&sd->orb_list);
636 kref_init(&sd->kref);
637
638 sd->address_handler.length = 0x100;
639 sd->address_handler.address_callback = sbp2_status_write;
640 sd->address_handler.callback_data = sd;
641
642 err = fw_core_add_address_handler(&sd->address_handler,
643 &fw_high_memory_region);
644 if (err < 0)
645 goto fail_host;
646
647 err = fw_device_enable_phys_dma(device);
648 if (err < 0)
649 goto fail_address_handler;
650
651 err = scsi_add_host(host, &unit->device);
652 if (err < 0)
653 goto fail_address_handler;
654
655 /*
656 * Scan unit directory to get management agent address,
657 * firmware revison and model. Initialize firmware_revision
658 * and model to values that wont match anything in our table.
659 */
660 firmware_revision = 0xff000000;
661 model = 0xff000000;
662 fw_csr_iterator_init(&ci, unit->directory);
663 while (fw_csr_iterator_next(&ci, &key, &value)) {
664 switch (key) {
665 case CSR_DEPENDENT_INFO | CSR_OFFSET:
666 sd->management_agent_address =
667 0xfffff0000000ULL + 4 * value;
668 break;
669 case SBP2_FIRMWARE_REVISION:
670 firmware_revision = value;
671 break;
672 case CSR_MODEL:
673 model = value;
674 break;
675 }
676 }
677
678 for (i = 0; i < ARRAY_SIZE(sbp2_workarounds_table); i++) {
679 if (sbp2_workarounds_table[i].firmware_revision !=
680 (firmware_revision & 0xffffff00))
681 continue;
682 if (sbp2_workarounds_table[i].model != model &&
683 sbp2_workarounds_table[i].model != ~0)
684 continue;
685 sd->workarounds |= sbp2_workarounds_table[i].workarounds;
686 break;
687 }
688
689 if (sd->workarounds)
690 fw_notify("Workarounds for node %s: 0x%x "
691 "(firmware_revision 0x%06x, model_id 0x%06x)\n",
692 unit->device.bus_id,
693 sd->workarounds, firmware_revision, model);
694
695 get_device(&unit->device);
696
697 /*
698 * We schedule work to do the login so we can easily
699 * reschedule retries. Always get the ref before scheduling
700 * work.
701 */
702 INIT_DELAYED_WORK(&sd->work, sbp2_login);
703 if (schedule_delayed_work(&sd->work, 0))
704 kref_get(&sd->kref);
705
706 return 0;
707
708 fail_address_handler:
709 fw_core_remove_address_handler(&sd->address_handler);
710 fail_host:
711 scsi_host_put(host);
712 fail:
713 return err;
714 }
715
716 static int sbp2_remove(struct device *dev)
717 {
718 struct fw_unit *unit = fw_unit(dev);
719 struct sbp2_device *sd = unit->device.driver_data;
720
721 kref_put(&sd->kref, release_sbp2_device);
722
723 return 0;
724 }
725
726 static void sbp2_reconnect(struct work_struct *work)
727 {
728 struct sbp2_device *sd =
729 container_of(work, struct sbp2_device, work.work);
730 struct fw_unit *unit = sd->unit;
731 struct fw_device *device = fw_device(unit->device.parent);
732 int generation, node_id, local_node_id;
733
734 generation = device->card->generation;
735 node_id = device->node->node_id;
736 local_node_id = device->card->local_node->node_id;
737
738 if (sbp2_send_management_orb(unit, node_id, generation,
739 SBP2_RECONNECT_REQUEST,
740 sd->login_id, NULL) < 0) {
741 if (sd->retries++ >= 5) {
742 fw_error("failed to reconnect to %s\n",
743 unit->device.bus_id);
744 /* Fall back and try to log in again. */
745 sd->retries = 0;
746 PREPARE_DELAYED_WORK(&sd->work, sbp2_login);
747 }
748 schedule_delayed_work(&sd->work, DIV_ROUND_UP(HZ, 5));
749 return;
750 }
751
752 sd->generation = generation;
753 sd->node_id = node_id;
754 sd->address_high = local_node_id << 16;
755
756 fw_notify("reconnected to unit %s (%d retries)\n",
757 unit->device.bus_id, sd->retries);
758 sbp2_agent_reset(unit);
759 sbp2_cancel_orbs(unit);
760 kref_put(&sd->kref, release_sbp2_device);
761 }
762
763 static void sbp2_update(struct fw_unit *unit)
764 {
765 struct fw_device *device = fw_device(unit->device.parent);
766 struct sbp2_device *sd = unit->device.driver_data;
767
768 sd->retries = 0;
769 fw_device_enable_phys_dma(device);
770 if (schedule_delayed_work(&sd->work, 0))
771 kref_get(&sd->kref);
772 }
773
774 #define SBP2_UNIT_SPEC_ID_ENTRY 0x0000609e
775 #define SBP2_SW_VERSION_ENTRY 0x00010483
776
777 static const struct fw_device_id sbp2_id_table[] = {
778 {
779 .match_flags = FW_MATCH_SPECIFIER_ID | FW_MATCH_VERSION,
780 .specifier_id = SBP2_UNIT_SPEC_ID_ENTRY,
781 .version = SBP2_SW_VERSION_ENTRY,
782 },
783 { }
784 };
785
786 static struct fw_driver sbp2_driver = {
787 .driver = {
788 .owner = THIS_MODULE,
789 .name = sbp2_driver_name,
790 .bus = &fw_bus_type,
791 .probe = sbp2_probe,
792 .remove = sbp2_remove,
793 },
794 .update = sbp2_update,
795 .id_table = sbp2_id_table,
796 };
797
798 static unsigned int
799 sbp2_status_to_sense_data(u8 *sbp2_status, u8 *sense_data)
800 {
801 int sam_status;
802
803 sense_data[0] = 0x70;
804 sense_data[1] = 0x0;
805 sense_data[2] = sbp2_status[1];
806 sense_data[3] = sbp2_status[4];
807 sense_data[4] = sbp2_status[5];
808 sense_data[5] = sbp2_status[6];
809 sense_data[6] = sbp2_status[7];
810 sense_data[7] = 10;
811 sense_data[8] = sbp2_status[8];
812 sense_data[9] = sbp2_status[9];
813 sense_data[10] = sbp2_status[10];
814 sense_data[11] = sbp2_status[11];
815 sense_data[12] = sbp2_status[2];
816 sense_data[13] = sbp2_status[3];
817 sense_data[14] = sbp2_status[12];
818 sense_data[15] = sbp2_status[13];
819
820 sam_status = sbp2_status[0] & 0x3f;
821
822 switch (sam_status) {
823 case SAM_STAT_GOOD:
824 case SAM_STAT_CHECK_CONDITION:
825 case SAM_STAT_CONDITION_MET:
826 case SAM_STAT_BUSY:
827 case SAM_STAT_RESERVATION_CONFLICT:
828 case SAM_STAT_COMMAND_TERMINATED:
829 return DID_OK << 16 | sam_status;
830
831 default:
832 return DID_ERROR << 16;
833 }
834 }
835
836 static void
837 complete_command_orb(struct sbp2_orb *base_orb, struct sbp2_status *status)
838 {
839 struct sbp2_command_orb *orb =
840 container_of(base_orb, struct sbp2_command_orb, base);
841 struct fw_unit *unit = orb->unit;
842 struct fw_device *device = fw_device(unit->device.parent);
843 int result;
844
845 if (status != NULL) {
846 if (STATUS_GET_DEAD(*status))
847 sbp2_agent_reset(unit);
848
849 switch (STATUS_GET_RESPONSE(*status)) {
850 case SBP2_STATUS_REQUEST_COMPLETE:
851 result = DID_OK << 16;
852 break;
853 case SBP2_STATUS_TRANSPORT_FAILURE:
854 result = DID_BUS_BUSY << 16;
855 break;
856 case SBP2_STATUS_ILLEGAL_REQUEST:
857 case SBP2_STATUS_VENDOR_DEPENDENT:
858 default:
859 result = DID_ERROR << 16;
860 break;
861 }
862
863 if (result == DID_OK << 16 && STATUS_GET_LEN(*status) > 1)
864 result = sbp2_status_to_sense_data(STATUS_GET_DATA(*status),
865 orb->cmd->sense_buffer);
866 } else {
867 /*
868 * If the orb completes with status == NULL, something
869 * went wrong, typically a bus reset happened mid-orb
870 * or when sending the write (less likely).
871 */
872 result = DID_BUS_BUSY << 16;
873 }
874
875 dma_unmap_single(device->card->device, orb->base.request_bus,
876 sizeof(orb->request), DMA_TO_DEVICE);
877
878 if (scsi_sg_count(orb->cmd) > 0)
879 dma_unmap_sg(device->card->device, scsi_sglist(orb->cmd),
880 scsi_sg_count(orb->cmd),
881 orb->cmd->sc_data_direction);
882
883 if (orb->page_table_bus != 0)
884 dma_unmap_single(device->card->device, orb->page_table_bus,
885 sizeof(orb->page_table), DMA_TO_DEVICE);
886
887 orb->cmd->result = result;
888 orb->done(orb->cmd);
889 kfree(orb);
890 }
891
892 static int sbp2_command_orb_map_scatterlist(struct sbp2_command_orb *orb)
893 {
894 struct sbp2_device *sd =
895 (struct sbp2_device *)orb->cmd->device->host->hostdata;
896 struct fw_unit *unit = sd->unit;
897 struct fw_device *device = fw_device(unit->device.parent);
898 struct scatterlist *sg;
899 int sg_len, l, i, j, count;
900 dma_addr_t sg_addr;
901
902 sg = scsi_sglist(orb->cmd);
903 count = dma_map_sg(device->card->device, sg, scsi_sg_count(orb->cmd),
904 orb->cmd->sc_data_direction);
905 if (count == 0)
906 goto fail;
907
908 /*
909 * Handle the special case where there is only one element in
910 * the scatter list by converting it to an immediate block
911 * request. This is also a workaround for broken devices such
912 * as the second generation iPod which doesn't support page
913 * tables.
914 */
915 if (count == 1 && sg_dma_len(sg) < SBP2_MAX_SG_ELEMENT_LENGTH) {
916 orb->request.data_descriptor.high = sd->address_high;
917 orb->request.data_descriptor.low = sg_dma_address(sg);
918 orb->request.misc |=
919 COMMAND_ORB_DATA_SIZE(sg_dma_len(sg));
920 return 0;
921 }
922
923 /*
924 * Convert the scatterlist to an sbp2 page table. If any
925 * scatterlist entries are too big for sbp2, we split them as we
926 * go. Even if we ask the block I/O layer to not give us sg
927 * elements larger than 65535 bytes, some IOMMUs may merge sg elements
928 * during DMA mapping, and Linux currently doesn't prevent this.
929 */
930 for (i = 0, j = 0; i < count; i++) {
931 sg_len = sg_dma_len(sg + i);
932 sg_addr = sg_dma_address(sg + i);
933 while (sg_len) {
934 /* FIXME: This won't get us out of the pinch. */
935 if (unlikely(j >= ARRAY_SIZE(orb->page_table))) {
936 fw_error("page table overflow\n");
937 goto fail_page_table;
938 }
939 l = min(sg_len, SBP2_MAX_SG_ELEMENT_LENGTH);
940 orb->page_table[j].low = sg_addr;
941 orb->page_table[j].high = (l << 16);
942 sg_addr += l;
943 sg_len -= l;
944 j++;
945 }
946 }
947
948 fw_memcpy_to_be32(orb->page_table, orb->page_table,
949 sizeof(orb->page_table[0]) * j);
950 orb->page_table_bus =
951 dma_map_single(device->card->device, orb->page_table,
952 sizeof(orb->page_table), DMA_TO_DEVICE);
953 if (dma_mapping_error(orb->page_table_bus))
954 goto fail_page_table;
955
956 /*
957 * The data_descriptor pointer is the one case where we need
958 * to fill in the node ID part of the address. All other
959 * pointers assume that the data referenced reside on the
960 * initiator (i.e. us), but data_descriptor can refer to data
961 * on other nodes so we need to put our ID in descriptor.high.
962 */
963 orb->request.data_descriptor.high = sd->address_high;
964 orb->request.data_descriptor.low = orb->page_table_bus;
965 orb->request.misc |=
966 COMMAND_ORB_PAGE_TABLE_PRESENT |
967 COMMAND_ORB_DATA_SIZE(j);
968
969 return 0;
970
971 fail_page_table:
972 dma_unmap_sg(device->card->device, sg, scsi_sg_count(orb->cmd),
973 orb->cmd->sc_data_direction);
974 fail:
975 return -ENOMEM;
976 }
977
978 /* SCSI stack integration */
979
980 static int sbp2_scsi_queuecommand(struct scsi_cmnd *cmd, scsi_done_fn_t done)
981 {
982 struct sbp2_device *sd =
983 (struct sbp2_device *)cmd->device->host->hostdata;
984 struct fw_unit *unit = sd->unit;
985 struct fw_device *device = fw_device(unit->device.parent);
986 struct sbp2_command_orb *orb;
987
988 /*
989 * Bidirectional commands are not yet implemented, and unknown
990 * transfer direction not handled.
991 */
992 if (cmd->sc_data_direction == DMA_BIDIRECTIONAL) {
993 fw_error("Can't handle DMA_BIDIRECTIONAL, rejecting command\n");
994 cmd->result = DID_ERROR << 16;
995 done(cmd);
996 return 0;
997 }
998
999 orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
1000 if (orb == NULL) {
1001 fw_notify("failed to alloc orb\n");
1002 goto fail_alloc;
1003 }
1004
1005 /* Initialize rcode to something not RCODE_COMPLETE. */
1006 orb->base.rcode = -1;
1007
1008 orb->unit = unit;
1009 orb->done = done;
1010 orb->cmd = cmd;
1011
1012 orb->request.next.high = SBP2_ORB_NULL;
1013 orb->request.next.low = 0x0;
1014 /*
1015 * At speed 100 we can do 512 bytes per packet, at speed 200,
1016 * 1024 bytes per packet etc. The SBP-2 max_payload field
1017 * specifies the max payload size as 2 ^ (max_payload + 2), so
1018 * if we set this to max_speed + 7, we get the right value.
1019 */
1020 orb->request.misc =
1021 COMMAND_ORB_MAX_PAYLOAD(device->max_speed + 7) |
1022 COMMAND_ORB_SPEED(device->max_speed) |
1023 COMMAND_ORB_NOTIFY;
1024
1025 if (cmd->sc_data_direction == DMA_FROM_DEVICE)
1026 orb->request.misc |=
1027 COMMAND_ORB_DIRECTION(SBP2_DIRECTION_FROM_MEDIA);
1028 else if (cmd->sc_data_direction == DMA_TO_DEVICE)
1029 orb->request.misc |=
1030 COMMAND_ORB_DIRECTION(SBP2_DIRECTION_TO_MEDIA);
1031
1032 if (scsi_sg_count(cmd) && sbp2_command_orb_map_scatterlist(orb) < 0)
1033 goto fail_mapping;
1034
1035 fw_memcpy_to_be32(&orb->request, &orb->request, sizeof(orb->request));
1036
1037 memset(orb->request.command_block,
1038 0, sizeof(orb->request.command_block));
1039 memcpy(orb->request.command_block, cmd->cmnd, COMMAND_SIZE(*cmd->cmnd));
1040
1041 orb->base.callback = complete_command_orb;
1042 orb->base.request_bus =
1043 dma_map_single(device->card->device, &orb->request,
1044 sizeof(orb->request), DMA_TO_DEVICE);
1045 if (dma_mapping_error(orb->base.request_bus))
1046 goto fail_mapping;
1047
1048 sbp2_send_orb(&orb->base, unit, sd->node_id, sd->generation,
1049 sd->command_block_agent_address + SBP2_ORB_POINTER);
1050
1051 return 0;
1052
1053 fail_mapping:
1054 kfree(orb);
1055 fail_alloc:
1056 return SCSI_MLQUEUE_HOST_BUSY;
1057 }
1058
1059 static int sbp2_scsi_slave_alloc(struct scsi_device *sdev)
1060 {
1061 struct sbp2_device *sd = (struct sbp2_device *)sdev->host->hostdata;
1062
1063 sdev->allow_restart = 1;
1064
1065 if (sd->workarounds & SBP2_WORKAROUND_INQUIRY_36)
1066 sdev->inquiry_len = 36;
1067 return 0;
1068 }
1069
1070 static int sbp2_scsi_slave_configure(struct scsi_device *sdev)
1071 {
1072 struct sbp2_device *sd = (struct sbp2_device *)sdev->host->hostdata;
1073 struct fw_unit *unit = sd->unit;
1074
1075 sdev->use_10_for_rw = 1;
1076
1077 if (sdev->type == TYPE_ROM)
1078 sdev->use_10_for_ms = 1;
1079 if (sdev->type == TYPE_DISK &&
1080 sd->workarounds & SBP2_WORKAROUND_MODE_SENSE_8)
1081 sdev->skip_ms_page_8 = 1;
1082 if (sd->workarounds & SBP2_WORKAROUND_FIX_CAPACITY) {
1083 fw_notify("setting fix_capacity for %s\n", unit->device.bus_id);
1084 sdev->fix_capacity = 1;
1085 }
1086 if (sd->workarounds & SBP2_WORKAROUND_128K_MAX_TRANS)
1087 blk_queue_max_sectors(sdev->request_queue, 128 * 1024 / 512);
1088 return 0;
1089 }
1090
1091 /*
1092 * Called by scsi stack when something has really gone wrong. Usually
1093 * called when a command has timed-out for some reason.
1094 */
1095 static int sbp2_scsi_abort(struct scsi_cmnd *cmd)
1096 {
1097 struct sbp2_device *sd =
1098 (struct sbp2_device *)cmd->device->host->hostdata;
1099 struct fw_unit *unit = sd->unit;
1100
1101 fw_notify("sbp2_scsi_abort\n");
1102 sbp2_agent_reset(unit);
1103 sbp2_cancel_orbs(unit);
1104
1105 return SUCCESS;
1106 }
1107
1108 /*
1109 * Format of /sys/bus/scsi/devices/.../ieee1394_id:
1110 * u64 EUI-64 : u24 directory_ID : u16 LUN (all printed in hexadecimal)
1111 *
1112 * This is the concatenation of target port identifier and logical unit
1113 * identifier as per SAM-2...SAM-4 annex A.
1114 */
1115 static ssize_t
1116 sbp2_sysfs_ieee1394_id_show(struct device *dev, struct device_attribute *attr,
1117 char *buf)
1118 {
1119 struct scsi_device *sdev = to_scsi_device(dev);
1120 struct sbp2_device *sd;
1121 struct fw_unit *unit;
1122 struct fw_device *device;
1123 u32 directory_id;
1124 struct fw_csr_iterator ci;
1125 int key, value, lun;
1126
1127 if (!sdev)
1128 return 0;
1129 sd = (struct sbp2_device *)sdev->host->hostdata;
1130 unit = sd->unit;
1131 device = fw_device(unit->device.parent);
1132
1133 /* implicit directory ID */
1134 directory_id = ((unit->directory - device->config_rom) * 4
1135 + CSR_CONFIG_ROM) & 0xffffff;
1136
1137 /* explicit directory ID, overrides implicit ID if present */
1138 fw_csr_iterator_init(&ci, unit->directory);
1139 while (fw_csr_iterator_next(&ci, &key, &value))
1140 if (key == CSR_DIRECTORY_ID) {
1141 directory_id = value;
1142 break;
1143 }
1144
1145 /* FIXME: Make this work for multi-lun devices. */
1146 lun = 0;
1147
1148 return sprintf(buf, "%08x%08x:%06x:%04x\n",
1149 device->config_rom[3], device->config_rom[4],
1150 directory_id, lun);
1151 }
1152
1153 static DEVICE_ATTR(ieee1394_id, S_IRUGO, sbp2_sysfs_ieee1394_id_show, NULL);
1154
1155 static struct device_attribute *sbp2_scsi_sysfs_attrs[] = {
1156 &dev_attr_ieee1394_id,
1157 NULL
1158 };
1159
1160 static struct scsi_host_template scsi_driver_template = {
1161 .module = THIS_MODULE,
1162 .name = "SBP-2 IEEE-1394",
1163 .proc_name = (char *)sbp2_driver_name,
1164 .queuecommand = sbp2_scsi_queuecommand,
1165 .slave_alloc = sbp2_scsi_slave_alloc,
1166 .slave_configure = sbp2_scsi_slave_configure,
1167 .eh_abort_handler = sbp2_scsi_abort,
1168 .this_id = -1,
1169 .sg_tablesize = SG_ALL,
1170 .use_clustering = ENABLE_CLUSTERING,
1171 .cmd_per_lun = 1,
1172 .can_queue = 1,
1173 .sdev_attrs = sbp2_scsi_sysfs_attrs,
1174 };
1175
1176 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1177 MODULE_DESCRIPTION("SCSI over IEEE1394");
1178 MODULE_LICENSE("GPL");
1179 MODULE_DEVICE_TABLE(ieee1394, sbp2_id_table);
1180
1181 /* Provide a module alias so root-on-sbp2 initrds don't break. */
1182 #ifndef CONFIG_IEEE1394_SBP2_MODULE
1183 MODULE_ALIAS("sbp2");
1184 #endif
1185
1186 static int __init sbp2_init(void)
1187 {
1188 return driver_register(&sbp2_driver.driver);
1189 }
1190
1191 static void __exit sbp2_cleanup(void)
1192 {
1193 driver_unregister(&sbp2_driver.driver);
1194 }
1195
1196 module_init(sbp2_init);
1197 module_exit(sbp2_cleanup);