]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/firewire/net.c
net: add ETH_P_802_3_MIN
[mirror_ubuntu-jammy-kernel.git] / drivers / firewire / net.c
1 /*
2 * IPv4 over IEEE 1394, per RFC 2734
3 * IPv6 over IEEE 1394, per RFC 3146
4 *
5 * Copyright (C) 2009 Jay Fenlason <fenlason@redhat.com>
6 *
7 * based on eth1394 by Ben Collins et al
8 */
9
10 #include <linux/bug.h>
11 #include <linux/compiler.h>
12 #include <linux/delay.h>
13 #include <linux/device.h>
14 #include <linux/ethtool.h>
15 #include <linux/firewire.h>
16 #include <linux/firewire-constants.h>
17 #include <linux/highmem.h>
18 #include <linux/in.h>
19 #include <linux/ip.h>
20 #include <linux/jiffies.h>
21 #include <linux/mod_devicetable.h>
22 #include <linux/module.h>
23 #include <linux/moduleparam.h>
24 #include <linux/mutex.h>
25 #include <linux/netdevice.h>
26 #include <linux/skbuff.h>
27 #include <linux/slab.h>
28 #include <linux/spinlock.h>
29
30 #include <asm/unaligned.h>
31 #include <net/arp.h>
32 #include <net/firewire.h>
33
34 /* rx limits */
35 #define FWNET_MAX_FRAGMENTS 30 /* arbitrary, > TX queue depth */
36 #define FWNET_ISO_PAGE_COUNT (PAGE_SIZE < 16*1024 ? 4 : 2)
37
38 /* tx limits */
39 #define FWNET_MAX_QUEUED_DATAGRAMS 20 /* < 64 = number of tlabels */
40 #define FWNET_MIN_QUEUED_DATAGRAMS 10 /* should keep AT DMA busy enough */
41 #define FWNET_TX_QUEUE_LEN FWNET_MAX_QUEUED_DATAGRAMS /* ? */
42
43 #define IEEE1394_BROADCAST_CHANNEL 31
44 #define IEEE1394_ALL_NODES (0xffc0 | 0x003f)
45 #define IEEE1394_MAX_PAYLOAD_S100 512
46 #define FWNET_NO_FIFO_ADDR (~0ULL)
47
48 #define IANA_SPECIFIER_ID 0x00005eU
49 #define RFC2734_SW_VERSION 0x000001U
50 #define RFC3146_SW_VERSION 0x000002U
51
52 #define IEEE1394_GASP_HDR_SIZE 8
53
54 #define RFC2374_UNFRAG_HDR_SIZE 4
55 #define RFC2374_FRAG_HDR_SIZE 8
56 #define RFC2374_FRAG_OVERHEAD 4
57
58 #define RFC2374_HDR_UNFRAG 0 /* unfragmented */
59 #define RFC2374_HDR_FIRSTFRAG 1 /* first fragment */
60 #define RFC2374_HDR_LASTFRAG 2 /* last fragment */
61 #define RFC2374_HDR_INTFRAG 3 /* interior fragment */
62
63 static bool fwnet_hwaddr_is_multicast(u8 *ha)
64 {
65 return !!(*ha & 1);
66 }
67
68 /* IPv4 and IPv6 encapsulation header */
69 struct rfc2734_header {
70 u32 w0;
71 u32 w1;
72 };
73
74 #define fwnet_get_hdr_lf(h) (((h)->w0 & 0xc0000000) >> 30)
75 #define fwnet_get_hdr_ether_type(h) (((h)->w0 & 0x0000ffff))
76 #define fwnet_get_hdr_dg_size(h) (((h)->w0 & 0x0fff0000) >> 16)
77 #define fwnet_get_hdr_fg_off(h) (((h)->w0 & 0x00000fff))
78 #define fwnet_get_hdr_dgl(h) (((h)->w1 & 0xffff0000) >> 16)
79
80 #define fwnet_set_hdr_lf(lf) ((lf) << 30)
81 #define fwnet_set_hdr_ether_type(et) (et)
82 #define fwnet_set_hdr_dg_size(dgs) ((dgs) << 16)
83 #define fwnet_set_hdr_fg_off(fgo) (fgo)
84
85 #define fwnet_set_hdr_dgl(dgl) ((dgl) << 16)
86
87 static inline void fwnet_make_uf_hdr(struct rfc2734_header *hdr,
88 unsigned ether_type)
89 {
90 hdr->w0 = fwnet_set_hdr_lf(RFC2374_HDR_UNFRAG)
91 | fwnet_set_hdr_ether_type(ether_type);
92 }
93
94 static inline void fwnet_make_ff_hdr(struct rfc2734_header *hdr,
95 unsigned ether_type, unsigned dg_size, unsigned dgl)
96 {
97 hdr->w0 = fwnet_set_hdr_lf(RFC2374_HDR_FIRSTFRAG)
98 | fwnet_set_hdr_dg_size(dg_size)
99 | fwnet_set_hdr_ether_type(ether_type);
100 hdr->w1 = fwnet_set_hdr_dgl(dgl);
101 }
102
103 static inline void fwnet_make_sf_hdr(struct rfc2734_header *hdr,
104 unsigned lf, unsigned dg_size, unsigned fg_off, unsigned dgl)
105 {
106 hdr->w0 = fwnet_set_hdr_lf(lf)
107 | fwnet_set_hdr_dg_size(dg_size)
108 | fwnet_set_hdr_fg_off(fg_off);
109 hdr->w1 = fwnet_set_hdr_dgl(dgl);
110 }
111
112 /* This list keeps track of what parts of the datagram have been filled in */
113 struct fwnet_fragment_info {
114 struct list_head fi_link;
115 u16 offset;
116 u16 len;
117 };
118
119 struct fwnet_partial_datagram {
120 struct list_head pd_link;
121 struct list_head fi_list;
122 struct sk_buff *skb;
123 /* FIXME Why not use skb->data? */
124 char *pbuf;
125 u16 datagram_label;
126 u16 ether_type;
127 u16 datagram_size;
128 };
129
130 static DEFINE_MUTEX(fwnet_device_mutex);
131 static LIST_HEAD(fwnet_device_list);
132
133 struct fwnet_device {
134 struct list_head dev_link;
135 spinlock_t lock;
136 enum {
137 FWNET_BROADCAST_ERROR,
138 FWNET_BROADCAST_RUNNING,
139 FWNET_BROADCAST_STOPPED,
140 } broadcast_state;
141 struct fw_iso_context *broadcast_rcv_context;
142 struct fw_iso_buffer broadcast_rcv_buffer;
143 void **broadcast_rcv_buffer_ptrs;
144 unsigned broadcast_rcv_next_ptr;
145 unsigned num_broadcast_rcv_ptrs;
146 unsigned rcv_buffer_size;
147 /*
148 * This value is the maximum unfragmented datagram size that can be
149 * sent by the hardware. It already has the GASP overhead and the
150 * unfragmented datagram header overhead calculated into it.
151 */
152 unsigned broadcast_xmt_max_payload;
153 u16 broadcast_xmt_datagramlabel;
154
155 /*
156 * The CSR address that remote nodes must send datagrams to for us to
157 * receive them.
158 */
159 struct fw_address_handler handler;
160 u64 local_fifo;
161
162 /* Number of tx datagrams that have been queued but not yet acked */
163 int queued_datagrams;
164
165 int peer_count;
166 struct list_head peer_list;
167 struct fw_card *card;
168 struct net_device *netdev;
169 };
170
171 struct fwnet_peer {
172 struct list_head peer_link;
173 struct fwnet_device *dev;
174 u64 guid;
175
176 /* guarded by dev->lock */
177 struct list_head pd_list; /* received partial datagrams */
178 unsigned pdg_size; /* pd_list size */
179
180 u16 datagram_label; /* outgoing datagram label */
181 u16 max_payload; /* includes RFC2374_FRAG_HDR_SIZE overhead */
182 int node_id;
183 int generation;
184 unsigned speed;
185 };
186
187 /* This is our task struct. It's used for the packet complete callback. */
188 struct fwnet_packet_task {
189 struct fw_transaction transaction;
190 struct rfc2734_header hdr;
191 struct sk_buff *skb;
192 struct fwnet_device *dev;
193
194 int outstanding_pkts;
195 u64 fifo_addr;
196 u16 dest_node;
197 u16 max_payload;
198 u8 generation;
199 u8 speed;
200 u8 enqueued;
201 };
202
203 /*
204 * Get fifo address embedded in hwaddr
205 */
206 static __u64 fwnet_hwaddr_fifo(union fwnet_hwaddr *ha)
207 {
208 return (u64)get_unaligned_be16(&ha->uc.fifo_hi) << 32
209 | get_unaligned_be32(&ha->uc.fifo_lo);
210 }
211
212 /*
213 * saddr == NULL means use device source address.
214 * daddr == NULL means leave destination address (eg unresolved arp).
215 */
216 static int fwnet_header_create(struct sk_buff *skb, struct net_device *net,
217 unsigned short type, const void *daddr,
218 const void *saddr, unsigned len)
219 {
220 struct fwnet_header *h;
221
222 h = (struct fwnet_header *)skb_push(skb, sizeof(*h));
223 put_unaligned_be16(type, &h->h_proto);
224
225 if (net->flags & (IFF_LOOPBACK | IFF_NOARP)) {
226 memset(h->h_dest, 0, net->addr_len);
227
228 return net->hard_header_len;
229 }
230
231 if (daddr) {
232 memcpy(h->h_dest, daddr, net->addr_len);
233
234 return net->hard_header_len;
235 }
236
237 return -net->hard_header_len;
238 }
239
240 static int fwnet_header_rebuild(struct sk_buff *skb)
241 {
242 struct fwnet_header *h = (struct fwnet_header *)skb->data;
243
244 if (get_unaligned_be16(&h->h_proto) == ETH_P_IP)
245 return arp_find((unsigned char *)&h->h_dest, skb);
246
247 dev_notice(&skb->dev->dev, "unable to resolve type %04x addresses\n",
248 be16_to_cpu(h->h_proto));
249 return 0;
250 }
251
252 static int fwnet_header_cache(const struct neighbour *neigh,
253 struct hh_cache *hh, __be16 type)
254 {
255 struct net_device *net;
256 struct fwnet_header *h;
257
258 if (type == cpu_to_be16(ETH_P_802_3))
259 return -1;
260 net = neigh->dev;
261 h = (struct fwnet_header *)((u8 *)hh->hh_data + HH_DATA_OFF(sizeof(*h)));
262 h->h_proto = type;
263 memcpy(h->h_dest, neigh->ha, net->addr_len);
264 hh->hh_len = FWNET_HLEN;
265
266 return 0;
267 }
268
269 /* Called by Address Resolution module to notify changes in address. */
270 static void fwnet_header_cache_update(struct hh_cache *hh,
271 const struct net_device *net, const unsigned char *haddr)
272 {
273 memcpy((u8 *)hh->hh_data + HH_DATA_OFF(FWNET_HLEN), haddr, net->addr_len);
274 }
275
276 static int fwnet_header_parse(const struct sk_buff *skb, unsigned char *haddr)
277 {
278 memcpy(haddr, skb->dev->dev_addr, FWNET_ALEN);
279
280 return FWNET_ALEN;
281 }
282
283 static const struct header_ops fwnet_header_ops = {
284 .create = fwnet_header_create,
285 .rebuild = fwnet_header_rebuild,
286 .cache = fwnet_header_cache,
287 .cache_update = fwnet_header_cache_update,
288 .parse = fwnet_header_parse,
289 };
290
291 /* FIXME: is this correct for all cases? */
292 static bool fwnet_frag_overlap(struct fwnet_partial_datagram *pd,
293 unsigned offset, unsigned len)
294 {
295 struct fwnet_fragment_info *fi;
296 unsigned end = offset + len;
297
298 list_for_each_entry(fi, &pd->fi_list, fi_link)
299 if (offset < fi->offset + fi->len && end > fi->offset)
300 return true;
301
302 return false;
303 }
304
305 /* Assumes that new fragment does not overlap any existing fragments */
306 static struct fwnet_fragment_info *fwnet_frag_new(
307 struct fwnet_partial_datagram *pd, unsigned offset, unsigned len)
308 {
309 struct fwnet_fragment_info *fi, *fi2, *new;
310 struct list_head *list;
311
312 list = &pd->fi_list;
313 list_for_each_entry(fi, &pd->fi_list, fi_link) {
314 if (fi->offset + fi->len == offset) {
315 /* The new fragment can be tacked on to the end */
316 /* Did the new fragment plug a hole? */
317 fi2 = list_entry(fi->fi_link.next,
318 struct fwnet_fragment_info, fi_link);
319 if (fi->offset + fi->len == fi2->offset) {
320 /* glue fragments together */
321 fi->len += len + fi2->len;
322 list_del(&fi2->fi_link);
323 kfree(fi2);
324 } else {
325 fi->len += len;
326 }
327
328 return fi;
329 }
330 if (offset + len == fi->offset) {
331 /* The new fragment can be tacked on to the beginning */
332 /* Did the new fragment plug a hole? */
333 fi2 = list_entry(fi->fi_link.prev,
334 struct fwnet_fragment_info, fi_link);
335 if (fi2->offset + fi2->len == fi->offset) {
336 /* glue fragments together */
337 fi2->len += fi->len + len;
338 list_del(&fi->fi_link);
339 kfree(fi);
340
341 return fi2;
342 }
343 fi->offset = offset;
344 fi->len += len;
345
346 return fi;
347 }
348 if (offset > fi->offset + fi->len) {
349 list = &fi->fi_link;
350 break;
351 }
352 if (offset + len < fi->offset) {
353 list = fi->fi_link.prev;
354 break;
355 }
356 }
357
358 new = kmalloc(sizeof(*new), GFP_ATOMIC);
359 if (!new) {
360 dev_err(&pd->skb->dev->dev, "out of memory\n");
361 return NULL;
362 }
363
364 new->offset = offset;
365 new->len = len;
366 list_add(&new->fi_link, list);
367
368 return new;
369 }
370
371 static struct fwnet_partial_datagram *fwnet_pd_new(struct net_device *net,
372 struct fwnet_peer *peer, u16 datagram_label, unsigned dg_size,
373 void *frag_buf, unsigned frag_off, unsigned frag_len)
374 {
375 struct fwnet_partial_datagram *new;
376 struct fwnet_fragment_info *fi;
377
378 new = kmalloc(sizeof(*new), GFP_ATOMIC);
379 if (!new)
380 goto fail;
381
382 INIT_LIST_HEAD(&new->fi_list);
383 fi = fwnet_frag_new(new, frag_off, frag_len);
384 if (fi == NULL)
385 goto fail_w_new;
386
387 new->datagram_label = datagram_label;
388 new->datagram_size = dg_size;
389 new->skb = dev_alloc_skb(dg_size + LL_RESERVED_SPACE(net));
390 if (new->skb == NULL)
391 goto fail_w_fi;
392
393 skb_reserve(new->skb, LL_RESERVED_SPACE(net));
394 new->pbuf = skb_put(new->skb, dg_size);
395 memcpy(new->pbuf + frag_off, frag_buf, frag_len);
396 list_add_tail(&new->pd_link, &peer->pd_list);
397
398 return new;
399
400 fail_w_fi:
401 kfree(fi);
402 fail_w_new:
403 kfree(new);
404 fail:
405 dev_err(&net->dev, "out of memory\n");
406
407 return NULL;
408 }
409
410 static struct fwnet_partial_datagram *fwnet_pd_find(struct fwnet_peer *peer,
411 u16 datagram_label)
412 {
413 struct fwnet_partial_datagram *pd;
414
415 list_for_each_entry(pd, &peer->pd_list, pd_link)
416 if (pd->datagram_label == datagram_label)
417 return pd;
418
419 return NULL;
420 }
421
422
423 static void fwnet_pd_delete(struct fwnet_partial_datagram *old)
424 {
425 struct fwnet_fragment_info *fi, *n;
426
427 list_for_each_entry_safe(fi, n, &old->fi_list, fi_link)
428 kfree(fi);
429
430 list_del(&old->pd_link);
431 dev_kfree_skb_any(old->skb);
432 kfree(old);
433 }
434
435 static bool fwnet_pd_update(struct fwnet_peer *peer,
436 struct fwnet_partial_datagram *pd, void *frag_buf,
437 unsigned frag_off, unsigned frag_len)
438 {
439 if (fwnet_frag_new(pd, frag_off, frag_len) == NULL)
440 return false;
441
442 memcpy(pd->pbuf + frag_off, frag_buf, frag_len);
443
444 /*
445 * Move list entry to beginning of list so that oldest partial
446 * datagrams percolate to the end of the list
447 */
448 list_move_tail(&pd->pd_link, &peer->pd_list);
449
450 return true;
451 }
452
453 static bool fwnet_pd_is_complete(struct fwnet_partial_datagram *pd)
454 {
455 struct fwnet_fragment_info *fi;
456
457 fi = list_entry(pd->fi_list.next, struct fwnet_fragment_info, fi_link);
458
459 return fi->len == pd->datagram_size;
460 }
461
462 /* caller must hold dev->lock */
463 static struct fwnet_peer *fwnet_peer_find_by_guid(struct fwnet_device *dev,
464 u64 guid)
465 {
466 struct fwnet_peer *peer;
467
468 list_for_each_entry(peer, &dev->peer_list, peer_link)
469 if (peer->guid == guid)
470 return peer;
471
472 return NULL;
473 }
474
475 /* caller must hold dev->lock */
476 static struct fwnet_peer *fwnet_peer_find_by_node_id(struct fwnet_device *dev,
477 int node_id, int generation)
478 {
479 struct fwnet_peer *peer;
480
481 list_for_each_entry(peer, &dev->peer_list, peer_link)
482 if (peer->node_id == node_id &&
483 peer->generation == generation)
484 return peer;
485
486 return NULL;
487 }
488
489 /* See IEEE 1394-2008 table 6-4, table 8-8, table 16-18. */
490 static unsigned fwnet_max_payload(unsigned max_rec, unsigned speed)
491 {
492 max_rec = min(max_rec, speed + 8);
493 max_rec = clamp(max_rec, 8U, 11U); /* 512...4096 */
494
495 return (1 << (max_rec + 1)) - RFC2374_FRAG_HDR_SIZE;
496 }
497
498
499 static int fwnet_finish_incoming_packet(struct net_device *net,
500 struct sk_buff *skb, u16 source_node_id,
501 bool is_broadcast, u16 ether_type)
502 {
503 struct fwnet_device *dev;
504 int status;
505 __be64 guid;
506
507 switch (ether_type) {
508 case ETH_P_ARP:
509 case ETH_P_IP:
510 #if IS_ENABLED(CONFIG_IPV6)
511 case ETH_P_IPV6:
512 #endif
513 break;
514 default:
515 goto err;
516 }
517
518 dev = netdev_priv(net);
519 /* Write metadata, and then pass to the receive level */
520 skb->dev = net;
521 skb->ip_summed = CHECKSUM_NONE;
522
523 /*
524 * Parse the encapsulation header. This actually does the job of
525 * converting to an ethernet-like pseudo frame header.
526 */
527 guid = cpu_to_be64(dev->card->guid);
528 if (dev_hard_header(skb, net, ether_type,
529 is_broadcast ? net->broadcast : net->dev_addr,
530 NULL, skb->len) >= 0) {
531 struct fwnet_header *eth;
532 u16 *rawp;
533 __be16 protocol;
534
535 skb_reset_mac_header(skb);
536 skb_pull(skb, sizeof(*eth));
537 eth = (struct fwnet_header *)skb_mac_header(skb);
538 if (fwnet_hwaddr_is_multicast(eth->h_dest)) {
539 if (memcmp(eth->h_dest, net->broadcast,
540 net->addr_len) == 0)
541 skb->pkt_type = PACKET_BROADCAST;
542 #if 0
543 else
544 skb->pkt_type = PACKET_MULTICAST;
545 #endif
546 } else {
547 if (memcmp(eth->h_dest, net->dev_addr, net->addr_len))
548 skb->pkt_type = PACKET_OTHERHOST;
549 }
550 if (ntohs(eth->h_proto) >= ETH_P_802_3_MIN) {
551 protocol = eth->h_proto;
552 } else {
553 rawp = (u16 *)skb->data;
554 if (*rawp == 0xffff)
555 protocol = htons(ETH_P_802_3);
556 else
557 protocol = htons(ETH_P_802_2);
558 }
559 skb->protocol = protocol;
560 }
561 status = netif_rx(skb);
562 if (status == NET_RX_DROP) {
563 net->stats.rx_errors++;
564 net->stats.rx_dropped++;
565 } else {
566 net->stats.rx_packets++;
567 net->stats.rx_bytes += skb->len;
568 }
569
570 return 0;
571
572 err:
573 net->stats.rx_errors++;
574 net->stats.rx_dropped++;
575
576 dev_kfree_skb_any(skb);
577
578 return -ENOENT;
579 }
580
581 static int fwnet_incoming_packet(struct fwnet_device *dev, __be32 *buf, int len,
582 int source_node_id, int generation,
583 bool is_broadcast)
584 {
585 struct sk_buff *skb;
586 struct net_device *net = dev->netdev;
587 struct rfc2734_header hdr;
588 unsigned lf;
589 unsigned long flags;
590 struct fwnet_peer *peer;
591 struct fwnet_partial_datagram *pd;
592 int fg_off;
593 int dg_size;
594 u16 datagram_label;
595 int retval;
596 u16 ether_type;
597
598 hdr.w0 = be32_to_cpu(buf[0]);
599 lf = fwnet_get_hdr_lf(&hdr);
600 if (lf == RFC2374_HDR_UNFRAG) {
601 /*
602 * An unfragmented datagram has been received by the ieee1394
603 * bus. Build an skbuff around it so we can pass it to the
604 * high level network layer.
605 */
606 ether_type = fwnet_get_hdr_ether_type(&hdr);
607 buf++;
608 len -= RFC2374_UNFRAG_HDR_SIZE;
609
610 skb = dev_alloc_skb(len + LL_RESERVED_SPACE(net));
611 if (unlikely(!skb)) {
612 dev_err(&net->dev, "out of memory\n");
613 net->stats.rx_dropped++;
614
615 return -ENOMEM;
616 }
617 skb_reserve(skb, LL_RESERVED_SPACE(net));
618 memcpy(skb_put(skb, len), buf, len);
619
620 return fwnet_finish_incoming_packet(net, skb, source_node_id,
621 is_broadcast, ether_type);
622 }
623 /* A datagram fragment has been received, now the fun begins. */
624 hdr.w1 = ntohl(buf[1]);
625 buf += 2;
626 len -= RFC2374_FRAG_HDR_SIZE;
627 if (lf == RFC2374_HDR_FIRSTFRAG) {
628 ether_type = fwnet_get_hdr_ether_type(&hdr);
629 fg_off = 0;
630 } else {
631 ether_type = 0;
632 fg_off = fwnet_get_hdr_fg_off(&hdr);
633 }
634 datagram_label = fwnet_get_hdr_dgl(&hdr);
635 dg_size = fwnet_get_hdr_dg_size(&hdr); /* ??? + 1 */
636
637 spin_lock_irqsave(&dev->lock, flags);
638
639 peer = fwnet_peer_find_by_node_id(dev, source_node_id, generation);
640 if (!peer) {
641 retval = -ENOENT;
642 goto fail;
643 }
644
645 pd = fwnet_pd_find(peer, datagram_label);
646 if (pd == NULL) {
647 while (peer->pdg_size >= FWNET_MAX_FRAGMENTS) {
648 /* remove the oldest */
649 fwnet_pd_delete(list_first_entry(&peer->pd_list,
650 struct fwnet_partial_datagram, pd_link));
651 peer->pdg_size--;
652 }
653 pd = fwnet_pd_new(net, peer, datagram_label,
654 dg_size, buf, fg_off, len);
655 if (pd == NULL) {
656 retval = -ENOMEM;
657 goto fail;
658 }
659 peer->pdg_size++;
660 } else {
661 if (fwnet_frag_overlap(pd, fg_off, len) ||
662 pd->datagram_size != dg_size) {
663 /*
664 * Differing datagram sizes or overlapping fragments,
665 * discard old datagram and start a new one.
666 */
667 fwnet_pd_delete(pd);
668 pd = fwnet_pd_new(net, peer, datagram_label,
669 dg_size, buf, fg_off, len);
670 if (pd == NULL) {
671 peer->pdg_size--;
672 retval = -ENOMEM;
673 goto fail;
674 }
675 } else {
676 if (!fwnet_pd_update(peer, pd, buf, fg_off, len)) {
677 /*
678 * Couldn't save off fragment anyway
679 * so might as well obliterate the
680 * datagram now.
681 */
682 fwnet_pd_delete(pd);
683 peer->pdg_size--;
684 retval = -ENOMEM;
685 goto fail;
686 }
687 }
688 } /* new datagram or add to existing one */
689
690 if (lf == RFC2374_HDR_FIRSTFRAG)
691 pd->ether_type = ether_type;
692
693 if (fwnet_pd_is_complete(pd)) {
694 ether_type = pd->ether_type;
695 peer->pdg_size--;
696 skb = skb_get(pd->skb);
697 fwnet_pd_delete(pd);
698
699 spin_unlock_irqrestore(&dev->lock, flags);
700
701 return fwnet_finish_incoming_packet(net, skb, source_node_id,
702 false, ether_type);
703 }
704 /*
705 * Datagram is not complete, we're done for the
706 * moment.
707 */
708 retval = 0;
709 fail:
710 spin_unlock_irqrestore(&dev->lock, flags);
711
712 return retval;
713 }
714
715 static void fwnet_receive_packet(struct fw_card *card, struct fw_request *r,
716 int tcode, int destination, int source, int generation,
717 unsigned long long offset, void *payload, size_t length,
718 void *callback_data)
719 {
720 struct fwnet_device *dev = callback_data;
721 int rcode;
722
723 if (destination == IEEE1394_ALL_NODES) {
724 kfree(r);
725
726 return;
727 }
728
729 if (offset != dev->handler.offset)
730 rcode = RCODE_ADDRESS_ERROR;
731 else if (tcode != TCODE_WRITE_BLOCK_REQUEST)
732 rcode = RCODE_TYPE_ERROR;
733 else if (fwnet_incoming_packet(dev, payload, length,
734 source, generation, false) != 0) {
735 dev_err(&dev->netdev->dev, "incoming packet failure\n");
736 rcode = RCODE_CONFLICT_ERROR;
737 } else
738 rcode = RCODE_COMPLETE;
739
740 fw_send_response(card, r, rcode);
741 }
742
743 static void fwnet_receive_broadcast(struct fw_iso_context *context,
744 u32 cycle, size_t header_length, void *header, void *data)
745 {
746 struct fwnet_device *dev;
747 struct fw_iso_packet packet;
748 __be16 *hdr_ptr;
749 __be32 *buf_ptr;
750 int retval;
751 u32 length;
752 u16 source_node_id;
753 u32 specifier_id;
754 u32 ver;
755 unsigned long offset;
756 unsigned long flags;
757
758 dev = data;
759 hdr_ptr = header;
760 length = be16_to_cpup(hdr_ptr);
761
762 spin_lock_irqsave(&dev->lock, flags);
763
764 offset = dev->rcv_buffer_size * dev->broadcast_rcv_next_ptr;
765 buf_ptr = dev->broadcast_rcv_buffer_ptrs[dev->broadcast_rcv_next_ptr++];
766 if (dev->broadcast_rcv_next_ptr == dev->num_broadcast_rcv_ptrs)
767 dev->broadcast_rcv_next_ptr = 0;
768
769 spin_unlock_irqrestore(&dev->lock, flags);
770
771 specifier_id = (be32_to_cpu(buf_ptr[0]) & 0xffff) << 8
772 | (be32_to_cpu(buf_ptr[1]) & 0xff000000) >> 24;
773 ver = be32_to_cpu(buf_ptr[1]) & 0xffffff;
774 source_node_id = be32_to_cpu(buf_ptr[0]) >> 16;
775
776 if (specifier_id == IANA_SPECIFIER_ID &&
777 (ver == RFC2734_SW_VERSION
778 #if IS_ENABLED(CONFIG_IPV6)
779 || ver == RFC3146_SW_VERSION
780 #endif
781 )) {
782 buf_ptr += 2;
783 length -= IEEE1394_GASP_HDR_SIZE;
784 fwnet_incoming_packet(dev, buf_ptr, length, source_node_id,
785 context->card->generation, true);
786 }
787
788 packet.payload_length = dev->rcv_buffer_size;
789 packet.interrupt = 1;
790 packet.skip = 0;
791 packet.tag = 3;
792 packet.sy = 0;
793 packet.header_length = IEEE1394_GASP_HDR_SIZE;
794
795 spin_lock_irqsave(&dev->lock, flags);
796
797 retval = fw_iso_context_queue(dev->broadcast_rcv_context, &packet,
798 &dev->broadcast_rcv_buffer, offset);
799
800 spin_unlock_irqrestore(&dev->lock, flags);
801
802 if (retval >= 0)
803 fw_iso_context_queue_flush(dev->broadcast_rcv_context);
804 else
805 dev_err(&dev->netdev->dev, "requeue failed\n");
806 }
807
808 static struct kmem_cache *fwnet_packet_task_cache;
809
810 static void fwnet_free_ptask(struct fwnet_packet_task *ptask)
811 {
812 dev_kfree_skb_any(ptask->skb);
813 kmem_cache_free(fwnet_packet_task_cache, ptask);
814 }
815
816 /* Caller must hold dev->lock. */
817 static void dec_queued_datagrams(struct fwnet_device *dev)
818 {
819 if (--dev->queued_datagrams == FWNET_MIN_QUEUED_DATAGRAMS)
820 netif_wake_queue(dev->netdev);
821 }
822
823 static int fwnet_send_packet(struct fwnet_packet_task *ptask);
824
825 static void fwnet_transmit_packet_done(struct fwnet_packet_task *ptask)
826 {
827 struct fwnet_device *dev = ptask->dev;
828 struct sk_buff *skb = ptask->skb;
829 unsigned long flags;
830 bool free;
831
832 spin_lock_irqsave(&dev->lock, flags);
833
834 ptask->outstanding_pkts--;
835
836 /* Check whether we or the networking TX soft-IRQ is last user. */
837 free = (ptask->outstanding_pkts == 0 && ptask->enqueued);
838 if (free)
839 dec_queued_datagrams(dev);
840
841 if (ptask->outstanding_pkts == 0) {
842 dev->netdev->stats.tx_packets++;
843 dev->netdev->stats.tx_bytes += skb->len;
844 }
845
846 spin_unlock_irqrestore(&dev->lock, flags);
847
848 if (ptask->outstanding_pkts > 0) {
849 u16 dg_size;
850 u16 fg_off;
851 u16 datagram_label;
852 u16 lf;
853
854 /* Update the ptask to point to the next fragment and send it */
855 lf = fwnet_get_hdr_lf(&ptask->hdr);
856 switch (lf) {
857 case RFC2374_HDR_LASTFRAG:
858 case RFC2374_HDR_UNFRAG:
859 default:
860 dev_err(&dev->netdev->dev,
861 "outstanding packet %x lf %x, header %x,%x\n",
862 ptask->outstanding_pkts, lf, ptask->hdr.w0,
863 ptask->hdr.w1);
864 BUG();
865
866 case RFC2374_HDR_FIRSTFRAG:
867 /* Set frag type here for future interior fragments */
868 dg_size = fwnet_get_hdr_dg_size(&ptask->hdr);
869 fg_off = ptask->max_payload - RFC2374_FRAG_HDR_SIZE;
870 datagram_label = fwnet_get_hdr_dgl(&ptask->hdr);
871 break;
872
873 case RFC2374_HDR_INTFRAG:
874 dg_size = fwnet_get_hdr_dg_size(&ptask->hdr);
875 fg_off = fwnet_get_hdr_fg_off(&ptask->hdr)
876 + ptask->max_payload - RFC2374_FRAG_HDR_SIZE;
877 datagram_label = fwnet_get_hdr_dgl(&ptask->hdr);
878 break;
879 }
880
881 if (ptask->dest_node == IEEE1394_ALL_NODES) {
882 skb_pull(skb,
883 ptask->max_payload + IEEE1394_GASP_HDR_SIZE);
884 } else {
885 skb_pull(skb, ptask->max_payload);
886 }
887 if (ptask->outstanding_pkts > 1) {
888 fwnet_make_sf_hdr(&ptask->hdr, RFC2374_HDR_INTFRAG,
889 dg_size, fg_off, datagram_label);
890 } else {
891 fwnet_make_sf_hdr(&ptask->hdr, RFC2374_HDR_LASTFRAG,
892 dg_size, fg_off, datagram_label);
893 ptask->max_payload = skb->len + RFC2374_FRAG_HDR_SIZE;
894 }
895 fwnet_send_packet(ptask);
896 }
897
898 if (free)
899 fwnet_free_ptask(ptask);
900 }
901
902 static void fwnet_transmit_packet_failed(struct fwnet_packet_task *ptask)
903 {
904 struct fwnet_device *dev = ptask->dev;
905 unsigned long flags;
906 bool free;
907
908 spin_lock_irqsave(&dev->lock, flags);
909
910 /* One fragment failed; don't try to send remaining fragments. */
911 ptask->outstanding_pkts = 0;
912
913 /* Check whether we or the networking TX soft-IRQ is last user. */
914 free = ptask->enqueued;
915 if (free)
916 dec_queued_datagrams(dev);
917
918 dev->netdev->stats.tx_dropped++;
919 dev->netdev->stats.tx_errors++;
920
921 spin_unlock_irqrestore(&dev->lock, flags);
922
923 if (free)
924 fwnet_free_ptask(ptask);
925 }
926
927 static void fwnet_write_complete(struct fw_card *card, int rcode,
928 void *payload, size_t length, void *data)
929 {
930 struct fwnet_packet_task *ptask = data;
931 static unsigned long j;
932 static int last_rcode, errors_skipped;
933
934 if (rcode == RCODE_COMPLETE) {
935 fwnet_transmit_packet_done(ptask);
936 } else {
937 fwnet_transmit_packet_failed(ptask);
938
939 if (printk_timed_ratelimit(&j, 1000) || rcode != last_rcode) {
940 dev_err(&ptask->dev->netdev->dev,
941 "fwnet_write_complete failed: %x (skipped %d)\n",
942 rcode, errors_skipped);
943
944 errors_skipped = 0;
945 last_rcode = rcode;
946 } else
947 errors_skipped++;
948 }
949 }
950
951 static int fwnet_send_packet(struct fwnet_packet_task *ptask)
952 {
953 struct fwnet_device *dev;
954 unsigned tx_len;
955 struct rfc2734_header *bufhdr;
956 unsigned long flags;
957 bool free;
958
959 dev = ptask->dev;
960 tx_len = ptask->max_payload;
961 switch (fwnet_get_hdr_lf(&ptask->hdr)) {
962 case RFC2374_HDR_UNFRAG:
963 bufhdr = (struct rfc2734_header *)
964 skb_push(ptask->skb, RFC2374_UNFRAG_HDR_SIZE);
965 put_unaligned_be32(ptask->hdr.w0, &bufhdr->w0);
966 break;
967
968 case RFC2374_HDR_FIRSTFRAG:
969 case RFC2374_HDR_INTFRAG:
970 case RFC2374_HDR_LASTFRAG:
971 bufhdr = (struct rfc2734_header *)
972 skb_push(ptask->skb, RFC2374_FRAG_HDR_SIZE);
973 put_unaligned_be32(ptask->hdr.w0, &bufhdr->w0);
974 put_unaligned_be32(ptask->hdr.w1, &bufhdr->w1);
975 break;
976
977 default:
978 BUG();
979 }
980 if (ptask->dest_node == IEEE1394_ALL_NODES) {
981 u8 *p;
982 int generation;
983 int node_id;
984 unsigned int sw_version;
985
986 /* ptask->generation may not have been set yet */
987 generation = dev->card->generation;
988 smp_rmb();
989 node_id = dev->card->node_id;
990
991 switch (ptask->skb->protocol) {
992 default:
993 sw_version = RFC2734_SW_VERSION;
994 break;
995 #if IS_ENABLED(CONFIG_IPV6)
996 case htons(ETH_P_IPV6):
997 sw_version = RFC3146_SW_VERSION;
998 #endif
999 }
1000
1001 p = skb_push(ptask->skb, IEEE1394_GASP_HDR_SIZE);
1002 put_unaligned_be32(node_id << 16 | IANA_SPECIFIER_ID >> 8, p);
1003 put_unaligned_be32((IANA_SPECIFIER_ID & 0xff) << 24
1004 | sw_version, &p[4]);
1005
1006 /* We should not transmit if broadcast_channel.valid == 0. */
1007 fw_send_request(dev->card, &ptask->transaction,
1008 TCODE_STREAM_DATA,
1009 fw_stream_packet_destination_id(3,
1010 IEEE1394_BROADCAST_CHANNEL, 0),
1011 generation, SCODE_100, 0ULL, ptask->skb->data,
1012 tx_len + 8, fwnet_write_complete, ptask);
1013
1014 spin_lock_irqsave(&dev->lock, flags);
1015
1016 /* If the AT tasklet already ran, we may be last user. */
1017 free = (ptask->outstanding_pkts == 0 && !ptask->enqueued);
1018 if (!free)
1019 ptask->enqueued = true;
1020 else
1021 dec_queued_datagrams(dev);
1022
1023 spin_unlock_irqrestore(&dev->lock, flags);
1024
1025 goto out;
1026 }
1027
1028 fw_send_request(dev->card, &ptask->transaction,
1029 TCODE_WRITE_BLOCK_REQUEST, ptask->dest_node,
1030 ptask->generation, ptask->speed, ptask->fifo_addr,
1031 ptask->skb->data, tx_len, fwnet_write_complete, ptask);
1032
1033 spin_lock_irqsave(&dev->lock, flags);
1034
1035 /* If the AT tasklet already ran, we may be last user. */
1036 free = (ptask->outstanding_pkts == 0 && !ptask->enqueued);
1037 if (!free)
1038 ptask->enqueued = true;
1039 else
1040 dec_queued_datagrams(dev);
1041
1042 spin_unlock_irqrestore(&dev->lock, flags);
1043
1044 dev->netdev->trans_start = jiffies;
1045 out:
1046 if (free)
1047 fwnet_free_ptask(ptask);
1048
1049 return 0;
1050 }
1051
1052 static void fwnet_fifo_stop(struct fwnet_device *dev)
1053 {
1054 if (dev->local_fifo == FWNET_NO_FIFO_ADDR)
1055 return;
1056
1057 fw_core_remove_address_handler(&dev->handler);
1058 dev->local_fifo = FWNET_NO_FIFO_ADDR;
1059 }
1060
1061 static int fwnet_fifo_start(struct fwnet_device *dev)
1062 {
1063 int retval;
1064
1065 if (dev->local_fifo != FWNET_NO_FIFO_ADDR)
1066 return 0;
1067
1068 dev->handler.length = 4096;
1069 dev->handler.address_callback = fwnet_receive_packet;
1070 dev->handler.callback_data = dev;
1071
1072 retval = fw_core_add_address_handler(&dev->handler,
1073 &fw_high_memory_region);
1074 if (retval < 0)
1075 return retval;
1076
1077 dev->local_fifo = dev->handler.offset;
1078
1079 return 0;
1080 }
1081
1082 static void __fwnet_broadcast_stop(struct fwnet_device *dev)
1083 {
1084 unsigned u;
1085
1086 if (dev->broadcast_state != FWNET_BROADCAST_ERROR) {
1087 for (u = 0; u < FWNET_ISO_PAGE_COUNT; u++)
1088 kunmap(dev->broadcast_rcv_buffer.pages[u]);
1089 fw_iso_buffer_destroy(&dev->broadcast_rcv_buffer, dev->card);
1090 }
1091 if (dev->broadcast_rcv_context) {
1092 fw_iso_context_destroy(dev->broadcast_rcv_context);
1093 dev->broadcast_rcv_context = NULL;
1094 }
1095 kfree(dev->broadcast_rcv_buffer_ptrs);
1096 dev->broadcast_rcv_buffer_ptrs = NULL;
1097 dev->broadcast_state = FWNET_BROADCAST_ERROR;
1098 }
1099
1100 static void fwnet_broadcast_stop(struct fwnet_device *dev)
1101 {
1102 if (dev->broadcast_state == FWNET_BROADCAST_ERROR)
1103 return;
1104 fw_iso_context_stop(dev->broadcast_rcv_context);
1105 __fwnet_broadcast_stop(dev);
1106 }
1107
1108 static int fwnet_broadcast_start(struct fwnet_device *dev)
1109 {
1110 struct fw_iso_context *context;
1111 int retval;
1112 unsigned num_packets;
1113 unsigned max_receive;
1114 struct fw_iso_packet packet;
1115 unsigned long offset;
1116 void **ptrptr;
1117 unsigned u;
1118
1119 if (dev->broadcast_state != FWNET_BROADCAST_ERROR)
1120 return 0;
1121
1122 max_receive = 1U << (dev->card->max_receive + 1);
1123 num_packets = (FWNET_ISO_PAGE_COUNT * PAGE_SIZE) / max_receive;
1124
1125 ptrptr = kmalloc(sizeof(void *) * num_packets, GFP_KERNEL);
1126 if (!ptrptr) {
1127 retval = -ENOMEM;
1128 goto failed;
1129 }
1130 dev->broadcast_rcv_buffer_ptrs = ptrptr;
1131
1132 context = fw_iso_context_create(dev->card, FW_ISO_CONTEXT_RECEIVE,
1133 IEEE1394_BROADCAST_CHANNEL,
1134 dev->card->link_speed, 8,
1135 fwnet_receive_broadcast, dev);
1136 if (IS_ERR(context)) {
1137 retval = PTR_ERR(context);
1138 goto failed;
1139 }
1140
1141 retval = fw_iso_buffer_init(&dev->broadcast_rcv_buffer, dev->card,
1142 FWNET_ISO_PAGE_COUNT, DMA_FROM_DEVICE);
1143 if (retval < 0)
1144 goto failed;
1145
1146 dev->broadcast_state = FWNET_BROADCAST_STOPPED;
1147
1148 for (u = 0; u < FWNET_ISO_PAGE_COUNT; u++) {
1149 void *ptr;
1150 unsigned v;
1151
1152 ptr = kmap(dev->broadcast_rcv_buffer.pages[u]);
1153 for (v = 0; v < num_packets / FWNET_ISO_PAGE_COUNT; v++)
1154 *ptrptr++ = (void *) ((char *)ptr + v * max_receive);
1155 }
1156 dev->broadcast_rcv_context = context;
1157
1158 packet.payload_length = max_receive;
1159 packet.interrupt = 1;
1160 packet.skip = 0;
1161 packet.tag = 3;
1162 packet.sy = 0;
1163 packet.header_length = IEEE1394_GASP_HDR_SIZE;
1164 offset = 0;
1165
1166 for (u = 0; u < num_packets; u++) {
1167 retval = fw_iso_context_queue(context, &packet,
1168 &dev->broadcast_rcv_buffer, offset);
1169 if (retval < 0)
1170 goto failed;
1171
1172 offset += max_receive;
1173 }
1174 dev->num_broadcast_rcv_ptrs = num_packets;
1175 dev->rcv_buffer_size = max_receive;
1176 dev->broadcast_rcv_next_ptr = 0U;
1177 retval = fw_iso_context_start(context, -1, 0,
1178 FW_ISO_CONTEXT_MATCH_ALL_TAGS); /* ??? sync */
1179 if (retval < 0)
1180 goto failed;
1181
1182 /* FIXME: adjust it according to the min. speed of all known peers? */
1183 dev->broadcast_xmt_max_payload = IEEE1394_MAX_PAYLOAD_S100
1184 - IEEE1394_GASP_HDR_SIZE - RFC2374_UNFRAG_HDR_SIZE;
1185 dev->broadcast_state = FWNET_BROADCAST_RUNNING;
1186
1187 return 0;
1188
1189 failed:
1190 __fwnet_broadcast_stop(dev);
1191 return retval;
1192 }
1193
1194 static void set_carrier_state(struct fwnet_device *dev)
1195 {
1196 if (dev->peer_count > 1)
1197 netif_carrier_on(dev->netdev);
1198 else
1199 netif_carrier_off(dev->netdev);
1200 }
1201
1202 /* ifup */
1203 static int fwnet_open(struct net_device *net)
1204 {
1205 struct fwnet_device *dev = netdev_priv(net);
1206 int ret;
1207
1208 ret = fwnet_broadcast_start(dev);
1209 if (ret)
1210 return ret;
1211
1212 netif_start_queue(net);
1213
1214 spin_lock_irq(&dev->lock);
1215 set_carrier_state(dev);
1216 spin_unlock_irq(&dev->lock);
1217
1218 return 0;
1219 }
1220
1221 /* ifdown */
1222 static int fwnet_stop(struct net_device *net)
1223 {
1224 struct fwnet_device *dev = netdev_priv(net);
1225
1226 netif_stop_queue(net);
1227 fwnet_broadcast_stop(dev);
1228
1229 return 0;
1230 }
1231
1232 static netdev_tx_t fwnet_tx(struct sk_buff *skb, struct net_device *net)
1233 {
1234 struct fwnet_header hdr_buf;
1235 struct fwnet_device *dev = netdev_priv(net);
1236 __be16 proto;
1237 u16 dest_node;
1238 unsigned max_payload;
1239 u16 dg_size;
1240 u16 *datagram_label_ptr;
1241 struct fwnet_packet_task *ptask;
1242 struct fwnet_peer *peer;
1243 unsigned long flags;
1244
1245 spin_lock_irqsave(&dev->lock, flags);
1246
1247 /* Can this happen? */
1248 if (netif_queue_stopped(dev->netdev)) {
1249 spin_unlock_irqrestore(&dev->lock, flags);
1250
1251 return NETDEV_TX_BUSY;
1252 }
1253
1254 ptask = kmem_cache_alloc(fwnet_packet_task_cache, GFP_ATOMIC);
1255 if (ptask == NULL)
1256 goto fail;
1257
1258 skb = skb_share_check(skb, GFP_ATOMIC);
1259 if (!skb)
1260 goto fail;
1261
1262 /*
1263 * Make a copy of the driver-specific header.
1264 * We might need to rebuild the header on tx failure.
1265 */
1266 memcpy(&hdr_buf, skb->data, sizeof(hdr_buf));
1267 proto = hdr_buf.h_proto;
1268
1269 switch (proto) {
1270 case htons(ETH_P_ARP):
1271 case htons(ETH_P_IP):
1272 #if IS_ENABLED(CONFIG_IPV6)
1273 case htons(ETH_P_IPV6):
1274 #endif
1275 break;
1276 default:
1277 goto fail;
1278 }
1279
1280 skb_pull(skb, sizeof(hdr_buf));
1281 dg_size = skb->len;
1282
1283 /*
1284 * Set the transmission type for the packet. ARP packets and IP
1285 * broadcast packets are sent via GASP.
1286 */
1287 if (fwnet_hwaddr_is_multicast(hdr_buf.h_dest)) {
1288 max_payload = dev->broadcast_xmt_max_payload;
1289 datagram_label_ptr = &dev->broadcast_xmt_datagramlabel;
1290
1291 ptask->fifo_addr = FWNET_NO_FIFO_ADDR;
1292 ptask->generation = 0;
1293 ptask->dest_node = IEEE1394_ALL_NODES;
1294 ptask->speed = SCODE_100;
1295 } else {
1296 union fwnet_hwaddr *ha = (union fwnet_hwaddr *)hdr_buf.h_dest;
1297 __be64 guid = get_unaligned(&ha->uc.uniq_id);
1298 u8 generation;
1299
1300 peer = fwnet_peer_find_by_guid(dev, be64_to_cpu(guid));
1301 if (!peer)
1302 goto fail;
1303
1304 generation = peer->generation;
1305 dest_node = peer->node_id;
1306 max_payload = peer->max_payload;
1307 datagram_label_ptr = &peer->datagram_label;
1308
1309 ptask->fifo_addr = fwnet_hwaddr_fifo(ha);
1310 ptask->generation = generation;
1311 ptask->dest_node = dest_node;
1312 ptask->speed = peer->speed;
1313 }
1314
1315 ptask->hdr.w0 = 0;
1316 ptask->hdr.w1 = 0;
1317 ptask->skb = skb;
1318 ptask->dev = dev;
1319
1320 /* Does it all fit in one packet? */
1321 if (dg_size <= max_payload) {
1322 fwnet_make_uf_hdr(&ptask->hdr, ntohs(proto));
1323 ptask->outstanding_pkts = 1;
1324 max_payload = dg_size + RFC2374_UNFRAG_HDR_SIZE;
1325 } else {
1326 u16 datagram_label;
1327
1328 max_payload -= RFC2374_FRAG_OVERHEAD;
1329 datagram_label = (*datagram_label_ptr)++;
1330 fwnet_make_ff_hdr(&ptask->hdr, ntohs(proto), dg_size,
1331 datagram_label);
1332 ptask->outstanding_pkts = DIV_ROUND_UP(dg_size, max_payload);
1333 max_payload += RFC2374_FRAG_HDR_SIZE;
1334 }
1335
1336 if (++dev->queued_datagrams == FWNET_MAX_QUEUED_DATAGRAMS)
1337 netif_stop_queue(dev->netdev);
1338
1339 spin_unlock_irqrestore(&dev->lock, flags);
1340
1341 ptask->max_payload = max_payload;
1342 ptask->enqueued = 0;
1343
1344 fwnet_send_packet(ptask);
1345
1346 return NETDEV_TX_OK;
1347
1348 fail:
1349 spin_unlock_irqrestore(&dev->lock, flags);
1350
1351 if (ptask)
1352 kmem_cache_free(fwnet_packet_task_cache, ptask);
1353
1354 if (skb != NULL)
1355 dev_kfree_skb(skb);
1356
1357 net->stats.tx_dropped++;
1358 net->stats.tx_errors++;
1359
1360 /*
1361 * FIXME: According to a patch from 2003-02-26, "returning non-zero
1362 * causes serious problems" here, allegedly. Before that patch,
1363 * -ERRNO was returned which is not appropriate under Linux 2.6.
1364 * Perhaps more needs to be done? Stop the queue in serious
1365 * conditions and restart it elsewhere?
1366 */
1367 return NETDEV_TX_OK;
1368 }
1369
1370 static int fwnet_change_mtu(struct net_device *net, int new_mtu)
1371 {
1372 if (new_mtu < 68)
1373 return -EINVAL;
1374
1375 net->mtu = new_mtu;
1376 return 0;
1377 }
1378
1379 static const struct ethtool_ops fwnet_ethtool_ops = {
1380 .get_link = ethtool_op_get_link,
1381 };
1382
1383 static const struct net_device_ops fwnet_netdev_ops = {
1384 .ndo_open = fwnet_open,
1385 .ndo_stop = fwnet_stop,
1386 .ndo_start_xmit = fwnet_tx,
1387 .ndo_change_mtu = fwnet_change_mtu,
1388 };
1389
1390 static void fwnet_init_dev(struct net_device *net)
1391 {
1392 net->header_ops = &fwnet_header_ops;
1393 net->netdev_ops = &fwnet_netdev_ops;
1394 net->watchdog_timeo = 2 * HZ;
1395 net->flags = IFF_BROADCAST | IFF_MULTICAST;
1396 net->features = NETIF_F_HIGHDMA;
1397 net->addr_len = FWNET_ALEN;
1398 net->hard_header_len = FWNET_HLEN;
1399 net->type = ARPHRD_IEEE1394;
1400 net->tx_queue_len = FWNET_TX_QUEUE_LEN;
1401 net->ethtool_ops = &fwnet_ethtool_ops;
1402 }
1403
1404 /* caller must hold fwnet_device_mutex */
1405 static struct fwnet_device *fwnet_dev_find(struct fw_card *card)
1406 {
1407 struct fwnet_device *dev;
1408
1409 list_for_each_entry(dev, &fwnet_device_list, dev_link)
1410 if (dev->card == card)
1411 return dev;
1412
1413 return NULL;
1414 }
1415
1416 static int fwnet_add_peer(struct fwnet_device *dev,
1417 struct fw_unit *unit, struct fw_device *device)
1418 {
1419 struct fwnet_peer *peer;
1420
1421 peer = kmalloc(sizeof(*peer), GFP_KERNEL);
1422 if (!peer)
1423 return -ENOMEM;
1424
1425 dev_set_drvdata(&unit->device, peer);
1426
1427 peer->dev = dev;
1428 peer->guid = (u64)device->config_rom[3] << 32 | device->config_rom[4];
1429 INIT_LIST_HEAD(&peer->pd_list);
1430 peer->pdg_size = 0;
1431 peer->datagram_label = 0;
1432 peer->speed = device->max_speed;
1433 peer->max_payload = fwnet_max_payload(device->max_rec, peer->speed);
1434
1435 peer->generation = device->generation;
1436 smp_rmb();
1437 peer->node_id = device->node_id;
1438
1439 spin_lock_irq(&dev->lock);
1440 list_add_tail(&peer->peer_link, &dev->peer_list);
1441 dev->peer_count++;
1442 set_carrier_state(dev);
1443 spin_unlock_irq(&dev->lock);
1444
1445 return 0;
1446 }
1447
1448 static int fwnet_probe(struct device *_dev)
1449 {
1450 struct fw_unit *unit = fw_unit(_dev);
1451 struct fw_device *device = fw_parent_device(unit);
1452 struct fw_card *card = device->card;
1453 struct net_device *net;
1454 bool allocated_netdev = false;
1455 struct fwnet_device *dev;
1456 unsigned max_mtu;
1457 int ret;
1458 union fwnet_hwaddr *ha;
1459
1460 mutex_lock(&fwnet_device_mutex);
1461
1462 dev = fwnet_dev_find(card);
1463 if (dev) {
1464 net = dev->netdev;
1465 goto have_dev;
1466 }
1467
1468 net = alloc_netdev(sizeof(*dev), "firewire%d", fwnet_init_dev);
1469 if (net == NULL) {
1470 ret = -ENOMEM;
1471 goto out;
1472 }
1473
1474 allocated_netdev = true;
1475 SET_NETDEV_DEV(net, card->device);
1476 dev = netdev_priv(net);
1477
1478 spin_lock_init(&dev->lock);
1479 dev->broadcast_state = FWNET_BROADCAST_ERROR;
1480 dev->broadcast_rcv_context = NULL;
1481 dev->broadcast_xmt_max_payload = 0;
1482 dev->broadcast_xmt_datagramlabel = 0;
1483 dev->local_fifo = FWNET_NO_FIFO_ADDR;
1484 dev->queued_datagrams = 0;
1485 INIT_LIST_HEAD(&dev->peer_list);
1486 dev->card = card;
1487 dev->netdev = net;
1488
1489 ret = fwnet_fifo_start(dev);
1490 if (ret < 0)
1491 goto out;
1492 dev->local_fifo = dev->handler.offset;
1493
1494 /*
1495 * Use the RFC 2734 default 1500 octets or the maximum payload
1496 * as initial MTU
1497 */
1498 max_mtu = (1 << (card->max_receive + 1))
1499 - sizeof(struct rfc2734_header) - IEEE1394_GASP_HDR_SIZE;
1500 net->mtu = min(1500U, max_mtu);
1501
1502 /* Set our hardware address while we're at it */
1503 ha = (union fwnet_hwaddr *)net->dev_addr;
1504 put_unaligned_be64(card->guid, &ha->uc.uniq_id);
1505 ha->uc.max_rec = dev->card->max_receive;
1506 ha->uc.sspd = dev->card->link_speed;
1507 put_unaligned_be16(dev->local_fifo >> 32, &ha->uc.fifo_hi);
1508 put_unaligned_be32(dev->local_fifo & 0xffffffff, &ha->uc.fifo_lo);
1509
1510 memset(net->broadcast, -1, net->addr_len);
1511
1512 ret = register_netdev(net);
1513 if (ret)
1514 goto out;
1515
1516 list_add_tail(&dev->dev_link, &fwnet_device_list);
1517 dev_notice(&net->dev, "IP over IEEE 1394 on card %s\n",
1518 dev_name(card->device));
1519 have_dev:
1520 ret = fwnet_add_peer(dev, unit, device);
1521 if (ret && allocated_netdev) {
1522 unregister_netdev(net);
1523 list_del(&dev->dev_link);
1524 out:
1525 fwnet_fifo_stop(dev);
1526 free_netdev(net);
1527 }
1528
1529 mutex_unlock(&fwnet_device_mutex);
1530
1531 return ret;
1532 }
1533
1534 static void fwnet_remove_peer(struct fwnet_peer *peer, struct fwnet_device *dev)
1535 {
1536 struct fwnet_partial_datagram *pd, *pd_next;
1537
1538 spin_lock_irq(&dev->lock);
1539 list_del(&peer->peer_link);
1540 dev->peer_count--;
1541 set_carrier_state(dev);
1542 spin_unlock_irq(&dev->lock);
1543
1544 list_for_each_entry_safe(pd, pd_next, &peer->pd_list, pd_link)
1545 fwnet_pd_delete(pd);
1546
1547 kfree(peer);
1548 }
1549
1550 static int fwnet_remove(struct device *_dev)
1551 {
1552 struct fwnet_peer *peer = dev_get_drvdata(_dev);
1553 struct fwnet_device *dev = peer->dev;
1554 struct net_device *net;
1555 int i;
1556
1557 mutex_lock(&fwnet_device_mutex);
1558
1559 net = dev->netdev;
1560
1561 fwnet_remove_peer(peer, dev);
1562
1563 if (list_empty(&dev->peer_list)) {
1564 unregister_netdev(net);
1565
1566 fwnet_fifo_stop(dev);
1567
1568 for (i = 0; dev->queued_datagrams && i < 5; i++)
1569 ssleep(1);
1570 WARN_ON(dev->queued_datagrams);
1571 list_del(&dev->dev_link);
1572
1573 free_netdev(net);
1574 }
1575
1576 mutex_unlock(&fwnet_device_mutex);
1577
1578 return 0;
1579 }
1580
1581 /*
1582 * FIXME abort partially sent fragmented datagrams,
1583 * discard partially received fragmented datagrams
1584 */
1585 static void fwnet_update(struct fw_unit *unit)
1586 {
1587 struct fw_device *device = fw_parent_device(unit);
1588 struct fwnet_peer *peer = dev_get_drvdata(&unit->device);
1589 int generation;
1590
1591 generation = device->generation;
1592
1593 spin_lock_irq(&peer->dev->lock);
1594 peer->node_id = device->node_id;
1595 peer->generation = generation;
1596 spin_unlock_irq(&peer->dev->lock);
1597 }
1598
1599 static const struct ieee1394_device_id fwnet_id_table[] = {
1600 {
1601 .match_flags = IEEE1394_MATCH_SPECIFIER_ID |
1602 IEEE1394_MATCH_VERSION,
1603 .specifier_id = IANA_SPECIFIER_ID,
1604 .version = RFC2734_SW_VERSION,
1605 },
1606 #if IS_ENABLED(CONFIG_IPV6)
1607 {
1608 .match_flags = IEEE1394_MATCH_SPECIFIER_ID |
1609 IEEE1394_MATCH_VERSION,
1610 .specifier_id = IANA_SPECIFIER_ID,
1611 .version = RFC3146_SW_VERSION,
1612 },
1613 #endif
1614 { }
1615 };
1616
1617 static struct fw_driver fwnet_driver = {
1618 .driver = {
1619 .owner = THIS_MODULE,
1620 .name = KBUILD_MODNAME,
1621 .bus = &fw_bus_type,
1622 .probe = fwnet_probe,
1623 .remove = fwnet_remove,
1624 },
1625 .update = fwnet_update,
1626 .id_table = fwnet_id_table,
1627 };
1628
1629 static const u32 rfc2374_unit_directory_data[] = {
1630 0x00040000, /* directory_length */
1631 0x1200005e, /* unit_specifier_id: IANA */
1632 0x81000003, /* textual descriptor offset */
1633 0x13000001, /* unit_sw_version: RFC 2734 */
1634 0x81000005, /* textual descriptor offset */
1635 0x00030000, /* descriptor_length */
1636 0x00000000, /* text */
1637 0x00000000, /* minimal ASCII, en */
1638 0x49414e41, /* I A N A */
1639 0x00030000, /* descriptor_length */
1640 0x00000000, /* text */
1641 0x00000000, /* minimal ASCII, en */
1642 0x49507634, /* I P v 4 */
1643 };
1644
1645 static struct fw_descriptor rfc2374_unit_directory = {
1646 .length = ARRAY_SIZE(rfc2374_unit_directory_data),
1647 .key = (CSR_DIRECTORY | CSR_UNIT) << 24,
1648 .data = rfc2374_unit_directory_data
1649 };
1650
1651 #if IS_ENABLED(CONFIG_IPV6)
1652 static const u32 rfc3146_unit_directory_data[] = {
1653 0x00040000, /* directory_length */
1654 0x1200005e, /* unit_specifier_id: IANA */
1655 0x81000003, /* textual descriptor offset */
1656 0x13000002, /* unit_sw_version: RFC 3146 */
1657 0x81000005, /* textual descriptor offset */
1658 0x00030000, /* descriptor_length */
1659 0x00000000, /* text */
1660 0x00000000, /* minimal ASCII, en */
1661 0x49414e41, /* I A N A */
1662 0x00030000, /* descriptor_length */
1663 0x00000000, /* text */
1664 0x00000000, /* minimal ASCII, en */
1665 0x49507636, /* I P v 6 */
1666 };
1667
1668 static struct fw_descriptor rfc3146_unit_directory = {
1669 .length = ARRAY_SIZE(rfc3146_unit_directory_data),
1670 .key = (CSR_DIRECTORY | CSR_UNIT) << 24,
1671 .data = rfc3146_unit_directory_data
1672 };
1673 #endif
1674
1675 static int __init fwnet_init(void)
1676 {
1677 int err;
1678
1679 err = fw_core_add_descriptor(&rfc2374_unit_directory);
1680 if (err)
1681 return err;
1682
1683 #if IS_ENABLED(CONFIG_IPV6)
1684 err = fw_core_add_descriptor(&rfc3146_unit_directory);
1685 if (err)
1686 goto out;
1687 #endif
1688
1689 fwnet_packet_task_cache = kmem_cache_create("packet_task",
1690 sizeof(struct fwnet_packet_task), 0, 0, NULL);
1691 if (!fwnet_packet_task_cache) {
1692 err = -ENOMEM;
1693 goto out2;
1694 }
1695
1696 err = driver_register(&fwnet_driver.driver);
1697 if (!err)
1698 return 0;
1699
1700 kmem_cache_destroy(fwnet_packet_task_cache);
1701 out2:
1702 #if IS_ENABLED(CONFIG_IPV6)
1703 fw_core_remove_descriptor(&rfc3146_unit_directory);
1704 out:
1705 #endif
1706 fw_core_remove_descriptor(&rfc2374_unit_directory);
1707
1708 return err;
1709 }
1710 module_init(fwnet_init);
1711
1712 static void __exit fwnet_cleanup(void)
1713 {
1714 driver_unregister(&fwnet_driver.driver);
1715 kmem_cache_destroy(fwnet_packet_task_cache);
1716 #if IS_ENABLED(CONFIG_IPV6)
1717 fw_core_remove_descriptor(&rfc3146_unit_directory);
1718 #endif
1719 fw_core_remove_descriptor(&rfc2374_unit_directory);
1720 }
1721 module_exit(fwnet_cleanup);
1722
1723 MODULE_AUTHOR("Jay Fenlason <fenlason@redhat.com>");
1724 MODULE_DESCRIPTION("IP over IEEE1394 as per RFC 2734/3146");
1725 MODULE_LICENSE("GPL");
1726 MODULE_DEVICE_TABLE(ieee1394, fwnet_id_table);