]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/firewire/net.c
firewire net, ipv4 arp: Extend hardware address and remove driver-level packet inspec...
[mirror_ubuntu-bionic-kernel.git] / drivers / firewire / net.c
1 /*
2 * IPv4 over IEEE 1394, per RFC 2734
3 *
4 * Copyright (C) 2009 Jay Fenlason <fenlason@redhat.com>
5 *
6 * based on eth1394 by Ben Collins et al
7 */
8
9 #include <linux/bug.h>
10 #include <linux/compiler.h>
11 #include <linux/delay.h>
12 #include <linux/device.h>
13 #include <linux/ethtool.h>
14 #include <linux/firewire.h>
15 #include <linux/firewire-constants.h>
16 #include <linux/highmem.h>
17 #include <linux/in.h>
18 #include <linux/ip.h>
19 #include <linux/jiffies.h>
20 #include <linux/mod_devicetable.h>
21 #include <linux/module.h>
22 #include <linux/moduleparam.h>
23 #include <linux/mutex.h>
24 #include <linux/netdevice.h>
25 #include <linux/skbuff.h>
26 #include <linux/slab.h>
27 #include <linux/spinlock.h>
28
29 #include <asm/unaligned.h>
30 #include <net/arp.h>
31 #include <net/firewire.h>
32
33 /* rx limits */
34 #define FWNET_MAX_FRAGMENTS 30 /* arbitrary, > TX queue depth */
35 #define FWNET_ISO_PAGE_COUNT (PAGE_SIZE < 16*1024 ? 4 : 2)
36
37 /* tx limits */
38 #define FWNET_MAX_QUEUED_DATAGRAMS 20 /* < 64 = number of tlabels */
39 #define FWNET_MIN_QUEUED_DATAGRAMS 10 /* should keep AT DMA busy enough */
40 #define FWNET_TX_QUEUE_LEN FWNET_MAX_QUEUED_DATAGRAMS /* ? */
41
42 #define IEEE1394_BROADCAST_CHANNEL 31
43 #define IEEE1394_ALL_NODES (0xffc0 | 0x003f)
44 #define IEEE1394_MAX_PAYLOAD_S100 512
45 #define FWNET_NO_FIFO_ADDR (~0ULL)
46
47 #define IANA_SPECIFIER_ID 0x00005eU
48 #define RFC2734_SW_VERSION 0x000001U
49
50 #define IEEE1394_GASP_HDR_SIZE 8
51
52 #define RFC2374_UNFRAG_HDR_SIZE 4
53 #define RFC2374_FRAG_HDR_SIZE 8
54 #define RFC2374_FRAG_OVERHEAD 4
55
56 #define RFC2374_HDR_UNFRAG 0 /* unfragmented */
57 #define RFC2374_HDR_FIRSTFRAG 1 /* first fragment */
58 #define RFC2374_HDR_LASTFRAG 2 /* last fragment */
59 #define RFC2374_HDR_INTFRAG 3 /* interior fragment */
60
61 static bool fwnet_hwaddr_is_multicast(u8 *ha)
62 {
63 return !!(*ha & 1);
64 }
65
66 /* IPv4 and IPv6 encapsulation header */
67 struct rfc2734_header {
68 u32 w0;
69 u32 w1;
70 };
71
72 #define fwnet_get_hdr_lf(h) (((h)->w0 & 0xc0000000) >> 30)
73 #define fwnet_get_hdr_ether_type(h) (((h)->w0 & 0x0000ffff))
74 #define fwnet_get_hdr_dg_size(h) (((h)->w0 & 0x0fff0000) >> 16)
75 #define fwnet_get_hdr_fg_off(h) (((h)->w0 & 0x00000fff))
76 #define fwnet_get_hdr_dgl(h) (((h)->w1 & 0xffff0000) >> 16)
77
78 #define fwnet_set_hdr_lf(lf) ((lf) << 30)
79 #define fwnet_set_hdr_ether_type(et) (et)
80 #define fwnet_set_hdr_dg_size(dgs) ((dgs) << 16)
81 #define fwnet_set_hdr_fg_off(fgo) (fgo)
82
83 #define fwnet_set_hdr_dgl(dgl) ((dgl) << 16)
84
85 static inline void fwnet_make_uf_hdr(struct rfc2734_header *hdr,
86 unsigned ether_type)
87 {
88 hdr->w0 = fwnet_set_hdr_lf(RFC2374_HDR_UNFRAG)
89 | fwnet_set_hdr_ether_type(ether_type);
90 }
91
92 static inline void fwnet_make_ff_hdr(struct rfc2734_header *hdr,
93 unsigned ether_type, unsigned dg_size, unsigned dgl)
94 {
95 hdr->w0 = fwnet_set_hdr_lf(RFC2374_HDR_FIRSTFRAG)
96 | fwnet_set_hdr_dg_size(dg_size)
97 | fwnet_set_hdr_ether_type(ether_type);
98 hdr->w1 = fwnet_set_hdr_dgl(dgl);
99 }
100
101 static inline void fwnet_make_sf_hdr(struct rfc2734_header *hdr,
102 unsigned lf, unsigned dg_size, unsigned fg_off, unsigned dgl)
103 {
104 hdr->w0 = fwnet_set_hdr_lf(lf)
105 | fwnet_set_hdr_dg_size(dg_size)
106 | fwnet_set_hdr_fg_off(fg_off);
107 hdr->w1 = fwnet_set_hdr_dgl(dgl);
108 }
109
110 /* This list keeps track of what parts of the datagram have been filled in */
111 struct fwnet_fragment_info {
112 struct list_head fi_link;
113 u16 offset;
114 u16 len;
115 };
116
117 struct fwnet_partial_datagram {
118 struct list_head pd_link;
119 struct list_head fi_list;
120 struct sk_buff *skb;
121 /* FIXME Why not use skb->data? */
122 char *pbuf;
123 u16 datagram_label;
124 u16 ether_type;
125 u16 datagram_size;
126 };
127
128 static DEFINE_MUTEX(fwnet_device_mutex);
129 static LIST_HEAD(fwnet_device_list);
130
131 struct fwnet_device {
132 struct list_head dev_link;
133 spinlock_t lock;
134 enum {
135 FWNET_BROADCAST_ERROR,
136 FWNET_BROADCAST_RUNNING,
137 FWNET_BROADCAST_STOPPED,
138 } broadcast_state;
139 struct fw_iso_context *broadcast_rcv_context;
140 struct fw_iso_buffer broadcast_rcv_buffer;
141 void **broadcast_rcv_buffer_ptrs;
142 unsigned broadcast_rcv_next_ptr;
143 unsigned num_broadcast_rcv_ptrs;
144 unsigned rcv_buffer_size;
145 /*
146 * This value is the maximum unfragmented datagram size that can be
147 * sent by the hardware. It already has the GASP overhead and the
148 * unfragmented datagram header overhead calculated into it.
149 */
150 unsigned broadcast_xmt_max_payload;
151 u16 broadcast_xmt_datagramlabel;
152
153 /*
154 * The CSR address that remote nodes must send datagrams to for us to
155 * receive them.
156 */
157 struct fw_address_handler handler;
158 u64 local_fifo;
159
160 /* Number of tx datagrams that have been queued but not yet acked */
161 int queued_datagrams;
162
163 int peer_count;
164 struct list_head peer_list;
165 struct fw_card *card;
166 struct net_device *netdev;
167 };
168
169 struct fwnet_peer {
170 struct list_head peer_link;
171 struct fwnet_device *dev;
172 u64 guid;
173
174 /* guarded by dev->lock */
175 struct list_head pd_list; /* received partial datagrams */
176 unsigned pdg_size; /* pd_list size */
177
178 u16 datagram_label; /* outgoing datagram label */
179 u16 max_payload; /* includes RFC2374_FRAG_HDR_SIZE overhead */
180 int node_id;
181 int generation;
182 unsigned speed;
183 };
184
185 /* This is our task struct. It's used for the packet complete callback. */
186 struct fwnet_packet_task {
187 struct fw_transaction transaction;
188 struct rfc2734_header hdr;
189 struct sk_buff *skb;
190 struct fwnet_device *dev;
191
192 int outstanding_pkts;
193 u64 fifo_addr;
194 u16 dest_node;
195 u16 max_payload;
196 u8 generation;
197 u8 speed;
198 u8 enqueued;
199 };
200
201 /*
202 * Get fifo address embedded in hwaddr
203 */
204 static __u64 fwnet_hwaddr_fifo(union fwnet_hwaddr *ha)
205 {
206 return (u64)get_unaligned_be16(&ha->uc.fifo_hi) << 32
207 | get_unaligned_be32(&ha->uc.fifo_lo);
208 }
209
210 /*
211 * saddr == NULL means use device source address.
212 * daddr == NULL means leave destination address (eg unresolved arp).
213 */
214 static int fwnet_header_create(struct sk_buff *skb, struct net_device *net,
215 unsigned short type, const void *daddr,
216 const void *saddr, unsigned len)
217 {
218 struct fwnet_header *h;
219
220 h = (struct fwnet_header *)skb_push(skb, sizeof(*h));
221 put_unaligned_be16(type, &h->h_proto);
222
223 if (net->flags & (IFF_LOOPBACK | IFF_NOARP)) {
224 memset(h->h_dest, 0, net->addr_len);
225
226 return net->hard_header_len;
227 }
228
229 if (daddr) {
230 memcpy(h->h_dest, daddr, net->addr_len);
231
232 return net->hard_header_len;
233 }
234
235 return -net->hard_header_len;
236 }
237
238 static int fwnet_header_rebuild(struct sk_buff *skb)
239 {
240 struct fwnet_header *h = (struct fwnet_header *)skb->data;
241
242 if (get_unaligned_be16(&h->h_proto) == ETH_P_IP)
243 return arp_find((unsigned char *)&h->h_dest, skb);
244
245 dev_notice(&skb->dev->dev, "unable to resolve type %04x addresses\n",
246 be16_to_cpu(h->h_proto));
247 return 0;
248 }
249
250 static int fwnet_header_cache(const struct neighbour *neigh,
251 struct hh_cache *hh, __be16 type)
252 {
253 struct net_device *net;
254 struct fwnet_header *h;
255
256 if (type == cpu_to_be16(ETH_P_802_3))
257 return -1;
258 net = neigh->dev;
259 h = (struct fwnet_header *)((u8 *)hh->hh_data + HH_DATA_OFF(sizeof(*h)));
260 h->h_proto = type;
261 memcpy(h->h_dest, neigh->ha, net->addr_len);
262 hh->hh_len = FWNET_HLEN;
263
264 return 0;
265 }
266
267 /* Called by Address Resolution module to notify changes in address. */
268 static void fwnet_header_cache_update(struct hh_cache *hh,
269 const struct net_device *net, const unsigned char *haddr)
270 {
271 memcpy((u8 *)hh->hh_data + HH_DATA_OFF(FWNET_HLEN), haddr, net->addr_len);
272 }
273
274 static int fwnet_header_parse(const struct sk_buff *skb, unsigned char *haddr)
275 {
276 memcpy(haddr, skb->dev->dev_addr, FWNET_ALEN);
277
278 return FWNET_ALEN;
279 }
280
281 static const struct header_ops fwnet_header_ops = {
282 .create = fwnet_header_create,
283 .rebuild = fwnet_header_rebuild,
284 .cache = fwnet_header_cache,
285 .cache_update = fwnet_header_cache_update,
286 .parse = fwnet_header_parse,
287 };
288
289 /* FIXME: is this correct for all cases? */
290 static bool fwnet_frag_overlap(struct fwnet_partial_datagram *pd,
291 unsigned offset, unsigned len)
292 {
293 struct fwnet_fragment_info *fi;
294 unsigned end = offset + len;
295
296 list_for_each_entry(fi, &pd->fi_list, fi_link)
297 if (offset < fi->offset + fi->len && end > fi->offset)
298 return true;
299
300 return false;
301 }
302
303 /* Assumes that new fragment does not overlap any existing fragments */
304 static struct fwnet_fragment_info *fwnet_frag_new(
305 struct fwnet_partial_datagram *pd, unsigned offset, unsigned len)
306 {
307 struct fwnet_fragment_info *fi, *fi2, *new;
308 struct list_head *list;
309
310 list = &pd->fi_list;
311 list_for_each_entry(fi, &pd->fi_list, fi_link) {
312 if (fi->offset + fi->len == offset) {
313 /* The new fragment can be tacked on to the end */
314 /* Did the new fragment plug a hole? */
315 fi2 = list_entry(fi->fi_link.next,
316 struct fwnet_fragment_info, fi_link);
317 if (fi->offset + fi->len == fi2->offset) {
318 /* glue fragments together */
319 fi->len += len + fi2->len;
320 list_del(&fi2->fi_link);
321 kfree(fi2);
322 } else {
323 fi->len += len;
324 }
325
326 return fi;
327 }
328 if (offset + len == fi->offset) {
329 /* The new fragment can be tacked on to the beginning */
330 /* Did the new fragment plug a hole? */
331 fi2 = list_entry(fi->fi_link.prev,
332 struct fwnet_fragment_info, fi_link);
333 if (fi2->offset + fi2->len == fi->offset) {
334 /* glue fragments together */
335 fi2->len += fi->len + len;
336 list_del(&fi->fi_link);
337 kfree(fi);
338
339 return fi2;
340 }
341 fi->offset = offset;
342 fi->len += len;
343
344 return fi;
345 }
346 if (offset > fi->offset + fi->len) {
347 list = &fi->fi_link;
348 break;
349 }
350 if (offset + len < fi->offset) {
351 list = fi->fi_link.prev;
352 break;
353 }
354 }
355
356 new = kmalloc(sizeof(*new), GFP_ATOMIC);
357 if (!new) {
358 dev_err(&pd->skb->dev->dev, "out of memory\n");
359 return NULL;
360 }
361
362 new->offset = offset;
363 new->len = len;
364 list_add(&new->fi_link, list);
365
366 return new;
367 }
368
369 static struct fwnet_partial_datagram *fwnet_pd_new(struct net_device *net,
370 struct fwnet_peer *peer, u16 datagram_label, unsigned dg_size,
371 void *frag_buf, unsigned frag_off, unsigned frag_len)
372 {
373 struct fwnet_partial_datagram *new;
374 struct fwnet_fragment_info *fi;
375
376 new = kmalloc(sizeof(*new), GFP_ATOMIC);
377 if (!new)
378 goto fail;
379
380 INIT_LIST_HEAD(&new->fi_list);
381 fi = fwnet_frag_new(new, frag_off, frag_len);
382 if (fi == NULL)
383 goto fail_w_new;
384
385 new->datagram_label = datagram_label;
386 new->datagram_size = dg_size;
387 new->skb = dev_alloc_skb(dg_size + LL_RESERVED_SPACE(net));
388 if (new->skb == NULL)
389 goto fail_w_fi;
390
391 skb_reserve(new->skb, LL_RESERVED_SPACE(net));
392 new->pbuf = skb_put(new->skb, dg_size);
393 memcpy(new->pbuf + frag_off, frag_buf, frag_len);
394 list_add_tail(&new->pd_link, &peer->pd_list);
395
396 return new;
397
398 fail_w_fi:
399 kfree(fi);
400 fail_w_new:
401 kfree(new);
402 fail:
403 dev_err(&net->dev, "out of memory\n");
404
405 return NULL;
406 }
407
408 static struct fwnet_partial_datagram *fwnet_pd_find(struct fwnet_peer *peer,
409 u16 datagram_label)
410 {
411 struct fwnet_partial_datagram *pd;
412
413 list_for_each_entry(pd, &peer->pd_list, pd_link)
414 if (pd->datagram_label == datagram_label)
415 return pd;
416
417 return NULL;
418 }
419
420
421 static void fwnet_pd_delete(struct fwnet_partial_datagram *old)
422 {
423 struct fwnet_fragment_info *fi, *n;
424
425 list_for_each_entry_safe(fi, n, &old->fi_list, fi_link)
426 kfree(fi);
427
428 list_del(&old->pd_link);
429 dev_kfree_skb_any(old->skb);
430 kfree(old);
431 }
432
433 static bool fwnet_pd_update(struct fwnet_peer *peer,
434 struct fwnet_partial_datagram *pd, void *frag_buf,
435 unsigned frag_off, unsigned frag_len)
436 {
437 if (fwnet_frag_new(pd, frag_off, frag_len) == NULL)
438 return false;
439
440 memcpy(pd->pbuf + frag_off, frag_buf, frag_len);
441
442 /*
443 * Move list entry to beginning of list so that oldest partial
444 * datagrams percolate to the end of the list
445 */
446 list_move_tail(&pd->pd_link, &peer->pd_list);
447
448 return true;
449 }
450
451 static bool fwnet_pd_is_complete(struct fwnet_partial_datagram *pd)
452 {
453 struct fwnet_fragment_info *fi;
454
455 fi = list_entry(pd->fi_list.next, struct fwnet_fragment_info, fi_link);
456
457 return fi->len == pd->datagram_size;
458 }
459
460 /* caller must hold dev->lock */
461 static struct fwnet_peer *fwnet_peer_find_by_guid(struct fwnet_device *dev,
462 u64 guid)
463 {
464 struct fwnet_peer *peer;
465
466 list_for_each_entry(peer, &dev->peer_list, peer_link)
467 if (peer->guid == guid)
468 return peer;
469
470 return NULL;
471 }
472
473 /* caller must hold dev->lock */
474 static struct fwnet_peer *fwnet_peer_find_by_node_id(struct fwnet_device *dev,
475 int node_id, int generation)
476 {
477 struct fwnet_peer *peer;
478
479 list_for_each_entry(peer, &dev->peer_list, peer_link)
480 if (peer->node_id == node_id &&
481 peer->generation == generation)
482 return peer;
483
484 return NULL;
485 }
486
487 /* See IEEE 1394-2008 table 6-4, table 8-8, table 16-18. */
488 static unsigned fwnet_max_payload(unsigned max_rec, unsigned speed)
489 {
490 max_rec = min(max_rec, speed + 8);
491 max_rec = clamp(max_rec, 8U, 11U); /* 512...4096 */
492
493 return (1 << (max_rec + 1)) - RFC2374_FRAG_HDR_SIZE;
494 }
495
496
497 static int fwnet_finish_incoming_packet(struct net_device *net,
498 struct sk_buff *skb, u16 source_node_id,
499 bool is_broadcast, u16 ether_type)
500 {
501 struct fwnet_device *dev;
502 int status;
503 __be64 guid;
504
505 switch (ether_type) {
506 case ETH_P_ARP:
507 case ETH_P_IP:
508 break;
509 default:
510 goto err;
511 }
512
513 dev = netdev_priv(net);
514 /* Write metadata, and then pass to the receive level */
515 skb->dev = net;
516 skb->ip_summed = CHECKSUM_NONE;
517
518 /*
519 * Parse the encapsulation header. This actually does the job of
520 * converting to an ethernet-like pseudo frame header.
521 */
522 guid = cpu_to_be64(dev->card->guid);
523 if (dev_hard_header(skb, net, ether_type,
524 is_broadcast ? net->broadcast : net->dev_addr,
525 NULL, skb->len) >= 0) {
526 struct fwnet_header *eth;
527 u16 *rawp;
528 __be16 protocol;
529
530 skb_reset_mac_header(skb);
531 skb_pull(skb, sizeof(*eth));
532 eth = (struct fwnet_header *)skb_mac_header(skb);
533 if (fwnet_hwaddr_is_multicast(eth->h_dest)) {
534 if (memcmp(eth->h_dest, net->broadcast,
535 net->addr_len) == 0)
536 skb->pkt_type = PACKET_BROADCAST;
537 #if 0
538 else
539 skb->pkt_type = PACKET_MULTICAST;
540 #endif
541 } else {
542 if (memcmp(eth->h_dest, net->dev_addr, net->addr_len))
543 skb->pkt_type = PACKET_OTHERHOST;
544 }
545 if (ntohs(eth->h_proto) >= 1536) {
546 protocol = eth->h_proto;
547 } else {
548 rawp = (u16 *)skb->data;
549 if (*rawp == 0xffff)
550 protocol = htons(ETH_P_802_3);
551 else
552 protocol = htons(ETH_P_802_2);
553 }
554 skb->protocol = protocol;
555 }
556 status = netif_rx(skb);
557 if (status == NET_RX_DROP) {
558 net->stats.rx_errors++;
559 net->stats.rx_dropped++;
560 } else {
561 net->stats.rx_packets++;
562 net->stats.rx_bytes += skb->len;
563 }
564
565 return 0;
566
567 err:
568 net->stats.rx_errors++;
569 net->stats.rx_dropped++;
570
571 dev_kfree_skb_any(skb);
572
573 return -ENOENT;
574 }
575
576 static int fwnet_incoming_packet(struct fwnet_device *dev, __be32 *buf, int len,
577 int source_node_id, int generation,
578 bool is_broadcast)
579 {
580 struct sk_buff *skb;
581 struct net_device *net = dev->netdev;
582 struct rfc2734_header hdr;
583 unsigned lf;
584 unsigned long flags;
585 struct fwnet_peer *peer;
586 struct fwnet_partial_datagram *pd;
587 int fg_off;
588 int dg_size;
589 u16 datagram_label;
590 int retval;
591 u16 ether_type;
592
593 hdr.w0 = be32_to_cpu(buf[0]);
594 lf = fwnet_get_hdr_lf(&hdr);
595 if (lf == RFC2374_HDR_UNFRAG) {
596 /*
597 * An unfragmented datagram has been received by the ieee1394
598 * bus. Build an skbuff around it so we can pass it to the
599 * high level network layer.
600 */
601 ether_type = fwnet_get_hdr_ether_type(&hdr);
602 buf++;
603 len -= RFC2374_UNFRAG_HDR_SIZE;
604
605 skb = dev_alloc_skb(len + LL_RESERVED_SPACE(net));
606 if (unlikely(!skb)) {
607 dev_err(&net->dev, "out of memory\n");
608 net->stats.rx_dropped++;
609
610 return -ENOMEM;
611 }
612 skb_reserve(skb, LL_RESERVED_SPACE(net));
613 memcpy(skb_put(skb, len), buf, len);
614
615 return fwnet_finish_incoming_packet(net, skb, source_node_id,
616 is_broadcast, ether_type);
617 }
618 /* A datagram fragment has been received, now the fun begins. */
619 hdr.w1 = ntohl(buf[1]);
620 buf += 2;
621 len -= RFC2374_FRAG_HDR_SIZE;
622 if (lf == RFC2374_HDR_FIRSTFRAG) {
623 ether_type = fwnet_get_hdr_ether_type(&hdr);
624 fg_off = 0;
625 } else {
626 ether_type = 0;
627 fg_off = fwnet_get_hdr_fg_off(&hdr);
628 }
629 datagram_label = fwnet_get_hdr_dgl(&hdr);
630 dg_size = fwnet_get_hdr_dg_size(&hdr); /* ??? + 1 */
631
632 spin_lock_irqsave(&dev->lock, flags);
633
634 peer = fwnet_peer_find_by_node_id(dev, source_node_id, generation);
635 if (!peer) {
636 retval = -ENOENT;
637 goto fail;
638 }
639
640 pd = fwnet_pd_find(peer, datagram_label);
641 if (pd == NULL) {
642 while (peer->pdg_size >= FWNET_MAX_FRAGMENTS) {
643 /* remove the oldest */
644 fwnet_pd_delete(list_first_entry(&peer->pd_list,
645 struct fwnet_partial_datagram, pd_link));
646 peer->pdg_size--;
647 }
648 pd = fwnet_pd_new(net, peer, datagram_label,
649 dg_size, buf, fg_off, len);
650 if (pd == NULL) {
651 retval = -ENOMEM;
652 goto fail;
653 }
654 peer->pdg_size++;
655 } else {
656 if (fwnet_frag_overlap(pd, fg_off, len) ||
657 pd->datagram_size != dg_size) {
658 /*
659 * Differing datagram sizes or overlapping fragments,
660 * discard old datagram and start a new one.
661 */
662 fwnet_pd_delete(pd);
663 pd = fwnet_pd_new(net, peer, datagram_label,
664 dg_size, buf, fg_off, len);
665 if (pd == NULL) {
666 peer->pdg_size--;
667 retval = -ENOMEM;
668 goto fail;
669 }
670 } else {
671 if (!fwnet_pd_update(peer, pd, buf, fg_off, len)) {
672 /*
673 * Couldn't save off fragment anyway
674 * so might as well obliterate the
675 * datagram now.
676 */
677 fwnet_pd_delete(pd);
678 peer->pdg_size--;
679 retval = -ENOMEM;
680 goto fail;
681 }
682 }
683 } /* new datagram or add to existing one */
684
685 if (lf == RFC2374_HDR_FIRSTFRAG)
686 pd->ether_type = ether_type;
687
688 if (fwnet_pd_is_complete(pd)) {
689 ether_type = pd->ether_type;
690 peer->pdg_size--;
691 skb = skb_get(pd->skb);
692 fwnet_pd_delete(pd);
693
694 spin_unlock_irqrestore(&dev->lock, flags);
695
696 return fwnet_finish_incoming_packet(net, skb, source_node_id,
697 false, ether_type);
698 }
699 /*
700 * Datagram is not complete, we're done for the
701 * moment.
702 */
703 retval = 0;
704 fail:
705 spin_unlock_irqrestore(&dev->lock, flags);
706
707 return retval;
708 }
709
710 static void fwnet_receive_packet(struct fw_card *card, struct fw_request *r,
711 int tcode, int destination, int source, int generation,
712 unsigned long long offset, void *payload, size_t length,
713 void *callback_data)
714 {
715 struct fwnet_device *dev = callback_data;
716 int rcode;
717
718 if (destination == IEEE1394_ALL_NODES) {
719 kfree(r);
720
721 return;
722 }
723
724 if (offset != dev->handler.offset)
725 rcode = RCODE_ADDRESS_ERROR;
726 else if (tcode != TCODE_WRITE_BLOCK_REQUEST)
727 rcode = RCODE_TYPE_ERROR;
728 else if (fwnet_incoming_packet(dev, payload, length,
729 source, generation, false) != 0) {
730 dev_err(&dev->netdev->dev, "incoming packet failure\n");
731 rcode = RCODE_CONFLICT_ERROR;
732 } else
733 rcode = RCODE_COMPLETE;
734
735 fw_send_response(card, r, rcode);
736 }
737
738 static void fwnet_receive_broadcast(struct fw_iso_context *context,
739 u32 cycle, size_t header_length, void *header, void *data)
740 {
741 struct fwnet_device *dev;
742 struct fw_iso_packet packet;
743 __be16 *hdr_ptr;
744 __be32 *buf_ptr;
745 int retval;
746 u32 length;
747 u16 source_node_id;
748 u32 specifier_id;
749 u32 ver;
750 unsigned long offset;
751 unsigned long flags;
752
753 dev = data;
754 hdr_ptr = header;
755 length = be16_to_cpup(hdr_ptr);
756
757 spin_lock_irqsave(&dev->lock, flags);
758
759 offset = dev->rcv_buffer_size * dev->broadcast_rcv_next_ptr;
760 buf_ptr = dev->broadcast_rcv_buffer_ptrs[dev->broadcast_rcv_next_ptr++];
761 if (dev->broadcast_rcv_next_ptr == dev->num_broadcast_rcv_ptrs)
762 dev->broadcast_rcv_next_ptr = 0;
763
764 spin_unlock_irqrestore(&dev->lock, flags);
765
766 specifier_id = (be32_to_cpu(buf_ptr[0]) & 0xffff) << 8
767 | (be32_to_cpu(buf_ptr[1]) & 0xff000000) >> 24;
768 ver = be32_to_cpu(buf_ptr[1]) & 0xffffff;
769 source_node_id = be32_to_cpu(buf_ptr[0]) >> 16;
770
771 if (specifier_id == IANA_SPECIFIER_ID && ver == RFC2734_SW_VERSION) {
772 buf_ptr += 2;
773 length -= IEEE1394_GASP_HDR_SIZE;
774 fwnet_incoming_packet(dev, buf_ptr, length, source_node_id,
775 context->card->generation, true);
776 }
777
778 packet.payload_length = dev->rcv_buffer_size;
779 packet.interrupt = 1;
780 packet.skip = 0;
781 packet.tag = 3;
782 packet.sy = 0;
783 packet.header_length = IEEE1394_GASP_HDR_SIZE;
784
785 spin_lock_irqsave(&dev->lock, flags);
786
787 retval = fw_iso_context_queue(dev->broadcast_rcv_context, &packet,
788 &dev->broadcast_rcv_buffer, offset);
789
790 spin_unlock_irqrestore(&dev->lock, flags);
791
792 if (retval >= 0)
793 fw_iso_context_queue_flush(dev->broadcast_rcv_context);
794 else
795 dev_err(&dev->netdev->dev, "requeue failed\n");
796 }
797
798 static struct kmem_cache *fwnet_packet_task_cache;
799
800 static void fwnet_free_ptask(struct fwnet_packet_task *ptask)
801 {
802 dev_kfree_skb_any(ptask->skb);
803 kmem_cache_free(fwnet_packet_task_cache, ptask);
804 }
805
806 /* Caller must hold dev->lock. */
807 static void dec_queued_datagrams(struct fwnet_device *dev)
808 {
809 if (--dev->queued_datagrams == FWNET_MIN_QUEUED_DATAGRAMS)
810 netif_wake_queue(dev->netdev);
811 }
812
813 static int fwnet_send_packet(struct fwnet_packet_task *ptask);
814
815 static void fwnet_transmit_packet_done(struct fwnet_packet_task *ptask)
816 {
817 struct fwnet_device *dev = ptask->dev;
818 struct sk_buff *skb = ptask->skb;
819 unsigned long flags;
820 bool free;
821
822 spin_lock_irqsave(&dev->lock, flags);
823
824 ptask->outstanding_pkts--;
825
826 /* Check whether we or the networking TX soft-IRQ is last user. */
827 free = (ptask->outstanding_pkts == 0 && ptask->enqueued);
828 if (free)
829 dec_queued_datagrams(dev);
830
831 if (ptask->outstanding_pkts == 0) {
832 dev->netdev->stats.tx_packets++;
833 dev->netdev->stats.tx_bytes += skb->len;
834 }
835
836 spin_unlock_irqrestore(&dev->lock, flags);
837
838 if (ptask->outstanding_pkts > 0) {
839 u16 dg_size;
840 u16 fg_off;
841 u16 datagram_label;
842 u16 lf;
843
844 /* Update the ptask to point to the next fragment and send it */
845 lf = fwnet_get_hdr_lf(&ptask->hdr);
846 switch (lf) {
847 case RFC2374_HDR_LASTFRAG:
848 case RFC2374_HDR_UNFRAG:
849 default:
850 dev_err(&dev->netdev->dev,
851 "outstanding packet %x lf %x, header %x,%x\n",
852 ptask->outstanding_pkts, lf, ptask->hdr.w0,
853 ptask->hdr.w1);
854 BUG();
855
856 case RFC2374_HDR_FIRSTFRAG:
857 /* Set frag type here for future interior fragments */
858 dg_size = fwnet_get_hdr_dg_size(&ptask->hdr);
859 fg_off = ptask->max_payload - RFC2374_FRAG_HDR_SIZE;
860 datagram_label = fwnet_get_hdr_dgl(&ptask->hdr);
861 break;
862
863 case RFC2374_HDR_INTFRAG:
864 dg_size = fwnet_get_hdr_dg_size(&ptask->hdr);
865 fg_off = fwnet_get_hdr_fg_off(&ptask->hdr)
866 + ptask->max_payload - RFC2374_FRAG_HDR_SIZE;
867 datagram_label = fwnet_get_hdr_dgl(&ptask->hdr);
868 break;
869 }
870
871 if (ptask->dest_node == IEEE1394_ALL_NODES) {
872 skb_pull(skb,
873 ptask->max_payload + IEEE1394_GASP_HDR_SIZE);
874 } else {
875 skb_pull(skb, ptask->max_payload);
876 }
877 if (ptask->outstanding_pkts > 1) {
878 fwnet_make_sf_hdr(&ptask->hdr, RFC2374_HDR_INTFRAG,
879 dg_size, fg_off, datagram_label);
880 } else {
881 fwnet_make_sf_hdr(&ptask->hdr, RFC2374_HDR_LASTFRAG,
882 dg_size, fg_off, datagram_label);
883 ptask->max_payload = skb->len + RFC2374_FRAG_HDR_SIZE;
884 }
885 fwnet_send_packet(ptask);
886 }
887
888 if (free)
889 fwnet_free_ptask(ptask);
890 }
891
892 static void fwnet_transmit_packet_failed(struct fwnet_packet_task *ptask)
893 {
894 struct fwnet_device *dev = ptask->dev;
895 unsigned long flags;
896 bool free;
897
898 spin_lock_irqsave(&dev->lock, flags);
899
900 /* One fragment failed; don't try to send remaining fragments. */
901 ptask->outstanding_pkts = 0;
902
903 /* Check whether we or the networking TX soft-IRQ is last user. */
904 free = ptask->enqueued;
905 if (free)
906 dec_queued_datagrams(dev);
907
908 dev->netdev->stats.tx_dropped++;
909 dev->netdev->stats.tx_errors++;
910
911 spin_unlock_irqrestore(&dev->lock, flags);
912
913 if (free)
914 fwnet_free_ptask(ptask);
915 }
916
917 static void fwnet_write_complete(struct fw_card *card, int rcode,
918 void *payload, size_t length, void *data)
919 {
920 struct fwnet_packet_task *ptask = data;
921 static unsigned long j;
922 static int last_rcode, errors_skipped;
923
924 if (rcode == RCODE_COMPLETE) {
925 fwnet_transmit_packet_done(ptask);
926 } else {
927 fwnet_transmit_packet_failed(ptask);
928
929 if (printk_timed_ratelimit(&j, 1000) || rcode != last_rcode) {
930 dev_err(&ptask->dev->netdev->dev,
931 "fwnet_write_complete failed: %x (skipped %d)\n",
932 rcode, errors_skipped);
933
934 errors_skipped = 0;
935 last_rcode = rcode;
936 } else
937 errors_skipped++;
938 }
939 }
940
941 static int fwnet_send_packet(struct fwnet_packet_task *ptask)
942 {
943 struct fwnet_device *dev;
944 unsigned tx_len;
945 struct rfc2734_header *bufhdr;
946 unsigned long flags;
947 bool free;
948
949 dev = ptask->dev;
950 tx_len = ptask->max_payload;
951 switch (fwnet_get_hdr_lf(&ptask->hdr)) {
952 case RFC2374_HDR_UNFRAG:
953 bufhdr = (struct rfc2734_header *)
954 skb_push(ptask->skb, RFC2374_UNFRAG_HDR_SIZE);
955 put_unaligned_be32(ptask->hdr.w0, &bufhdr->w0);
956 break;
957
958 case RFC2374_HDR_FIRSTFRAG:
959 case RFC2374_HDR_INTFRAG:
960 case RFC2374_HDR_LASTFRAG:
961 bufhdr = (struct rfc2734_header *)
962 skb_push(ptask->skb, RFC2374_FRAG_HDR_SIZE);
963 put_unaligned_be32(ptask->hdr.w0, &bufhdr->w0);
964 put_unaligned_be32(ptask->hdr.w1, &bufhdr->w1);
965 break;
966
967 default:
968 BUG();
969 }
970 if (ptask->dest_node == IEEE1394_ALL_NODES) {
971 u8 *p;
972 int generation;
973 int node_id;
974
975 /* ptask->generation may not have been set yet */
976 generation = dev->card->generation;
977 smp_rmb();
978 node_id = dev->card->node_id;
979
980 p = skb_push(ptask->skb, IEEE1394_GASP_HDR_SIZE);
981 put_unaligned_be32(node_id << 16 | IANA_SPECIFIER_ID >> 8, p);
982 put_unaligned_be32((IANA_SPECIFIER_ID & 0xff) << 24
983 | RFC2734_SW_VERSION, &p[4]);
984
985 /* We should not transmit if broadcast_channel.valid == 0. */
986 fw_send_request(dev->card, &ptask->transaction,
987 TCODE_STREAM_DATA,
988 fw_stream_packet_destination_id(3,
989 IEEE1394_BROADCAST_CHANNEL, 0),
990 generation, SCODE_100, 0ULL, ptask->skb->data,
991 tx_len + 8, fwnet_write_complete, ptask);
992
993 spin_lock_irqsave(&dev->lock, flags);
994
995 /* If the AT tasklet already ran, we may be last user. */
996 free = (ptask->outstanding_pkts == 0 && !ptask->enqueued);
997 if (!free)
998 ptask->enqueued = true;
999 else
1000 dec_queued_datagrams(dev);
1001
1002 spin_unlock_irqrestore(&dev->lock, flags);
1003
1004 goto out;
1005 }
1006
1007 fw_send_request(dev->card, &ptask->transaction,
1008 TCODE_WRITE_BLOCK_REQUEST, ptask->dest_node,
1009 ptask->generation, ptask->speed, ptask->fifo_addr,
1010 ptask->skb->data, tx_len, fwnet_write_complete, ptask);
1011
1012 spin_lock_irqsave(&dev->lock, flags);
1013
1014 /* If the AT tasklet already ran, we may be last user. */
1015 free = (ptask->outstanding_pkts == 0 && !ptask->enqueued);
1016 if (!free)
1017 ptask->enqueued = true;
1018 else
1019 dec_queued_datagrams(dev);
1020
1021 spin_unlock_irqrestore(&dev->lock, flags);
1022
1023 dev->netdev->trans_start = jiffies;
1024 out:
1025 if (free)
1026 fwnet_free_ptask(ptask);
1027
1028 return 0;
1029 }
1030
1031 static void fwnet_fifo_stop(struct fwnet_device *dev)
1032 {
1033 if (dev->local_fifo == FWNET_NO_FIFO_ADDR)
1034 return;
1035
1036 fw_core_remove_address_handler(&dev->handler);
1037 dev->local_fifo = FWNET_NO_FIFO_ADDR;
1038 }
1039
1040 static int fwnet_fifo_start(struct fwnet_device *dev)
1041 {
1042 int retval;
1043
1044 if (dev->local_fifo != FWNET_NO_FIFO_ADDR)
1045 return 0;
1046
1047 dev->handler.length = 4096;
1048 dev->handler.address_callback = fwnet_receive_packet;
1049 dev->handler.callback_data = dev;
1050
1051 retval = fw_core_add_address_handler(&dev->handler,
1052 &fw_high_memory_region);
1053 if (retval < 0)
1054 return retval;
1055
1056 dev->local_fifo = dev->handler.offset;
1057
1058 return 0;
1059 }
1060
1061 static void __fwnet_broadcast_stop(struct fwnet_device *dev)
1062 {
1063 unsigned u;
1064
1065 if (dev->broadcast_state != FWNET_BROADCAST_ERROR) {
1066 for (u = 0; u < FWNET_ISO_PAGE_COUNT; u++)
1067 kunmap(dev->broadcast_rcv_buffer.pages[u]);
1068 fw_iso_buffer_destroy(&dev->broadcast_rcv_buffer, dev->card);
1069 }
1070 if (dev->broadcast_rcv_context) {
1071 fw_iso_context_destroy(dev->broadcast_rcv_context);
1072 dev->broadcast_rcv_context = NULL;
1073 }
1074 kfree(dev->broadcast_rcv_buffer_ptrs);
1075 dev->broadcast_rcv_buffer_ptrs = NULL;
1076 dev->broadcast_state = FWNET_BROADCAST_ERROR;
1077 }
1078
1079 static void fwnet_broadcast_stop(struct fwnet_device *dev)
1080 {
1081 if (dev->broadcast_state == FWNET_BROADCAST_ERROR)
1082 return;
1083 fw_iso_context_stop(dev->broadcast_rcv_context);
1084 __fwnet_broadcast_stop(dev);
1085 }
1086
1087 static int fwnet_broadcast_start(struct fwnet_device *dev)
1088 {
1089 struct fw_iso_context *context;
1090 int retval;
1091 unsigned num_packets;
1092 unsigned max_receive;
1093 struct fw_iso_packet packet;
1094 unsigned long offset;
1095 void **ptrptr;
1096 unsigned u;
1097
1098 if (dev->broadcast_state != FWNET_BROADCAST_ERROR)
1099 return 0;
1100
1101 max_receive = 1U << (dev->card->max_receive + 1);
1102 num_packets = (FWNET_ISO_PAGE_COUNT * PAGE_SIZE) / max_receive;
1103
1104 ptrptr = kmalloc(sizeof(void *) * num_packets, GFP_KERNEL);
1105 if (!ptrptr) {
1106 retval = -ENOMEM;
1107 goto failed;
1108 }
1109 dev->broadcast_rcv_buffer_ptrs = ptrptr;
1110
1111 context = fw_iso_context_create(dev->card, FW_ISO_CONTEXT_RECEIVE,
1112 IEEE1394_BROADCAST_CHANNEL,
1113 dev->card->link_speed, 8,
1114 fwnet_receive_broadcast, dev);
1115 if (IS_ERR(context)) {
1116 retval = PTR_ERR(context);
1117 goto failed;
1118 }
1119
1120 retval = fw_iso_buffer_init(&dev->broadcast_rcv_buffer, dev->card,
1121 FWNET_ISO_PAGE_COUNT, DMA_FROM_DEVICE);
1122 if (retval < 0)
1123 goto failed;
1124
1125 dev->broadcast_state = FWNET_BROADCAST_STOPPED;
1126
1127 for (u = 0; u < FWNET_ISO_PAGE_COUNT; u++) {
1128 void *ptr;
1129 unsigned v;
1130
1131 ptr = kmap(dev->broadcast_rcv_buffer.pages[u]);
1132 for (v = 0; v < num_packets / FWNET_ISO_PAGE_COUNT; v++)
1133 *ptrptr++ = (void *) ((char *)ptr + v * max_receive);
1134 }
1135 dev->broadcast_rcv_context = context;
1136
1137 packet.payload_length = max_receive;
1138 packet.interrupt = 1;
1139 packet.skip = 0;
1140 packet.tag = 3;
1141 packet.sy = 0;
1142 packet.header_length = IEEE1394_GASP_HDR_SIZE;
1143 offset = 0;
1144
1145 for (u = 0; u < num_packets; u++) {
1146 retval = fw_iso_context_queue(context, &packet,
1147 &dev->broadcast_rcv_buffer, offset);
1148 if (retval < 0)
1149 goto failed;
1150
1151 offset += max_receive;
1152 }
1153 dev->num_broadcast_rcv_ptrs = num_packets;
1154 dev->rcv_buffer_size = max_receive;
1155 dev->broadcast_rcv_next_ptr = 0U;
1156 retval = fw_iso_context_start(context, -1, 0,
1157 FW_ISO_CONTEXT_MATCH_ALL_TAGS); /* ??? sync */
1158 if (retval < 0)
1159 goto failed;
1160
1161 /* FIXME: adjust it according to the min. speed of all known peers? */
1162 dev->broadcast_xmt_max_payload = IEEE1394_MAX_PAYLOAD_S100
1163 - IEEE1394_GASP_HDR_SIZE - RFC2374_UNFRAG_HDR_SIZE;
1164 dev->broadcast_state = FWNET_BROADCAST_RUNNING;
1165
1166 return 0;
1167
1168 failed:
1169 __fwnet_broadcast_stop(dev);
1170 return retval;
1171 }
1172
1173 static void set_carrier_state(struct fwnet_device *dev)
1174 {
1175 if (dev->peer_count > 1)
1176 netif_carrier_on(dev->netdev);
1177 else
1178 netif_carrier_off(dev->netdev);
1179 }
1180
1181 /* ifup */
1182 static int fwnet_open(struct net_device *net)
1183 {
1184 struct fwnet_device *dev = netdev_priv(net);
1185 int ret;
1186
1187 ret = fwnet_broadcast_start(dev);
1188 if (ret)
1189 return ret;
1190
1191 netif_start_queue(net);
1192
1193 spin_lock_irq(&dev->lock);
1194 set_carrier_state(dev);
1195 spin_unlock_irq(&dev->lock);
1196
1197 return 0;
1198 }
1199
1200 /* ifdown */
1201 static int fwnet_stop(struct net_device *net)
1202 {
1203 struct fwnet_device *dev = netdev_priv(net);
1204
1205 netif_stop_queue(net);
1206 fwnet_broadcast_stop(dev);
1207
1208 return 0;
1209 }
1210
1211 static netdev_tx_t fwnet_tx(struct sk_buff *skb, struct net_device *net)
1212 {
1213 struct fwnet_header hdr_buf;
1214 struct fwnet_device *dev = netdev_priv(net);
1215 __be16 proto;
1216 u16 dest_node;
1217 unsigned max_payload;
1218 u16 dg_size;
1219 u16 *datagram_label_ptr;
1220 struct fwnet_packet_task *ptask;
1221 struct fwnet_peer *peer;
1222 unsigned long flags;
1223
1224 spin_lock_irqsave(&dev->lock, flags);
1225
1226 /* Can this happen? */
1227 if (netif_queue_stopped(dev->netdev)) {
1228 spin_unlock_irqrestore(&dev->lock, flags);
1229
1230 return NETDEV_TX_BUSY;
1231 }
1232
1233 ptask = kmem_cache_alloc(fwnet_packet_task_cache, GFP_ATOMIC);
1234 if (ptask == NULL)
1235 goto fail;
1236
1237 skb = skb_share_check(skb, GFP_ATOMIC);
1238 if (!skb)
1239 goto fail;
1240
1241 /*
1242 * Make a copy of the driver-specific header.
1243 * We might need to rebuild the header on tx failure.
1244 */
1245 memcpy(&hdr_buf, skb->data, sizeof(hdr_buf));
1246 proto = hdr_buf.h_proto;
1247
1248 switch (proto) {
1249 case htons(ETH_P_ARP):
1250 case htons(ETH_P_IP):
1251 break;
1252 default:
1253 goto fail;
1254 }
1255
1256 skb_pull(skb, sizeof(hdr_buf));
1257 dg_size = skb->len;
1258
1259 /*
1260 * Set the transmission type for the packet. ARP packets and IP
1261 * broadcast packets are sent via GASP.
1262 */
1263 if (fwnet_hwaddr_is_multicast(hdr_buf.h_dest)) {
1264 max_payload = dev->broadcast_xmt_max_payload;
1265 datagram_label_ptr = &dev->broadcast_xmt_datagramlabel;
1266
1267 ptask->fifo_addr = FWNET_NO_FIFO_ADDR;
1268 ptask->generation = 0;
1269 ptask->dest_node = IEEE1394_ALL_NODES;
1270 ptask->speed = SCODE_100;
1271 } else {
1272 union fwnet_hwaddr *ha = (union fwnet_hwaddr *)hdr_buf.h_dest;
1273 __be64 guid = get_unaligned(&ha->uc.uniq_id);
1274 u8 generation;
1275
1276 peer = fwnet_peer_find_by_guid(dev, be64_to_cpu(guid));
1277 if (!peer)
1278 goto fail;
1279
1280 generation = peer->generation;
1281 dest_node = peer->node_id;
1282 max_payload = peer->max_payload;
1283 datagram_label_ptr = &peer->datagram_label;
1284
1285 ptask->fifo_addr = fwnet_hwaddr_fifo(ha);
1286 ptask->generation = generation;
1287 ptask->dest_node = dest_node;
1288 ptask->speed = peer->speed;
1289 }
1290
1291 ptask->hdr.w0 = 0;
1292 ptask->hdr.w1 = 0;
1293 ptask->skb = skb;
1294 ptask->dev = dev;
1295
1296 /* Does it all fit in one packet? */
1297 if (dg_size <= max_payload) {
1298 fwnet_make_uf_hdr(&ptask->hdr, ntohs(proto));
1299 ptask->outstanding_pkts = 1;
1300 max_payload = dg_size + RFC2374_UNFRAG_HDR_SIZE;
1301 } else {
1302 u16 datagram_label;
1303
1304 max_payload -= RFC2374_FRAG_OVERHEAD;
1305 datagram_label = (*datagram_label_ptr)++;
1306 fwnet_make_ff_hdr(&ptask->hdr, ntohs(proto), dg_size,
1307 datagram_label);
1308 ptask->outstanding_pkts = DIV_ROUND_UP(dg_size, max_payload);
1309 max_payload += RFC2374_FRAG_HDR_SIZE;
1310 }
1311
1312 if (++dev->queued_datagrams == FWNET_MAX_QUEUED_DATAGRAMS)
1313 netif_stop_queue(dev->netdev);
1314
1315 spin_unlock_irqrestore(&dev->lock, flags);
1316
1317 ptask->max_payload = max_payload;
1318 ptask->enqueued = 0;
1319
1320 fwnet_send_packet(ptask);
1321
1322 return NETDEV_TX_OK;
1323
1324 fail:
1325 spin_unlock_irqrestore(&dev->lock, flags);
1326
1327 if (ptask)
1328 kmem_cache_free(fwnet_packet_task_cache, ptask);
1329
1330 if (skb != NULL)
1331 dev_kfree_skb(skb);
1332
1333 net->stats.tx_dropped++;
1334 net->stats.tx_errors++;
1335
1336 /*
1337 * FIXME: According to a patch from 2003-02-26, "returning non-zero
1338 * causes serious problems" here, allegedly. Before that patch,
1339 * -ERRNO was returned which is not appropriate under Linux 2.6.
1340 * Perhaps more needs to be done? Stop the queue in serious
1341 * conditions and restart it elsewhere?
1342 */
1343 return NETDEV_TX_OK;
1344 }
1345
1346 static int fwnet_change_mtu(struct net_device *net, int new_mtu)
1347 {
1348 if (new_mtu < 68)
1349 return -EINVAL;
1350
1351 net->mtu = new_mtu;
1352 return 0;
1353 }
1354
1355 static const struct ethtool_ops fwnet_ethtool_ops = {
1356 .get_link = ethtool_op_get_link,
1357 };
1358
1359 static const struct net_device_ops fwnet_netdev_ops = {
1360 .ndo_open = fwnet_open,
1361 .ndo_stop = fwnet_stop,
1362 .ndo_start_xmit = fwnet_tx,
1363 .ndo_change_mtu = fwnet_change_mtu,
1364 };
1365
1366 static void fwnet_init_dev(struct net_device *net)
1367 {
1368 net->header_ops = &fwnet_header_ops;
1369 net->netdev_ops = &fwnet_netdev_ops;
1370 net->watchdog_timeo = 2 * HZ;
1371 net->flags = IFF_BROADCAST | IFF_MULTICAST;
1372 net->features = NETIF_F_HIGHDMA;
1373 net->addr_len = FWNET_ALEN;
1374 net->hard_header_len = FWNET_HLEN;
1375 net->type = ARPHRD_IEEE1394;
1376 net->tx_queue_len = FWNET_TX_QUEUE_LEN;
1377 net->ethtool_ops = &fwnet_ethtool_ops;
1378 }
1379
1380 /* caller must hold fwnet_device_mutex */
1381 static struct fwnet_device *fwnet_dev_find(struct fw_card *card)
1382 {
1383 struct fwnet_device *dev;
1384
1385 list_for_each_entry(dev, &fwnet_device_list, dev_link)
1386 if (dev->card == card)
1387 return dev;
1388
1389 return NULL;
1390 }
1391
1392 static int fwnet_add_peer(struct fwnet_device *dev,
1393 struct fw_unit *unit, struct fw_device *device)
1394 {
1395 struct fwnet_peer *peer;
1396
1397 peer = kmalloc(sizeof(*peer), GFP_KERNEL);
1398 if (!peer)
1399 return -ENOMEM;
1400
1401 dev_set_drvdata(&unit->device, peer);
1402
1403 peer->dev = dev;
1404 peer->guid = (u64)device->config_rom[3] << 32 | device->config_rom[4];
1405 INIT_LIST_HEAD(&peer->pd_list);
1406 peer->pdg_size = 0;
1407 peer->datagram_label = 0;
1408 peer->speed = device->max_speed;
1409 peer->max_payload = fwnet_max_payload(device->max_rec, peer->speed);
1410
1411 peer->generation = device->generation;
1412 smp_rmb();
1413 peer->node_id = device->node_id;
1414
1415 spin_lock_irq(&dev->lock);
1416 list_add_tail(&peer->peer_link, &dev->peer_list);
1417 dev->peer_count++;
1418 set_carrier_state(dev);
1419 spin_unlock_irq(&dev->lock);
1420
1421 return 0;
1422 }
1423
1424 static int fwnet_probe(struct device *_dev)
1425 {
1426 struct fw_unit *unit = fw_unit(_dev);
1427 struct fw_device *device = fw_parent_device(unit);
1428 struct fw_card *card = device->card;
1429 struct net_device *net;
1430 bool allocated_netdev = false;
1431 struct fwnet_device *dev;
1432 unsigned max_mtu;
1433 int ret;
1434 union fwnet_hwaddr *ha;
1435
1436 mutex_lock(&fwnet_device_mutex);
1437
1438 dev = fwnet_dev_find(card);
1439 if (dev) {
1440 net = dev->netdev;
1441 goto have_dev;
1442 }
1443
1444 net = alloc_netdev(sizeof(*dev), "firewire%d", fwnet_init_dev);
1445 if (net == NULL) {
1446 ret = -ENOMEM;
1447 goto out;
1448 }
1449
1450 allocated_netdev = true;
1451 SET_NETDEV_DEV(net, card->device);
1452 dev = netdev_priv(net);
1453
1454 spin_lock_init(&dev->lock);
1455 dev->broadcast_state = FWNET_BROADCAST_ERROR;
1456 dev->broadcast_rcv_context = NULL;
1457 dev->broadcast_xmt_max_payload = 0;
1458 dev->broadcast_xmt_datagramlabel = 0;
1459 dev->local_fifo = FWNET_NO_FIFO_ADDR;
1460 dev->queued_datagrams = 0;
1461 INIT_LIST_HEAD(&dev->peer_list);
1462 dev->card = card;
1463 dev->netdev = net;
1464
1465 ret = fwnet_fifo_start(dev);
1466 if (ret < 0)
1467 goto out;
1468 dev->local_fifo = dev->handler.offset;
1469
1470 /*
1471 * Use the RFC 2734 default 1500 octets or the maximum payload
1472 * as initial MTU
1473 */
1474 max_mtu = (1 << (card->max_receive + 1))
1475 - sizeof(struct rfc2734_header) - IEEE1394_GASP_HDR_SIZE;
1476 net->mtu = min(1500U, max_mtu);
1477
1478 /* Set our hardware address while we're at it */
1479 ha = (union fwnet_hwaddr *)net->dev_addr;
1480 put_unaligned_be64(card->guid, &ha->uc.uniq_id);
1481 ha->uc.max_rec = dev->card->max_receive;
1482 ha->uc.sspd = dev->card->link_speed;
1483 put_unaligned_be16(dev->local_fifo >> 32, &ha->uc.fifo_hi);
1484 put_unaligned_be32(dev->local_fifo & 0xffffffff, &ha->uc.fifo_lo);
1485
1486 memset(net->broadcast, -1, net->addr_len);
1487
1488 ret = register_netdev(net);
1489 if (ret)
1490 goto out;
1491
1492 list_add_tail(&dev->dev_link, &fwnet_device_list);
1493 dev_notice(&net->dev, "IPv4 over IEEE 1394 on card %s\n",
1494 dev_name(card->device));
1495 have_dev:
1496 ret = fwnet_add_peer(dev, unit, device);
1497 if (ret && allocated_netdev) {
1498 unregister_netdev(net);
1499 list_del(&dev->dev_link);
1500 out:
1501 fwnet_fifo_stop(dev);
1502 free_netdev(net);
1503 }
1504
1505 mutex_unlock(&fwnet_device_mutex);
1506
1507 return ret;
1508 }
1509
1510 static void fwnet_remove_peer(struct fwnet_peer *peer, struct fwnet_device *dev)
1511 {
1512 struct fwnet_partial_datagram *pd, *pd_next;
1513
1514 spin_lock_irq(&dev->lock);
1515 list_del(&peer->peer_link);
1516 dev->peer_count--;
1517 set_carrier_state(dev);
1518 spin_unlock_irq(&dev->lock);
1519
1520 list_for_each_entry_safe(pd, pd_next, &peer->pd_list, pd_link)
1521 fwnet_pd_delete(pd);
1522
1523 kfree(peer);
1524 }
1525
1526 static int fwnet_remove(struct device *_dev)
1527 {
1528 struct fwnet_peer *peer = dev_get_drvdata(_dev);
1529 struct fwnet_device *dev = peer->dev;
1530 struct net_device *net;
1531 int i;
1532
1533 mutex_lock(&fwnet_device_mutex);
1534
1535 net = dev->netdev;
1536
1537 fwnet_remove_peer(peer, dev);
1538
1539 if (list_empty(&dev->peer_list)) {
1540 unregister_netdev(net);
1541
1542 fwnet_fifo_stop(dev);
1543
1544 for (i = 0; dev->queued_datagrams && i < 5; i++)
1545 ssleep(1);
1546 WARN_ON(dev->queued_datagrams);
1547 list_del(&dev->dev_link);
1548
1549 free_netdev(net);
1550 }
1551
1552 mutex_unlock(&fwnet_device_mutex);
1553
1554 return 0;
1555 }
1556
1557 /*
1558 * FIXME abort partially sent fragmented datagrams,
1559 * discard partially received fragmented datagrams
1560 */
1561 static void fwnet_update(struct fw_unit *unit)
1562 {
1563 struct fw_device *device = fw_parent_device(unit);
1564 struct fwnet_peer *peer = dev_get_drvdata(&unit->device);
1565 int generation;
1566
1567 generation = device->generation;
1568
1569 spin_lock_irq(&peer->dev->lock);
1570 peer->node_id = device->node_id;
1571 peer->generation = generation;
1572 spin_unlock_irq(&peer->dev->lock);
1573 }
1574
1575 static const struct ieee1394_device_id fwnet_id_table[] = {
1576 {
1577 .match_flags = IEEE1394_MATCH_SPECIFIER_ID |
1578 IEEE1394_MATCH_VERSION,
1579 .specifier_id = IANA_SPECIFIER_ID,
1580 .version = RFC2734_SW_VERSION,
1581 },
1582 { }
1583 };
1584
1585 static struct fw_driver fwnet_driver = {
1586 .driver = {
1587 .owner = THIS_MODULE,
1588 .name = KBUILD_MODNAME,
1589 .bus = &fw_bus_type,
1590 .probe = fwnet_probe,
1591 .remove = fwnet_remove,
1592 },
1593 .update = fwnet_update,
1594 .id_table = fwnet_id_table,
1595 };
1596
1597 static const u32 rfc2374_unit_directory_data[] = {
1598 0x00040000, /* directory_length */
1599 0x1200005e, /* unit_specifier_id: IANA */
1600 0x81000003, /* textual descriptor offset */
1601 0x13000001, /* unit_sw_version: RFC 2734 */
1602 0x81000005, /* textual descriptor offset */
1603 0x00030000, /* descriptor_length */
1604 0x00000000, /* text */
1605 0x00000000, /* minimal ASCII, en */
1606 0x49414e41, /* I A N A */
1607 0x00030000, /* descriptor_length */
1608 0x00000000, /* text */
1609 0x00000000, /* minimal ASCII, en */
1610 0x49507634, /* I P v 4 */
1611 };
1612
1613 static struct fw_descriptor rfc2374_unit_directory = {
1614 .length = ARRAY_SIZE(rfc2374_unit_directory_data),
1615 .key = (CSR_DIRECTORY | CSR_UNIT) << 24,
1616 .data = rfc2374_unit_directory_data
1617 };
1618
1619 static int __init fwnet_init(void)
1620 {
1621 int err;
1622
1623 err = fw_core_add_descriptor(&rfc2374_unit_directory);
1624 if (err)
1625 return err;
1626
1627 fwnet_packet_task_cache = kmem_cache_create("packet_task",
1628 sizeof(struct fwnet_packet_task), 0, 0, NULL);
1629 if (!fwnet_packet_task_cache) {
1630 err = -ENOMEM;
1631 goto out;
1632 }
1633
1634 err = driver_register(&fwnet_driver.driver);
1635 if (!err)
1636 return 0;
1637
1638 kmem_cache_destroy(fwnet_packet_task_cache);
1639 out:
1640 fw_core_remove_descriptor(&rfc2374_unit_directory);
1641
1642 return err;
1643 }
1644 module_init(fwnet_init);
1645
1646 static void __exit fwnet_cleanup(void)
1647 {
1648 driver_unregister(&fwnet_driver.driver);
1649 kmem_cache_destroy(fwnet_packet_task_cache);
1650 fw_core_remove_descriptor(&rfc2374_unit_directory);
1651 }
1652 module_exit(fwnet_cleanup);
1653
1654 MODULE_AUTHOR("Jay Fenlason <fenlason@redhat.com>");
1655 MODULE_DESCRIPTION("IPv4 over IEEE1394 as per RFC 2734");
1656 MODULE_LICENSE("GPL");
1657 MODULE_DEVICE_TABLE(ieee1394, fwnet_id_table);