]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/firewire/ohci.c
locking/atomics: COCCINELLE/treewide: Convert trivial ACCESS_ONCE() patterns to READ_...
[mirror_ubuntu-hirsute-kernel.git] / drivers / firewire / ohci.c
1 /*
2 * Driver for OHCI 1394 controllers
3 *
4 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21 #include <linux/bitops.h>
22 #include <linux/bug.h>
23 #include <linux/compiler.h>
24 #include <linux/delay.h>
25 #include <linux/device.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/firewire.h>
28 #include <linux/firewire-constants.h>
29 #include <linux/init.h>
30 #include <linux/interrupt.h>
31 #include <linux/io.h>
32 #include <linux/kernel.h>
33 #include <linux/list.h>
34 #include <linux/mm.h>
35 #include <linux/module.h>
36 #include <linux/moduleparam.h>
37 #include <linux/mutex.h>
38 #include <linux/pci.h>
39 #include <linux/pci_ids.h>
40 #include <linux/slab.h>
41 #include <linux/spinlock.h>
42 #include <linux/string.h>
43 #include <linux/time.h>
44 #include <linux/vmalloc.h>
45 #include <linux/workqueue.h>
46
47 #include <asm/byteorder.h>
48 #include <asm/page.h>
49
50 #ifdef CONFIG_PPC_PMAC
51 #include <asm/pmac_feature.h>
52 #endif
53
54 #include "core.h"
55 #include "ohci.h"
56
57 #define ohci_info(ohci, f, args...) dev_info(ohci->card.device, f, ##args)
58 #define ohci_notice(ohci, f, args...) dev_notice(ohci->card.device, f, ##args)
59 #define ohci_err(ohci, f, args...) dev_err(ohci->card.device, f, ##args)
60
61 #define DESCRIPTOR_OUTPUT_MORE 0
62 #define DESCRIPTOR_OUTPUT_LAST (1 << 12)
63 #define DESCRIPTOR_INPUT_MORE (2 << 12)
64 #define DESCRIPTOR_INPUT_LAST (3 << 12)
65 #define DESCRIPTOR_STATUS (1 << 11)
66 #define DESCRIPTOR_KEY_IMMEDIATE (2 << 8)
67 #define DESCRIPTOR_PING (1 << 7)
68 #define DESCRIPTOR_YY (1 << 6)
69 #define DESCRIPTOR_NO_IRQ (0 << 4)
70 #define DESCRIPTOR_IRQ_ERROR (1 << 4)
71 #define DESCRIPTOR_IRQ_ALWAYS (3 << 4)
72 #define DESCRIPTOR_BRANCH_ALWAYS (3 << 2)
73 #define DESCRIPTOR_WAIT (3 << 0)
74
75 #define DESCRIPTOR_CMD (0xf << 12)
76
77 struct descriptor {
78 __le16 req_count;
79 __le16 control;
80 __le32 data_address;
81 __le32 branch_address;
82 __le16 res_count;
83 __le16 transfer_status;
84 } __attribute__((aligned(16)));
85
86 #define CONTROL_SET(regs) (regs)
87 #define CONTROL_CLEAR(regs) ((regs) + 4)
88 #define COMMAND_PTR(regs) ((regs) + 12)
89 #define CONTEXT_MATCH(regs) ((regs) + 16)
90
91 #define AR_BUFFER_SIZE (32*1024)
92 #define AR_BUFFERS_MIN DIV_ROUND_UP(AR_BUFFER_SIZE, PAGE_SIZE)
93 /* we need at least two pages for proper list management */
94 #define AR_BUFFERS (AR_BUFFERS_MIN >= 2 ? AR_BUFFERS_MIN : 2)
95
96 #define MAX_ASYNC_PAYLOAD 4096
97 #define MAX_AR_PACKET_SIZE (16 + MAX_ASYNC_PAYLOAD + 4)
98 #define AR_WRAPAROUND_PAGES DIV_ROUND_UP(MAX_AR_PACKET_SIZE, PAGE_SIZE)
99
100 struct ar_context {
101 struct fw_ohci *ohci;
102 struct page *pages[AR_BUFFERS];
103 void *buffer;
104 struct descriptor *descriptors;
105 dma_addr_t descriptors_bus;
106 void *pointer;
107 unsigned int last_buffer_index;
108 u32 regs;
109 struct tasklet_struct tasklet;
110 };
111
112 struct context;
113
114 typedef int (*descriptor_callback_t)(struct context *ctx,
115 struct descriptor *d,
116 struct descriptor *last);
117
118 /*
119 * A buffer that contains a block of DMA-able coherent memory used for
120 * storing a portion of a DMA descriptor program.
121 */
122 struct descriptor_buffer {
123 struct list_head list;
124 dma_addr_t buffer_bus;
125 size_t buffer_size;
126 size_t used;
127 struct descriptor buffer[0];
128 };
129
130 struct context {
131 struct fw_ohci *ohci;
132 u32 regs;
133 int total_allocation;
134 u32 current_bus;
135 bool running;
136 bool flushing;
137
138 /*
139 * List of page-sized buffers for storing DMA descriptors.
140 * Head of list contains buffers in use and tail of list contains
141 * free buffers.
142 */
143 struct list_head buffer_list;
144
145 /*
146 * Pointer to a buffer inside buffer_list that contains the tail
147 * end of the current DMA program.
148 */
149 struct descriptor_buffer *buffer_tail;
150
151 /*
152 * The descriptor containing the branch address of the first
153 * descriptor that has not yet been filled by the device.
154 */
155 struct descriptor *last;
156
157 /*
158 * The last descriptor block in the DMA program. It contains the branch
159 * address that must be updated upon appending a new descriptor.
160 */
161 struct descriptor *prev;
162 int prev_z;
163
164 descriptor_callback_t callback;
165
166 struct tasklet_struct tasklet;
167 };
168
169 #define IT_HEADER_SY(v) ((v) << 0)
170 #define IT_HEADER_TCODE(v) ((v) << 4)
171 #define IT_HEADER_CHANNEL(v) ((v) << 8)
172 #define IT_HEADER_TAG(v) ((v) << 14)
173 #define IT_HEADER_SPEED(v) ((v) << 16)
174 #define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
175
176 struct iso_context {
177 struct fw_iso_context base;
178 struct context context;
179 void *header;
180 size_t header_length;
181 unsigned long flushing_completions;
182 u32 mc_buffer_bus;
183 u16 mc_completed;
184 u16 last_timestamp;
185 u8 sync;
186 u8 tags;
187 };
188
189 #define CONFIG_ROM_SIZE 1024
190
191 struct fw_ohci {
192 struct fw_card card;
193
194 __iomem char *registers;
195 int node_id;
196 int generation;
197 int request_generation; /* for timestamping incoming requests */
198 unsigned quirks;
199 unsigned int pri_req_max;
200 u32 bus_time;
201 bool bus_time_running;
202 bool is_root;
203 bool csr_state_setclear_abdicate;
204 int n_ir;
205 int n_it;
206 /*
207 * Spinlock for accessing fw_ohci data. Never call out of
208 * this driver with this lock held.
209 */
210 spinlock_t lock;
211
212 struct mutex phy_reg_mutex;
213
214 void *misc_buffer;
215 dma_addr_t misc_buffer_bus;
216
217 struct ar_context ar_request_ctx;
218 struct ar_context ar_response_ctx;
219 struct context at_request_ctx;
220 struct context at_response_ctx;
221
222 u32 it_context_support;
223 u32 it_context_mask; /* unoccupied IT contexts */
224 struct iso_context *it_context_list;
225 u64 ir_context_channels; /* unoccupied channels */
226 u32 ir_context_support;
227 u32 ir_context_mask; /* unoccupied IR contexts */
228 struct iso_context *ir_context_list;
229 u64 mc_channels; /* channels in use by the multichannel IR context */
230 bool mc_allocated;
231
232 __be32 *config_rom;
233 dma_addr_t config_rom_bus;
234 __be32 *next_config_rom;
235 dma_addr_t next_config_rom_bus;
236 __be32 next_header;
237
238 __le32 *self_id;
239 dma_addr_t self_id_bus;
240 struct work_struct bus_reset_work;
241
242 u32 self_id_buffer[512];
243 };
244
245 static struct workqueue_struct *selfid_workqueue;
246
247 static inline struct fw_ohci *fw_ohci(struct fw_card *card)
248 {
249 return container_of(card, struct fw_ohci, card);
250 }
251
252 #define IT_CONTEXT_CYCLE_MATCH_ENABLE 0x80000000
253 #define IR_CONTEXT_BUFFER_FILL 0x80000000
254 #define IR_CONTEXT_ISOCH_HEADER 0x40000000
255 #define IR_CONTEXT_CYCLE_MATCH_ENABLE 0x20000000
256 #define IR_CONTEXT_MULTI_CHANNEL_MODE 0x10000000
257 #define IR_CONTEXT_DUAL_BUFFER_MODE 0x08000000
258
259 #define CONTEXT_RUN 0x8000
260 #define CONTEXT_WAKE 0x1000
261 #define CONTEXT_DEAD 0x0800
262 #define CONTEXT_ACTIVE 0x0400
263
264 #define OHCI1394_MAX_AT_REQ_RETRIES 0xf
265 #define OHCI1394_MAX_AT_RESP_RETRIES 0x2
266 #define OHCI1394_MAX_PHYS_RESP_RETRIES 0x8
267
268 #define OHCI1394_REGISTER_SIZE 0x800
269 #define OHCI1394_PCI_HCI_Control 0x40
270 #define SELF_ID_BUF_SIZE 0x800
271 #define OHCI_TCODE_PHY_PACKET 0x0e
272 #define OHCI_VERSION_1_1 0x010010
273
274 static char ohci_driver_name[] = KBUILD_MODNAME;
275
276 #define PCI_VENDOR_ID_PINNACLE_SYSTEMS 0x11bd
277 #define PCI_DEVICE_ID_AGERE_FW643 0x5901
278 #define PCI_DEVICE_ID_CREATIVE_SB1394 0x4001
279 #define PCI_DEVICE_ID_JMICRON_JMB38X_FW 0x2380
280 #define PCI_DEVICE_ID_TI_TSB12LV22 0x8009
281 #define PCI_DEVICE_ID_TI_TSB12LV26 0x8020
282 #define PCI_DEVICE_ID_TI_TSB82AA2 0x8025
283 #define PCI_DEVICE_ID_VIA_VT630X 0x3044
284 #define PCI_REV_ID_VIA_VT6306 0x46
285 #define PCI_DEVICE_ID_VIA_VT6315 0x3403
286
287 #define QUIRK_CYCLE_TIMER 0x1
288 #define QUIRK_RESET_PACKET 0x2
289 #define QUIRK_BE_HEADERS 0x4
290 #define QUIRK_NO_1394A 0x8
291 #define QUIRK_NO_MSI 0x10
292 #define QUIRK_TI_SLLZ059 0x20
293 #define QUIRK_IR_WAKE 0x40
294
295 /* In case of multiple matches in ohci_quirks[], only the first one is used. */
296 static const struct {
297 unsigned short vendor, device, revision, flags;
298 } ohci_quirks[] = {
299 {PCI_VENDOR_ID_AL, PCI_ANY_ID, PCI_ANY_ID,
300 QUIRK_CYCLE_TIMER},
301
302 {PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_FW, PCI_ANY_ID,
303 QUIRK_BE_HEADERS},
304
305 {PCI_VENDOR_ID_ATT, PCI_DEVICE_ID_AGERE_FW643, 6,
306 QUIRK_NO_MSI},
307
308 {PCI_VENDOR_ID_CREATIVE, PCI_DEVICE_ID_CREATIVE_SB1394, PCI_ANY_ID,
309 QUIRK_RESET_PACKET},
310
311 {PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB38X_FW, PCI_ANY_ID,
312 QUIRK_NO_MSI},
313
314 {PCI_VENDOR_ID_NEC, PCI_ANY_ID, PCI_ANY_ID,
315 QUIRK_CYCLE_TIMER},
316
317 {PCI_VENDOR_ID_O2, PCI_ANY_ID, PCI_ANY_ID,
318 QUIRK_NO_MSI},
319
320 {PCI_VENDOR_ID_RICOH, PCI_ANY_ID, PCI_ANY_ID,
321 QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
322
323 {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV22, PCI_ANY_ID,
324 QUIRK_CYCLE_TIMER | QUIRK_RESET_PACKET | QUIRK_NO_1394A},
325
326 {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV26, PCI_ANY_ID,
327 QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},
328
329 {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB82AA2, PCI_ANY_ID,
330 QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},
331
332 {PCI_VENDOR_ID_TI, PCI_ANY_ID, PCI_ANY_ID,
333 QUIRK_RESET_PACKET},
334
335 {PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT630X, PCI_REV_ID_VIA_VT6306,
336 QUIRK_CYCLE_TIMER | QUIRK_IR_WAKE},
337
338 {PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT6315, 0,
339 QUIRK_CYCLE_TIMER /* FIXME: necessary? */ | QUIRK_NO_MSI},
340
341 {PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT6315, PCI_ANY_ID,
342 QUIRK_NO_MSI},
343
344 {PCI_VENDOR_ID_VIA, PCI_ANY_ID, PCI_ANY_ID,
345 QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
346 };
347
348 /* This overrides anything that was found in ohci_quirks[]. */
349 static int param_quirks;
350 module_param_named(quirks, param_quirks, int, 0644);
351 MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
352 ", nonatomic cycle timer = " __stringify(QUIRK_CYCLE_TIMER)
353 ", reset packet generation = " __stringify(QUIRK_RESET_PACKET)
354 ", AR/selfID endianness = " __stringify(QUIRK_BE_HEADERS)
355 ", no 1394a enhancements = " __stringify(QUIRK_NO_1394A)
356 ", disable MSI = " __stringify(QUIRK_NO_MSI)
357 ", TI SLLZ059 erratum = " __stringify(QUIRK_TI_SLLZ059)
358 ", IR wake unreliable = " __stringify(QUIRK_IR_WAKE)
359 ")");
360
361 #define OHCI_PARAM_DEBUG_AT_AR 1
362 #define OHCI_PARAM_DEBUG_SELFIDS 2
363 #define OHCI_PARAM_DEBUG_IRQS 4
364 #define OHCI_PARAM_DEBUG_BUSRESETS 8 /* only effective before chip init */
365
366 static int param_debug;
367 module_param_named(debug, param_debug, int, 0644);
368 MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
369 ", AT/AR events = " __stringify(OHCI_PARAM_DEBUG_AT_AR)
370 ", self-IDs = " __stringify(OHCI_PARAM_DEBUG_SELFIDS)
371 ", IRQs = " __stringify(OHCI_PARAM_DEBUG_IRQS)
372 ", busReset events = " __stringify(OHCI_PARAM_DEBUG_BUSRESETS)
373 ", or a combination, or all = -1)");
374
375 static bool param_remote_dma;
376 module_param_named(remote_dma, param_remote_dma, bool, 0444);
377 MODULE_PARM_DESC(remote_dma, "Enable unfiltered remote DMA (default = N)");
378
379 static void log_irqs(struct fw_ohci *ohci, u32 evt)
380 {
381 if (likely(!(param_debug &
382 (OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
383 return;
384
385 if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
386 !(evt & OHCI1394_busReset))
387 return;
388
389 ohci_notice(ohci, "IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
390 evt & OHCI1394_selfIDComplete ? " selfID" : "",
391 evt & OHCI1394_RQPkt ? " AR_req" : "",
392 evt & OHCI1394_RSPkt ? " AR_resp" : "",
393 evt & OHCI1394_reqTxComplete ? " AT_req" : "",
394 evt & OHCI1394_respTxComplete ? " AT_resp" : "",
395 evt & OHCI1394_isochRx ? " IR" : "",
396 evt & OHCI1394_isochTx ? " IT" : "",
397 evt & OHCI1394_postedWriteErr ? " postedWriteErr" : "",
398 evt & OHCI1394_cycleTooLong ? " cycleTooLong" : "",
399 evt & OHCI1394_cycle64Seconds ? " cycle64Seconds" : "",
400 evt & OHCI1394_cycleInconsistent ? " cycleInconsistent" : "",
401 evt & OHCI1394_regAccessFail ? " regAccessFail" : "",
402 evt & OHCI1394_unrecoverableError ? " unrecoverableError" : "",
403 evt & OHCI1394_busReset ? " busReset" : "",
404 evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
405 OHCI1394_RSPkt | OHCI1394_reqTxComplete |
406 OHCI1394_respTxComplete | OHCI1394_isochRx |
407 OHCI1394_isochTx | OHCI1394_postedWriteErr |
408 OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
409 OHCI1394_cycleInconsistent |
410 OHCI1394_regAccessFail | OHCI1394_busReset)
411 ? " ?" : "");
412 }
413
414 static const char *speed[] = {
415 [0] = "S100", [1] = "S200", [2] = "S400", [3] = "beta",
416 };
417 static const char *power[] = {
418 [0] = "+0W", [1] = "+15W", [2] = "+30W", [3] = "+45W",
419 [4] = "-3W", [5] = " ?W", [6] = "-3..-6W", [7] = "-3..-10W",
420 };
421 static const char port[] = { '.', '-', 'p', 'c', };
422
423 static char _p(u32 *s, int shift)
424 {
425 return port[*s >> shift & 3];
426 }
427
428 static void log_selfids(struct fw_ohci *ohci, int generation, int self_id_count)
429 {
430 u32 *s;
431
432 if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
433 return;
434
435 ohci_notice(ohci, "%d selfIDs, generation %d, local node ID %04x\n",
436 self_id_count, generation, ohci->node_id);
437
438 for (s = ohci->self_id_buffer; self_id_count--; ++s)
439 if ((*s & 1 << 23) == 0)
440 ohci_notice(ohci,
441 "selfID 0: %08x, phy %d [%c%c%c] %s gc=%d %s %s%s%s\n",
442 *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
443 speed[*s >> 14 & 3], *s >> 16 & 63,
444 power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
445 *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
446 else
447 ohci_notice(ohci,
448 "selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
449 *s, *s >> 24 & 63,
450 _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
451 _p(s, 8), _p(s, 6), _p(s, 4), _p(s, 2));
452 }
453
454 static const char *evts[] = {
455 [0x00] = "evt_no_status", [0x01] = "-reserved-",
456 [0x02] = "evt_long_packet", [0x03] = "evt_missing_ack",
457 [0x04] = "evt_underrun", [0x05] = "evt_overrun",
458 [0x06] = "evt_descriptor_read", [0x07] = "evt_data_read",
459 [0x08] = "evt_data_write", [0x09] = "evt_bus_reset",
460 [0x0a] = "evt_timeout", [0x0b] = "evt_tcode_err",
461 [0x0c] = "-reserved-", [0x0d] = "-reserved-",
462 [0x0e] = "evt_unknown", [0x0f] = "evt_flushed",
463 [0x10] = "-reserved-", [0x11] = "ack_complete",
464 [0x12] = "ack_pending ", [0x13] = "-reserved-",
465 [0x14] = "ack_busy_X", [0x15] = "ack_busy_A",
466 [0x16] = "ack_busy_B", [0x17] = "-reserved-",
467 [0x18] = "-reserved-", [0x19] = "-reserved-",
468 [0x1a] = "-reserved-", [0x1b] = "ack_tardy",
469 [0x1c] = "-reserved-", [0x1d] = "ack_data_error",
470 [0x1e] = "ack_type_error", [0x1f] = "-reserved-",
471 [0x20] = "pending/cancelled",
472 };
473 static const char *tcodes[] = {
474 [0x0] = "QW req", [0x1] = "BW req",
475 [0x2] = "W resp", [0x3] = "-reserved-",
476 [0x4] = "QR req", [0x5] = "BR req",
477 [0x6] = "QR resp", [0x7] = "BR resp",
478 [0x8] = "cycle start", [0x9] = "Lk req",
479 [0xa] = "async stream packet", [0xb] = "Lk resp",
480 [0xc] = "-reserved-", [0xd] = "-reserved-",
481 [0xe] = "link internal", [0xf] = "-reserved-",
482 };
483
484 static void log_ar_at_event(struct fw_ohci *ohci,
485 char dir, int speed, u32 *header, int evt)
486 {
487 int tcode = header[0] >> 4 & 0xf;
488 char specific[12];
489
490 if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
491 return;
492
493 if (unlikely(evt >= ARRAY_SIZE(evts)))
494 evt = 0x1f;
495
496 if (evt == OHCI1394_evt_bus_reset) {
497 ohci_notice(ohci, "A%c evt_bus_reset, generation %d\n",
498 dir, (header[2] >> 16) & 0xff);
499 return;
500 }
501
502 switch (tcode) {
503 case 0x0: case 0x6: case 0x8:
504 snprintf(specific, sizeof(specific), " = %08x",
505 be32_to_cpu((__force __be32)header[3]));
506 break;
507 case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
508 snprintf(specific, sizeof(specific), " %x,%x",
509 header[3] >> 16, header[3] & 0xffff);
510 break;
511 default:
512 specific[0] = '\0';
513 }
514
515 switch (tcode) {
516 case 0xa:
517 ohci_notice(ohci, "A%c %s, %s\n",
518 dir, evts[evt], tcodes[tcode]);
519 break;
520 case 0xe:
521 ohci_notice(ohci, "A%c %s, PHY %08x %08x\n",
522 dir, evts[evt], header[1], header[2]);
523 break;
524 case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
525 ohci_notice(ohci,
526 "A%c spd %x tl %02x, %04x -> %04x, %s, %s, %04x%08x%s\n",
527 dir, speed, header[0] >> 10 & 0x3f,
528 header[1] >> 16, header[0] >> 16, evts[evt],
529 tcodes[tcode], header[1] & 0xffff, header[2], specific);
530 break;
531 default:
532 ohci_notice(ohci,
533 "A%c spd %x tl %02x, %04x -> %04x, %s, %s%s\n",
534 dir, speed, header[0] >> 10 & 0x3f,
535 header[1] >> 16, header[0] >> 16, evts[evt],
536 tcodes[tcode], specific);
537 }
538 }
539
540 static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
541 {
542 writel(data, ohci->registers + offset);
543 }
544
545 static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
546 {
547 return readl(ohci->registers + offset);
548 }
549
550 static inline void flush_writes(const struct fw_ohci *ohci)
551 {
552 /* Do a dummy read to flush writes. */
553 reg_read(ohci, OHCI1394_Version);
554 }
555
556 /*
557 * Beware! read_phy_reg(), write_phy_reg(), update_phy_reg(), and
558 * read_paged_phy_reg() require the caller to hold ohci->phy_reg_mutex.
559 * In other words, only use ohci_read_phy_reg() and ohci_update_phy_reg()
560 * directly. Exceptions are intrinsically serialized contexts like pci_probe.
561 */
562 static int read_phy_reg(struct fw_ohci *ohci, int addr)
563 {
564 u32 val;
565 int i;
566
567 reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
568 for (i = 0; i < 3 + 100; i++) {
569 val = reg_read(ohci, OHCI1394_PhyControl);
570 if (!~val)
571 return -ENODEV; /* Card was ejected. */
572
573 if (val & OHCI1394_PhyControl_ReadDone)
574 return OHCI1394_PhyControl_ReadData(val);
575
576 /*
577 * Try a few times without waiting. Sleeping is necessary
578 * only when the link/PHY interface is busy.
579 */
580 if (i >= 3)
581 msleep(1);
582 }
583 ohci_err(ohci, "failed to read phy reg %d\n", addr);
584 dump_stack();
585
586 return -EBUSY;
587 }
588
589 static int write_phy_reg(const struct fw_ohci *ohci, int addr, u32 val)
590 {
591 int i;
592
593 reg_write(ohci, OHCI1394_PhyControl,
594 OHCI1394_PhyControl_Write(addr, val));
595 for (i = 0; i < 3 + 100; i++) {
596 val = reg_read(ohci, OHCI1394_PhyControl);
597 if (!~val)
598 return -ENODEV; /* Card was ejected. */
599
600 if (!(val & OHCI1394_PhyControl_WritePending))
601 return 0;
602
603 if (i >= 3)
604 msleep(1);
605 }
606 ohci_err(ohci, "failed to write phy reg %d, val %u\n", addr, val);
607 dump_stack();
608
609 return -EBUSY;
610 }
611
612 static int update_phy_reg(struct fw_ohci *ohci, int addr,
613 int clear_bits, int set_bits)
614 {
615 int ret = read_phy_reg(ohci, addr);
616 if (ret < 0)
617 return ret;
618
619 /*
620 * The interrupt status bits are cleared by writing a one bit.
621 * Avoid clearing them unless explicitly requested in set_bits.
622 */
623 if (addr == 5)
624 clear_bits |= PHY_INT_STATUS_BITS;
625
626 return write_phy_reg(ohci, addr, (ret & ~clear_bits) | set_bits);
627 }
628
629 static int read_paged_phy_reg(struct fw_ohci *ohci, int page, int addr)
630 {
631 int ret;
632
633 ret = update_phy_reg(ohci, 7, PHY_PAGE_SELECT, page << 5);
634 if (ret < 0)
635 return ret;
636
637 return read_phy_reg(ohci, addr);
638 }
639
640 static int ohci_read_phy_reg(struct fw_card *card, int addr)
641 {
642 struct fw_ohci *ohci = fw_ohci(card);
643 int ret;
644
645 mutex_lock(&ohci->phy_reg_mutex);
646 ret = read_phy_reg(ohci, addr);
647 mutex_unlock(&ohci->phy_reg_mutex);
648
649 return ret;
650 }
651
652 static int ohci_update_phy_reg(struct fw_card *card, int addr,
653 int clear_bits, int set_bits)
654 {
655 struct fw_ohci *ohci = fw_ohci(card);
656 int ret;
657
658 mutex_lock(&ohci->phy_reg_mutex);
659 ret = update_phy_reg(ohci, addr, clear_bits, set_bits);
660 mutex_unlock(&ohci->phy_reg_mutex);
661
662 return ret;
663 }
664
665 static inline dma_addr_t ar_buffer_bus(struct ar_context *ctx, unsigned int i)
666 {
667 return page_private(ctx->pages[i]);
668 }
669
670 static void ar_context_link_page(struct ar_context *ctx, unsigned int index)
671 {
672 struct descriptor *d;
673
674 d = &ctx->descriptors[index];
675 d->branch_address &= cpu_to_le32(~0xf);
676 d->res_count = cpu_to_le16(PAGE_SIZE);
677 d->transfer_status = 0;
678
679 wmb(); /* finish init of new descriptors before branch_address update */
680 d = &ctx->descriptors[ctx->last_buffer_index];
681 d->branch_address |= cpu_to_le32(1);
682
683 ctx->last_buffer_index = index;
684
685 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
686 }
687
688 static void ar_context_release(struct ar_context *ctx)
689 {
690 unsigned int i;
691
692 vunmap(ctx->buffer);
693
694 for (i = 0; i < AR_BUFFERS; i++)
695 if (ctx->pages[i]) {
696 dma_unmap_page(ctx->ohci->card.device,
697 ar_buffer_bus(ctx, i),
698 PAGE_SIZE, DMA_FROM_DEVICE);
699 __free_page(ctx->pages[i]);
700 }
701 }
702
703 static void ar_context_abort(struct ar_context *ctx, const char *error_msg)
704 {
705 struct fw_ohci *ohci = ctx->ohci;
706
707 if (reg_read(ohci, CONTROL_CLEAR(ctx->regs)) & CONTEXT_RUN) {
708 reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
709 flush_writes(ohci);
710
711 ohci_err(ohci, "AR error: %s; DMA stopped\n", error_msg);
712 }
713 /* FIXME: restart? */
714 }
715
716 static inline unsigned int ar_next_buffer_index(unsigned int index)
717 {
718 return (index + 1) % AR_BUFFERS;
719 }
720
721 static inline unsigned int ar_first_buffer_index(struct ar_context *ctx)
722 {
723 return ar_next_buffer_index(ctx->last_buffer_index);
724 }
725
726 /*
727 * We search for the buffer that contains the last AR packet DMA data written
728 * by the controller.
729 */
730 static unsigned int ar_search_last_active_buffer(struct ar_context *ctx,
731 unsigned int *buffer_offset)
732 {
733 unsigned int i, next_i, last = ctx->last_buffer_index;
734 __le16 res_count, next_res_count;
735
736 i = ar_first_buffer_index(ctx);
737 res_count = READ_ONCE(ctx->descriptors[i].res_count);
738
739 /* A buffer that is not yet completely filled must be the last one. */
740 while (i != last && res_count == 0) {
741
742 /* Peek at the next descriptor. */
743 next_i = ar_next_buffer_index(i);
744 rmb(); /* read descriptors in order */
745 next_res_count = READ_ONCE(ctx->descriptors[next_i].res_count);
746 /*
747 * If the next descriptor is still empty, we must stop at this
748 * descriptor.
749 */
750 if (next_res_count == cpu_to_le16(PAGE_SIZE)) {
751 /*
752 * The exception is when the DMA data for one packet is
753 * split over three buffers; in this case, the middle
754 * buffer's descriptor might be never updated by the
755 * controller and look still empty, and we have to peek
756 * at the third one.
757 */
758 if (MAX_AR_PACKET_SIZE > PAGE_SIZE && i != last) {
759 next_i = ar_next_buffer_index(next_i);
760 rmb();
761 next_res_count = READ_ONCE(ctx->descriptors[next_i].res_count);
762 if (next_res_count != cpu_to_le16(PAGE_SIZE))
763 goto next_buffer_is_active;
764 }
765
766 break;
767 }
768
769 next_buffer_is_active:
770 i = next_i;
771 res_count = next_res_count;
772 }
773
774 rmb(); /* read res_count before the DMA data */
775
776 *buffer_offset = PAGE_SIZE - le16_to_cpu(res_count);
777 if (*buffer_offset > PAGE_SIZE) {
778 *buffer_offset = 0;
779 ar_context_abort(ctx, "corrupted descriptor");
780 }
781
782 return i;
783 }
784
785 static void ar_sync_buffers_for_cpu(struct ar_context *ctx,
786 unsigned int end_buffer_index,
787 unsigned int end_buffer_offset)
788 {
789 unsigned int i;
790
791 i = ar_first_buffer_index(ctx);
792 while (i != end_buffer_index) {
793 dma_sync_single_for_cpu(ctx->ohci->card.device,
794 ar_buffer_bus(ctx, i),
795 PAGE_SIZE, DMA_FROM_DEVICE);
796 i = ar_next_buffer_index(i);
797 }
798 if (end_buffer_offset > 0)
799 dma_sync_single_for_cpu(ctx->ohci->card.device,
800 ar_buffer_bus(ctx, i),
801 end_buffer_offset, DMA_FROM_DEVICE);
802 }
803
804 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
805 #define cond_le32_to_cpu(v) \
806 (ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
807 #else
808 #define cond_le32_to_cpu(v) le32_to_cpu(v)
809 #endif
810
811 static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
812 {
813 struct fw_ohci *ohci = ctx->ohci;
814 struct fw_packet p;
815 u32 status, length, tcode;
816 int evt;
817
818 p.header[0] = cond_le32_to_cpu(buffer[0]);
819 p.header[1] = cond_le32_to_cpu(buffer[1]);
820 p.header[2] = cond_le32_to_cpu(buffer[2]);
821
822 tcode = (p.header[0] >> 4) & 0x0f;
823 switch (tcode) {
824 case TCODE_WRITE_QUADLET_REQUEST:
825 case TCODE_READ_QUADLET_RESPONSE:
826 p.header[3] = (__force __u32) buffer[3];
827 p.header_length = 16;
828 p.payload_length = 0;
829 break;
830
831 case TCODE_READ_BLOCK_REQUEST :
832 p.header[3] = cond_le32_to_cpu(buffer[3]);
833 p.header_length = 16;
834 p.payload_length = 0;
835 break;
836
837 case TCODE_WRITE_BLOCK_REQUEST:
838 case TCODE_READ_BLOCK_RESPONSE:
839 case TCODE_LOCK_REQUEST:
840 case TCODE_LOCK_RESPONSE:
841 p.header[3] = cond_le32_to_cpu(buffer[3]);
842 p.header_length = 16;
843 p.payload_length = p.header[3] >> 16;
844 if (p.payload_length > MAX_ASYNC_PAYLOAD) {
845 ar_context_abort(ctx, "invalid packet length");
846 return NULL;
847 }
848 break;
849
850 case TCODE_WRITE_RESPONSE:
851 case TCODE_READ_QUADLET_REQUEST:
852 case OHCI_TCODE_PHY_PACKET:
853 p.header_length = 12;
854 p.payload_length = 0;
855 break;
856
857 default:
858 ar_context_abort(ctx, "invalid tcode");
859 return NULL;
860 }
861
862 p.payload = (void *) buffer + p.header_length;
863
864 /* FIXME: What to do about evt_* errors? */
865 length = (p.header_length + p.payload_length + 3) / 4;
866 status = cond_le32_to_cpu(buffer[length]);
867 evt = (status >> 16) & 0x1f;
868
869 p.ack = evt - 16;
870 p.speed = (status >> 21) & 0x7;
871 p.timestamp = status & 0xffff;
872 p.generation = ohci->request_generation;
873
874 log_ar_at_event(ohci, 'R', p.speed, p.header, evt);
875
876 /*
877 * Several controllers, notably from NEC and VIA, forget to
878 * write ack_complete status at PHY packet reception.
879 */
880 if (evt == OHCI1394_evt_no_status &&
881 (p.header[0] & 0xff) == (OHCI1394_phy_tcode << 4))
882 p.ack = ACK_COMPLETE;
883
884 /*
885 * The OHCI bus reset handler synthesizes a PHY packet with
886 * the new generation number when a bus reset happens (see
887 * section 8.4.2.3). This helps us determine when a request
888 * was received and make sure we send the response in the same
889 * generation. We only need this for requests; for responses
890 * we use the unique tlabel for finding the matching
891 * request.
892 *
893 * Alas some chips sometimes emit bus reset packets with a
894 * wrong generation. We set the correct generation for these
895 * at a slightly incorrect time (in bus_reset_work).
896 */
897 if (evt == OHCI1394_evt_bus_reset) {
898 if (!(ohci->quirks & QUIRK_RESET_PACKET))
899 ohci->request_generation = (p.header[2] >> 16) & 0xff;
900 } else if (ctx == &ohci->ar_request_ctx) {
901 fw_core_handle_request(&ohci->card, &p);
902 } else {
903 fw_core_handle_response(&ohci->card, &p);
904 }
905
906 return buffer + length + 1;
907 }
908
909 static void *handle_ar_packets(struct ar_context *ctx, void *p, void *end)
910 {
911 void *next;
912
913 while (p < end) {
914 next = handle_ar_packet(ctx, p);
915 if (!next)
916 return p;
917 p = next;
918 }
919
920 return p;
921 }
922
923 static void ar_recycle_buffers(struct ar_context *ctx, unsigned int end_buffer)
924 {
925 unsigned int i;
926
927 i = ar_first_buffer_index(ctx);
928 while (i != end_buffer) {
929 dma_sync_single_for_device(ctx->ohci->card.device,
930 ar_buffer_bus(ctx, i),
931 PAGE_SIZE, DMA_FROM_DEVICE);
932 ar_context_link_page(ctx, i);
933 i = ar_next_buffer_index(i);
934 }
935 }
936
937 static void ar_context_tasklet(unsigned long data)
938 {
939 struct ar_context *ctx = (struct ar_context *)data;
940 unsigned int end_buffer_index, end_buffer_offset;
941 void *p, *end;
942
943 p = ctx->pointer;
944 if (!p)
945 return;
946
947 end_buffer_index = ar_search_last_active_buffer(ctx,
948 &end_buffer_offset);
949 ar_sync_buffers_for_cpu(ctx, end_buffer_index, end_buffer_offset);
950 end = ctx->buffer + end_buffer_index * PAGE_SIZE + end_buffer_offset;
951
952 if (end_buffer_index < ar_first_buffer_index(ctx)) {
953 /*
954 * The filled part of the overall buffer wraps around; handle
955 * all packets up to the buffer end here. If the last packet
956 * wraps around, its tail will be visible after the buffer end
957 * because the buffer start pages are mapped there again.
958 */
959 void *buffer_end = ctx->buffer + AR_BUFFERS * PAGE_SIZE;
960 p = handle_ar_packets(ctx, p, buffer_end);
961 if (p < buffer_end)
962 goto error;
963 /* adjust p to point back into the actual buffer */
964 p -= AR_BUFFERS * PAGE_SIZE;
965 }
966
967 p = handle_ar_packets(ctx, p, end);
968 if (p != end) {
969 if (p > end)
970 ar_context_abort(ctx, "inconsistent descriptor");
971 goto error;
972 }
973
974 ctx->pointer = p;
975 ar_recycle_buffers(ctx, end_buffer_index);
976
977 return;
978
979 error:
980 ctx->pointer = NULL;
981 }
982
983 static int ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci,
984 unsigned int descriptors_offset, u32 regs)
985 {
986 unsigned int i;
987 dma_addr_t dma_addr;
988 struct page *pages[AR_BUFFERS + AR_WRAPAROUND_PAGES];
989 struct descriptor *d;
990
991 ctx->regs = regs;
992 ctx->ohci = ohci;
993 tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
994
995 for (i = 0; i < AR_BUFFERS; i++) {
996 ctx->pages[i] = alloc_page(GFP_KERNEL | GFP_DMA32);
997 if (!ctx->pages[i])
998 goto out_of_memory;
999 dma_addr = dma_map_page(ohci->card.device, ctx->pages[i],
1000 0, PAGE_SIZE, DMA_FROM_DEVICE);
1001 if (dma_mapping_error(ohci->card.device, dma_addr)) {
1002 __free_page(ctx->pages[i]);
1003 ctx->pages[i] = NULL;
1004 goto out_of_memory;
1005 }
1006 set_page_private(ctx->pages[i], dma_addr);
1007 }
1008
1009 for (i = 0; i < AR_BUFFERS; i++)
1010 pages[i] = ctx->pages[i];
1011 for (i = 0; i < AR_WRAPAROUND_PAGES; i++)
1012 pages[AR_BUFFERS + i] = ctx->pages[i];
1013 ctx->buffer = vmap(pages, ARRAY_SIZE(pages), VM_MAP, PAGE_KERNEL);
1014 if (!ctx->buffer)
1015 goto out_of_memory;
1016
1017 ctx->descriptors = ohci->misc_buffer + descriptors_offset;
1018 ctx->descriptors_bus = ohci->misc_buffer_bus + descriptors_offset;
1019
1020 for (i = 0; i < AR_BUFFERS; i++) {
1021 d = &ctx->descriptors[i];
1022 d->req_count = cpu_to_le16(PAGE_SIZE);
1023 d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
1024 DESCRIPTOR_STATUS |
1025 DESCRIPTOR_BRANCH_ALWAYS);
1026 d->data_address = cpu_to_le32(ar_buffer_bus(ctx, i));
1027 d->branch_address = cpu_to_le32(ctx->descriptors_bus +
1028 ar_next_buffer_index(i) * sizeof(struct descriptor));
1029 }
1030
1031 return 0;
1032
1033 out_of_memory:
1034 ar_context_release(ctx);
1035
1036 return -ENOMEM;
1037 }
1038
1039 static void ar_context_run(struct ar_context *ctx)
1040 {
1041 unsigned int i;
1042
1043 for (i = 0; i < AR_BUFFERS; i++)
1044 ar_context_link_page(ctx, i);
1045
1046 ctx->pointer = ctx->buffer;
1047
1048 reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ctx->descriptors_bus | 1);
1049 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
1050 }
1051
1052 static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
1053 {
1054 __le16 branch;
1055
1056 branch = d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS);
1057
1058 /* figure out which descriptor the branch address goes in */
1059 if (z == 2 && branch == cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
1060 return d;
1061 else
1062 return d + z - 1;
1063 }
1064
1065 static void context_tasklet(unsigned long data)
1066 {
1067 struct context *ctx = (struct context *) data;
1068 struct descriptor *d, *last;
1069 u32 address;
1070 int z;
1071 struct descriptor_buffer *desc;
1072
1073 desc = list_entry(ctx->buffer_list.next,
1074 struct descriptor_buffer, list);
1075 last = ctx->last;
1076 while (last->branch_address != 0) {
1077 struct descriptor_buffer *old_desc = desc;
1078 address = le32_to_cpu(last->branch_address);
1079 z = address & 0xf;
1080 address &= ~0xf;
1081 ctx->current_bus = address;
1082
1083 /* If the branch address points to a buffer outside of the
1084 * current buffer, advance to the next buffer. */
1085 if (address < desc->buffer_bus ||
1086 address >= desc->buffer_bus + desc->used)
1087 desc = list_entry(desc->list.next,
1088 struct descriptor_buffer, list);
1089 d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
1090 last = find_branch_descriptor(d, z);
1091
1092 if (!ctx->callback(ctx, d, last))
1093 break;
1094
1095 if (old_desc != desc) {
1096 /* If we've advanced to the next buffer, move the
1097 * previous buffer to the free list. */
1098 unsigned long flags;
1099 old_desc->used = 0;
1100 spin_lock_irqsave(&ctx->ohci->lock, flags);
1101 list_move_tail(&old_desc->list, &ctx->buffer_list);
1102 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1103 }
1104 ctx->last = last;
1105 }
1106 }
1107
1108 /*
1109 * Allocate a new buffer and add it to the list of free buffers for this
1110 * context. Must be called with ohci->lock held.
1111 */
1112 static int context_add_buffer(struct context *ctx)
1113 {
1114 struct descriptor_buffer *desc;
1115 dma_addr_t uninitialized_var(bus_addr);
1116 int offset;
1117
1118 /*
1119 * 16MB of descriptors should be far more than enough for any DMA
1120 * program. This will catch run-away userspace or DoS attacks.
1121 */
1122 if (ctx->total_allocation >= 16*1024*1024)
1123 return -ENOMEM;
1124
1125 desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
1126 &bus_addr, GFP_ATOMIC);
1127 if (!desc)
1128 return -ENOMEM;
1129
1130 offset = (void *)&desc->buffer - (void *)desc;
1131 desc->buffer_size = PAGE_SIZE - offset;
1132 desc->buffer_bus = bus_addr + offset;
1133 desc->used = 0;
1134
1135 list_add_tail(&desc->list, &ctx->buffer_list);
1136 ctx->total_allocation += PAGE_SIZE;
1137
1138 return 0;
1139 }
1140
1141 static int context_init(struct context *ctx, struct fw_ohci *ohci,
1142 u32 regs, descriptor_callback_t callback)
1143 {
1144 ctx->ohci = ohci;
1145 ctx->regs = regs;
1146 ctx->total_allocation = 0;
1147
1148 INIT_LIST_HEAD(&ctx->buffer_list);
1149 if (context_add_buffer(ctx) < 0)
1150 return -ENOMEM;
1151
1152 ctx->buffer_tail = list_entry(ctx->buffer_list.next,
1153 struct descriptor_buffer, list);
1154
1155 tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
1156 ctx->callback = callback;
1157
1158 /*
1159 * We put a dummy descriptor in the buffer that has a NULL
1160 * branch address and looks like it's been sent. That way we
1161 * have a descriptor to append DMA programs to.
1162 */
1163 memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
1164 ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
1165 ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
1166 ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
1167 ctx->last = ctx->buffer_tail->buffer;
1168 ctx->prev = ctx->buffer_tail->buffer;
1169 ctx->prev_z = 1;
1170
1171 return 0;
1172 }
1173
1174 static void context_release(struct context *ctx)
1175 {
1176 struct fw_card *card = &ctx->ohci->card;
1177 struct descriptor_buffer *desc, *tmp;
1178
1179 list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
1180 dma_free_coherent(card->device, PAGE_SIZE, desc,
1181 desc->buffer_bus -
1182 ((void *)&desc->buffer - (void *)desc));
1183 }
1184
1185 /* Must be called with ohci->lock held */
1186 static struct descriptor *context_get_descriptors(struct context *ctx,
1187 int z, dma_addr_t *d_bus)
1188 {
1189 struct descriptor *d = NULL;
1190 struct descriptor_buffer *desc = ctx->buffer_tail;
1191
1192 if (z * sizeof(*d) > desc->buffer_size)
1193 return NULL;
1194
1195 if (z * sizeof(*d) > desc->buffer_size - desc->used) {
1196 /* No room for the descriptor in this buffer, so advance to the
1197 * next one. */
1198
1199 if (desc->list.next == &ctx->buffer_list) {
1200 /* If there is no free buffer next in the list,
1201 * allocate one. */
1202 if (context_add_buffer(ctx) < 0)
1203 return NULL;
1204 }
1205 desc = list_entry(desc->list.next,
1206 struct descriptor_buffer, list);
1207 ctx->buffer_tail = desc;
1208 }
1209
1210 d = desc->buffer + desc->used / sizeof(*d);
1211 memset(d, 0, z * sizeof(*d));
1212 *d_bus = desc->buffer_bus + desc->used;
1213
1214 return d;
1215 }
1216
1217 static void context_run(struct context *ctx, u32 extra)
1218 {
1219 struct fw_ohci *ohci = ctx->ohci;
1220
1221 reg_write(ohci, COMMAND_PTR(ctx->regs),
1222 le32_to_cpu(ctx->last->branch_address));
1223 reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
1224 reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
1225 ctx->running = true;
1226 flush_writes(ohci);
1227 }
1228
1229 static void context_append(struct context *ctx,
1230 struct descriptor *d, int z, int extra)
1231 {
1232 dma_addr_t d_bus;
1233 struct descriptor_buffer *desc = ctx->buffer_tail;
1234 struct descriptor *d_branch;
1235
1236 d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
1237
1238 desc->used += (z + extra) * sizeof(*d);
1239
1240 wmb(); /* finish init of new descriptors before branch_address update */
1241
1242 d_branch = find_branch_descriptor(ctx->prev, ctx->prev_z);
1243 d_branch->branch_address = cpu_to_le32(d_bus | z);
1244
1245 /*
1246 * VT6306 incorrectly checks only the single descriptor at the
1247 * CommandPtr when the wake bit is written, so if it's a
1248 * multi-descriptor block starting with an INPUT_MORE, put a copy of
1249 * the branch address in the first descriptor.
1250 *
1251 * Not doing this for transmit contexts since not sure how it interacts
1252 * with skip addresses.
1253 */
1254 if (unlikely(ctx->ohci->quirks & QUIRK_IR_WAKE) &&
1255 d_branch != ctx->prev &&
1256 (ctx->prev->control & cpu_to_le16(DESCRIPTOR_CMD)) ==
1257 cpu_to_le16(DESCRIPTOR_INPUT_MORE)) {
1258 ctx->prev->branch_address = cpu_to_le32(d_bus | z);
1259 }
1260
1261 ctx->prev = d;
1262 ctx->prev_z = z;
1263 }
1264
1265 static void context_stop(struct context *ctx)
1266 {
1267 struct fw_ohci *ohci = ctx->ohci;
1268 u32 reg;
1269 int i;
1270
1271 reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
1272 ctx->running = false;
1273
1274 for (i = 0; i < 1000; i++) {
1275 reg = reg_read(ohci, CONTROL_SET(ctx->regs));
1276 if ((reg & CONTEXT_ACTIVE) == 0)
1277 return;
1278
1279 if (i)
1280 udelay(10);
1281 }
1282 ohci_err(ohci, "DMA context still active (0x%08x)\n", reg);
1283 }
1284
1285 struct driver_data {
1286 u8 inline_data[8];
1287 struct fw_packet *packet;
1288 };
1289
1290 /*
1291 * This function apppends a packet to the DMA queue for transmission.
1292 * Must always be called with the ochi->lock held to ensure proper
1293 * generation handling and locking around packet queue manipulation.
1294 */
1295 static int at_context_queue_packet(struct context *ctx,
1296 struct fw_packet *packet)
1297 {
1298 struct fw_ohci *ohci = ctx->ohci;
1299 dma_addr_t d_bus, uninitialized_var(payload_bus);
1300 struct driver_data *driver_data;
1301 struct descriptor *d, *last;
1302 __le32 *header;
1303 int z, tcode;
1304
1305 d = context_get_descriptors(ctx, 4, &d_bus);
1306 if (d == NULL) {
1307 packet->ack = RCODE_SEND_ERROR;
1308 return -1;
1309 }
1310
1311 d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1312 d[0].res_count = cpu_to_le16(packet->timestamp);
1313
1314 /*
1315 * The DMA format for asynchronous link packets is different
1316 * from the IEEE1394 layout, so shift the fields around
1317 * accordingly.
1318 */
1319
1320 tcode = (packet->header[0] >> 4) & 0x0f;
1321 header = (__le32 *) &d[1];
1322 switch (tcode) {
1323 case TCODE_WRITE_QUADLET_REQUEST:
1324 case TCODE_WRITE_BLOCK_REQUEST:
1325 case TCODE_WRITE_RESPONSE:
1326 case TCODE_READ_QUADLET_REQUEST:
1327 case TCODE_READ_BLOCK_REQUEST:
1328 case TCODE_READ_QUADLET_RESPONSE:
1329 case TCODE_READ_BLOCK_RESPONSE:
1330 case TCODE_LOCK_REQUEST:
1331 case TCODE_LOCK_RESPONSE:
1332 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1333 (packet->speed << 16));
1334 header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
1335 (packet->header[0] & 0xffff0000));
1336 header[2] = cpu_to_le32(packet->header[2]);
1337
1338 if (TCODE_IS_BLOCK_PACKET(tcode))
1339 header[3] = cpu_to_le32(packet->header[3]);
1340 else
1341 header[3] = (__force __le32) packet->header[3];
1342
1343 d[0].req_count = cpu_to_le16(packet->header_length);
1344 break;
1345
1346 case TCODE_LINK_INTERNAL:
1347 header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
1348 (packet->speed << 16));
1349 header[1] = cpu_to_le32(packet->header[1]);
1350 header[2] = cpu_to_le32(packet->header[2]);
1351 d[0].req_count = cpu_to_le16(12);
1352
1353 if (is_ping_packet(&packet->header[1]))
1354 d[0].control |= cpu_to_le16(DESCRIPTOR_PING);
1355 break;
1356
1357 case TCODE_STREAM_DATA:
1358 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1359 (packet->speed << 16));
1360 header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
1361 d[0].req_count = cpu_to_le16(8);
1362 break;
1363
1364 default:
1365 /* BUG(); */
1366 packet->ack = RCODE_SEND_ERROR;
1367 return -1;
1368 }
1369
1370 BUILD_BUG_ON(sizeof(struct driver_data) > sizeof(struct descriptor));
1371 driver_data = (struct driver_data *) &d[3];
1372 driver_data->packet = packet;
1373 packet->driver_data = driver_data;
1374
1375 if (packet->payload_length > 0) {
1376 if (packet->payload_length > sizeof(driver_data->inline_data)) {
1377 payload_bus = dma_map_single(ohci->card.device,
1378 packet->payload,
1379 packet->payload_length,
1380 DMA_TO_DEVICE);
1381 if (dma_mapping_error(ohci->card.device, payload_bus)) {
1382 packet->ack = RCODE_SEND_ERROR;
1383 return -1;
1384 }
1385 packet->payload_bus = payload_bus;
1386 packet->payload_mapped = true;
1387 } else {
1388 memcpy(driver_data->inline_data, packet->payload,
1389 packet->payload_length);
1390 payload_bus = d_bus + 3 * sizeof(*d);
1391 }
1392
1393 d[2].req_count = cpu_to_le16(packet->payload_length);
1394 d[2].data_address = cpu_to_le32(payload_bus);
1395 last = &d[2];
1396 z = 3;
1397 } else {
1398 last = &d[0];
1399 z = 2;
1400 }
1401
1402 last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
1403 DESCRIPTOR_IRQ_ALWAYS |
1404 DESCRIPTOR_BRANCH_ALWAYS);
1405
1406 /* FIXME: Document how the locking works. */
1407 if (ohci->generation != packet->generation) {
1408 if (packet->payload_mapped)
1409 dma_unmap_single(ohci->card.device, payload_bus,
1410 packet->payload_length, DMA_TO_DEVICE);
1411 packet->ack = RCODE_GENERATION;
1412 return -1;
1413 }
1414
1415 context_append(ctx, d, z, 4 - z);
1416
1417 if (ctx->running)
1418 reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
1419 else
1420 context_run(ctx, 0);
1421
1422 return 0;
1423 }
1424
1425 static void at_context_flush(struct context *ctx)
1426 {
1427 tasklet_disable(&ctx->tasklet);
1428
1429 ctx->flushing = true;
1430 context_tasklet((unsigned long)ctx);
1431 ctx->flushing = false;
1432
1433 tasklet_enable(&ctx->tasklet);
1434 }
1435
1436 static int handle_at_packet(struct context *context,
1437 struct descriptor *d,
1438 struct descriptor *last)
1439 {
1440 struct driver_data *driver_data;
1441 struct fw_packet *packet;
1442 struct fw_ohci *ohci = context->ohci;
1443 int evt;
1444
1445 if (last->transfer_status == 0 && !context->flushing)
1446 /* This descriptor isn't done yet, stop iteration. */
1447 return 0;
1448
1449 driver_data = (struct driver_data *) &d[3];
1450 packet = driver_data->packet;
1451 if (packet == NULL)
1452 /* This packet was cancelled, just continue. */
1453 return 1;
1454
1455 if (packet->payload_mapped)
1456 dma_unmap_single(ohci->card.device, packet->payload_bus,
1457 packet->payload_length, DMA_TO_DEVICE);
1458
1459 evt = le16_to_cpu(last->transfer_status) & 0x1f;
1460 packet->timestamp = le16_to_cpu(last->res_count);
1461
1462 log_ar_at_event(ohci, 'T', packet->speed, packet->header, evt);
1463
1464 switch (evt) {
1465 case OHCI1394_evt_timeout:
1466 /* Async response transmit timed out. */
1467 packet->ack = RCODE_CANCELLED;
1468 break;
1469
1470 case OHCI1394_evt_flushed:
1471 /*
1472 * The packet was flushed should give same error as
1473 * when we try to use a stale generation count.
1474 */
1475 packet->ack = RCODE_GENERATION;
1476 break;
1477
1478 case OHCI1394_evt_missing_ack:
1479 if (context->flushing)
1480 packet->ack = RCODE_GENERATION;
1481 else {
1482 /*
1483 * Using a valid (current) generation count, but the
1484 * node is not on the bus or not sending acks.
1485 */
1486 packet->ack = RCODE_NO_ACK;
1487 }
1488 break;
1489
1490 case ACK_COMPLETE + 0x10:
1491 case ACK_PENDING + 0x10:
1492 case ACK_BUSY_X + 0x10:
1493 case ACK_BUSY_A + 0x10:
1494 case ACK_BUSY_B + 0x10:
1495 case ACK_DATA_ERROR + 0x10:
1496 case ACK_TYPE_ERROR + 0x10:
1497 packet->ack = evt - 0x10;
1498 break;
1499
1500 case OHCI1394_evt_no_status:
1501 if (context->flushing) {
1502 packet->ack = RCODE_GENERATION;
1503 break;
1504 }
1505 /* fall through */
1506
1507 default:
1508 packet->ack = RCODE_SEND_ERROR;
1509 break;
1510 }
1511
1512 packet->callback(packet, &ohci->card, packet->ack);
1513
1514 return 1;
1515 }
1516
1517 #define HEADER_GET_DESTINATION(q) (((q) >> 16) & 0xffff)
1518 #define HEADER_GET_TCODE(q) (((q) >> 4) & 0x0f)
1519 #define HEADER_GET_OFFSET_HIGH(q) (((q) >> 0) & 0xffff)
1520 #define HEADER_GET_DATA_LENGTH(q) (((q) >> 16) & 0xffff)
1521 #define HEADER_GET_EXTENDED_TCODE(q) (((q) >> 0) & 0xffff)
1522
1523 static void handle_local_rom(struct fw_ohci *ohci,
1524 struct fw_packet *packet, u32 csr)
1525 {
1526 struct fw_packet response;
1527 int tcode, length, i;
1528
1529 tcode = HEADER_GET_TCODE(packet->header[0]);
1530 if (TCODE_IS_BLOCK_PACKET(tcode))
1531 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1532 else
1533 length = 4;
1534
1535 i = csr - CSR_CONFIG_ROM;
1536 if (i + length > CONFIG_ROM_SIZE) {
1537 fw_fill_response(&response, packet->header,
1538 RCODE_ADDRESS_ERROR, NULL, 0);
1539 } else if (!TCODE_IS_READ_REQUEST(tcode)) {
1540 fw_fill_response(&response, packet->header,
1541 RCODE_TYPE_ERROR, NULL, 0);
1542 } else {
1543 fw_fill_response(&response, packet->header, RCODE_COMPLETE,
1544 (void *) ohci->config_rom + i, length);
1545 }
1546
1547 fw_core_handle_response(&ohci->card, &response);
1548 }
1549
1550 static void handle_local_lock(struct fw_ohci *ohci,
1551 struct fw_packet *packet, u32 csr)
1552 {
1553 struct fw_packet response;
1554 int tcode, length, ext_tcode, sel, try;
1555 __be32 *payload, lock_old;
1556 u32 lock_arg, lock_data;
1557
1558 tcode = HEADER_GET_TCODE(packet->header[0]);
1559 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1560 payload = packet->payload;
1561 ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1562
1563 if (tcode == TCODE_LOCK_REQUEST &&
1564 ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
1565 lock_arg = be32_to_cpu(payload[0]);
1566 lock_data = be32_to_cpu(payload[1]);
1567 } else if (tcode == TCODE_READ_QUADLET_REQUEST) {
1568 lock_arg = 0;
1569 lock_data = 0;
1570 } else {
1571 fw_fill_response(&response, packet->header,
1572 RCODE_TYPE_ERROR, NULL, 0);
1573 goto out;
1574 }
1575
1576 sel = (csr - CSR_BUS_MANAGER_ID) / 4;
1577 reg_write(ohci, OHCI1394_CSRData, lock_data);
1578 reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
1579 reg_write(ohci, OHCI1394_CSRControl, sel);
1580
1581 for (try = 0; try < 20; try++)
1582 if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000) {
1583 lock_old = cpu_to_be32(reg_read(ohci,
1584 OHCI1394_CSRData));
1585 fw_fill_response(&response, packet->header,
1586 RCODE_COMPLETE,
1587 &lock_old, sizeof(lock_old));
1588 goto out;
1589 }
1590
1591 ohci_err(ohci, "swap not done (CSR lock timeout)\n");
1592 fw_fill_response(&response, packet->header, RCODE_BUSY, NULL, 0);
1593
1594 out:
1595 fw_core_handle_response(&ohci->card, &response);
1596 }
1597
1598 static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1599 {
1600 u64 offset, csr;
1601
1602 if (ctx == &ctx->ohci->at_request_ctx) {
1603 packet->ack = ACK_PENDING;
1604 packet->callback(packet, &ctx->ohci->card, packet->ack);
1605 }
1606
1607 offset =
1608 ((unsigned long long)
1609 HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1610 packet->header[2];
1611 csr = offset - CSR_REGISTER_BASE;
1612
1613 /* Handle config rom reads. */
1614 if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
1615 handle_local_rom(ctx->ohci, packet, csr);
1616 else switch (csr) {
1617 case CSR_BUS_MANAGER_ID:
1618 case CSR_BANDWIDTH_AVAILABLE:
1619 case CSR_CHANNELS_AVAILABLE_HI:
1620 case CSR_CHANNELS_AVAILABLE_LO:
1621 handle_local_lock(ctx->ohci, packet, csr);
1622 break;
1623 default:
1624 if (ctx == &ctx->ohci->at_request_ctx)
1625 fw_core_handle_request(&ctx->ohci->card, packet);
1626 else
1627 fw_core_handle_response(&ctx->ohci->card, packet);
1628 break;
1629 }
1630
1631 if (ctx == &ctx->ohci->at_response_ctx) {
1632 packet->ack = ACK_COMPLETE;
1633 packet->callback(packet, &ctx->ohci->card, packet->ack);
1634 }
1635 }
1636
1637 static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1638 {
1639 unsigned long flags;
1640 int ret;
1641
1642 spin_lock_irqsave(&ctx->ohci->lock, flags);
1643
1644 if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1645 ctx->ohci->generation == packet->generation) {
1646 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1647 handle_local_request(ctx, packet);
1648 return;
1649 }
1650
1651 ret = at_context_queue_packet(ctx, packet);
1652 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1653
1654 if (ret < 0)
1655 packet->callback(packet, &ctx->ohci->card, packet->ack);
1656
1657 }
1658
1659 static void detect_dead_context(struct fw_ohci *ohci,
1660 const char *name, unsigned int regs)
1661 {
1662 u32 ctl;
1663
1664 ctl = reg_read(ohci, CONTROL_SET(regs));
1665 if (ctl & CONTEXT_DEAD)
1666 ohci_err(ohci, "DMA context %s has stopped, error code: %s\n",
1667 name, evts[ctl & 0x1f]);
1668 }
1669
1670 static void handle_dead_contexts(struct fw_ohci *ohci)
1671 {
1672 unsigned int i;
1673 char name[8];
1674
1675 detect_dead_context(ohci, "ATReq", OHCI1394_AsReqTrContextBase);
1676 detect_dead_context(ohci, "ATRsp", OHCI1394_AsRspTrContextBase);
1677 detect_dead_context(ohci, "ARReq", OHCI1394_AsReqRcvContextBase);
1678 detect_dead_context(ohci, "ARRsp", OHCI1394_AsRspRcvContextBase);
1679 for (i = 0; i < 32; ++i) {
1680 if (!(ohci->it_context_support & (1 << i)))
1681 continue;
1682 sprintf(name, "IT%u", i);
1683 detect_dead_context(ohci, name, OHCI1394_IsoXmitContextBase(i));
1684 }
1685 for (i = 0; i < 32; ++i) {
1686 if (!(ohci->ir_context_support & (1 << i)))
1687 continue;
1688 sprintf(name, "IR%u", i);
1689 detect_dead_context(ohci, name, OHCI1394_IsoRcvContextBase(i));
1690 }
1691 /* TODO: maybe try to flush and restart the dead contexts */
1692 }
1693
1694 static u32 cycle_timer_ticks(u32 cycle_timer)
1695 {
1696 u32 ticks;
1697
1698 ticks = cycle_timer & 0xfff;
1699 ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
1700 ticks += (3072 * 8000) * (cycle_timer >> 25);
1701
1702 return ticks;
1703 }
1704
1705 /*
1706 * Some controllers exhibit one or more of the following bugs when updating the
1707 * iso cycle timer register:
1708 * - When the lowest six bits are wrapping around to zero, a read that happens
1709 * at the same time will return garbage in the lowest ten bits.
1710 * - When the cycleOffset field wraps around to zero, the cycleCount field is
1711 * not incremented for about 60 ns.
1712 * - Occasionally, the entire register reads zero.
1713 *
1714 * To catch these, we read the register three times and ensure that the
1715 * difference between each two consecutive reads is approximately the same, i.e.
1716 * less than twice the other. Furthermore, any negative difference indicates an
1717 * error. (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
1718 * execute, so we have enough precision to compute the ratio of the differences.)
1719 */
1720 static u32 get_cycle_time(struct fw_ohci *ohci)
1721 {
1722 u32 c0, c1, c2;
1723 u32 t0, t1, t2;
1724 s32 diff01, diff12;
1725 int i;
1726
1727 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1728
1729 if (ohci->quirks & QUIRK_CYCLE_TIMER) {
1730 i = 0;
1731 c1 = c2;
1732 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1733 do {
1734 c0 = c1;
1735 c1 = c2;
1736 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1737 t0 = cycle_timer_ticks(c0);
1738 t1 = cycle_timer_ticks(c1);
1739 t2 = cycle_timer_ticks(c2);
1740 diff01 = t1 - t0;
1741 diff12 = t2 - t1;
1742 } while ((diff01 <= 0 || diff12 <= 0 ||
1743 diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
1744 && i++ < 20);
1745 }
1746
1747 return c2;
1748 }
1749
1750 /*
1751 * This function has to be called at least every 64 seconds. The bus_time
1752 * field stores not only the upper 25 bits of the BUS_TIME register but also
1753 * the most significant bit of the cycle timer in bit 6 so that we can detect
1754 * changes in this bit.
1755 */
1756 static u32 update_bus_time(struct fw_ohci *ohci)
1757 {
1758 u32 cycle_time_seconds = get_cycle_time(ohci) >> 25;
1759
1760 if (unlikely(!ohci->bus_time_running)) {
1761 reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_cycle64Seconds);
1762 ohci->bus_time = (lower_32_bits(get_seconds()) & ~0x7f) |
1763 (cycle_time_seconds & 0x40);
1764 ohci->bus_time_running = true;
1765 }
1766
1767 if ((ohci->bus_time & 0x40) != (cycle_time_seconds & 0x40))
1768 ohci->bus_time += 0x40;
1769
1770 return ohci->bus_time | cycle_time_seconds;
1771 }
1772
1773 static int get_status_for_port(struct fw_ohci *ohci, int port_index)
1774 {
1775 int reg;
1776
1777 mutex_lock(&ohci->phy_reg_mutex);
1778 reg = write_phy_reg(ohci, 7, port_index);
1779 if (reg >= 0)
1780 reg = read_phy_reg(ohci, 8);
1781 mutex_unlock(&ohci->phy_reg_mutex);
1782 if (reg < 0)
1783 return reg;
1784
1785 switch (reg & 0x0f) {
1786 case 0x06:
1787 return 2; /* is child node (connected to parent node) */
1788 case 0x0e:
1789 return 3; /* is parent node (connected to child node) */
1790 }
1791 return 1; /* not connected */
1792 }
1793
1794 static int get_self_id_pos(struct fw_ohci *ohci, u32 self_id,
1795 int self_id_count)
1796 {
1797 int i;
1798 u32 entry;
1799
1800 for (i = 0; i < self_id_count; i++) {
1801 entry = ohci->self_id_buffer[i];
1802 if ((self_id & 0xff000000) == (entry & 0xff000000))
1803 return -1;
1804 if ((self_id & 0xff000000) < (entry & 0xff000000))
1805 return i;
1806 }
1807 return i;
1808 }
1809
1810 static int initiated_reset(struct fw_ohci *ohci)
1811 {
1812 int reg;
1813 int ret = 0;
1814
1815 mutex_lock(&ohci->phy_reg_mutex);
1816 reg = write_phy_reg(ohci, 7, 0xe0); /* Select page 7 */
1817 if (reg >= 0) {
1818 reg = read_phy_reg(ohci, 8);
1819 reg |= 0x40;
1820 reg = write_phy_reg(ohci, 8, reg); /* set PMODE bit */
1821 if (reg >= 0) {
1822 reg = read_phy_reg(ohci, 12); /* read register 12 */
1823 if (reg >= 0) {
1824 if ((reg & 0x08) == 0x08) {
1825 /* bit 3 indicates "initiated reset" */
1826 ret = 0x2;
1827 }
1828 }
1829 }
1830 }
1831 mutex_unlock(&ohci->phy_reg_mutex);
1832 return ret;
1833 }
1834
1835 /*
1836 * TI TSB82AA2B and TSB12LV26 do not receive the selfID of a locally
1837 * attached TSB41BA3D phy; see http://www.ti.com/litv/pdf/sllz059.
1838 * Construct the selfID from phy register contents.
1839 */
1840 static int find_and_insert_self_id(struct fw_ohci *ohci, int self_id_count)
1841 {
1842 int reg, i, pos, status;
1843 /* link active 1, speed 3, bridge 0, contender 1, more packets 0 */
1844 u32 self_id = 0x8040c800;
1845
1846 reg = reg_read(ohci, OHCI1394_NodeID);
1847 if (!(reg & OHCI1394_NodeID_idValid)) {
1848 ohci_notice(ohci,
1849 "node ID not valid, new bus reset in progress\n");
1850 return -EBUSY;
1851 }
1852 self_id |= ((reg & 0x3f) << 24); /* phy ID */
1853
1854 reg = ohci_read_phy_reg(&ohci->card, 4);
1855 if (reg < 0)
1856 return reg;
1857 self_id |= ((reg & 0x07) << 8); /* power class */
1858
1859 reg = ohci_read_phy_reg(&ohci->card, 1);
1860 if (reg < 0)
1861 return reg;
1862 self_id |= ((reg & 0x3f) << 16); /* gap count */
1863
1864 for (i = 0; i < 3; i++) {
1865 status = get_status_for_port(ohci, i);
1866 if (status < 0)
1867 return status;
1868 self_id |= ((status & 0x3) << (6 - (i * 2)));
1869 }
1870
1871 self_id |= initiated_reset(ohci);
1872
1873 pos = get_self_id_pos(ohci, self_id, self_id_count);
1874 if (pos >= 0) {
1875 memmove(&(ohci->self_id_buffer[pos+1]),
1876 &(ohci->self_id_buffer[pos]),
1877 (self_id_count - pos) * sizeof(*ohci->self_id_buffer));
1878 ohci->self_id_buffer[pos] = self_id;
1879 self_id_count++;
1880 }
1881 return self_id_count;
1882 }
1883
1884 static void bus_reset_work(struct work_struct *work)
1885 {
1886 struct fw_ohci *ohci =
1887 container_of(work, struct fw_ohci, bus_reset_work);
1888 int self_id_count, generation, new_generation, i, j;
1889 u32 reg;
1890 void *free_rom = NULL;
1891 dma_addr_t free_rom_bus = 0;
1892 bool is_new_root;
1893
1894 reg = reg_read(ohci, OHCI1394_NodeID);
1895 if (!(reg & OHCI1394_NodeID_idValid)) {
1896 ohci_notice(ohci,
1897 "node ID not valid, new bus reset in progress\n");
1898 return;
1899 }
1900 if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
1901 ohci_notice(ohci, "malconfigured bus\n");
1902 return;
1903 }
1904 ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
1905 OHCI1394_NodeID_nodeNumber);
1906
1907 is_new_root = (reg & OHCI1394_NodeID_root) != 0;
1908 if (!(ohci->is_root && is_new_root))
1909 reg_write(ohci, OHCI1394_LinkControlSet,
1910 OHCI1394_LinkControl_cycleMaster);
1911 ohci->is_root = is_new_root;
1912
1913 reg = reg_read(ohci, OHCI1394_SelfIDCount);
1914 if (reg & OHCI1394_SelfIDCount_selfIDError) {
1915 ohci_notice(ohci, "self ID receive error\n");
1916 return;
1917 }
1918 /*
1919 * The count in the SelfIDCount register is the number of
1920 * bytes in the self ID receive buffer. Since we also receive
1921 * the inverted quadlets and a header quadlet, we shift one
1922 * bit extra to get the actual number of self IDs.
1923 */
1924 self_id_count = (reg >> 3) & 0xff;
1925
1926 if (self_id_count > 252) {
1927 ohci_notice(ohci, "bad selfIDSize (%08x)\n", reg);
1928 return;
1929 }
1930
1931 generation = (cond_le32_to_cpu(ohci->self_id[0]) >> 16) & 0xff;
1932 rmb();
1933
1934 for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1935 u32 id = cond_le32_to_cpu(ohci->self_id[i]);
1936 u32 id2 = cond_le32_to_cpu(ohci->self_id[i + 1]);
1937
1938 if (id != ~id2) {
1939 /*
1940 * If the invalid data looks like a cycle start packet,
1941 * it's likely to be the result of the cycle master
1942 * having a wrong gap count. In this case, the self IDs
1943 * so far are valid and should be processed so that the
1944 * bus manager can then correct the gap count.
1945 */
1946 if (id == 0xffff008f) {
1947 ohci_notice(ohci, "ignoring spurious self IDs\n");
1948 self_id_count = j;
1949 break;
1950 }
1951
1952 ohci_notice(ohci, "bad self ID %d/%d (%08x != ~%08x)\n",
1953 j, self_id_count, id, id2);
1954 return;
1955 }
1956 ohci->self_id_buffer[j] = id;
1957 }
1958
1959 if (ohci->quirks & QUIRK_TI_SLLZ059) {
1960 self_id_count = find_and_insert_self_id(ohci, self_id_count);
1961 if (self_id_count < 0) {
1962 ohci_notice(ohci,
1963 "could not construct local self ID\n");
1964 return;
1965 }
1966 }
1967
1968 if (self_id_count == 0) {
1969 ohci_notice(ohci, "no self IDs\n");
1970 return;
1971 }
1972 rmb();
1973
1974 /*
1975 * Check the consistency of the self IDs we just read. The
1976 * problem we face is that a new bus reset can start while we
1977 * read out the self IDs from the DMA buffer. If this happens,
1978 * the DMA buffer will be overwritten with new self IDs and we
1979 * will read out inconsistent data. The OHCI specification
1980 * (section 11.2) recommends a technique similar to
1981 * linux/seqlock.h, where we remember the generation of the
1982 * self IDs in the buffer before reading them out and compare
1983 * it to the current generation after reading them out. If
1984 * the two generations match we know we have a consistent set
1985 * of self IDs.
1986 */
1987
1988 new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
1989 if (new_generation != generation) {
1990 ohci_notice(ohci, "new bus reset, discarding self ids\n");
1991 return;
1992 }
1993
1994 /* FIXME: Document how the locking works. */
1995 spin_lock_irq(&ohci->lock);
1996
1997 ohci->generation = -1; /* prevent AT packet queueing */
1998 context_stop(&ohci->at_request_ctx);
1999 context_stop(&ohci->at_response_ctx);
2000
2001 spin_unlock_irq(&ohci->lock);
2002
2003 /*
2004 * Per OHCI 1.2 draft, clause 7.2.3.3, hardware may leave unsent
2005 * packets in the AT queues and software needs to drain them.
2006 * Some OHCI 1.1 controllers (JMicron) apparently require this too.
2007 */
2008 at_context_flush(&ohci->at_request_ctx);
2009 at_context_flush(&ohci->at_response_ctx);
2010
2011 spin_lock_irq(&ohci->lock);
2012
2013 ohci->generation = generation;
2014 reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
2015
2016 if (ohci->quirks & QUIRK_RESET_PACKET)
2017 ohci->request_generation = generation;
2018
2019 /*
2020 * This next bit is unrelated to the AT context stuff but we
2021 * have to do it under the spinlock also. If a new config rom
2022 * was set up before this reset, the old one is now no longer
2023 * in use and we can free it. Update the config rom pointers
2024 * to point to the current config rom and clear the
2025 * next_config_rom pointer so a new update can take place.
2026 */
2027
2028 if (ohci->next_config_rom != NULL) {
2029 if (ohci->next_config_rom != ohci->config_rom) {
2030 free_rom = ohci->config_rom;
2031 free_rom_bus = ohci->config_rom_bus;
2032 }
2033 ohci->config_rom = ohci->next_config_rom;
2034 ohci->config_rom_bus = ohci->next_config_rom_bus;
2035 ohci->next_config_rom = NULL;
2036
2037 /*
2038 * Restore config_rom image and manually update
2039 * config_rom registers. Writing the header quadlet
2040 * will indicate that the config rom is ready, so we
2041 * do that last.
2042 */
2043 reg_write(ohci, OHCI1394_BusOptions,
2044 be32_to_cpu(ohci->config_rom[2]));
2045 ohci->config_rom[0] = ohci->next_header;
2046 reg_write(ohci, OHCI1394_ConfigROMhdr,
2047 be32_to_cpu(ohci->next_header));
2048 }
2049
2050 if (param_remote_dma) {
2051 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
2052 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
2053 }
2054
2055 spin_unlock_irq(&ohci->lock);
2056
2057 if (free_rom)
2058 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2059 free_rom, free_rom_bus);
2060
2061 log_selfids(ohci, generation, self_id_count);
2062
2063 fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
2064 self_id_count, ohci->self_id_buffer,
2065 ohci->csr_state_setclear_abdicate);
2066 ohci->csr_state_setclear_abdicate = false;
2067 }
2068
2069 static irqreturn_t irq_handler(int irq, void *data)
2070 {
2071 struct fw_ohci *ohci = data;
2072 u32 event, iso_event;
2073 int i;
2074
2075 event = reg_read(ohci, OHCI1394_IntEventClear);
2076
2077 if (!event || !~event)
2078 return IRQ_NONE;
2079
2080 /*
2081 * busReset and postedWriteErr must not be cleared yet
2082 * (OHCI 1.1 clauses 7.2.3.2 and 13.2.8.1)
2083 */
2084 reg_write(ohci, OHCI1394_IntEventClear,
2085 event & ~(OHCI1394_busReset | OHCI1394_postedWriteErr));
2086 log_irqs(ohci, event);
2087
2088 if (event & OHCI1394_selfIDComplete)
2089 queue_work(selfid_workqueue, &ohci->bus_reset_work);
2090
2091 if (event & OHCI1394_RQPkt)
2092 tasklet_schedule(&ohci->ar_request_ctx.tasklet);
2093
2094 if (event & OHCI1394_RSPkt)
2095 tasklet_schedule(&ohci->ar_response_ctx.tasklet);
2096
2097 if (event & OHCI1394_reqTxComplete)
2098 tasklet_schedule(&ohci->at_request_ctx.tasklet);
2099
2100 if (event & OHCI1394_respTxComplete)
2101 tasklet_schedule(&ohci->at_response_ctx.tasklet);
2102
2103 if (event & OHCI1394_isochRx) {
2104 iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
2105 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
2106
2107 while (iso_event) {
2108 i = ffs(iso_event) - 1;
2109 tasklet_schedule(
2110 &ohci->ir_context_list[i].context.tasklet);
2111 iso_event &= ~(1 << i);
2112 }
2113 }
2114
2115 if (event & OHCI1394_isochTx) {
2116 iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
2117 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
2118
2119 while (iso_event) {
2120 i = ffs(iso_event) - 1;
2121 tasklet_schedule(
2122 &ohci->it_context_list[i].context.tasklet);
2123 iso_event &= ~(1 << i);
2124 }
2125 }
2126
2127 if (unlikely(event & OHCI1394_regAccessFail))
2128 ohci_err(ohci, "register access failure\n");
2129
2130 if (unlikely(event & OHCI1394_postedWriteErr)) {
2131 reg_read(ohci, OHCI1394_PostedWriteAddressHi);
2132 reg_read(ohci, OHCI1394_PostedWriteAddressLo);
2133 reg_write(ohci, OHCI1394_IntEventClear,
2134 OHCI1394_postedWriteErr);
2135 if (printk_ratelimit())
2136 ohci_err(ohci, "PCI posted write error\n");
2137 }
2138
2139 if (unlikely(event & OHCI1394_cycleTooLong)) {
2140 if (printk_ratelimit())
2141 ohci_notice(ohci, "isochronous cycle too long\n");
2142 reg_write(ohci, OHCI1394_LinkControlSet,
2143 OHCI1394_LinkControl_cycleMaster);
2144 }
2145
2146 if (unlikely(event & OHCI1394_cycleInconsistent)) {
2147 /*
2148 * We need to clear this event bit in order to make
2149 * cycleMatch isochronous I/O work. In theory we should
2150 * stop active cycleMatch iso contexts now and restart
2151 * them at least two cycles later. (FIXME?)
2152 */
2153 if (printk_ratelimit())
2154 ohci_notice(ohci, "isochronous cycle inconsistent\n");
2155 }
2156
2157 if (unlikely(event & OHCI1394_unrecoverableError))
2158 handle_dead_contexts(ohci);
2159
2160 if (event & OHCI1394_cycle64Seconds) {
2161 spin_lock(&ohci->lock);
2162 update_bus_time(ohci);
2163 spin_unlock(&ohci->lock);
2164 } else
2165 flush_writes(ohci);
2166
2167 return IRQ_HANDLED;
2168 }
2169
2170 static int software_reset(struct fw_ohci *ohci)
2171 {
2172 u32 val;
2173 int i;
2174
2175 reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
2176 for (i = 0; i < 500; i++) {
2177 val = reg_read(ohci, OHCI1394_HCControlSet);
2178 if (!~val)
2179 return -ENODEV; /* Card was ejected. */
2180
2181 if (!(val & OHCI1394_HCControl_softReset))
2182 return 0;
2183
2184 msleep(1);
2185 }
2186
2187 return -EBUSY;
2188 }
2189
2190 static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
2191 {
2192 size_t size = length * 4;
2193
2194 memcpy(dest, src, size);
2195 if (size < CONFIG_ROM_SIZE)
2196 memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
2197 }
2198
2199 static int configure_1394a_enhancements(struct fw_ohci *ohci)
2200 {
2201 bool enable_1394a;
2202 int ret, clear, set, offset;
2203
2204 /* Check if the driver should configure link and PHY. */
2205 if (!(reg_read(ohci, OHCI1394_HCControlSet) &
2206 OHCI1394_HCControl_programPhyEnable))
2207 return 0;
2208
2209 /* Paranoia: check whether the PHY supports 1394a, too. */
2210 enable_1394a = false;
2211 ret = read_phy_reg(ohci, 2);
2212 if (ret < 0)
2213 return ret;
2214 if ((ret & PHY_EXTENDED_REGISTERS) == PHY_EXTENDED_REGISTERS) {
2215 ret = read_paged_phy_reg(ohci, 1, 8);
2216 if (ret < 0)
2217 return ret;
2218 if (ret >= 1)
2219 enable_1394a = true;
2220 }
2221
2222 if (ohci->quirks & QUIRK_NO_1394A)
2223 enable_1394a = false;
2224
2225 /* Configure PHY and link consistently. */
2226 if (enable_1394a) {
2227 clear = 0;
2228 set = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2229 } else {
2230 clear = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2231 set = 0;
2232 }
2233 ret = update_phy_reg(ohci, 5, clear, set);
2234 if (ret < 0)
2235 return ret;
2236
2237 if (enable_1394a)
2238 offset = OHCI1394_HCControlSet;
2239 else
2240 offset = OHCI1394_HCControlClear;
2241 reg_write(ohci, offset, OHCI1394_HCControl_aPhyEnhanceEnable);
2242
2243 /* Clean up: configuration has been taken care of. */
2244 reg_write(ohci, OHCI1394_HCControlClear,
2245 OHCI1394_HCControl_programPhyEnable);
2246
2247 return 0;
2248 }
2249
2250 static int probe_tsb41ba3d(struct fw_ohci *ohci)
2251 {
2252 /* TI vendor ID = 0x080028, TSB41BA3D product ID = 0x833005 (sic) */
2253 static const u8 id[] = { 0x08, 0x00, 0x28, 0x83, 0x30, 0x05, };
2254 int reg, i;
2255
2256 reg = read_phy_reg(ohci, 2);
2257 if (reg < 0)
2258 return reg;
2259 if ((reg & PHY_EXTENDED_REGISTERS) != PHY_EXTENDED_REGISTERS)
2260 return 0;
2261
2262 for (i = ARRAY_SIZE(id) - 1; i >= 0; i--) {
2263 reg = read_paged_phy_reg(ohci, 1, i + 10);
2264 if (reg < 0)
2265 return reg;
2266 if (reg != id[i])
2267 return 0;
2268 }
2269 return 1;
2270 }
2271
2272 static int ohci_enable(struct fw_card *card,
2273 const __be32 *config_rom, size_t length)
2274 {
2275 struct fw_ohci *ohci = fw_ohci(card);
2276 u32 lps, version, irqs;
2277 int i, ret;
2278
2279 ret = software_reset(ohci);
2280 if (ret < 0) {
2281 ohci_err(ohci, "failed to reset ohci card\n");
2282 return ret;
2283 }
2284
2285 /*
2286 * Now enable LPS, which we need in order to start accessing
2287 * most of the registers. In fact, on some cards (ALI M5251),
2288 * accessing registers in the SClk domain without LPS enabled
2289 * will lock up the machine. Wait 50msec to make sure we have
2290 * full link enabled. However, with some cards (well, at least
2291 * a JMicron PCIe card), we have to try again sometimes.
2292 *
2293 * TI TSB82AA2 + TSB81BA3(A) cards signal LPS enabled early but
2294 * cannot actually use the phy at that time. These need tens of
2295 * millisecods pause between LPS write and first phy access too.
2296 */
2297
2298 reg_write(ohci, OHCI1394_HCControlSet,
2299 OHCI1394_HCControl_LPS |
2300 OHCI1394_HCControl_postedWriteEnable);
2301 flush_writes(ohci);
2302
2303 for (lps = 0, i = 0; !lps && i < 3; i++) {
2304 msleep(50);
2305 lps = reg_read(ohci, OHCI1394_HCControlSet) &
2306 OHCI1394_HCControl_LPS;
2307 }
2308
2309 if (!lps) {
2310 ohci_err(ohci, "failed to set Link Power Status\n");
2311 return -EIO;
2312 }
2313
2314 if (ohci->quirks & QUIRK_TI_SLLZ059) {
2315 ret = probe_tsb41ba3d(ohci);
2316 if (ret < 0)
2317 return ret;
2318 if (ret)
2319 ohci_notice(ohci, "local TSB41BA3D phy\n");
2320 else
2321 ohci->quirks &= ~QUIRK_TI_SLLZ059;
2322 }
2323
2324 reg_write(ohci, OHCI1394_HCControlClear,
2325 OHCI1394_HCControl_noByteSwapData);
2326
2327 reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
2328 reg_write(ohci, OHCI1394_LinkControlSet,
2329 OHCI1394_LinkControl_cycleTimerEnable |
2330 OHCI1394_LinkControl_cycleMaster);
2331
2332 reg_write(ohci, OHCI1394_ATRetries,
2333 OHCI1394_MAX_AT_REQ_RETRIES |
2334 (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
2335 (OHCI1394_MAX_PHYS_RESP_RETRIES << 8) |
2336 (200 << 16));
2337
2338 ohci->bus_time_running = false;
2339
2340 for (i = 0; i < 32; i++)
2341 if (ohci->ir_context_support & (1 << i))
2342 reg_write(ohci, OHCI1394_IsoRcvContextControlClear(i),
2343 IR_CONTEXT_MULTI_CHANNEL_MODE);
2344
2345 version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2346 if (version >= OHCI_VERSION_1_1) {
2347 reg_write(ohci, OHCI1394_InitialChannelsAvailableHi,
2348 0xfffffffe);
2349 card->broadcast_channel_auto_allocated = true;
2350 }
2351
2352 /* Get implemented bits of the priority arbitration request counter. */
2353 reg_write(ohci, OHCI1394_FairnessControl, 0x3f);
2354 ohci->pri_req_max = reg_read(ohci, OHCI1394_FairnessControl) & 0x3f;
2355 reg_write(ohci, OHCI1394_FairnessControl, 0);
2356 card->priority_budget_implemented = ohci->pri_req_max != 0;
2357
2358 reg_write(ohci, OHCI1394_PhyUpperBound, FW_MAX_PHYSICAL_RANGE >> 16);
2359 reg_write(ohci, OHCI1394_IntEventClear, ~0);
2360 reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2361
2362 ret = configure_1394a_enhancements(ohci);
2363 if (ret < 0)
2364 return ret;
2365
2366 /* Activate link_on bit and contender bit in our self ID packets.*/
2367 ret = ohci_update_phy_reg(card, 4, 0, PHY_LINK_ACTIVE | PHY_CONTENDER);
2368 if (ret < 0)
2369 return ret;
2370
2371 /*
2372 * When the link is not yet enabled, the atomic config rom
2373 * update mechanism described below in ohci_set_config_rom()
2374 * is not active. We have to update ConfigRomHeader and
2375 * BusOptions manually, and the write to ConfigROMmap takes
2376 * effect immediately. We tie this to the enabling of the
2377 * link, so we have a valid config rom before enabling - the
2378 * OHCI requires that ConfigROMhdr and BusOptions have valid
2379 * values before enabling.
2380 *
2381 * However, when the ConfigROMmap is written, some controllers
2382 * always read back quadlets 0 and 2 from the config rom to
2383 * the ConfigRomHeader and BusOptions registers on bus reset.
2384 * They shouldn't do that in this initial case where the link
2385 * isn't enabled. This means we have to use the same
2386 * workaround here, setting the bus header to 0 and then write
2387 * the right values in the bus reset tasklet.
2388 */
2389
2390 if (config_rom) {
2391 ohci->next_config_rom =
2392 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2393 &ohci->next_config_rom_bus,
2394 GFP_KERNEL);
2395 if (ohci->next_config_rom == NULL)
2396 return -ENOMEM;
2397
2398 copy_config_rom(ohci->next_config_rom, config_rom, length);
2399 } else {
2400 /*
2401 * In the suspend case, config_rom is NULL, which
2402 * means that we just reuse the old config rom.
2403 */
2404 ohci->next_config_rom = ohci->config_rom;
2405 ohci->next_config_rom_bus = ohci->config_rom_bus;
2406 }
2407
2408 ohci->next_header = ohci->next_config_rom[0];
2409 ohci->next_config_rom[0] = 0;
2410 reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
2411 reg_write(ohci, OHCI1394_BusOptions,
2412 be32_to_cpu(ohci->next_config_rom[2]));
2413 reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2414
2415 reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
2416
2417 irqs = OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
2418 OHCI1394_RQPkt | OHCI1394_RSPkt |
2419 OHCI1394_isochTx | OHCI1394_isochRx |
2420 OHCI1394_postedWriteErr |
2421 OHCI1394_selfIDComplete |
2422 OHCI1394_regAccessFail |
2423 OHCI1394_cycleInconsistent |
2424 OHCI1394_unrecoverableError |
2425 OHCI1394_cycleTooLong |
2426 OHCI1394_masterIntEnable;
2427 if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
2428 irqs |= OHCI1394_busReset;
2429 reg_write(ohci, OHCI1394_IntMaskSet, irqs);
2430
2431 reg_write(ohci, OHCI1394_HCControlSet,
2432 OHCI1394_HCControl_linkEnable |
2433 OHCI1394_HCControl_BIBimageValid);
2434
2435 reg_write(ohci, OHCI1394_LinkControlSet,
2436 OHCI1394_LinkControl_rcvSelfID |
2437 OHCI1394_LinkControl_rcvPhyPkt);
2438
2439 ar_context_run(&ohci->ar_request_ctx);
2440 ar_context_run(&ohci->ar_response_ctx);
2441
2442 flush_writes(ohci);
2443
2444 /* We are ready to go, reset bus to finish initialization. */
2445 fw_schedule_bus_reset(&ohci->card, false, true);
2446
2447 return 0;
2448 }
2449
2450 static int ohci_set_config_rom(struct fw_card *card,
2451 const __be32 *config_rom, size_t length)
2452 {
2453 struct fw_ohci *ohci;
2454 __be32 *next_config_rom;
2455 dma_addr_t uninitialized_var(next_config_rom_bus);
2456
2457 ohci = fw_ohci(card);
2458
2459 /*
2460 * When the OHCI controller is enabled, the config rom update
2461 * mechanism is a bit tricky, but easy enough to use. See
2462 * section 5.5.6 in the OHCI specification.
2463 *
2464 * The OHCI controller caches the new config rom address in a
2465 * shadow register (ConfigROMmapNext) and needs a bus reset
2466 * for the changes to take place. When the bus reset is
2467 * detected, the controller loads the new values for the
2468 * ConfigRomHeader and BusOptions registers from the specified
2469 * config rom and loads ConfigROMmap from the ConfigROMmapNext
2470 * shadow register. All automatically and atomically.
2471 *
2472 * Now, there's a twist to this story. The automatic load of
2473 * ConfigRomHeader and BusOptions doesn't honor the
2474 * noByteSwapData bit, so with a be32 config rom, the
2475 * controller will load be32 values in to these registers
2476 * during the atomic update, even on litte endian
2477 * architectures. The workaround we use is to put a 0 in the
2478 * header quadlet; 0 is endian agnostic and means that the
2479 * config rom isn't ready yet. In the bus reset tasklet we
2480 * then set up the real values for the two registers.
2481 *
2482 * We use ohci->lock to avoid racing with the code that sets
2483 * ohci->next_config_rom to NULL (see bus_reset_work).
2484 */
2485
2486 next_config_rom =
2487 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2488 &next_config_rom_bus, GFP_KERNEL);
2489 if (next_config_rom == NULL)
2490 return -ENOMEM;
2491
2492 spin_lock_irq(&ohci->lock);
2493
2494 /*
2495 * If there is not an already pending config_rom update,
2496 * push our new allocation into the ohci->next_config_rom
2497 * and then mark the local variable as null so that we
2498 * won't deallocate the new buffer.
2499 *
2500 * OTOH, if there is a pending config_rom update, just
2501 * use that buffer with the new config_rom data, and
2502 * let this routine free the unused DMA allocation.
2503 */
2504
2505 if (ohci->next_config_rom == NULL) {
2506 ohci->next_config_rom = next_config_rom;
2507 ohci->next_config_rom_bus = next_config_rom_bus;
2508 next_config_rom = NULL;
2509 }
2510
2511 copy_config_rom(ohci->next_config_rom, config_rom, length);
2512
2513 ohci->next_header = config_rom[0];
2514 ohci->next_config_rom[0] = 0;
2515
2516 reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2517
2518 spin_unlock_irq(&ohci->lock);
2519
2520 /* If we didn't use the DMA allocation, delete it. */
2521 if (next_config_rom != NULL)
2522 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2523 next_config_rom, next_config_rom_bus);
2524
2525 /*
2526 * Now initiate a bus reset to have the changes take
2527 * effect. We clean up the old config rom memory and DMA
2528 * mappings in the bus reset tasklet, since the OHCI
2529 * controller could need to access it before the bus reset
2530 * takes effect.
2531 */
2532
2533 fw_schedule_bus_reset(&ohci->card, true, true);
2534
2535 return 0;
2536 }
2537
2538 static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
2539 {
2540 struct fw_ohci *ohci = fw_ohci(card);
2541
2542 at_context_transmit(&ohci->at_request_ctx, packet);
2543 }
2544
2545 static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
2546 {
2547 struct fw_ohci *ohci = fw_ohci(card);
2548
2549 at_context_transmit(&ohci->at_response_ctx, packet);
2550 }
2551
2552 static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
2553 {
2554 struct fw_ohci *ohci = fw_ohci(card);
2555 struct context *ctx = &ohci->at_request_ctx;
2556 struct driver_data *driver_data = packet->driver_data;
2557 int ret = -ENOENT;
2558
2559 tasklet_disable(&ctx->tasklet);
2560
2561 if (packet->ack != 0)
2562 goto out;
2563
2564 if (packet->payload_mapped)
2565 dma_unmap_single(ohci->card.device, packet->payload_bus,
2566 packet->payload_length, DMA_TO_DEVICE);
2567
2568 log_ar_at_event(ohci, 'T', packet->speed, packet->header, 0x20);
2569 driver_data->packet = NULL;
2570 packet->ack = RCODE_CANCELLED;
2571 packet->callback(packet, &ohci->card, packet->ack);
2572 ret = 0;
2573 out:
2574 tasklet_enable(&ctx->tasklet);
2575
2576 return ret;
2577 }
2578
2579 static int ohci_enable_phys_dma(struct fw_card *card,
2580 int node_id, int generation)
2581 {
2582 struct fw_ohci *ohci = fw_ohci(card);
2583 unsigned long flags;
2584 int n, ret = 0;
2585
2586 if (param_remote_dma)
2587 return 0;
2588
2589 /*
2590 * FIXME: Make sure this bitmask is cleared when we clear the busReset
2591 * interrupt bit. Clear physReqResourceAllBuses on bus reset.
2592 */
2593
2594 spin_lock_irqsave(&ohci->lock, flags);
2595
2596 if (ohci->generation != generation) {
2597 ret = -ESTALE;
2598 goto out;
2599 }
2600
2601 /*
2602 * Note, if the node ID contains a non-local bus ID, physical DMA is
2603 * enabled for _all_ nodes on remote buses.
2604 */
2605
2606 n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
2607 if (n < 32)
2608 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
2609 else
2610 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
2611
2612 flush_writes(ohci);
2613 out:
2614 spin_unlock_irqrestore(&ohci->lock, flags);
2615
2616 return ret;
2617 }
2618
2619 static u32 ohci_read_csr(struct fw_card *card, int csr_offset)
2620 {
2621 struct fw_ohci *ohci = fw_ohci(card);
2622 unsigned long flags;
2623 u32 value;
2624
2625 switch (csr_offset) {
2626 case CSR_STATE_CLEAR:
2627 case CSR_STATE_SET:
2628 if (ohci->is_root &&
2629 (reg_read(ohci, OHCI1394_LinkControlSet) &
2630 OHCI1394_LinkControl_cycleMaster))
2631 value = CSR_STATE_BIT_CMSTR;
2632 else
2633 value = 0;
2634 if (ohci->csr_state_setclear_abdicate)
2635 value |= CSR_STATE_BIT_ABDICATE;
2636
2637 return value;
2638
2639 case CSR_NODE_IDS:
2640 return reg_read(ohci, OHCI1394_NodeID) << 16;
2641
2642 case CSR_CYCLE_TIME:
2643 return get_cycle_time(ohci);
2644
2645 case CSR_BUS_TIME:
2646 /*
2647 * We might be called just after the cycle timer has wrapped
2648 * around but just before the cycle64Seconds handler, so we
2649 * better check here, too, if the bus time needs to be updated.
2650 */
2651 spin_lock_irqsave(&ohci->lock, flags);
2652 value = update_bus_time(ohci);
2653 spin_unlock_irqrestore(&ohci->lock, flags);
2654 return value;
2655
2656 case CSR_BUSY_TIMEOUT:
2657 value = reg_read(ohci, OHCI1394_ATRetries);
2658 return (value >> 4) & 0x0ffff00f;
2659
2660 case CSR_PRIORITY_BUDGET:
2661 return (reg_read(ohci, OHCI1394_FairnessControl) & 0x3f) |
2662 (ohci->pri_req_max << 8);
2663
2664 default:
2665 WARN_ON(1);
2666 return 0;
2667 }
2668 }
2669
2670 static void ohci_write_csr(struct fw_card *card, int csr_offset, u32 value)
2671 {
2672 struct fw_ohci *ohci = fw_ohci(card);
2673 unsigned long flags;
2674
2675 switch (csr_offset) {
2676 case CSR_STATE_CLEAR:
2677 if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2678 reg_write(ohci, OHCI1394_LinkControlClear,
2679 OHCI1394_LinkControl_cycleMaster);
2680 flush_writes(ohci);
2681 }
2682 if (value & CSR_STATE_BIT_ABDICATE)
2683 ohci->csr_state_setclear_abdicate = false;
2684 break;
2685
2686 case CSR_STATE_SET:
2687 if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2688 reg_write(ohci, OHCI1394_LinkControlSet,
2689 OHCI1394_LinkControl_cycleMaster);
2690 flush_writes(ohci);
2691 }
2692 if (value & CSR_STATE_BIT_ABDICATE)
2693 ohci->csr_state_setclear_abdicate = true;
2694 break;
2695
2696 case CSR_NODE_IDS:
2697 reg_write(ohci, OHCI1394_NodeID, value >> 16);
2698 flush_writes(ohci);
2699 break;
2700
2701 case CSR_CYCLE_TIME:
2702 reg_write(ohci, OHCI1394_IsochronousCycleTimer, value);
2703 reg_write(ohci, OHCI1394_IntEventSet,
2704 OHCI1394_cycleInconsistent);
2705 flush_writes(ohci);
2706 break;
2707
2708 case CSR_BUS_TIME:
2709 spin_lock_irqsave(&ohci->lock, flags);
2710 ohci->bus_time = (update_bus_time(ohci) & 0x40) |
2711 (value & ~0x7f);
2712 spin_unlock_irqrestore(&ohci->lock, flags);
2713 break;
2714
2715 case CSR_BUSY_TIMEOUT:
2716 value = (value & 0xf) | ((value & 0xf) << 4) |
2717 ((value & 0xf) << 8) | ((value & 0x0ffff000) << 4);
2718 reg_write(ohci, OHCI1394_ATRetries, value);
2719 flush_writes(ohci);
2720 break;
2721
2722 case CSR_PRIORITY_BUDGET:
2723 reg_write(ohci, OHCI1394_FairnessControl, value & 0x3f);
2724 flush_writes(ohci);
2725 break;
2726
2727 default:
2728 WARN_ON(1);
2729 break;
2730 }
2731 }
2732
2733 static void flush_iso_completions(struct iso_context *ctx)
2734 {
2735 ctx->base.callback.sc(&ctx->base, ctx->last_timestamp,
2736 ctx->header_length, ctx->header,
2737 ctx->base.callback_data);
2738 ctx->header_length = 0;
2739 }
2740
2741 static void copy_iso_headers(struct iso_context *ctx, const u32 *dma_hdr)
2742 {
2743 u32 *ctx_hdr;
2744
2745 if (ctx->header_length + ctx->base.header_size > PAGE_SIZE) {
2746 if (ctx->base.drop_overflow_headers)
2747 return;
2748 flush_iso_completions(ctx);
2749 }
2750
2751 ctx_hdr = ctx->header + ctx->header_length;
2752 ctx->last_timestamp = (u16)le32_to_cpu((__force __le32)dma_hdr[0]);
2753
2754 /*
2755 * The two iso header quadlets are byteswapped to little
2756 * endian by the controller, but we want to present them
2757 * as big endian for consistency with the bus endianness.
2758 */
2759 if (ctx->base.header_size > 0)
2760 ctx_hdr[0] = swab32(dma_hdr[1]); /* iso packet header */
2761 if (ctx->base.header_size > 4)
2762 ctx_hdr[1] = swab32(dma_hdr[0]); /* timestamp */
2763 if (ctx->base.header_size > 8)
2764 memcpy(&ctx_hdr[2], &dma_hdr[2], ctx->base.header_size - 8);
2765 ctx->header_length += ctx->base.header_size;
2766 }
2767
2768 static int handle_ir_packet_per_buffer(struct context *context,
2769 struct descriptor *d,
2770 struct descriptor *last)
2771 {
2772 struct iso_context *ctx =
2773 container_of(context, struct iso_context, context);
2774 struct descriptor *pd;
2775 u32 buffer_dma;
2776
2777 for (pd = d; pd <= last; pd++)
2778 if (pd->transfer_status)
2779 break;
2780 if (pd > last)
2781 /* Descriptor(s) not done yet, stop iteration */
2782 return 0;
2783
2784 while (!(d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))) {
2785 d++;
2786 buffer_dma = le32_to_cpu(d->data_address);
2787 dma_sync_single_range_for_cpu(context->ohci->card.device,
2788 buffer_dma & PAGE_MASK,
2789 buffer_dma & ~PAGE_MASK,
2790 le16_to_cpu(d->req_count),
2791 DMA_FROM_DEVICE);
2792 }
2793
2794 copy_iso_headers(ctx, (u32 *) (last + 1));
2795
2796 if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS))
2797 flush_iso_completions(ctx);
2798
2799 return 1;
2800 }
2801
2802 /* d == last because each descriptor block is only a single descriptor. */
2803 static int handle_ir_buffer_fill(struct context *context,
2804 struct descriptor *d,
2805 struct descriptor *last)
2806 {
2807 struct iso_context *ctx =
2808 container_of(context, struct iso_context, context);
2809 unsigned int req_count, res_count, completed;
2810 u32 buffer_dma;
2811
2812 req_count = le16_to_cpu(last->req_count);
2813 res_count = le16_to_cpu(READ_ONCE(last->res_count));
2814 completed = req_count - res_count;
2815 buffer_dma = le32_to_cpu(last->data_address);
2816
2817 if (completed > 0) {
2818 ctx->mc_buffer_bus = buffer_dma;
2819 ctx->mc_completed = completed;
2820 }
2821
2822 if (res_count != 0)
2823 /* Descriptor(s) not done yet, stop iteration */
2824 return 0;
2825
2826 dma_sync_single_range_for_cpu(context->ohci->card.device,
2827 buffer_dma & PAGE_MASK,
2828 buffer_dma & ~PAGE_MASK,
2829 completed, DMA_FROM_DEVICE);
2830
2831 if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS)) {
2832 ctx->base.callback.mc(&ctx->base,
2833 buffer_dma + completed,
2834 ctx->base.callback_data);
2835 ctx->mc_completed = 0;
2836 }
2837
2838 return 1;
2839 }
2840
2841 static void flush_ir_buffer_fill(struct iso_context *ctx)
2842 {
2843 dma_sync_single_range_for_cpu(ctx->context.ohci->card.device,
2844 ctx->mc_buffer_bus & PAGE_MASK,
2845 ctx->mc_buffer_bus & ~PAGE_MASK,
2846 ctx->mc_completed, DMA_FROM_DEVICE);
2847
2848 ctx->base.callback.mc(&ctx->base,
2849 ctx->mc_buffer_bus + ctx->mc_completed,
2850 ctx->base.callback_data);
2851 ctx->mc_completed = 0;
2852 }
2853
2854 static inline void sync_it_packet_for_cpu(struct context *context,
2855 struct descriptor *pd)
2856 {
2857 __le16 control;
2858 u32 buffer_dma;
2859
2860 /* only packets beginning with OUTPUT_MORE* have data buffers */
2861 if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
2862 return;
2863
2864 /* skip over the OUTPUT_MORE_IMMEDIATE descriptor */
2865 pd += 2;
2866
2867 /*
2868 * If the packet has a header, the first OUTPUT_MORE/LAST descriptor's
2869 * data buffer is in the context program's coherent page and must not
2870 * be synced.
2871 */
2872 if ((le32_to_cpu(pd->data_address) & PAGE_MASK) ==
2873 (context->current_bus & PAGE_MASK)) {
2874 if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
2875 return;
2876 pd++;
2877 }
2878
2879 do {
2880 buffer_dma = le32_to_cpu(pd->data_address);
2881 dma_sync_single_range_for_cpu(context->ohci->card.device,
2882 buffer_dma & PAGE_MASK,
2883 buffer_dma & ~PAGE_MASK,
2884 le16_to_cpu(pd->req_count),
2885 DMA_TO_DEVICE);
2886 control = pd->control;
2887 pd++;
2888 } while (!(control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS)));
2889 }
2890
2891 static int handle_it_packet(struct context *context,
2892 struct descriptor *d,
2893 struct descriptor *last)
2894 {
2895 struct iso_context *ctx =
2896 container_of(context, struct iso_context, context);
2897 struct descriptor *pd;
2898 __be32 *ctx_hdr;
2899
2900 for (pd = d; pd <= last; pd++)
2901 if (pd->transfer_status)
2902 break;
2903 if (pd > last)
2904 /* Descriptor(s) not done yet, stop iteration */
2905 return 0;
2906
2907 sync_it_packet_for_cpu(context, d);
2908
2909 if (ctx->header_length + 4 > PAGE_SIZE) {
2910 if (ctx->base.drop_overflow_headers)
2911 return 1;
2912 flush_iso_completions(ctx);
2913 }
2914
2915 ctx_hdr = ctx->header + ctx->header_length;
2916 ctx->last_timestamp = le16_to_cpu(last->res_count);
2917 /* Present this value as big-endian to match the receive code */
2918 *ctx_hdr = cpu_to_be32((le16_to_cpu(pd->transfer_status) << 16) |
2919 le16_to_cpu(pd->res_count));
2920 ctx->header_length += 4;
2921
2922 if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS))
2923 flush_iso_completions(ctx);
2924
2925 return 1;
2926 }
2927
2928 static void set_multichannel_mask(struct fw_ohci *ohci, u64 channels)
2929 {
2930 u32 hi = channels >> 32, lo = channels;
2931
2932 reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear, ~hi);
2933 reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear, ~lo);
2934 reg_write(ohci, OHCI1394_IRMultiChanMaskHiSet, hi);
2935 reg_write(ohci, OHCI1394_IRMultiChanMaskLoSet, lo);
2936 mmiowb();
2937 ohci->mc_channels = channels;
2938 }
2939
2940 static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
2941 int type, int channel, size_t header_size)
2942 {
2943 struct fw_ohci *ohci = fw_ohci(card);
2944 struct iso_context *uninitialized_var(ctx);
2945 descriptor_callback_t uninitialized_var(callback);
2946 u64 *uninitialized_var(channels);
2947 u32 *uninitialized_var(mask), uninitialized_var(regs);
2948 int index, ret = -EBUSY;
2949
2950 spin_lock_irq(&ohci->lock);
2951
2952 switch (type) {
2953 case FW_ISO_CONTEXT_TRANSMIT:
2954 mask = &ohci->it_context_mask;
2955 callback = handle_it_packet;
2956 index = ffs(*mask) - 1;
2957 if (index >= 0) {
2958 *mask &= ~(1 << index);
2959 regs = OHCI1394_IsoXmitContextBase(index);
2960 ctx = &ohci->it_context_list[index];
2961 }
2962 break;
2963
2964 case FW_ISO_CONTEXT_RECEIVE:
2965 channels = &ohci->ir_context_channels;
2966 mask = &ohci->ir_context_mask;
2967 callback = handle_ir_packet_per_buffer;
2968 index = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
2969 if (index >= 0) {
2970 *channels &= ~(1ULL << channel);
2971 *mask &= ~(1 << index);
2972 regs = OHCI1394_IsoRcvContextBase(index);
2973 ctx = &ohci->ir_context_list[index];
2974 }
2975 break;
2976
2977 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2978 mask = &ohci->ir_context_mask;
2979 callback = handle_ir_buffer_fill;
2980 index = !ohci->mc_allocated ? ffs(*mask) - 1 : -1;
2981 if (index >= 0) {
2982 ohci->mc_allocated = true;
2983 *mask &= ~(1 << index);
2984 regs = OHCI1394_IsoRcvContextBase(index);
2985 ctx = &ohci->ir_context_list[index];
2986 }
2987 break;
2988
2989 default:
2990 index = -1;
2991 ret = -ENOSYS;
2992 }
2993
2994 spin_unlock_irq(&ohci->lock);
2995
2996 if (index < 0)
2997 return ERR_PTR(ret);
2998
2999 memset(ctx, 0, sizeof(*ctx));
3000 ctx->header_length = 0;
3001 ctx->header = (void *) __get_free_page(GFP_KERNEL);
3002 if (ctx->header == NULL) {
3003 ret = -ENOMEM;
3004 goto out;
3005 }
3006 ret = context_init(&ctx->context, ohci, regs, callback);
3007 if (ret < 0)
3008 goto out_with_header;
3009
3010 if (type == FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL) {
3011 set_multichannel_mask(ohci, 0);
3012 ctx->mc_completed = 0;
3013 }
3014
3015 return &ctx->base;
3016
3017 out_with_header:
3018 free_page((unsigned long)ctx->header);
3019 out:
3020 spin_lock_irq(&ohci->lock);
3021
3022 switch (type) {
3023 case FW_ISO_CONTEXT_RECEIVE:
3024 *channels |= 1ULL << channel;
3025 break;
3026
3027 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3028 ohci->mc_allocated = false;
3029 break;
3030 }
3031 *mask |= 1 << index;
3032
3033 spin_unlock_irq(&ohci->lock);
3034
3035 return ERR_PTR(ret);
3036 }
3037
3038 static int ohci_start_iso(struct fw_iso_context *base,
3039 s32 cycle, u32 sync, u32 tags)
3040 {
3041 struct iso_context *ctx = container_of(base, struct iso_context, base);
3042 struct fw_ohci *ohci = ctx->context.ohci;
3043 u32 control = IR_CONTEXT_ISOCH_HEADER, match;
3044 int index;
3045
3046 /* the controller cannot start without any queued packets */
3047 if (ctx->context.last->branch_address == 0)
3048 return -ENODATA;
3049
3050 switch (ctx->base.type) {
3051 case FW_ISO_CONTEXT_TRANSMIT:
3052 index = ctx - ohci->it_context_list;
3053 match = 0;
3054 if (cycle >= 0)
3055 match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
3056 (cycle & 0x7fff) << 16;
3057
3058 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
3059 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
3060 context_run(&ctx->context, match);
3061 break;
3062
3063 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3064 control |= IR_CONTEXT_BUFFER_FILL|IR_CONTEXT_MULTI_CHANNEL_MODE;
3065 /* fall through */
3066 case FW_ISO_CONTEXT_RECEIVE:
3067 index = ctx - ohci->ir_context_list;
3068 match = (tags << 28) | (sync << 8) | ctx->base.channel;
3069 if (cycle >= 0) {
3070 match |= (cycle & 0x07fff) << 12;
3071 control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
3072 }
3073
3074 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
3075 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
3076 reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
3077 context_run(&ctx->context, control);
3078
3079 ctx->sync = sync;
3080 ctx->tags = tags;
3081
3082 break;
3083 }
3084
3085 return 0;
3086 }
3087
3088 static int ohci_stop_iso(struct fw_iso_context *base)
3089 {
3090 struct fw_ohci *ohci = fw_ohci(base->card);
3091 struct iso_context *ctx = container_of(base, struct iso_context, base);
3092 int index;
3093
3094 switch (ctx->base.type) {
3095 case FW_ISO_CONTEXT_TRANSMIT:
3096 index = ctx - ohci->it_context_list;
3097 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
3098 break;
3099
3100 case FW_ISO_CONTEXT_RECEIVE:
3101 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3102 index = ctx - ohci->ir_context_list;
3103 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
3104 break;
3105 }
3106 flush_writes(ohci);
3107 context_stop(&ctx->context);
3108 tasklet_kill(&ctx->context.tasklet);
3109
3110 return 0;
3111 }
3112
3113 static void ohci_free_iso_context(struct fw_iso_context *base)
3114 {
3115 struct fw_ohci *ohci = fw_ohci(base->card);
3116 struct iso_context *ctx = container_of(base, struct iso_context, base);
3117 unsigned long flags;
3118 int index;
3119
3120 ohci_stop_iso(base);
3121 context_release(&ctx->context);
3122 free_page((unsigned long)ctx->header);
3123
3124 spin_lock_irqsave(&ohci->lock, flags);
3125
3126 switch (base->type) {
3127 case FW_ISO_CONTEXT_TRANSMIT:
3128 index = ctx - ohci->it_context_list;
3129 ohci->it_context_mask |= 1 << index;
3130 break;
3131
3132 case FW_ISO_CONTEXT_RECEIVE:
3133 index = ctx - ohci->ir_context_list;
3134 ohci->ir_context_mask |= 1 << index;
3135 ohci->ir_context_channels |= 1ULL << base->channel;
3136 break;
3137
3138 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3139 index = ctx - ohci->ir_context_list;
3140 ohci->ir_context_mask |= 1 << index;
3141 ohci->ir_context_channels |= ohci->mc_channels;
3142 ohci->mc_channels = 0;
3143 ohci->mc_allocated = false;
3144 break;
3145 }
3146
3147 spin_unlock_irqrestore(&ohci->lock, flags);
3148 }
3149
3150 static int ohci_set_iso_channels(struct fw_iso_context *base, u64 *channels)
3151 {
3152 struct fw_ohci *ohci = fw_ohci(base->card);
3153 unsigned long flags;
3154 int ret;
3155
3156 switch (base->type) {
3157 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3158
3159 spin_lock_irqsave(&ohci->lock, flags);
3160
3161 /* Don't allow multichannel to grab other contexts' channels. */
3162 if (~ohci->ir_context_channels & ~ohci->mc_channels & *channels) {
3163 *channels = ohci->ir_context_channels;
3164 ret = -EBUSY;
3165 } else {
3166 set_multichannel_mask(ohci, *channels);
3167 ret = 0;
3168 }
3169
3170 spin_unlock_irqrestore(&ohci->lock, flags);
3171
3172 break;
3173 default:
3174 ret = -EINVAL;
3175 }
3176
3177 return ret;
3178 }
3179
3180 #ifdef CONFIG_PM
3181 static void ohci_resume_iso_dma(struct fw_ohci *ohci)
3182 {
3183 int i;
3184 struct iso_context *ctx;
3185
3186 for (i = 0 ; i < ohci->n_ir ; i++) {
3187 ctx = &ohci->ir_context_list[i];
3188 if (ctx->context.running)
3189 ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
3190 }
3191
3192 for (i = 0 ; i < ohci->n_it ; i++) {
3193 ctx = &ohci->it_context_list[i];
3194 if (ctx->context.running)
3195 ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
3196 }
3197 }
3198 #endif
3199
3200 static int queue_iso_transmit(struct iso_context *ctx,
3201 struct fw_iso_packet *packet,
3202 struct fw_iso_buffer *buffer,
3203 unsigned long payload)
3204 {
3205 struct descriptor *d, *last, *pd;
3206 struct fw_iso_packet *p;
3207 __le32 *header;
3208 dma_addr_t d_bus, page_bus;
3209 u32 z, header_z, payload_z, irq;
3210 u32 payload_index, payload_end_index, next_page_index;
3211 int page, end_page, i, length, offset;
3212
3213 p = packet;
3214 payload_index = payload;
3215
3216 if (p->skip)
3217 z = 1;
3218 else
3219 z = 2;
3220 if (p->header_length > 0)
3221 z++;
3222
3223 /* Determine the first page the payload isn't contained in. */
3224 end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
3225 if (p->payload_length > 0)
3226 payload_z = end_page - (payload_index >> PAGE_SHIFT);
3227 else
3228 payload_z = 0;
3229
3230 z += payload_z;
3231
3232 /* Get header size in number of descriptors. */
3233 header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
3234
3235 d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
3236 if (d == NULL)
3237 return -ENOMEM;
3238
3239 if (!p->skip) {
3240 d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
3241 d[0].req_count = cpu_to_le16(8);
3242 /*
3243 * Link the skip address to this descriptor itself. This causes
3244 * a context to skip a cycle whenever lost cycles or FIFO
3245 * overruns occur, without dropping the data. The application
3246 * should then decide whether this is an error condition or not.
3247 * FIXME: Make the context's cycle-lost behaviour configurable?
3248 */
3249 d[0].branch_address = cpu_to_le32(d_bus | z);
3250
3251 header = (__le32 *) &d[1];
3252 header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
3253 IT_HEADER_TAG(p->tag) |
3254 IT_HEADER_TCODE(TCODE_STREAM_DATA) |
3255 IT_HEADER_CHANNEL(ctx->base.channel) |
3256 IT_HEADER_SPEED(ctx->base.speed));
3257 header[1] =
3258 cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
3259 p->payload_length));
3260 }
3261
3262 if (p->header_length > 0) {
3263 d[2].req_count = cpu_to_le16(p->header_length);
3264 d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
3265 memcpy(&d[z], p->header, p->header_length);
3266 }
3267
3268 pd = d + z - payload_z;
3269 payload_end_index = payload_index + p->payload_length;
3270 for (i = 0; i < payload_z; i++) {
3271 page = payload_index >> PAGE_SHIFT;
3272 offset = payload_index & ~PAGE_MASK;
3273 next_page_index = (page + 1) << PAGE_SHIFT;
3274 length =
3275 min(next_page_index, payload_end_index) - payload_index;
3276 pd[i].req_count = cpu_to_le16(length);
3277
3278 page_bus = page_private(buffer->pages[page]);
3279 pd[i].data_address = cpu_to_le32(page_bus + offset);
3280
3281 dma_sync_single_range_for_device(ctx->context.ohci->card.device,
3282 page_bus, offset, length,
3283 DMA_TO_DEVICE);
3284
3285 payload_index += length;
3286 }
3287
3288 if (p->interrupt)
3289 irq = DESCRIPTOR_IRQ_ALWAYS;
3290 else
3291 irq = DESCRIPTOR_NO_IRQ;
3292
3293 last = z == 2 ? d : d + z - 1;
3294 last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
3295 DESCRIPTOR_STATUS |
3296 DESCRIPTOR_BRANCH_ALWAYS |
3297 irq);
3298
3299 context_append(&ctx->context, d, z, header_z);
3300
3301 return 0;
3302 }
3303
3304 static int queue_iso_packet_per_buffer(struct iso_context *ctx,
3305 struct fw_iso_packet *packet,
3306 struct fw_iso_buffer *buffer,
3307 unsigned long payload)
3308 {
3309 struct device *device = ctx->context.ohci->card.device;
3310 struct descriptor *d, *pd;
3311 dma_addr_t d_bus, page_bus;
3312 u32 z, header_z, rest;
3313 int i, j, length;
3314 int page, offset, packet_count, header_size, payload_per_buffer;
3315
3316 /*
3317 * The OHCI controller puts the isochronous header and trailer in the
3318 * buffer, so we need at least 8 bytes.
3319 */
3320 packet_count = packet->header_length / ctx->base.header_size;
3321 header_size = max(ctx->base.header_size, (size_t)8);
3322
3323 /* Get header size in number of descriptors. */
3324 header_z = DIV_ROUND_UP(header_size, sizeof(*d));
3325 page = payload >> PAGE_SHIFT;
3326 offset = payload & ~PAGE_MASK;
3327 payload_per_buffer = packet->payload_length / packet_count;
3328
3329 for (i = 0; i < packet_count; i++) {
3330 /* d points to the header descriptor */
3331 z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
3332 d = context_get_descriptors(&ctx->context,
3333 z + header_z, &d_bus);
3334 if (d == NULL)
3335 return -ENOMEM;
3336
3337 d->control = cpu_to_le16(DESCRIPTOR_STATUS |
3338 DESCRIPTOR_INPUT_MORE);
3339 if (packet->skip && i == 0)
3340 d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3341 d->req_count = cpu_to_le16(header_size);
3342 d->res_count = d->req_count;
3343 d->transfer_status = 0;
3344 d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
3345
3346 rest = payload_per_buffer;
3347 pd = d;
3348 for (j = 1; j < z; j++) {
3349 pd++;
3350 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3351 DESCRIPTOR_INPUT_MORE);
3352
3353 if (offset + rest < PAGE_SIZE)
3354 length = rest;
3355 else
3356 length = PAGE_SIZE - offset;
3357 pd->req_count = cpu_to_le16(length);
3358 pd->res_count = pd->req_count;
3359 pd->transfer_status = 0;
3360
3361 page_bus = page_private(buffer->pages[page]);
3362 pd->data_address = cpu_to_le32(page_bus + offset);
3363
3364 dma_sync_single_range_for_device(device, page_bus,
3365 offset, length,
3366 DMA_FROM_DEVICE);
3367
3368 offset = (offset + length) & ~PAGE_MASK;
3369 rest -= length;
3370 if (offset == 0)
3371 page++;
3372 }
3373 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3374 DESCRIPTOR_INPUT_LAST |
3375 DESCRIPTOR_BRANCH_ALWAYS);
3376 if (packet->interrupt && i == packet_count - 1)
3377 pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3378
3379 context_append(&ctx->context, d, z, header_z);
3380 }
3381
3382 return 0;
3383 }
3384
3385 static int queue_iso_buffer_fill(struct iso_context *ctx,
3386 struct fw_iso_packet *packet,
3387 struct fw_iso_buffer *buffer,
3388 unsigned long payload)
3389 {
3390 struct descriptor *d;
3391 dma_addr_t d_bus, page_bus;
3392 int page, offset, rest, z, i, length;
3393
3394 page = payload >> PAGE_SHIFT;
3395 offset = payload & ~PAGE_MASK;
3396 rest = packet->payload_length;
3397
3398 /* We need one descriptor for each page in the buffer. */
3399 z = DIV_ROUND_UP(offset + rest, PAGE_SIZE);
3400
3401 if (WARN_ON(offset & 3 || rest & 3 || page + z > buffer->page_count))
3402 return -EFAULT;
3403
3404 for (i = 0; i < z; i++) {
3405 d = context_get_descriptors(&ctx->context, 1, &d_bus);
3406 if (d == NULL)
3407 return -ENOMEM;
3408
3409 d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
3410 DESCRIPTOR_BRANCH_ALWAYS);
3411 if (packet->skip && i == 0)
3412 d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3413 if (packet->interrupt && i == z - 1)
3414 d->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3415
3416 if (offset + rest < PAGE_SIZE)
3417 length = rest;
3418 else
3419 length = PAGE_SIZE - offset;
3420 d->req_count = cpu_to_le16(length);
3421 d->res_count = d->req_count;
3422 d->transfer_status = 0;
3423
3424 page_bus = page_private(buffer->pages[page]);
3425 d->data_address = cpu_to_le32(page_bus + offset);
3426
3427 dma_sync_single_range_for_device(ctx->context.ohci->card.device,
3428 page_bus, offset, length,
3429 DMA_FROM_DEVICE);
3430
3431 rest -= length;
3432 offset = 0;
3433 page++;
3434
3435 context_append(&ctx->context, d, 1, 0);
3436 }
3437
3438 return 0;
3439 }
3440
3441 static int ohci_queue_iso(struct fw_iso_context *base,
3442 struct fw_iso_packet *packet,
3443 struct fw_iso_buffer *buffer,
3444 unsigned long payload)
3445 {
3446 struct iso_context *ctx = container_of(base, struct iso_context, base);
3447 unsigned long flags;
3448 int ret = -ENOSYS;
3449
3450 spin_lock_irqsave(&ctx->context.ohci->lock, flags);
3451 switch (base->type) {
3452 case FW_ISO_CONTEXT_TRANSMIT:
3453 ret = queue_iso_transmit(ctx, packet, buffer, payload);
3454 break;
3455 case FW_ISO_CONTEXT_RECEIVE:
3456 ret = queue_iso_packet_per_buffer(ctx, packet, buffer, payload);
3457 break;
3458 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3459 ret = queue_iso_buffer_fill(ctx, packet, buffer, payload);
3460 break;
3461 }
3462 spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);
3463
3464 return ret;
3465 }
3466
3467 static void ohci_flush_queue_iso(struct fw_iso_context *base)
3468 {
3469 struct context *ctx =
3470 &container_of(base, struct iso_context, base)->context;
3471
3472 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
3473 }
3474
3475 static int ohci_flush_iso_completions(struct fw_iso_context *base)
3476 {
3477 struct iso_context *ctx = container_of(base, struct iso_context, base);
3478 int ret = 0;
3479
3480 tasklet_disable(&ctx->context.tasklet);
3481
3482 if (!test_and_set_bit_lock(0, &ctx->flushing_completions)) {
3483 context_tasklet((unsigned long)&ctx->context);
3484
3485 switch (base->type) {
3486 case FW_ISO_CONTEXT_TRANSMIT:
3487 case FW_ISO_CONTEXT_RECEIVE:
3488 if (ctx->header_length != 0)
3489 flush_iso_completions(ctx);
3490 break;
3491 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3492 if (ctx->mc_completed != 0)
3493 flush_ir_buffer_fill(ctx);
3494 break;
3495 default:
3496 ret = -ENOSYS;
3497 }
3498
3499 clear_bit_unlock(0, &ctx->flushing_completions);
3500 smp_mb__after_atomic();
3501 }
3502
3503 tasklet_enable(&ctx->context.tasklet);
3504
3505 return ret;
3506 }
3507
3508 static const struct fw_card_driver ohci_driver = {
3509 .enable = ohci_enable,
3510 .read_phy_reg = ohci_read_phy_reg,
3511 .update_phy_reg = ohci_update_phy_reg,
3512 .set_config_rom = ohci_set_config_rom,
3513 .send_request = ohci_send_request,
3514 .send_response = ohci_send_response,
3515 .cancel_packet = ohci_cancel_packet,
3516 .enable_phys_dma = ohci_enable_phys_dma,
3517 .read_csr = ohci_read_csr,
3518 .write_csr = ohci_write_csr,
3519
3520 .allocate_iso_context = ohci_allocate_iso_context,
3521 .free_iso_context = ohci_free_iso_context,
3522 .set_iso_channels = ohci_set_iso_channels,
3523 .queue_iso = ohci_queue_iso,
3524 .flush_queue_iso = ohci_flush_queue_iso,
3525 .flush_iso_completions = ohci_flush_iso_completions,
3526 .start_iso = ohci_start_iso,
3527 .stop_iso = ohci_stop_iso,
3528 };
3529
3530 #ifdef CONFIG_PPC_PMAC
3531 static void pmac_ohci_on(struct pci_dev *dev)
3532 {
3533 if (machine_is(powermac)) {
3534 struct device_node *ofn = pci_device_to_OF_node(dev);
3535
3536 if (ofn) {
3537 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
3538 pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
3539 }
3540 }
3541 }
3542
3543 static void pmac_ohci_off(struct pci_dev *dev)
3544 {
3545 if (machine_is(powermac)) {
3546 struct device_node *ofn = pci_device_to_OF_node(dev);
3547
3548 if (ofn) {
3549 pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
3550 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
3551 }
3552 }
3553 }
3554 #else
3555 static inline void pmac_ohci_on(struct pci_dev *dev) {}
3556 static inline void pmac_ohci_off(struct pci_dev *dev) {}
3557 #endif /* CONFIG_PPC_PMAC */
3558
3559 static int pci_probe(struct pci_dev *dev,
3560 const struct pci_device_id *ent)
3561 {
3562 struct fw_ohci *ohci;
3563 u32 bus_options, max_receive, link_speed, version;
3564 u64 guid;
3565 int i, err;
3566 size_t size;
3567
3568 if (dev->vendor == PCI_VENDOR_ID_PINNACLE_SYSTEMS) {
3569 dev_err(&dev->dev, "Pinnacle MovieBoard is not yet supported\n");
3570 return -ENOSYS;
3571 }
3572
3573 ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
3574 if (ohci == NULL) {
3575 err = -ENOMEM;
3576 goto fail;
3577 }
3578
3579 fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
3580
3581 pmac_ohci_on(dev);
3582
3583 err = pci_enable_device(dev);
3584 if (err) {
3585 dev_err(&dev->dev, "failed to enable OHCI hardware\n");
3586 goto fail_free;
3587 }
3588
3589 pci_set_master(dev);
3590 pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
3591 pci_set_drvdata(dev, ohci);
3592
3593 spin_lock_init(&ohci->lock);
3594 mutex_init(&ohci->phy_reg_mutex);
3595
3596 INIT_WORK(&ohci->bus_reset_work, bus_reset_work);
3597
3598 if (!(pci_resource_flags(dev, 0) & IORESOURCE_MEM) ||
3599 pci_resource_len(dev, 0) < OHCI1394_REGISTER_SIZE) {
3600 ohci_err(ohci, "invalid MMIO resource\n");
3601 err = -ENXIO;
3602 goto fail_disable;
3603 }
3604
3605 err = pci_request_region(dev, 0, ohci_driver_name);
3606 if (err) {
3607 ohci_err(ohci, "MMIO resource unavailable\n");
3608 goto fail_disable;
3609 }
3610
3611 ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
3612 if (ohci->registers == NULL) {
3613 ohci_err(ohci, "failed to remap registers\n");
3614 err = -ENXIO;
3615 goto fail_iomem;
3616 }
3617
3618 for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
3619 if ((ohci_quirks[i].vendor == dev->vendor) &&
3620 (ohci_quirks[i].device == (unsigned short)PCI_ANY_ID ||
3621 ohci_quirks[i].device == dev->device) &&
3622 (ohci_quirks[i].revision == (unsigned short)PCI_ANY_ID ||
3623 ohci_quirks[i].revision >= dev->revision)) {
3624 ohci->quirks = ohci_quirks[i].flags;
3625 break;
3626 }
3627 if (param_quirks)
3628 ohci->quirks = param_quirks;
3629
3630 /*
3631 * Because dma_alloc_coherent() allocates at least one page,
3632 * we save space by using a common buffer for the AR request/
3633 * response descriptors and the self IDs buffer.
3634 */
3635 BUILD_BUG_ON(AR_BUFFERS * sizeof(struct descriptor) > PAGE_SIZE/4);
3636 BUILD_BUG_ON(SELF_ID_BUF_SIZE > PAGE_SIZE/2);
3637 ohci->misc_buffer = dma_alloc_coherent(ohci->card.device,
3638 PAGE_SIZE,
3639 &ohci->misc_buffer_bus,
3640 GFP_KERNEL);
3641 if (!ohci->misc_buffer) {
3642 err = -ENOMEM;
3643 goto fail_iounmap;
3644 }
3645
3646 err = ar_context_init(&ohci->ar_request_ctx, ohci, 0,
3647 OHCI1394_AsReqRcvContextControlSet);
3648 if (err < 0)
3649 goto fail_misc_buf;
3650
3651 err = ar_context_init(&ohci->ar_response_ctx, ohci, PAGE_SIZE/4,
3652 OHCI1394_AsRspRcvContextControlSet);
3653 if (err < 0)
3654 goto fail_arreq_ctx;
3655
3656 err = context_init(&ohci->at_request_ctx, ohci,
3657 OHCI1394_AsReqTrContextControlSet, handle_at_packet);
3658 if (err < 0)
3659 goto fail_arrsp_ctx;
3660
3661 err = context_init(&ohci->at_response_ctx, ohci,
3662 OHCI1394_AsRspTrContextControlSet, handle_at_packet);
3663 if (err < 0)
3664 goto fail_atreq_ctx;
3665
3666 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
3667 ohci->ir_context_channels = ~0ULL;
3668 ohci->ir_context_support = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
3669 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
3670 ohci->ir_context_mask = ohci->ir_context_support;
3671 ohci->n_ir = hweight32(ohci->ir_context_mask);
3672 size = sizeof(struct iso_context) * ohci->n_ir;
3673 ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
3674
3675 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
3676 ohci->it_context_support = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
3677 /* JMicron JMB38x often shows 0 at first read, just ignore it */
3678 if (!ohci->it_context_support) {
3679 ohci_notice(ohci, "overriding IsoXmitIntMask\n");
3680 ohci->it_context_support = 0xf;
3681 }
3682 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
3683 ohci->it_context_mask = ohci->it_context_support;
3684 ohci->n_it = hweight32(ohci->it_context_mask);
3685 size = sizeof(struct iso_context) * ohci->n_it;
3686 ohci->it_context_list = kzalloc(size, GFP_KERNEL);
3687
3688 if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
3689 err = -ENOMEM;
3690 goto fail_contexts;
3691 }
3692
3693 ohci->self_id = ohci->misc_buffer + PAGE_SIZE/2;
3694 ohci->self_id_bus = ohci->misc_buffer_bus + PAGE_SIZE/2;
3695
3696 bus_options = reg_read(ohci, OHCI1394_BusOptions);
3697 max_receive = (bus_options >> 12) & 0xf;
3698 link_speed = bus_options & 0x7;
3699 guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
3700 reg_read(ohci, OHCI1394_GUIDLo);
3701
3702 if (!(ohci->quirks & QUIRK_NO_MSI))
3703 pci_enable_msi(dev);
3704 if (request_irq(dev->irq, irq_handler,
3705 pci_dev_msi_enabled(dev) ? 0 : IRQF_SHARED,
3706 ohci_driver_name, ohci)) {
3707 ohci_err(ohci, "failed to allocate interrupt %d\n", dev->irq);
3708 err = -EIO;
3709 goto fail_msi;
3710 }
3711
3712 err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
3713 if (err)
3714 goto fail_irq;
3715
3716 version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
3717 ohci_notice(ohci,
3718 "added OHCI v%x.%x device as card %d, "
3719 "%d IR + %d IT contexts, quirks 0x%x%s\n",
3720 version >> 16, version & 0xff, ohci->card.index,
3721 ohci->n_ir, ohci->n_it, ohci->quirks,
3722 reg_read(ohci, OHCI1394_PhyUpperBound) ?
3723 ", physUB" : "");
3724
3725 return 0;
3726
3727 fail_irq:
3728 free_irq(dev->irq, ohci);
3729 fail_msi:
3730 pci_disable_msi(dev);
3731 fail_contexts:
3732 kfree(ohci->ir_context_list);
3733 kfree(ohci->it_context_list);
3734 context_release(&ohci->at_response_ctx);
3735 fail_atreq_ctx:
3736 context_release(&ohci->at_request_ctx);
3737 fail_arrsp_ctx:
3738 ar_context_release(&ohci->ar_response_ctx);
3739 fail_arreq_ctx:
3740 ar_context_release(&ohci->ar_request_ctx);
3741 fail_misc_buf:
3742 dma_free_coherent(ohci->card.device, PAGE_SIZE,
3743 ohci->misc_buffer, ohci->misc_buffer_bus);
3744 fail_iounmap:
3745 pci_iounmap(dev, ohci->registers);
3746 fail_iomem:
3747 pci_release_region(dev, 0);
3748 fail_disable:
3749 pci_disable_device(dev);
3750 fail_free:
3751 kfree(ohci);
3752 pmac_ohci_off(dev);
3753 fail:
3754 return err;
3755 }
3756
3757 static void pci_remove(struct pci_dev *dev)
3758 {
3759 struct fw_ohci *ohci = pci_get_drvdata(dev);
3760
3761 /*
3762 * If the removal is happening from the suspend state, LPS won't be
3763 * enabled and host registers (eg., IntMaskClear) won't be accessible.
3764 */
3765 if (reg_read(ohci, OHCI1394_HCControlSet) & OHCI1394_HCControl_LPS) {
3766 reg_write(ohci, OHCI1394_IntMaskClear, ~0);
3767 flush_writes(ohci);
3768 }
3769 cancel_work_sync(&ohci->bus_reset_work);
3770 fw_core_remove_card(&ohci->card);
3771
3772 /*
3773 * FIXME: Fail all pending packets here, now that the upper
3774 * layers can't queue any more.
3775 */
3776
3777 software_reset(ohci);
3778 free_irq(dev->irq, ohci);
3779
3780 if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom)
3781 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
3782 ohci->next_config_rom, ohci->next_config_rom_bus);
3783 if (ohci->config_rom)
3784 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
3785 ohci->config_rom, ohci->config_rom_bus);
3786 ar_context_release(&ohci->ar_request_ctx);
3787 ar_context_release(&ohci->ar_response_ctx);
3788 dma_free_coherent(ohci->card.device, PAGE_SIZE,
3789 ohci->misc_buffer, ohci->misc_buffer_bus);
3790 context_release(&ohci->at_request_ctx);
3791 context_release(&ohci->at_response_ctx);
3792 kfree(ohci->it_context_list);
3793 kfree(ohci->ir_context_list);
3794 pci_disable_msi(dev);
3795 pci_iounmap(dev, ohci->registers);
3796 pci_release_region(dev, 0);
3797 pci_disable_device(dev);
3798 kfree(ohci);
3799 pmac_ohci_off(dev);
3800
3801 dev_notice(&dev->dev, "removed fw-ohci device\n");
3802 }
3803
3804 #ifdef CONFIG_PM
3805 static int pci_suspend(struct pci_dev *dev, pm_message_t state)
3806 {
3807 struct fw_ohci *ohci = pci_get_drvdata(dev);
3808 int err;
3809
3810 software_reset(ohci);
3811 err = pci_save_state(dev);
3812 if (err) {
3813 ohci_err(ohci, "pci_save_state failed\n");
3814 return err;
3815 }
3816 err = pci_set_power_state(dev, pci_choose_state(dev, state));
3817 if (err)
3818 ohci_err(ohci, "pci_set_power_state failed with %d\n", err);
3819 pmac_ohci_off(dev);
3820
3821 return 0;
3822 }
3823
3824 static int pci_resume(struct pci_dev *dev)
3825 {
3826 struct fw_ohci *ohci = pci_get_drvdata(dev);
3827 int err;
3828
3829 pmac_ohci_on(dev);
3830 pci_set_power_state(dev, PCI_D0);
3831 pci_restore_state(dev);
3832 err = pci_enable_device(dev);
3833 if (err) {
3834 ohci_err(ohci, "pci_enable_device failed\n");
3835 return err;
3836 }
3837
3838 /* Some systems don't setup GUID register on resume from ram */
3839 if (!reg_read(ohci, OHCI1394_GUIDLo) &&
3840 !reg_read(ohci, OHCI1394_GUIDHi)) {
3841 reg_write(ohci, OHCI1394_GUIDLo, (u32)ohci->card.guid);
3842 reg_write(ohci, OHCI1394_GUIDHi, (u32)(ohci->card.guid >> 32));
3843 }
3844
3845 err = ohci_enable(&ohci->card, NULL, 0);
3846 if (err)
3847 return err;
3848
3849 ohci_resume_iso_dma(ohci);
3850
3851 return 0;
3852 }
3853 #endif
3854
3855 static const struct pci_device_id pci_table[] = {
3856 { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
3857 { }
3858 };
3859
3860 MODULE_DEVICE_TABLE(pci, pci_table);
3861
3862 static struct pci_driver fw_ohci_pci_driver = {
3863 .name = ohci_driver_name,
3864 .id_table = pci_table,
3865 .probe = pci_probe,
3866 .remove = pci_remove,
3867 #ifdef CONFIG_PM
3868 .resume = pci_resume,
3869 .suspend = pci_suspend,
3870 #endif
3871 };
3872
3873 static int __init fw_ohci_init(void)
3874 {
3875 selfid_workqueue = alloc_workqueue(KBUILD_MODNAME, WQ_MEM_RECLAIM, 0);
3876 if (!selfid_workqueue)
3877 return -ENOMEM;
3878
3879 return pci_register_driver(&fw_ohci_pci_driver);
3880 }
3881
3882 static void __exit fw_ohci_cleanup(void)
3883 {
3884 pci_unregister_driver(&fw_ohci_pci_driver);
3885 destroy_workqueue(selfid_workqueue);
3886 }
3887
3888 module_init(fw_ohci_init);
3889 module_exit(fw_ohci_cleanup);
3890
3891 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
3892 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
3893 MODULE_LICENSE("GPL");
3894
3895 /* Provide a module alias so root-on-sbp2 initrds don't break. */
3896 MODULE_ALIAS("ohci1394");