]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/firewire/ohci.c
e934713f3fce95cfd0d14933e2d298d4d20735e3
[mirror_ubuntu-bionic-kernel.git] / drivers / firewire / ohci.c
1 /*
2 * Driver for OHCI 1394 controllers
3 *
4 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21 #include <linux/compiler.h>
22 #include <linux/delay.h>
23 #include <linux/device.h>
24 #include <linux/dma-mapping.h>
25 #include <linux/firewire.h>
26 #include <linux/firewire-constants.h>
27 #include <linux/gfp.h>
28 #include <linux/init.h>
29 #include <linux/interrupt.h>
30 #include <linux/io.h>
31 #include <linux/kernel.h>
32 #include <linux/list.h>
33 #include <linux/mm.h>
34 #include <linux/module.h>
35 #include <linux/moduleparam.h>
36 #include <linux/pci.h>
37 #include <linux/pci_ids.h>
38 #include <linux/spinlock.h>
39 #include <linux/string.h>
40
41 #include <asm/byteorder.h>
42 #include <asm/page.h>
43 #include <asm/system.h>
44
45 #ifdef CONFIG_PPC_PMAC
46 #include <asm/pmac_feature.h>
47 #endif
48
49 #include "core.h"
50 #include "ohci.h"
51
52 #define DESCRIPTOR_OUTPUT_MORE 0
53 #define DESCRIPTOR_OUTPUT_LAST (1 << 12)
54 #define DESCRIPTOR_INPUT_MORE (2 << 12)
55 #define DESCRIPTOR_INPUT_LAST (3 << 12)
56 #define DESCRIPTOR_STATUS (1 << 11)
57 #define DESCRIPTOR_KEY_IMMEDIATE (2 << 8)
58 #define DESCRIPTOR_PING (1 << 7)
59 #define DESCRIPTOR_YY (1 << 6)
60 #define DESCRIPTOR_NO_IRQ (0 << 4)
61 #define DESCRIPTOR_IRQ_ERROR (1 << 4)
62 #define DESCRIPTOR_IRQ_ALWAYS (3 << 4)
63 #define DESCRIPTOR_BRANCH_ALWAYS (3 << 2)
64 #define DESCRIPTOR_WAIT (3 << 0)
65
66 struct descriptor {
67 __le16 req_count;
68 __le16 control;
69 __le32 data_address;
70 __le32 branch_address;
71 __le16 res_count;
72 __le16 transfer_status;
73 } __attribute__((aligned(16)));
74
75 #define CONTROL_SET(regs) (regs)
76 #define CONTROL_CLEAR(regs) ((regs) + 4)
77 #define COMMAND_PTR(regs) ((regs) + 12)
78 #define CONTEXT_MATCH(regs) ((regs) + 16)
79
80 struct ar_buffer {
81 struct descriptor descriptor;
82 struct ar_buffer *next;
83 __le32 data[0];
84 };
85
86 struct ar_context {
87 struct fw_ohci *ohci;
88 struct ar_buffer *current_buffer;
89 struct ar_buffer *last_buffer;
90 void *pointer;
91 u32 regs;
92 struct tasklet_struct tasklet;
93 };
94
95 struct context;
96
97 typedef int (*descriptor_callback_t)(struct context *ctx,
98 struct descriptor *d,
99 struct descriptor *last);
100
101 /*
102 * A buffer that contains a block of DMA-able coherent memory used for
103 * storing a portion of a DMA descriptor program.
104 */
105 struct descriptor_buffer {
106 struct list_head list;
107 dma_addr_t buffer_bus;
108 size_t buffer_size;
109 size_t used;
110 struct descriptor buffer[0];
111 };
112
113 struct context {
114 struct fw_ohci *ohci;
115 u32 regs;
116 int total_allocation;
117
118 /*
119 * List of page-sized buffers for storing DMA descriptors.
120 * Head of list contains buffers in use and tail of list contains
121 * free buffers.
122 */
123 struct list_head buffer_list;
124
125 /*
126 * Pointer to a buffer inside buffer_list that contains the tail
127 * end of the current DMA program.
128 */
129 struct descriptor_buffer *buffer_tail;
130
131 /*
132 * The descriptor containing the branch address of the first
133 * descriptor that has not yet been filled by the device.
134 */
135 struct descriptor *last;
136
137 /*
138 * The last descriptor in the DMA program. It contains the branch
139 * address that must be updated upon appending a new descriptor.
140 */
141 struct descriptor *prev;
142
143 descriptor_callback_t callback;
144
145 struct tasklet_struct tasklet;
146 };
147
148 #define IT_HEADER_SY(v) ((v) << 0)
149 #define IT_HEADER_TCODE(v) ((v) << 4)
150 #define IT_HEADER_CHANNEL(v) ((v) << 8)
151 #define IT_HEADER_TAG(v) ((v) << 14)
152 #define IT_HEADER_SPEED(v) ((v) << 16)
153 #define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
154
155 struct iso_context {
156 struct fw_iso_context base;
157 struct context context;
158 int excess_bytes;
159 void *header;
160 size_t header_length;
161 };
162
163 #define CONFIG_ROM_SIZE 1024
164
165 struct fw_ohci {
166 struct fw_card card;
167
168 __iomem char *registers;
169 int node_id;
170 int generation;
171 int request_generation; /* for timestamping incoming requests */
172 unsigned quirks;
173
174 /*
175 * Spinlock for accessing fw_ohci data. Never call out of
176 * this driver with this lock held.
177 */
178 spinlock_t lock;
179
180 struct ar_context ar_request_ctx;
181 struct ar_context ar_response_ctx;
182 struct context at_request_ctx;
183 struct context at_response_ctx;
184
185 u32 it_context_mask;
186 struct iso_context *it_context_list;
187 u64 ir_context_channels;
188 u32 ir_context_mask;
189 struct iso_context *ir_context_list;
190
191 __be32 *config_rom;
192 dma_addr_t config_rom_bus;
193 __be32 *next_config_rom;
194 dma_addr_t next_config_rom_bus;
195 __be32 next_header;
196
197 __le32 *self_id_cpu;
198 dma_addr_t self_id_bus;
199 struct tasklet_struct bus_reset_tasklet;
200
201 u32 self_id_buffer[512];
202 };
203
204 static inline struct fw_ohci *fw_ohci(struct fw_card *card)
205 {
206 return container_of(card, struct fw_ohci, card);
207 }
208
209 #define IT_CONTEXT_CYCLE_MATCH_ENABLE 0x80000000
210 #define IR_CONTEXT_BUFFER_FILL 0x80000000
211 #define IR_CONTEXT_ISOCH_HEADER 0x40000000
212 #define IR_CONTEXT_CYCLE_MATCH_ENABLE 0x20000000
213 #define IR_CONTEXT_MULTI_CHANNEL_MODE 0x10000000
214 #define IR_CONTEXT_DUAL_BUFFER_MODE 0x08000000
215
216 #define CONTEXT_RUN 0x8000
217 #define CONTEXT_WAKE 0x1000
218 #define CONTEXT_DEAD 0x0800
219 #define CONTEXT_ACTIVE 0x0400
220
221 #define OHCI1394_MAX_AT_REQ_RETRIES 0xf
222 #define OHCI1394_MAX_AT_RESP_RETRIES 0x2
223 #define OHCI1394_MAX_PHYS_RESP_RETRIES 0x8
224
225 #define OHCI1394_REGISTER_SIZE 0x800
226 #define OHCI_LOOP_COUNT 500
227 #define OHCI1394_PCI_HCI_Control 0x40
228 #define SELF_ID_BUF_SIZE 0x800
229 #define OHCI_TCODE_PHY_PACKET 0x0e
230 #define OHCI_VERSION_1_1 0x010010
231
232 static char ohci_driver_name[] = KBUILD_MODNAME;
233
234 #define PCI_DEVICE_ID_TI_TSB12LV22 0x8009
235
236 #define QUIRK_CYCLE_TIMER 1
237 #define QUIRK_RESET_PACKET 2
238 #define QUIRK_BE_HEADERS 4
239 #define QUIRK_NO_1394A 8
240
241 /* In case of multiple matches in ohci_quirks[], only the first one is used. */
242 static const struct {
243 unsigned short vendor, device, flags;
244 } ohci_quirks[] = {
245 {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV22, QUIRK_CYCLE_TIMER |
246 QUIRK_RESET_PACKET |
247 QUIRK_NO_1394A},
248 {PCI_VENDOR_ID_TI, PCI_ANY_ID, QUIRK_RESET_PACKET},
249 {PCI_VENDOR_ID_AL, PCI_ANY_ID, QUIRK_CYCLE_TIMER},
250 {PCI_VENDOR_ID_NEC, PCI_ANY_ID, QUIRK_CYCLE_TIMER},
251 {PCI_VENDOR_ID_VIA, PCI_ANY_ID, QUIRK_CYCLE_TIMER},
252 {PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_FW, QUIRK_BE_HEADERS},
253 };
254
255 /* This overrides anything that was found in ohci_quirks[]. */
256 static int param_quirks;
257 module_param_named(quirks, param_quirks, int, 0644);
258 MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
259 ", nonatomic cycle timer = " __stringify(QUIRK_CYCLE_TIMER)
260 ", reset packet generation = " __stringify(QUIRK_RESET_PACKET)
261 ", AR/selfID endianess = " __stringify(QUIRK_BE_HEADERS)
262 ", no 1394a enhancements = " __stringify(QUIRK_NO_1394A)
263 ")");
264
265 #ifdef CONFIG_FIREWIRE_OHCI_DEBUG
266
267 #define OHCI_PARAM_DEBUG_AT_AR 1
268 #define OHCI_PARAM_DEBUG_SELFIDS 2
269 #define OHCI_PARAM_DEBUG_IRQS 4
270 #define OHCI_PARAM_DEBUG_BUSRESETS 8 /* only effective before chip init */
271
272 static int param_debug;
273 module_param_named(debug, param_debug, int, 0644);
274 MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
275 ", AT/AR events = " __stringify(OHCI_PARAM_DEBUG_AT_AR)
276 ", self-IDs = " __stringify(OHCI_PARAM_DEBUG_SELFIDS)
277 ", IRQs = " __stringify(OHCI_PARAM_DEBUG_IRQS)
278 ", busReset events = " __stringify(OHCI_PARAM_DEBUG_BUSRESETS)
279 ", or a combination, or all = -1)");
280
281 static void log_irqs(u32 evt)
282 {
283 if (likely(!(param_debug &
284 (OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
285 return;
286
287 if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
288 !(evt & OHCI1394_busReset))
289 return;
290
291 fw_notify("IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
292 evt & OHCI1394_selfIDComplete ? " selfID" : "",
293 evt & OHCI1394_RQPkt ? " AR_req" : "",
294 evt & OHCI1394_RSPkt ? " AR_resp" : "",
295 evt & OHCI1394_reqTxComplete ? " AT_req" : "",
296 evt & OHCI1394_respTxComplete ? " AT_resp" : "",
297 evt & OHCI1394_isochRx ? " IR" : "",
298 evt & OHCI1394_isochTx ? " IT" : "",
299 evt & OHCI1394_postedWriteErr ? " postedWriteErr" : "",
300 evt & OHCI1394_cycleTooLong ? " cycleTooLong" : "",
301 evt & OHCI1394_cycleInconsistent ? " cycleInconsistent" : "",
302 evt & OHCI1394_regAccessFail ? " regAccessFail" : "",
303 evt & OHCI1394_busReset ? " busReset" : "",
304 evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
305 OHCI1394_RSPkt | OHCI1394_reqTxComplete |
306 OHCI1394_respTxComplete | OHCI1394_isochRx |
307 OHCI1394_isochTx | OHCI1394_postedWriteErr |
308 OHCI1394_cycleTooLong | OHCI1394_cycleInconsistent |
309 OHCI1394_regAccessFail | OHCI1394_busReset)
310 ? " ?" : "");
311 }
312
313 static const char *speed[] = {
314 [0] = "S100", [1] = "S200", [2] = "S400", [3] = "beta",
315 };
316 static const char *power[] = {
317 [0] = "+0W", [1] = "+15W", [2] = "+30W", [3] = "+45W",
318 [4] = "-3W", [5] = " ?W", [6] = "-3..-6W", [7] = "-3..-10W",
319 };
320 static const char port[] = { '.', '-', 'p', 'c', };
321
322 static char _p(u32 *s, int shift)
323 {
324 return port[*s >> shift & 3];
325 }
326
327 static void log_selfids(int node_id, int generation, int self_id_count, u32 *s)
328 {
329 if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
330 return;
331
332 fw_notify("%d selfIDs, generation %d, local node ID %04x\n",
333 self_id_count, generation, node_id);
334
335 for (; self_id_count--; ++s)
336 if ((*s & 1 << 23) == 0)
337 fw_notify("selfID 0: %08x, phy %d [%c%c%c] "
338 "%s gc=%d %s %s%s%s\n",
339 *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
340 speed[*s >> 14 & 3], *s >> 16 & 63,
341 power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
342 *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
343 else
344 fw_notify("selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
345 *s, *s >> 24 & 63,
346 _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
347 _p(s, 8), _p(s, 6), _p(s, 4), _p(s, 2));
348 }
349
350 static const char *evts[] = {
351 [0x00] = "evt_no_status", [0x01] = "-reserved-",
352 [0x02] = "evt_long_packet", [0x03] = "evt_missing_ack",
353 [0x04] = "evt_underrun", [0x05] = "evt_overrun",
354 [0x06] = "evt_descriptor_read", [0x07] = "evt_data_read",
355 [0x08] = "evt_data_write", [0x09] = "evt_bus_reset",
356 [0x0a] = "evt_timeout", [0x0b] = "evt_tcode_err",
357 [0x0c] = "-reserved-", [0x0d] = "-reserved-",
358 [0x0e] = "evt_unknown", [0x0f] = "evt_flushed",
359 [0x10] = "-reserved-", [0x11] = "ack_complete",
360 [0x12] = "ack_pending ", [0x13] = "-reserved-",
361 [0x14] = "ack_busy_X", [0x15] = "ack_busy_A",
362 [0x16] = "ack_busy_B", [0x17] = "-reserved-",
363 [0x18] = "-reserved-", [0x19] = "-reserved-",
364 [0x1a] = "-reserved-", [0x1b] = "ack_tardy",
365 [0x1c] = "-reserved-", [0x1d] = "ack_data_error",
366 [0x1e] = "ack_type_error", [0x1f] = "-reserved-",
367 [0x20] = "pending/cancelled",
368 };
369 static const char *tcodes[] = {
370 [0x0] = "QW req", [0x1] = "BW req",
371 [0x2] = "W resp", [0x3] = "-reserved-",
372 [0x4] = "QR req", [0x5] = "BR req",
373 [0x6] = "QR resp", [0x7] = "BR resp",
374 [0x8] = "cycle start", [0x9] = "Lk req",
375 [0xa] = "async stream packet", [0xb] = "Lk resp",
376 [0xc] = "-reserved-", [0xd] = "-reserved-",
377 [0xe] = "link internal", [0xf] = "-reserved-",
378 };
379 static const char *phys[] = {
380 [0x0] = "phy config packet", [0x1] = "link-on packet",
381 [0x2] = "self-id packet", [0x3] = "-reserved-",
382 };
383
384 static void log_ar_at_event(char dir, int speed, u32 *header, int evt)
385 {
386 int tcode = header[0] >> 4 & 0xf;
387 char specific[12];
388
389 if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
390 return;
391
392 if (unlikely(evt >= ARRAY_SIZE(evts)))
393 evt = 0x1f;
394
395 if (evt == OHCI1394_evt_bus_reset) {
396 fw_notify("A%c evt_bus_reset, generation %d\n",
397 dir, (header[2] >> 16) & 0xff);
398 return;
399 }
400
401 if (header[0] == ~header[1]) {
402 fw_notify("A%c %s, %s, %08x\n",
403 dir, evts[evt], phys[header[0] >> 30 & 0x3], header[0]);
404 return;
405 }
406
407 switch (tcode) {
408 case 0x0: case 0x6: case 0x8:
409 snprintf(specific, sizeof(specific), " = %08x",
410 be32_to_cpu((__force __be32)header[3]));
411 break;
412 case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
413 snprintf(specific, sizeof(specific), " %x,%x",
414 header[3] >> 16, header[3] & 0xffff);
415 break;
416 default:
417 specific[0] = '\0';
418 }
419
420 switch (tcode) {
421 case 0xe: case 0xa:
422 fw_notify("A%c %s, %s\n", dir, evts[evt], tcodes[tcode]);
423 break;
424 case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
425 fw_notify("A%c spd %x tl %02x, "
426 "%04x -> %04x, %s, "
427 "%s, %04x%08x%s\n",
428 dir, speed, header[0] >> 10 & 0x3f,
429 header[1] >> 16, header[0] >> 16, evts[evt],
430 tcodes[tcode], header[1] & 0xffff, header[2], specific);
431 break;
432 default:
433 fw_notify("A%c spd %x tl %02x, "
434 "%04x -> %04x, %s, "
435 "%s%s\n",
436 dir, speed, header[0] >> 10 & 0x3f,
437 header[1] >> 16, header[0] >> 16, evts[evt],
438 tcodes[tcode], specific);
439 }
440 }
441
442 #else
443
444 #define log_irqs(evt)
445 #define log_selfids(node_id, generation, self_id_count, sid)
446 #define log_ar_at_event(dir, speed, header, evt)
447
448 #endif /* CONFIG_FIREWIRE_OHCI_DEBUG */
449
450 static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
451 {
452 writel(data, ohci->registers + offset);
453 }
454
455 static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
456 {
457 return readl(ohci->registers + offset);
458 }
459
460 static inline void flush_writes(const struct fw_ohci *ohci)
461 {
462 /* Do a dummy read to flush writes. */
463 reg_read(ohci, OHCI1394_Version);
464 }
465
466 static int read_phy_reg(struct fw_card *card, int addr, u32 *value)
467 {
468 struct fw_ohci *ohci = fw_ohci(card);
469 u32 val;
470
471 reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
472 flush_writes(ohci);
473 msleep(2);
474 val = reg_read(ohci, OHCI1394_PhyControl);
475 if ((val & OHCI1394_PhyControl_ReadDone) == 0) {
476 fw_error("failed to read phy reg bits\n");
477 return -EBUSY;
478 }
479
480 *value = OHCI1394_PhyControl_ReadData(val);
481
482 return 0;
483 }
484
485 static int ohci_update_phy_reg(struct fw_card *card, int addr,
486 int clear_bits, int set_bits)
487 {
488 struct fw_ohci *ohci = fw_ohci(card);
489 u32 old;
490 int err;
491
492 err = read_phy_reg(card, addr, &old);
493 if (err < 0)
494 return err;
495
496 /*
497 * The interrupt status bits are cleared by writing a one bit.
498 * Avoid clearing them unless explicitly requested in set_bits.
499 */
500 if (addr == 5)
501 clear_bits |= PHY_INT_STATUS_BITS;
502
503 old = (old & ~clear_bits) | set_bits;
504 reg_write(ohci, OHCI1394_PhyControl,
505 OHCI1394_PhyControl_Write(addr, old));
506
507 return 0;
508 }
509
510 static int read_paged_phy_reg(struct fw_card *card,
511 int page, int addr, u32 *value)
512 {
513 struct fw_ohci *ohci = fw_ohci(card);
514 u32 reg;
515 int err;
516
517 err = ohci_update_phy_reg(card, 7, PHY_PAGE_SELECT, page << 5);
518 if (err < 0)
519 return err;
520 flush_writes(ohci);
521 msleep(2);
522 reg = reg_read(ohci, OHCI1394_PhyControl);
523 if ((reg & OHCI1394_PhyControl_WritePending) != 0) {
524 fw_error("failed to write phy reg bits\n");
525 return -EBUSY;
526 }
527
528 return read_phy_reg(card, addr, value);
529 }
530
531 static int ar_context_add_page(struct ar_context *ctx)
532 {
533 struct device *dev = ctx->ohci->card.device;
534 struct ar_buffer *ab;
535 dma_addr_t uninitialized_var(ab_bus);
536 size_t offset;
537
538 ab = dma_alloc_coherent(dev, PAGE_SIZE, &ab_bus, GFP_ATOMIC);
539 if (ab == NULL)
540 return -ENOMEM;
541
542 ab->next = NULL;
543 memset(&ab->descriptor, 0, sizeof(ab->descriptor));
544 ab->descriptor.control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
545 DESCRIPTOR_STATUS |
546 DESCRIPTOR_BRANCH_ALWAYS);
547 offset = offsetof(struct ar_buffer, data);
548 ab->descriptor.req_count = cpu_to_le16(PAGE_SIZE - offset);
549 ab->descriptor.data_address = cpu_to_le32(ab_bus + offset);
550 ab->descriptor.res_count = cpu_to_le16(PAGE_SIZE - offset);
551 ab->descriptor.branch_address = 0;
552
553 ctx->last_buffer->descriptor.branch_address = cpu_to_le32(ab_bus | 1);
554 ctx->last_buffer->next = ab;
555 ctx->last_buffer = ab;
556
557 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
558 flush_writes(ctx->ohci);
559
560 return 0;
561 }
562
563 static void ar_context_release(struct ar_context *ctx)
564 {
565 struct ar_buffer *ab, *ab_next;
566 size_t offset;
567 dma_addr_t ab_bus;
568
569 for (ab = ctx->current_buffer; ab; ab = ab_next) {
570 ab_next = ab->next;
571 offset = offsetof(struct ar_buffer, data);
572 ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
573 dma_free_coherent(ctx->ohci->card.device, PAGE_SIZE,
574 ab, ab_bus);
575 }
576 }
577
578 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
579 #define cond_le32_to_cpu(v) \
580 (ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
581 #else
582 #define cond_le32_to_cpu(v) le32_to_cpu(v)
583 #endif
584
585 static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
586 {
587 struct fw_ohci *ohci = ctx->ohci;
588 struct fw_packet p;
589 u32 status, length, tcode;
590 int evt;
591
592 p.header[0] = cond_le32_to_cpu(buffer[0]);
593 p.header[1] = cond_le32_to_cpu(buffer[1]);
594 p.header[2] = cond_le32_to_cpu(buffer[2]);
595
596 tcode = (p.header[0] >> 4) & 0x0f;
597 switch (tcode) {
598 case TCODE_WRITE_QUADLET_REQUEST:
599 case TCODE_READ_QUADLET_RESPONSE:
600 p.header[3] = (__force __u32) buffer[3];
601 p.header_length = 16;
602 p.payload_length = 0;
603 break;
604
605 case TCODE_READ_BLOCK_REQUEST :
606 p.header[3] = cond_le32_to_cpu(buffer[3]);
607 p.header_length = 16;
608 p.payload_length = 0;
609 break;
610
611 case TCODE_WRITE_BLOCK_REQUEST:
612 case TCODE_READ_BLOCK_RESPONSE:
613 case TCODE_LOCK_REQUEST:
614 case TCODE_LOCK_RESPONSE:
615 p.header[3] = cond_le32_to_cpu(buffer[3]);
616 p.header_length = 16;
617 p.payload_length = p.header[3] >> 16;
618 break;
619
620 case TCODE_WRITE_RESPONSE:
621 case TCODE_READ_QUADLET_REQUEST:
622 case OHCI_TCODE_PHY_PACKET:
623 p.header_length = 12;
624 p.payload_length = 0;
625 break;
626
627 default:
628 /* FIXME: Stop context, discard everything, and restart? */
629 p.header_length = 0;
630 p.payload_length = 0;
631 }
632
633 p.payload = (void *) buffer + p.header_length;
634
635 /* FIXME: What to do about evt_* errors? */
636 length = (p.header_length + p.payload_length + 3) / 4;
637 status = cond_le32_to_cpu(buffer[length]);
638 evt = (status >> 16) & 0x1f;
639
640 p.ack = evt - 16;
641 p.speed = (status >> 21) & 0x7;
642 p.timestamp = status & 0xffff;
643 p.generation = ohci->request_generation;
644
645 log_ar_at_event('R', p.speed, p.header, evt);
646
647 /*
648 * The OHCI bus reset handler synthesizes a phy packet with
649 * the new generation number when a bus reset happens (see
650 * section 8.4.2.3). This helps us determine when a request
651 * was received and make sure we send the response in the same
652 * generation. We only need this for requests; for responses
653 * we use the unique tlabel for finding the matching
654 * request.
655 *
656 * Alas some chips sometimes emit bus reset packets with a
657 * wrong generation. We set the correct generation for these
658 * at a slightly incorrect time (in bus_reset_tasklet).
659 */
660 if (evt == OHCI1394_evt_bus_reset) {
661 if (!(ohci->quirks & QUIRK_RESET_PACKET))
662 ohci->request_generation = (p.header[2] >> 16) & 0xff;
663 } else if (ctx == &ohci->ar_request_ctx) {
664 fw_core_handle_request(&ohci->card, &p);
665 } else {
666 fw_core_handle_response(&ohci->card, &p);
667 }
668
669 return buffer + length + 1;
670 }
671
672 static void ar_context_tasklet(unsigned long data)
673 {
674 struct ar_context *ctx = (struct ar_context *)data;
675 struct fw_ohci *ohci = ctx->ohci;
676 struct ar_buffer *ab;
677 struct descriptor *d;
678 void *buffer, *end;
679
680 ab = ctx->current_buffer;
681 d = &ab->descriptor;
682
683 if (d->res_count == 0) {
684 size_t size, rest, offset;
685 dma_addr_t start_bus;
686 void *start;
687
688 /*
689 * This descriptor is finished and we may have a
690 * packet split across this and the next buffer. We
691 * reuse the page for reassembling the split packet.
692 */
693
694 offset = offsetof(struct ar_buffer, data);
695 start = buffer = ab;
696 start_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
697
698 ab = ab->next;
699 d = &ab->descriptor;
700 size = buffer + PAGE_SIZE - ctx->pointer;
701 rest = le16_to_cpu(d->req_count) - le16_to_cpu(d->res_count);
702 memmove(buffer, ctx->pointer, size);
703 memcpy(buffer + size, ab->data, rest);
704 ctx->current_buffer = ab;
705 ctx->pointer = (void *) ab->data + rest;
706 end = buffer + size + rest;
707
708 while (buffer < end)
709 buffer = handle_ar_packet(ctx, buffer);
710
711 dma_free_coherent(ohci->card.device, PAGE_SIZE,
712 start, start_bus);
713 ar_context_add_page(ctx);
714 } else {
715 buffer = ctx->pointer;
716 ctx->pointer = end =
717 (void *) ab + PAGE_SIZE - le16_to_cpu(d->res_count);
718
719 while (buffer < end)
720 buffer = handle_ar_packet(ctx, buffer);
721 }
722 }
723
724 static int ar_context_init(struct ar_context *ctx,
725 struct fw_ohci *ohci, u32 regs)
726 {
727 struct ar_buffer ab;
728
729 ctx->regs = regs;
730 ctx->ohci = ohci;
731 ctx->last_buffer = &ab;
732 tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
733
734 ar_context_add_page(ctx);
735 ar_context_add_page(ctx);
736 ctx->current_buffer = ab.next;
737 ctx->pointer = ctx->current_buffer->data;
738
739 return 0;
740 }
741
742 static void ar_context_run(struct ar_context *ctx)
743 {
744 struct ar_buffer *ab = ctx->current_buffer;
745 dma_addr_t ab_bus;
746 size_t offset;
747
748 offset = offsetof(struct ar_buffer, data);
749 ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
750
751 reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ab_bus | 1);
752 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
753 flush_writes(ctx->ohci);
754 }
755
756 static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
757 {
758 int b, key;
759
760 b = (le16_to_cpu(d->control) & DESCRIPTOR_BRANCH_ALWAYS) >> 2;
761 key = (le16_to_cpu(d->control) & DESCRIPTOR_KEY_IMMEDIATE) >> 8;
762
763 /* figure out which descriptor the branch address goes in */
764 if (z == 2 && (b == 3 || key == 2))
765 return d;
766 else
767 return d + z - 1;
768 }
769
770 static void context_tasklet(unsigned long data)
771 {
772 struct context *ctx = (struct context *) data;
773 struct descriptor *d, *last;
774 u32 address;
775 int z;
776 struct descriptor_buffer *desc;
777
778 desc = list_entry(ctx->buffer_list.next,
779 struct descriptor_buffer, list);
780 last = ctx->last;
781 while (last->branch_address != 0) {
782 struct descriptor_buffer *old_desc = desc;
783 address = le32_to_cpu(last->branch_address);
784 z = address & 0xf;
785 address &= ~0xf;
786
787 /* If the branch address points to a buffer outside of the
788 * current buffer, advance to the next buffer. */
789 if (address < desc->buffer_bus ||
790 address >= desc->buffer_bus + desc->used)
791 desc = list_entry(desc->list.next,
792 struct descriptor_buffer, list);
793 d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
794 last = find_branch_descriptor(d, z);
795
796 if (!ctx->callback(ctx, d, last))
797 break;
798
799 if (old_desc != desc) {
800 /* If we've advanced to the next buffer, move the
801 * previous buffer to the free list. */
802 unsigned long flags;
803 old_desc->used = 0;
804 spin_lock_irqsave(&ctx->ohci->lock, flags);
805 list_move_tail(&old_desc->list, &ctx->buffer_list);
806 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
807 }
808 ctx->last = last;
809 }
810 }
811
812 /*
813 * Allocate a new buffer and add it to the list of free buffers for this
814 * context. Must be called with ohci->lock held.
815 */
816 static int context_add_buffer(struct context *ctx)
817 {
818 struct descriptor_buffer *desc;
819 dma_addr_t uninitialized_var(bus_addr);
820 int offset;
821
822 /*
823 * 16MB of descriptors should be far more than enough for any DMA
824 * program. This will catch run-away userspace or DoS attacks.
825 */
826 if (ctx->total_allocation >= 16*1024*1024)
827 return -ENOMEM;
828
829 desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
830 &bus_addr, GFP_ATOMIC);
831 if (!desc)
832 return -ENOMEM;
833
834 offset = (void *)&desc->buffer - (void *)desc;
835 desc->buffer_size = PAGE_SIZE - offset;
836 desc->buffer_bus = bus_addr + offset;
837 desc->used = 0;
838
839 list_add_tail(&desc->list, &ctx->buffer_list);
840 ctx->total_allocation += PAGE_SIZE;
841
842 return 0;
843 }
844
845 static int context_init(struct context *ctx, struct fw_ohci *ohci,
846 u32 regs, descriptor_callback_t callback)
847 {
848 ctx->ohci = ohci;
849 ctx->regs = regs;
850 ctx->total_allocation = 0;
851
852 INIT_LIST_HEAD(&ctx->buffer_list);
853 if (context_add_buffer(ctx) < 0)
854 return -ENOMEM;
855
856 ctx->buffer_tail = list_entry(ctx->buffer_list.next,
857 struct descriptor_buffer, list);
858
859 tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
860 ctx->callback = callback;
861
862 /*
863 * We put a dummy descriptor in the buffer that has a NULL
864 * branch address and looks like it's been sent. That way we
865 * have a descriptor to append DMA programs to.
866 */
867 memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
868 ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
869 ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
870 ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
871 ctx->last = ctx->buffer_tail->buffer;
872 ctx->prev = ctx->buffer_tail->buffer;
873
874 return 0;
875 }
876
877 static void context_release(struct context *ctx)
878 {
879 struct fw_card *card = &ctx->ohci->card;
880 struct descriptor_buffer *desc, *tmp;
881
882 list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
883 dma_free_coherent(card->device, PAGE_SIZE, desc,
884 desc->buffer_bus -
885 ((void *)&desc->buffer - (void *)desc));
886 }
887
888 /* Must be called with ohci->lock held */
889 static struct descriptor *context_get_descriptors(struct context *ctx,
890 int z, dma_addr_t *d_bus)
891 {
892 struct descriptor *d = NULL;
893 struct descriptor_buffer *desc = ctx->buffer_tail;
894
895 if (z * sizeof(*d) > desc->buffer_size)
896 return NULL;
897
898 if (z * sizeof(*d) > desc->buffer_size - desc->used) {
899 /* No room for the descriptor in this buffer, so advance to the
900 * next one. */
901
902 if (desc->list.next == &ctx->buffer_list) {
903 /* If there is no free buffer next in the list,
904 * allocate one. */
905 if (context_add_buffer(ctx) < 0)
906 return NULL;
907 }
908 desc = list_entry(desc->list.next,
909 struct descriptor_buffer, list);
910 ctx->buffer_tail = desc;
911 }
912
913 d = desc->buffer + desc->used / sizeof(*d);
914 memset(d, 0, z * sizeof(*d));
915 *d_bus = desc->buffer_bus + desc->used;
916
917 return d;
918 }
919
920 static void context_run(struct context *ctx, u32 extra)
921 {
922 struct fw_ohci *ohci = ctx->ohci;
923
924 reg_write(ohci, COMMAND_PTR(ctx->regs),
925 le32_to_cpu(ctx->last->branch_address));
926 reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
927 reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
928 flush_writes(ohci);
929 }
930
931 static void context_append(struct context *ctx,
932 struct descriptor *d, int z, int extra)
933 {
934 dma_addr_t d_bus;
935 struct descriptor_buffer *desc = ctx->buffer_tail;
936
937 d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
938
939 desc->used += (z + extra) * sizeof(*d);
940 ctx->prev->branch_address = cpu_to_le32(d_bus | z);
941 ctx->prev = find_branch_descriptor(d, z);
942
943 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
944 flush_writes(ctx->ohci);
945 }
946
947 static void context_stop(struct context *ctx)
948 {
949 u32 reg;
950 int i;
951
952 reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
953 flush_writes(ctx->ohci);
954
955 for (i = 0; i < 10; i++) {
956 reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
957 if ((reg & CONTEXT_ACTIVE) == 0)
958 return;
959
960 mdelay(1);
961 }
962 fw_error("Error: DMA context still active (0x%08x)\n", reg);
963 }
964
965 struct driver_data {
966 struct fw_packet *packet;
967 };
968
969 /*
970 * This function apppends a packet to the DMA queue for transmission.
971 * Must always be called with the ochi->lock held to ensure proper
972 * generation handling and locking around packet queue manipulation.
973 */
974 static int at_context_queue_packet(struct context *ctx,
975 struct fw_packet *packet)
976 {
977 struct fw_ohci *ohci = ctx->ohci;
978 dma_addr_t d_bus, uninitialized_var(payload_bus);
979 struct driver_data *driver_data;
980 struct descriptor *d, *last;
981 __le32 *header;
982 int z, tcode;
983 u32 reg;
984
985 d = context_get_descriptors(ctx, 4, &d_bus);
986 if (d == NULL) {
987 packet->ack = RCODE_SEND_ERROR;
988 return -1;
989 }
990
991 d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
992 d[0].res_count = cpu_to_le16(packet->timestamp);
993
994 /*
995 * The DMA format for asyncronous link packets is different
996 * from the IEEE1394 layout, so shift the fields around
997 * accordingly. If header_length is 8, it's a PHY packet, to
998 * which we need to prepend an extra quadlet.
999 */
1000
1001 header = (__le32 *) &d[1];
1002 switch (packet->header_length) {
1003 case 16:
1004 case 12:
1005 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1006 (packet->speed << 16));
1007 header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
1008 (packet->header[0] & 0xffff0000));
1009 header[2] = cpu_to_le32(packet->header[2]);
1010
1011 tcode = (packet->header[0] >> 4) & 0x0f;
1012 if (TCODE_IS_BLOCK_PACKET(tcode))
1013 header[3] = cpu_to_le32(packet->header[3]);
1014 else
1015 header[3] = (__force __le32) packet->header[3];
1016
1017 d[0].req_count = cpu_to_le16(packet->header_length);
1018 break;
1019
1020 case 8:
1021 header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
1022 (packet->speed << 16));
1023 header[1] = cpu_to_le32(packet->header[0]);
1024 header[2] = cpu_to_le32(packet->header[1]);
1025 d[0].req_count = cpu_to_le16(12);
1026 break;
1027
1028 case 4:
1029 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1030 (packet->speed << 16));
1031 header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
1032 d[0].req_count = cpu_to_le16(8);
1033 break;
1034
1035 default:
1036 /* BUG(); */
1037 packet->ack = RCODE_SEND_ERROR;
1038 return -1;
1039 }
1040
1041 driver_data = (struct driver_data *) &d[3];
1042 driver_data->packet = packet;
1043 packet->driver_data = driver_data;
1044
1045 if (packet->payload_length > 0) {
1046 payload_bus =
1047 dma_map_single(ohci->card.device, packet->payload,
1048 packet->payload_length, DMA_TO_DEVICE);
1049 if (dma_mapping_error(ohci->card.device, payload_bus)) {
1050 packet->ack = RCODE_SEND_ERROR;
1051 return -1;
1052 }
1053 packet->payload_bus = payload_bus;
1054 packet->payload_mapped = true;
1055
1056 d[2].req_count = cpu_to_le16(packet->payload_length);
1057 d[2].data_address = cpu_to_le32(payload_bus);
1058 last = &d[2];
1059 z = 3;
1060 } else {
1061 last = &d[0];
1062 z = 2;
1063 }
1064
1065 last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
1066 DESCRIPTOR_IRQ_ALWAYS |
1067 DESCRIPTOR_BRANCH_ALWAYS);
1068
1069 /*
1070 * If the controller and packet generations don't match, we need to
1071 * bail out and try again. If IntEvent.busReset is set, the AT context
1072 * is halted, so appending to the context and trying to run it is
1073 * futile. Most controllers do the right thing and just flush the AT
1074 * queue (per section 7.2.3.2 of the OHCI 1.1 specification), but
1075 * some controllers (like a JMicron JMB381 PCI-e) misbehave and wind
1076 * up stalling out. So we just bail out in software and try again
1077 * later, and everyone is happy.
1078 * FIXME: Document how the locking works.
1079 */
1080 if (ohci->generation != packet->generation ||
1081 reg_read(ohci, OHCI1394_IntEventSet) & OHCI1394_busReset) {
1082 if (packet->payload_mapped)
1083 dma_unmap_single(ohci->card.device, payload_bus,
1084 packet->payload_length, DMA_TO_DEVICE);
1085 packet->ack = RCODE_GENERATION;
1086 return -1;
1087 }
1088
1089 context_append(ctx, d, z, 4 - z);
1090
1091 /* If the context isn't already running, start it up. */
1092 reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
1093 if ((reg & CONTEXT_RUN) == 0)
1094 context_run(ctx, 0);
1095
1096 return 0;
1097 }
1098
1099 static int handle_at_packet(struct context *context,
1100 struct descriptor *d,
1101 struct descriptor *last)
1102 {
1103 struct driver_data *driver_data;
1104 struct fw_packet *packet;
1105 struct fw_ohci *ohci = context->ohci;
1106 int evt;
1107
1108 if (last->transfer_status == 0)
1109 /* This descriptor isn't done yet, stop iteration. */
1110 return 0;
1111
1112 driver_data = (struct driver_data *) &d[3];
1113 packet = driver_data->packet;
1114 if (packet == NULL)
1115 /* This packet was cancelled, just continue. */
1116 return 1;
1117
1118 if (packet->payload_mapped)
1119 dma_unmap_single(ohci->card.device, packet->payload_bus,
1120 packet->payload_length, DMA_TO_DEVICE);
1121
1122 evt = le16_to_cpu(last->transfer_status) & 0x1f;
1123 packet->timestamp = le16_to_cpu(last->res_count);
1124
1125 log_ar_at_event('T', packet->speed, packet->header, evt);
1126
1127 switch (evt) {
1128 case OHCI1394_evt_timeout:
1129 /* Async response transmit timed out. */
1130 packet->ack = RCODE_CANCELLED;
1131 break;
1132
1133 case OHCI1394_evt_flushed:
1134 /*
1135 * The packet was flushed should give same error as
1136 * when we try to use a stale generation count.
1137 */
1138 packet->ack = RCODE_GENERATION;
1139 break;
1140
1141 case OHCI1394_evt_missing_ack:
1142 /*
1143 * Using a valid (current) generation count, but the
1144 * node is not on the bus or not sending acks.
1145 */
1146 packet->ack = RCODE_NO_ACK;
1147 break;
1148
1149 case ACK_COMPLETE + 0x10:
1150 case ACK_PENDING + 0x10:
1151 case ACK_BUSY_X + 0x10:
1152 case ACK_BUSY_A + 0x10:
1153 case ACK_BUSY_B + 0x10:
1154 case ACK_DATA_ERROR + 0x10:
1155 case ACK_TYPE_ERROR + 0x10:
1156 packet->ack = evt - 0x10;
1157 break;
1158
1159 default:
1160 packet->ack = RCODE_SEND_ERROR;
1161 break;
1162 }
1163
1164 packet->callback(packet, &ohci->card, packet->ack);
1165
1166 return 1;
1167 }
1168
1169 #define HEADER_GET_DESTINATION(q) (((q) >> 16) & 0xffff)
1170 #define HEADER_GET_TCODE(q) (((q) >> 4) & 0x0f)
1171 #define HEADER_GET_OFFSET_HIGH(q) (((q) >> 0) & 0xffff)
1172 #define HEADER_GET_DATA_LENGTH(q) (((q) >> 16) & 0xffff)
1173 #define HEADER_GET_EXTENDED_TCODE(q) (((q) >> 0) & 0xffff)
1174
1175 static void handle_local_rom(struct fw_ohci *ohci,
1176 struct fw_packet *packet, u32 csr)
1177 {
1178 struct fw_packet response;
1179 int tcode, length, i;
1180
1181 tcode = HEADER_GET_TCODE(packet->header[0]);
1182 if (TCODE_IS_BLOCK_PACKET(tcode))
1183 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1184 else
1185 length = 4;
1186
1187 i = csr - CSR_CONFIG_ROM;
1188 if (i + length > CONFIG_ROM_SIZE) {
1189 fw_fill_response(&response, packet->header,
1190 RCODE_ADDRESS_ERROR, NULL, 0);
1191 } else if (!TCODE_IS_READ_REQUEST(tcode)) {
1192 fw_fill_response(&response, packet->header,
1193 RCODE_TYPE_ERROR, NULL, 0);
1194 } else {
1195 fw_fill_response(&response, packet->header, RCODE_COMPLETE,
1196 (void *) ohci->config_rom + i, length);
1197 }
1198
1199 fw_core_handle_response(&ohci->card, &response);
1200 }
1201
1202 static void handle_local_lock(struct fw_ohci *ohci,
1203 struct fw_packet *packet, u32 csr)
1204 {
1205 struct fw_packet response;
1206 int tcode, length, ext_tcode, sel;
1207 __be32 *payload, lock_old;
1208 u32 lock_arg, lock_data;
1209
1210 tcode = HEADER_GET_TCODE(packet->header[0]);
1211 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1212 payload = packet->payload;
1213 ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1214
1215 if (tcode == TCODE_LOCK_REQUEST &&
1216 ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
1217 lock_arg = be32_to_cpu(payload[0]);
1218 lock_data = be32_to_cpu(payload[1]);
1219 } else if (tcode == TCODE_READ_QUADLET_REQUEST) {
1220 lock_arg = 0;
1221 lock_data = 0;
1222 } else {
1223 fw_fill_response(&response, packet->header,
1224 RCODE_TYPE_ERROR, NULL, 0);
1225 goto out;
1226 }
1227
1228 sel = (csr - CSR_BUS_MANAGER_ID) / 4;
1229 reg_write(ohci, OHCI1394_CSRData, lock_data);
1230 reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
1231 reg_write(ohci, OHCI1394_CSRControl, sel);
1232
1233 if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000)
1234 lock_old = cpu_to_be32(reg_read(ohci, OHCI1394_CSRData));
1235 else
1236 fw_notify("swap not done yet\n");
1237
1238 fw_fill_response(&response, packet->header,
1239 RCODE_COMPLETE, &lock_old, sizeof(lock_old));
1240 out:
1241 fw_core_handle_response(&ohci->card, &response);
1242 }
1243
1244 static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1245 {
1246 u64 offset;
1247 u32 csr;
1248
1249 if (ctx == &ctx->ohci->at_request_ctx) {
1250 packet->ack = ACK_PENDING;
1251 packet->callback(packet, &ctx->ohci->card, packet->ack);
1252 }
1253
1254 offset =
1255 ((unsigned long long)
1256 HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1257 packet->header[2];
1258 csr = offset - CSR_REGISTER_BASE;
1259
1260 /* Handle config rom reads. */
1261 if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
1262 handle_local_rom(ctx->ohci, packet, csr);
1263 else switch (csr) {
1264 case CSR_BUS_MANAGER_ID:
1265 case CSR_BANDWIDTH_AVAILABLE:
1266 case CSR_CHANNELS_AVAILABLE_HI:
1267 case CSR_CHANNELS_AVAILABLE_LO:
1268 handle_local_lock(ctx->ohci, packet, csr);
1269 break;
1270 default:
1271 if (ctx == &ctx->ohci->at_request_ctx)
1272 fw_core_handle_request(&ctx->ohci->card, packet);
1273 else
1274 fw_core_handle_response(&ctx->ohci->card, packet);
1275 break;
1276 }
1277
1278 if (ctx == &ctx->ohci->at_response_ctx) {
1279 packet->ack = ACK_COMPLETE;
1280 packet->callback(packet, &ctx->ohci->card, packet->ack);
1281 }
1282 }
1283
1284 static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1285 {
1286 unsigned long flags;
1287 int ret;
1288
1289 spin_lock_irqsave(&ctx->ohci->lock, flags);
1290
1291 if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1292 ctx->ohci->generation == packet->generation) {
1293 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1294 handle_local_request(ctx, packet);
1295 return;
1296 }
1297
1298 ret = at_context_queue_packet(ctx, packet);
1299 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1300
1301 if (ret < 0)
1302 packet->callback(packet, &ctx->ohci->card, packet->ack);
1303
1304 }
1305
1306 static void bus_reset_tasklet(unsigned long data)
1307 {
1308 struct fw_ohci *ohci = (struct fw_ohci *)data;
1309 int self_id_count, i, j, reg;
1310 int generation, new_generation;
1311 unsigned long flags;
1312 void *free_rom = NULL;
1313 dma_addr_t free_rom_bus = 0;
1314
1315 reg = reg_read(ohci, OHCI1394_NodeID);
1316 if (!(reg & OHCI1394_NodeID_idValid)) {
1317 fw_notify("node ID not valid, new bus reset in progress\n");
1318 return;
1319 }
1320 if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
1321 fw_notify("malconfigured bus\n");
1322 return;
1323 }
1324 ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
1325 OHCI1394_NodeID_nodeNumber);
1326
1327 reg = reg_read(ohci, OHCI1394_SelfIDCount);
1328 if (reg & OHCI1394_SelfIDCount_selfIDError) {
1329 fw_notify("inconsistent self IDs\n");
1330 return;
1331 }
1332 /*
1333 * The count in the SelfIDCount register is the number of
1334 * bytes in the self ID receive buffer. Since we also receive
1335 * the inverted quadlets and a header quadlet, we shift one
1336 * bit extra to get the actual number of self IDs.
1337 */
1338 self_id_count = (reg >> 3) & 0xff;
1339 if (self_id_count == 0 || self_id_count > 252) {
1340 fw_notify("inconsistent self IDs\n");
1341 return;
1342 }
1343 generation = (cond_le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
1344 rmb();
1345
1346 for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1347 if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1]) {
1348 fw_notify("inconsistent self IDs\n");
1349 return;
1350 }
1351 ohci->self_id_buffer[j] =
1352 cond_le32_to_cpu(ohci->self_id_cpu[i]);
1353 }
1354 rmb();
1355
1356 /*
1357 * Check the consistency of the self IDs we just read. The
1358 * problem we face is that a new bus reset can start while we
1359 * read out the self IDs from the DMA buffer. If this happens,
1360 * the DMA buffer will be overwritten with new self IDs and we
1361 * will read out inconsistent data. The OHCI specification
1362 * (section 11.2) recommends a technique similar to
1363 * linux/seqlock.h, where we remember the generation of the
1364 * self IDs in the buffer before reading them out and compare
1365 * it to the current generation after reading them out. If
1366 * the two generations match we know we have a consistent set
1367 * of self IDs.
1368 */
1369
1370 new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
1371 if (new_generation != generation) {
1372 fw_notify("recursive bus reset detected, "
1373 "discarding self ids\n");
1374 return;
1375 }
1376
1377 /* FIXME: Document how the locking works. */
1378 spin_lock_irqsave(&ohci->lock, flags);
1379
1380 ohci->generation = generation;
1381 context_stop(&ohci->at_request_ctx);
1382 context_stop(&ohci->at_response_ctx);
1383 reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
1384
1385 if (ohci->quirks & QUIRK_RESET_PACKET)
1386 ohci->request_generation = generation;
1387
1388 /*
1389 * This next bit is unrelated to the AT context stuff but we
1390 * have to do it under the spinlock also. If a new config rom
1391 * was set up before this reset, the old one is now no longer
1392 * in use and we can free it. Update the config rom pointers
1393 * to point to the current config rom and clear the
1394 * next_config_rom pointer so a new udpate can take place.
1395 */
1396
1397 if (ohci->next_config_rom != NULL) {
1398 if (ohci->next_config_rom != ohci->config_rom) {
1399 free_rom = ohci->config_rom;
1400 free_rom_bus = ohci->config_rom_bus;
1401 }
1402 ohci->config_rom = ohci->next_config_rom;
1403 ohci->config_rom_bus = ohci->next_config_rom_bus;
1404 ohci->next_config_rom = NULL;
1405
1406 /*
1407 * Restore config_rom image and manually update
1408 * config_rom registers. Writing the header quadlet
1409 * will indicate that the config rom is ready, so we
1410 * do that last.
1411 */
1412 reg_write(ohci, OHCI1394_BusOptions,
1413 be32_to_cpu(ohci->config_rom[2]));
1414 ohci->config_rom[0] = ohci->next_header;
1415 reg_write(ohci, OHCI1394_ConfigROMhdr,
1416 be32_to_cpu(ohci->next_header));
1417 }
1418
1419 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1420 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
1421 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
1422 #endif
1423
1424 spin_unlock_irqrestore(&ohci->lock, flags);
1425
1426 if (free_rom)
1427 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1428 free_rom, free_rom_bus);
1429
1430 log_selfids(ohci->node_id, generation,
1431 self_id_count, ohci->self_id_buffer);
1432
1433 fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
1434 self_id_count, ohci->self_id_buffer);
1435 }
1436
1437 static irqreturn_t irq_handler(int irq, void *data)
1438 {
1439 struct fw_ohci *ohci = data;
1440 u32 event, iso_event;
1441 int i;
1442
1443 event = reg_read(ohci, OHCI1394_IntEventClear);
1444
1445 if (!event || !~event)
1446 return IRQ_NONE;
1447
1448 /* busReset must not be cleared yet, see OHCI 1.1 clause 7.2.3.2 */
1449 reg_write(ohci, OHCI1394_IntEventClear, event & ~OHCI1394_busReset);
1450 log_irqs(event);
1451
1452 if (event & OHCI1394_selfIDComplete)
1453 tasklet_schedule(&ohci->bus_reset_tasklet);
1454
1455 if (event & OHCI1394_RQPkt)
1456 tasklet_schedule(&ohci->ar_request_ctx.tasklet);
1457
1458 if (event & OHCI1394_RSPkt)
1459 tasklet_schedule(&ohci->ar_response_ctx.tasklet);
1460
1461 if (event & OHCI1394_reqTxComplete)
1462 tasklet_schedule(&ohci->at_request_ctx.tasklet);
1463
1464 if (event & OHCI1394_respTxComplete)
1465 tasklet_schedule(&ohci->at_response_ctx.tasklet);
1466
1467 iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
1468 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
1469
1470 while (iso_event) {
1471 i = ffs(iso_event) - 1;
1472 tasklet_schedule(&ohci->ir_context_list[i].context.tasklet);
1473 iso_event &= ~(1 << i);
1474 }
1475
1476 iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
1477 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
1478
1479 while (iso_event) {
1480 i = ffs(iso_event) - 1;
1481 tasklet_schedule(&ohci->it_context_list[i].context.tasklet);
1482 iso_event &= ~(1 << i);
1483 }
1484
1485 if (unlikely(event & OHCI1394_regAccessFail))
1486 fw_error("Register access failure - "
1487 "please notify linux1394-devel@lists.sf.net\n");
1488
1489 if (unlikely(event & OHCI1394_postedWriteErr))
1490 fw_error("PCI posted write error\n");
1491
1492 if (unlikely(event & OHCI1394_cycleTooLong)) {
1493 if (printk_ratelimit())
1494 fw_notify("isochronous cycle too long\n");
1495 reg_write(ohci, OHCI1394_LinkControlSet,
1496 OHCI1394_LinkControl_cycleMaster);
1497 }
1498
1499 if (unlikely(event & OHCI1394_cycleInconsistent)) {
1500 /*
1501 * We need to clear this event bit in order to make
1502 * cycleMatch isochronous I/O work. In theory we should
1503 * stop active cycleMatch iso contexts now and restart
1504 * them at least two cycles later. (FIXME?)
1505 */
1506 if (printk_ratelimit())
1507 fw_notify("isochronous cycle inconsistent\n");
1508 }
1509
1510 return IRQ_HANDLED;
1511 }
1512
1513 static int software_reset(struct fw_ohci *ohci)
1514 {
1515 int i;
1516
1517 reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
1518
1519 for (i = 0; i < OHCI_LOOP_COUNT; i++) {
1520 if ((reg_read(ohci, OHCI1394_HCControlSet) &
1521 OHCI1394_HCControl_softReset) == 0)
1522 return 0;
1523 msleep(1);
1524 }
1525
1526 return -EBUSY;
1527 }
1528
1529 static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
1530 {
1531 size_t size = length * 4;
1532
1533 memcpy(dest, src, size);
1534 if (size < CONFIG_ROM_SIZE)
1535 memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
1536 }
1537
1538 static int configure_1394a_enhancements(struct fw_ohci *ohci)
1539 {
1540 bool enable_1394a;
1541 u32 reg, phy_compliance;
1542 int clear, set, offset;
1543
1544 /* Check if the driver should configure link and PHY. */
1545 if (!(reg_read(ohci, OHCI1394_HCControlSet) &
1546 OHCI1394_HCControl_programPhyEnable))
1547 return 0;
1548
1549 /* Paranoia: check whether the PHY supports 1394a, too. */
1550 enable_1394a = false;
1551 if (read_phy_reg(&ohci->card, 2, &reg) < 0)
1552 return -EIO;
1553 if ((reg & PHY_EXTENDED_REGISTERS) == PHY_EXTENDED_REGISTERS) {
1554 if (read_paged_phy_reg(&ohci->card, 1, 8, &phy_compliance) < 0)
1555 return -EIO;
1556 if (phy_compliance >= 1)
1557 enable_1394a = true;
1558 }
1559
1560 if (ohci->quirks & QUIRK_NO_1394A)
1561 enable_1394a = false;
1562
1563 /* Configure PHY and link consistently. */
1564 if (enable_1394a) {
1565 clear = 0;
1566 set = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
1567 } else {
1568 clear = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
1569 set = 0;
1570 }
1571 if (ohci_update_phy_reg(&ohci->card, 5, clear, set) < 0)
1572 return -EIO;
1573 flush_writes(ohci);
1574 msleep(2);
1575
1576 if (enable_1394a)
1577 offset = OHCI1394_HCControlSet;
1578 else
1579 offset = OHCI1394_HCControlClear;
1580 reg_write(ohci, offset, OHCI1394_HCControl_aPhyEnhanceEnable);
1581
1582 /* Clean up: configuration has been taken care of. */
1583 reg_write(ohci, OHCI1394_HCControlClear,
1584 OHCI1394_HCControl_programPhyEnable);
1585
1586 return 0;
1587 }
1588
1589 static int ohci_enable(struct fw_card *card,
1590 const __be32 *config_rom, size_t length)
1591 {
1592 struct fw_ohci *ohci = fw_ohci(card);
1593 struct pci_dev *dev = to_pci_dev(card->device);
1594 u32 lps;
1595 int i, err;
1596
1597 if (software_reset(ohci)) {
1598 fw_error("Failed to reset ohci card.\n");
1599 return -EBUSY;
1600 }
1601
1602 /*
1603 * Now enable LPS, which we need in order to start accessing
1604 * most of the registers. In fact, on some cards (ALI M5251),
1605 * accessing registers in the SClk domain without LPS enabled
1606 * will lock up the machine. Wait 50msec to make sure we have
1607 * full link enabled. However, with some cards (well, at least
1608 * a JMicron PCIe card), we have to try again sometimes.
1609 */
1610 reg_write(ohci, OHCI1394_HCControlSet,
1611 OHCI1394_HCControl_LPS |
1612 OHCI1394_HCControl_postedWriteEnable);
1613 flush_writes(ohci);
1614
1615 for (lps = 0, i = 0; !lps && i < 3; i++) {
1616 msleep(50);
1617 lps = reg_read(ohci, OHCI1394_HCControlSet) &
1618 OHCI1394_HCControl_LPS;
1619 }
1620
1621 if (!lps) {
1622 fw_error("Failed to set Link Power Status\n");
1623 return -EIO;
1624 }
1625
1626 reg_write(ohci, OHCI1394_HCControlClear,
1627 OHCI1394_HCControl_noByteSwapData);
1628
1629 reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
1630 reg_write(ohci, OHCI1394_LinkControlClear,
1631 OHCI1394_LinkControl_rcvPhyPkt);
1632 reg_write(ohci, OHCI1394_LinkControlSet,
1633 OHCI1394_LinkControl_rcvSelfID |
1634 OHCI1394_LinkControl_cycleTimerEnable |
1635 OHCI1394_LinkControl_cycleMaster);
1636
1637 reg_write(ohci, OHCI1394_ATRetries,
1638 OHCI1394_MAX_AT_REQ_RETRIES |
1639 (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
1640 (OHCI1394_MAX_PHYS_RESP_RETRIES << 8));
1641
1642 ar_context_run(&ohci->ar_request_ctx);
1643 ar_context_run(&ohci->ar_response_ctx);
1644
1645 reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
1646 reg_write(ohci, OHCI1394_IntEventClear, ~0);
1647 reg_write(ohci, OHCI1394_IntMaskClear, ~0);
1648 reg_write(ohci, OHCI1394_IntMaskSet,
1649 OHCI1394_selfIDComplete |
1650 OHCI1394_RQPkt | OHCI1394_RSPkt |
1651 OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
1652 OHCI1394_isochRx | OHCI1394_isochTx |
1653 OHCI1394_postedWriteErr | OHCI1394_cycleTooLong |
1654 OHCI1394_cycleInconsistent | OHCI1394_regAccessFail |
1655 OHCI1394_masterIntEnable);
1656 if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
1657 reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_busReset);
1658
1659 err = configure_1394a_enhancements(ohci);
1660 if (err < 0)
1661 return err;
1662
1663 /* Activate link_on bit and contender bit in our self ID packets.*/
1664 if (ohci_update_phy_reg(card, 4, 0,
1665 PHY_LINK_ACTIVE | PHY_CONTENDER) < 0)
1666 return -EIO;
1667
1668 /*
1669 * When the link is not yet enabled, the atomic config rom
1670 * update mechanism described below in ohci_set_config_rom()
1671 * is not active. We have to update ConfigRomHeader and
1672 * BusOptions manually, and the write to ConfigROMmap takes
1673 * effect immediately. We tie this to the enabling of the
1674 * link, so we have a valid config rom before enabling - the
1675 * OHCI requires that ConfigROMhdr and BusOptions have valid
1676 * values before enabling.
1677 *
1678 * However, when the ConfigROMmap is written, some controllers
1679 * always read back quadlets 0 and 2 from the config rom to
1680 * the ConfigRomHeader and BusOptions registers on bus reset.
1681 * They shouldn't do that in this initial case where the link
1682 * isn't enabled. This means we have to use the same
1683 * workaround here, setting the bus header to 0 and then write
1684 * the right values in the bus reset tasklet.
1685 */
1686
1687 if (config_rom) {
1688 ohci->next_config_rom =
1689 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1690 &ohci->next_config_rom_bus,
1691 GFP_KERNEL);
1692 if (ohci->next_config_rom == NULL)
1693 return -ENOMEM;
1694
1695 copy_config_rom(ohci->next_config_rom, config_rom, length);
1696 } else {
1697 /*
1698 * In the suspend case, config_rom is NULL, which
1699 * means that we just reuse the old config rom.
1700 */
1701 ohci->next_config_rom = ohci->config_rom;
1702 ohci->next_config_rom_bus = ohci->config_rom_bus;
1703 }
1704
1705 ohci->next_header = ohci->next_config_rom[0];
1706 ohci->next_config_rom[0] = 0;
1707 reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
1708 reg_write(ohci, OHCI1394_BusOptions,
1709 be32_to_cpu(ohci->next_config_rom[2]));
1710 reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
1711
1712 reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
1713
1714 if (request_irq(dev->irq, irq_handler,
1715 IRQF_SHARED, ohci_driver_name, ohci)) {
1716 fw_error("Failed to allocate shared interrupt %d.\n",
1717 dev->irq);
1718 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1719 ohci->config_rom, ohci->config_rom_bus);
1720 return -EIO;
1721 }
1722
1723 reg_write(ohci, OHCI1394_HCControlSet,
1724 OHCI1394_HCControl_linkEnable |
1725 OHCI1394_HCControl_BIBimageValid);
1726 flush_writes(ohci);
1727
1728 /*
1729 * We are ready to go, initiate bus reset to finish the
1730 * initialization.
1731 */
1732
1733 fw_core_initiate_bus_reset(&ohci->card, 1);
1734
1735 return 0;
1736 }
1737
1738 static int ohci_set_config_rom(struct fw_card *card,
1739 const __be32 *config_rom, size_t length)
1740 {
1741 struct fw_ohci *ohci;
1742 unsigned long flags;
1743 int ret = -EBUSY;
1744 __be32 *next_config_rom;
1745 dma_addr_t uninitialized_var(next_config_rom_bus);
1746
1747 ohci = fw_ohci(card);
1748
1749 /*
1750 * When the OHCI controller is enabled, the config rom update
1751 * mechanism is a bit tricky, but easy enough to use. See
1752 * section 5.5.6 in the OHCI specification.
1753 *
1754 * The OHCI controller caches the new config rom address in a
1755 * shadow register (ConfigROMmapNext) and needs a bus reset
1756 * for the changes to take place. When the bus reset is
1757 * detected, the controller loads the new values for the
1758 * ConfigRomHeader and BusOptions registers from the specified
1759 * config rom and loads ConfigROMmap from the ConfigROMmapNext
1760 * shadow register. All automatically and atomically.
1761 *
1762 * Now, there's a twist to this story. The automatic load of
1763 * ConfigRomHeader and BusOptions doesn't honor the
1764 * noByteSwapData bit, so with a be32 config rom, the
1765 * controller will load be32 values in to these registers
1766 * during the atomic update, even on litte endian
1767 * architectures. The workaround we use is to put a 0 in the
1768 * header quadlet; 0 is endian agnostic and means that the
1769 * config rom isn't ready yet. In the bus reset tasklet we
1770 * then set up the real values for the two registers.
1771 *
1772 * We use ohci->lock to avoid racing with the code that sets
1773 * ohci->next_config_rom to NULL (see bus_reset_tasklet).
1774 */
1775
1776 next_config_rom =
1777 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1778 &next_config_rom_bus, GFP_KERNEL);
1779 if (next_config_rom == NULL)
1780 return -ENOMEM;
1781
1782 spin_lock_irqsave(&ohci->lock, flags);
1783
1784 if (ohci->next_config_rom == NULL) {
1785 ohci->next_config_rom = next_config_rom;
1786 ohci->next_config_rom_bus = next_config_rom_bus;
1787
1788 copy_config_rom(ohci->next_config_rom, config_rom, length);
1789
1790 ohci->next_header = config_rom[0];
1791 ohci->next_config_rom[0] = 0;
1792
1793 reg_write(ohci, OHCI1394_ConfigROMmap,
1794 ohci->next_config_rom_bus);
1795 ret = 0;
1796 }
1797
1798 spin_unlock_irqrestore(&ohci->lock, flags);
1799
1800 /*
1801 * Now initiate a bus reset to have the changes take
1802 * effect. We clean up the old config rom memory and DMA
1803 * mappings in the bus reset tasklet, since the OHCI
1804 * controller could need to access it before the bus reset
1805 * takes effect.
1806 */
1807 if (ret == 0)
1808 fw_core_initiate_bus_reset(&ohci->card, 1);
1809 else
1810 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1811 next_config_rom, next_config_rom_bus);
1812
1813 return ret;
1814 }
1815
1816 static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
1817 {
1818 struct fw_ohci *ohci = fw_ohci(card);
1819
1820 at_context_transmit(&ohci->at_request_ctx, packet);
1821 }
1822
1823 static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
1824 {
1825 struct fw_ohci *ohci = fw_ohci(card);
1826
1827 at_context_transmit(&ohci->at_response_ctx, packet);
1828 }
1829
1830 static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
1831 {
1832 struct fw_ohci *ohci = fw_ohci(card);
1833 struct context *ctx = &ohci->at_request_ctx;
1834 struct driver_data *driver_data = packet->driver_data;
1835 int ret = -ENOENT;
1836
1837 tasklet_disable(&ctx->tasklet);
1838
1839 if (packet->ack != 0)
1840 goto out;
1841
1842 if (packet->payload_mapped)
1843 dma_unmap_single(ohci->card.device, packet->payload_bus,
1844 packet->payload_length, DMA_TO_DEVICE);
1845
1846 log_ar_at_event('T', packet->speed, packet->header, 0x20);
1847 driver_data->packet = NULL;
1848 packet->ack = RCODE_CANCELLED;
1849 packet->callback(packet, &ohci->card, packet->ack);
1850 ret = 0;
1851 out:
1852 tasklet_enable(&ctx->tasklet);
1853
1854 return ret;
1855 }
1856
1857 static int ohci_enable_phys_dma(struct fw_card *card,
1858 int node_id, int generation)
1859 {
1860 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1861 return 0;
1862 #else
1863 struct fw_ohci *ohci = fw_ohci(card);
1864 unsigned long flags;
1865 int n, ret = 0;
1866
1867 /*
1868 * FIXME: Make sure this bitmask is cleared when we clear the busReset
1869 * interrupt bit. Clear physReqResourceAllBuses on bus reset.
1870 */
1871
1872 spin_lock_irqsave(&ohci->lock, flags);
1873
1874 if (ohci->generation != generation) {
1875 ret = -ESTALE;
1876 goto out;
1877 }
1878
1879 /*
1880 * Note, if the node ID contains a non-local bus ID, physical DMA is
1881 * enabled for _all_ nodes on remote buses.
1882 */
1883
1884 n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
1885 if (n < 32)
1886 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
1887 else
1888 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
1889
1890 flush_writes(ohci);
1891 out:
1892 spin_unlock_irqrestore(&ohci->lock, flags);
1893
1894 return ret;
1895 #endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
1896 }
1897
1898 static u32 cycle_timer_ticks(u32 cycle_timer)
1899 {
1900 u32 ticks;
1901
1902 ticks = cycle_timer & 0xfff;
1903 ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
1904 ticks += (3072 * 8000) * (cycle_timer >> 25);
1905
1906 return ticks;
1907 }
1908
1909 /*
1910 * Some controllers exhibit one or more of the following bugs when updating the
1911 * iso cycle timer register:
1912 * - When the lowest six bits are wrapping around to zero, a read that happens
1913 * at the same time will return garbage in the lowest ten bits.
1914 * - When the cycleOffset field wraps around to zero, the cycleCount field is
1915 * not incremented for about 60 ns.
1916 * - Occasionally, the entire register reads zero.
1917 *
1918 * To catch these, we read the register three times and ensure that the
1919 * difference between each two consecutive reads is approximately the same, i.e.
1920 * less than twice the other. Furthermore, any negative difference indicates an
1921 * error. (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
1922 * execute, so we have enough precision to compute the ratio of the differences.)
1923 */
1924 static u32 ohci_get_cycle_time(struct fw_card *card)
1925 {
1926 struct fw_ohci *ohci = fw_ohci(card);
1927 u32 c0, c1, c2;
1928 u32 t0, t1, t2;
1929 s32 diff01, diff12;
1930 int i;
1931
1932 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1933
1934 if (ohci->quirks & QUIRK_CYCLE_TIMER) {
1935 i = 0;
1936 c1 = c2;
1937 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1938 do {
1939 c0 = c1;
1940 c1 = c2;
1941 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1942 t0 = cycle_timer_ticks(c0);
1943 t1 = cycle_timer_ticks(c1);
1944 t2 = cycle_timer_ticks(c2);
1945 diff01 = t1 - t0;
1946 diff12 = t2 - t1;
1947 } while ((diff01 <= 0 || diff12 <= 0 ||
1948 diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
1949 && i++ < 20);
1950 }
1951
1952 return c2;
1953 }
1954
1955 static void copy_iso_headers(struct iso_context *ctx, void *p)
1956 {
1957 int i = ctx->header_length;
1958
1959 if (i + ctx->base.header_size > PAGE_SIZE)
1960 return;
1961
1962 /*
1963 * The iso header is byteswapped to little endian by
1964 * the controller, but the remaining header quadlets
1965 * are big endian. We want to present all the headers
1966 * as big endian, so we have to swap the first quadlet.
1967 */
1968 if (ctx->base.header_size > 0)
1969 *(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
1970 if (ctx->base.header_size > 4)
1971 *(u32 *) (ctx->header + i + 4) = __swab32(*(u32 *) p);
1972 if (ctx->base.header_size > 8)
1973 memcpy(ctx->header + i + 8, p + 8, ctx->base.header_size - 8);
1974 ctx->header_length += ctx->base.header_size;
1975 }
1976
1977 static int handle_ir_packet_per_buffer(struct context *context,
1978 struct descriptor *d,
1979 struct descriptor *last)
1980 {
1981 struct iso_context *ctx =
1982 container_of(context, struct iso_context, context);
1983 struct descriptor *pd;
1984 __le32 *ir_header;
1985 void *p;
1986
1987 for (pd = d; pd <= last; pd++) {
1988 if (pd->transfer_status)
1989 break;
1990 }
1991 if (pd > last)
1992 /* Descriptor(s) not done yet, stop iteration */
1993 return 0;
1994
1995 p = last + 1;
1996 copy_iso_headers(ctx, p);
1997
1998 if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
1999 ir_header = (__le32 *) p;
2000 ctx->base.callback(&ctx->base,
2001 le32_to_cpu(ir_header[0]) & 0xffff,
2002 ctx->header_length, ctx->header,
2003 ctx->base.callback_data);
2004 ctx->header_length = 0;
2005 }
2006
2007 return 1;
2008 }
2009
2010 static int handle_it_packet(struct context *context,
2011 struct descriptor *d,
2012 struct descriptor *last)
2013 {
2014 struct iso_context *ctx =
2015 container_of(context, struct iso_context, context);
2016 int i;
2017 struct descriptor *pd;
2018
2019 for (pd = d; pd <= last; pd++)
2020 if (pd->transfer_status)
2021 break;
2022 if (pd > last)
2023 /* Descriptor(s) not done yet, stop iteration */
2024 return 0;
2025
2026 i = ctx->header_length;
2027 if (i + 4 < PAGE_SIZE) {
2028 /* Present this value as big-endian to match the receive code */
2029 *(__be32 *)(ctx->header + i) = cpu_to_be32(
2030 ((u32)le16_to_cpu(pd->transfer_status) << 16) |
2031 le16_to_cpu(pd->res_count));
2032 ctx->header_length += 4;
2033 }
2034 if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
2035 ctx->base.callback(&ctx->base, le16_to_cpu(last->res_count),
2036 ctx->header_length, ctx->header,
2037 ctx->base.callback_data);
2038 ctx->header_length = 0;
2039 }
2040 return 1;
2041 }
2042
2043 static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
2044 int type, int channel, size_t header_size)
2045 {
2046 struct fw_ohci *ohci = fw_ohci(card);
2047 struct iso_context *ctx, *list;
2048 descriptor_callback_t callback;
2049 u64 *channels, dont_care = ~0ULL;
2050 u32 *mask, regs;
2051 unsigned long flags;
2052 int index, ret = -ENOMEM;
2053
2054 if (type == FW_ISO_CONTEXT_TRANSMIT) {
2055 channels = &dont_care;
2056 mask = &ohci->it_context_mask;
2057 list = ohci->it_context_list;
2058 callback = handle_it_packet;
2059 } else {
2060 channels = &ohci->ir_context_channels;
2061 mask = &ohci->ir_context_mask;
2062 list = ohci->ir_context_list;
2063 callback = handle_ir_packet_per_buffer;
2064 }
2065
2066 spin_lock_irqsave(&ohci->lock, flags);
2067 index = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
2068 if (index >= 0) {
2069 *channels &= ~(1ULL << channel);
2070 *mask &= ~(1 << index);
2071 }
2072 spin_unlock_irqrestore(&ohci->lock, flags);
2073
2074 if (index < 0)
2075 return ERR_PTR(-EBUSY);
2076
2077 if (type == FW_ISO_CONTEXT_TRANSMIT)
2078 regs = OHCI1394_IsoXmitContextBase(index);
2079 else
2080 regs = OHCI1394_IsoRcvContextBase(index);
2081
2082 ctx = &list[index];
2083 memset(ctx, 0, sizeof(*ctx));
2084 ctx->header_length = 0;
2085 ctx->header = (void *) __get_free_page(GFP_KERNEL);
2086 if (ctx->header == NULL)
2087 goto out;
2088
2089 ret = context_init(&ctx->context, ohci, regs, callback);
2090 if (ret < 0)
2091 goto out_with_header;
2092
2093 return &ctx->base;
2094
2095 out_with_header:
2096 free_page((unsigned long)ctx->header);
2097 out:
2098 spin_lock_irqsave(&ohci->lock, flags);
2099 *mask |= 1 << index;
2100 spin_unlock_irqrestore(&ohci->lock, flags);
2101
2102 return ERR_PTR(ret);
2103 }
2104
2105 static int ohci_start_iso(struct fw_iso_context *base,
2106 s32 cycle, u32 sync, u32 tags)
2107 {
2108 struct iso_context *ctx = container_of(base, struct iso_context, base);
2109 struct fw_ohci *ohci = ctx->context.ohci;
2110 u32 control, match;
2111 int index;
2112
2113 if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
2114 index = ctx - ohci->it_context_list;
2115 match = 0;
2116 if (cycle >= 0)
2117 match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
2118 (cycle & 0x7fff) << 16;
2119
2120 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
2121 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
2122 context_run(&ctx->context, match);
2123 } else {
2124 index = ctx - ohci->ir_context_list;
2125 control = IR_CONTEXT_ISOCH_HEADER;
2126 match = (tags << 28) | (sync << 8) | ctx->base.channel;
2127 if (cycle >= 0) {
2128 match |= (cycle & 0x07fff) << 12;
2129 control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
2130 }
2131
2132 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
2133 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
2134 reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
2135 context_run(&ctx->context, control);
2136 }
2137
2138 return 0;
2139 }
2140
2141 static int ohci_stop_iso(struct fw_iso_context *base)
2142 {
2143 struct fw_ohci *ohci = fw_ohci(base->card);
2144 struct iso_context *ctx = container_of(base, struct iso_context, base);
2145 int index;
2146
2147 if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
2148 index = ctx - ohci->it_context_list;
2149 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
2150 } else {
2151 index = ctx - ohci->ir_context_list;
2152 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
2153 }
2154 flush_writes(ohci);
2155 context_stop(&ctx->context);
2156
2157 return 0;
2158 }
2159
2160 static void ohci_free_iso_context(struct fw_iso_context *base)
2161 {
2162 struct fw_ohci *ohci = fw_ohci(base->card);
2163 struct iso_context *ctx = container_of(base, struct iso_context, base);
2164 unsigned long flags;
2165 int index;
2166
2167 ohci_stop_iso(base);
2168 context_release(&ctx->context);
2169 free_page((unsigned long)ctx->header);
2170
2171 spin_lock_irqsave(&ohci->lock, flags);
2172
2173 if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
2174 index = ctx - ohci->it_context_list;
2175 ohci->it_context_mask |= 1 << index;
2176 } else {
2177 index = ctx - ohci->ir_context_list;
2178 ohci->ir_context_mask |= 1 << index;
2179 ohci->ir_context_channels |= 1ULL << base->channel;
2180 }
2181
2182 spin_unlock_irqrestore(&ohci->lock, flags);
2183 }
2184
2185 static int ohci_queue_iso_transmit(struct fw_iso_context *base,
2186 struct fw_iso_packet *packet,
2187 struct fw_iso_buffer *buffer,
2188 unsigned long payload)
2189 {
2190 struct iso_context *ctx = container_of(base, struct iso_context, base);
2191 struct descriptor *d, *last, *pd;
2192 struct fw_iso_packet *p;
2193 __le32 *header;
2194 dma_addr_t d_bus, page_bus;
2195 u32 z, header_z, payload_z, irq;
2196 u32 payload_index, payload_end_index, next_page_index;
2197 int page, end_page, i, length, offset;
2198
2199 p = packet;
2200 payload_index = payload;
2201
2202 if (p->skip)
2203 z = 1;
2204 else
2205 z = 2;
2206 if (p->header_length > 0)
2207 z++;
2208
2209 /* Determine the first page the payload isn't contained in. */
2210 end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
2211 if (p->payload_length > 0)
2212 payload_z = end_page - (payload_index >> PAGE_SHIFT);
2213 else
2214 payload_z = 0;
2215
2216 z += payload_z;
2217
2218 /* Get header size in number of descriptors. */
2219 header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
2220
2221 d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
2222 if (d == NULL)
2223 return -ENOMEM;
2224
2225 if (!p->skip) {
2226 d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
2227 d[0].req_count = cpu_to_le16(8);
2228 /*
2229 * Link the skip address to this descriptor itself. This causes
2230 * a context to skip a cycle whenever lost cycles or FIFO
2231 * overruns occur, without dropping the data. The application
2232 * should then decide whether this is an error condition or not.
2233 * FIXME: Make the context's cycle-lost behaviour configurable?
2234 */
2235 d[0].branch_address = cpu_to_le32(d_bus | z);
2236
2237 header = (__le32 *) &d[1];
2238 header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
2239 IT_HEADER_TAG(p->tag) |
2240 IT_HEADER_TCODE(TCODE_STREAM_DATA) |
2241 IT_HEADER_CHANNEL(ctx->base.channel) |
2242 IT_HEADER_SPEED(ctx->base.speed));
2243 header[1] =
2244 cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
2245 p->payload_length));
2246 }
2247
2248 if (p->header_length > 0) {
2249 d[2].req_count = cpu_to_le16(p->header_length);
2250 d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
2251 memcpy(&d[z], p->header, p->header_length);
2252 }
2253
2254 pd = d + z - payload_z;
2255 payload_end_index = payload_index + p->payload_length;
2256 for (i = 0; i < payload_z; i++) {
2257 page = payload_index >> PAGE_SHIFT;
2258 offset = payload_index & ~PAGE_MASK;
2259 next_page_index = (page + 1) << PAGE_SHIFT;
2260 length =
2261 min(next_page_index, payload_end_index) - payload_index;
2262 pd[i].req_count = cpu_to_le16(length);
2263
2264 page_bus = page_private(buffer->pages[page]);
2265 pd[i].data_address = cpu_to_le32(page_bus + offset);
2266
2267 payload_index += length;
2268 }
2269
2270 if (p->interrupt)
2271 irq = DESCRIPTOR_IRQ_ALWAYS;
2272 else
2273 irq = DESCRIPTOR_NO_IRQ;
2274
2275 last = z == 2 ? d : d + z - 1;
2276 last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
2277 DESCRIPTOR_STATUS |
2278 DESCRIPTOR_BRANCH_ALWAYS |
2279 irq);
2280
2281 context_append(&ctx->context, d, z, header_z);
2282
2283 return 0;
2284 }
2285
2286 static int ohci_queue_iso_receive_packet_per_buffer(struct fw_iso_context *base,
2287 struct fw_iso_packet *packet,
2288 struct fw_iso_buffer *buffer,
2289 unsigned long payload)
2290 {
2291 struct iso_context *ctx = container_of(base, struct iso_context, base);
2292 struct descriptor *d, *pd;
2293 struct fw_iso_packet *p = packet;
2294 dma_addr_t d_bus, page_bus;
2295 u32 z, header_z, rest;
2296 int i, j, length;
2297 int page, offset, packet_count, header_size, payload_per_buffer;
2298
2299 /*
2300 * The OHCI controller puts the isochronous header and trailer in the
2301 * buffer, so we need at least 8 bytes.
2302 */
2303 packet_count = p->header_length / ctx->base.header_size;
2304 header_size = max(ctx->base.header_size, (size_t)8);
2305
2306 /* Get header size in number of descriptors. */
2307 header_z = DIV_ROUND_UP(header_size, sizeof(*d));
2308 page = payload >> PAGE_SHIFT;
2309 offset = payload & ~PAGE_MASK;
2310 payload_per_buffer = p->payload_length / packet_count;
2311
2312 for (i = 0; i < packet_count; i++) {
2313 /* d points to the header descriptor */
2314 z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
2315 d = context_get_descriptors(&ctx->context,
2316 z + header_z, &d_bus);
2317 if (d == NULL)
2318 return -ENOMEM;
2319
2320 d->control = cpu_to_le16(DESCRIPTOR_STATUS |
2321 DESCRIPTOR_INPUT_MORE);
2322 if (p->skip && i == 0)
2323 d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
2324 d->req_count = cpu_to_le16(header_size);
2325 d->res_count = d->req_count;
2326 d->transfer_status = 0;
2327 d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
2328
2329 rest = payload_per_buffer;
2330 pd = d;
2331 for (j = 1; j < z; j++) {
2332 pd++;
2333 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
2334 DESCRIPTOR_INPUT_MORE);
2335
2336 if (offset + rest < PAGE_SIZE)
2337 length = rest;
2338 else
2339 length = PAGE_SIZE - offset;
2340 pd->req_count = cpu_to_le16(length);
2341 pd->res_count = pd->req_count;
2342 pd->transfer_status = 0;
2343
2344 page_bus = page_private(buffer->pages[page]);
2345 pd->data_address = cpu_to_le32(page_bus + offset);
2346
2347 offset = (offset + length) & ~PAGE_MASK;
2348 rest -= length;
2349 if (offset == 0)
2350 page++;
2351 }
2352 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
2353 DESCRIPTOR_INPUT_LAST |
2354 DESCRIPTOR_BRANCH_ALWAYS);
2355 if (p->interrupt && i == packet_count - 1)
2356 pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
2357
2358 context_append(&ctx->context, d, z, header_z);
2359 }
2360
2361 return 0;
2362 }
2363
2364 static int ohci_queue_iso(struct fw_iso_context *base,
2365 struct fw_iso_packet *packet,
2366 struct fw_iso_buffer *buffer,
2367 unsigned long payload)
2368 {
2369 struct iso_context *ctx = container_of(base, struct iso_context, base);
2370 unsigned long flags;
2371 int ret;
2372
2373 spin_lock_irqsave(&ctx->context.ohci->lock, flags);
2374 if (base->type == FW_ISO_CONTEXT_TRANSMIT)
2375 ret = ohci_queue_iso_transmit(base, packet, buffer, payload);
2376 else
2377 ret = ohci_queue_iso_receive_packet_per_buffer(base, packet,
2378 buffer, payload);
2379 spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);
2380
2381 return ret;
2382 }
2383
2384 static const struct fw_card_driver ohci_driver = {
2385 .enable = ohci_enable,
2386 .update_phy_reg = ohci_update_phy_reg,
2387 .set_config_rom = ohci_set_config_rom,
2388 .send_request = ohci_send_request,
2389 .send_response = ohci_send_response,
2390 .cancel_packet = ohci_cancel_packet,
2391 .enable_phys_dma = ohci_enable_phys_dma,
2392 .get_cycle_time = ohci_get_cycle_time,
2393
2394 .allocate_iso_context = ohci_allocate_iso_context,
2395 .free_iso_context = ohci_free_iso_context,
2396 .queue_iso = ohci_queue_iso,
2397 .start_iso = ohci_start_iso,
2398 .stop_iso = ohci_stop_iso,
2399 };
2400
2401 #ifdef CONFIG_PPC_PMAC
2402 static void ohci_pmac_on(struct pci_dev *dev)
2403 {
2404 if (machine_is(powermac)) {
2405 struct device_node *ofn = pci_device_to_OF_node(dev);
2406
2407 if (ofn) {
2408 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
2409 pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
2410 }
2411 }
2412 }
2413
2414 static void ohci_pmac_off(struct pci_dev *dev)
2415 {
2416 if (machine_is(powermac)) {
2417 struct device_node *ofn = pci_device_to_OF_node(dev);
2418
2419 if (ofn) {
2420 pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
2421 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
2422 }
2423 }
2424 }
2425 #else
2426 #define ohci_pmac_on(dev)
2427 #define ohci_pmac_off(dev)
2428 #endif /* CONFIG_PPC_PMAC */
2429
2430 static int __devinit pci_probe(struct pci_dev *dev,
2431 const struct pci_device_id *ent)
2432 {
2433 struct fw_ohci *ohci;
2434 u32 bus_options, max_receive, link_speed, version;
2435 u64 guid;
2436 int i, err, n_ir, n_it;
2437 size_t size;
2438
2439 ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
2440 if (ohci == NULL) {
2441 err = -ENOMEM;
2442 goto fail;
2443 }
2444
2445 fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
2446
2447 ohci_pmac_on(dev);
2448
2449 err = pci_enable_device(dev);
2450 if (err) {
2451 fw_error("Failed to enable OHCI hardware\n");
2452 goto fail_free;
2453 }
2454
2455 pci_set_master(dev);
2456 pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
2457 pci_set_drvdata(dev, ohci);
2458
2459 spin_lock_init(&ohci->lock);
2460
2461 tasklet_init(&ohci->bus_reset_tasklet,
2462 bus_reset_tasklet, (unsigned long)ohci);
2463
2464 err = pci_request_region(dev, 0, ohci_driver_name);
2465 if (err) {
2466 fw_error("MMIO resource unavailable\n");
2467 goto fail_disable;
2468 }
2469
2470 ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
2471 if (ohci->registers == NULL) {
2472 fw_error("Failed to remap registers\n");
2473 err = -ENXIO;
2474 goto fail_iomem;
2475 }
2476
2477 for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
2478 if (ohci_quirks[i].vendor == dev->vendor &&
2479 (ohci_quirks[i].device == dev->device ||
2480 ohci_quirks[i].device == (unsigned short)PCI_ANY_ID)) {
2481 ohci->quirks = ohci_quirks[i].flags;
2482 break;
2483 }
2484 if (param_quirks)
2485 ohci->quirks = param_quirks;
2486
2487 ar_context_init(&ohci->ar_request_ctx, ohci,
2488 OHCI1394_AsReqRcvContextControlSet);
2489
2490 ar_context_init(&ohci->ar_response_ctx, ohci,
2491 OHCI1394_AsRspRcvContextControlSet);
2492
2493 context_init(&ohci->at_request_ctx, ohci,
2494 OHCI1394_AsReqTrContextControlSet, handle_at_packet);
2495
2496 context_init(&ohci->at_response_ctx, ohci,
2497 OHCI1394_AsRspTrContextControlSet, handle_at_packet);
2498
2499 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
2500 ohci->ir_context_channels = ~0ULL;
2501 ohci->ir_context_mask = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
2502 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
2503 n_ir = hweight32(ohci->ir_context_mask);
2504 size = sizeof(struct iso_context) * n_ir;
2505 ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
2506
2507 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
2508 ohci->it_context_mask = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
2509 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
2510 n_it = hweight32(ohci->it_context_mask);
2511 size = sizeof(struct iso_context) * n_it;
2512 ohci->it_context_list = kzalloc(size, GFP_KERNEL);
2513
2514 if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
2515 err = -ENOMEM;
2516 goto fail_contexts;
2517 }
2518
2519 /* self-id dma buffer allocation */
2520 ohci->self_id_cpu = dma_alloc_coherent(ohci->card.device,
2521 SELF_ID_BUF_SIZE,
2522 &ohci->self_id_bus,
2523 GFP_KERNEL);
2524 if (ohci->self_id_cpu == NULL) {
2525 err = -ENOMEM;
2526 goto fail_contexts;
2527 }
2528
2529 bus_options = reg_read(ohci, OHCI1394_BusOptions);
2530 max_receive = (bus_options >> 12) & 0xf;
2531 link_speed = bus_options & 0x7;
2532 guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
2533 reg_read(ohci, OHCI1394_GUIDLo);
2534
2535 err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
2536 if (err)
2537 goto fail_self_id;
2538
2539 version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2540 fw_notify("Added fw-ohci device %s, OHCI v%x.%x, "
2541 "%d IR + %d IT contexts, quirks 0x%x\n",
2542 dev_name(&dev->dev), version >> 16, version & 0xff,
2543 n_ir, n_it, ohci->quirks);
2544
2545 return 0;
2546
2547 fail_self_id:
2548 dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
2549 ohci->self_id_cpu, ohci->self_id_bus);
2550 fail_contexts:
2551 kfree(ohci->ir_context_list);
2552 kfree(ohci->it_context_list);
2553 context_release(&ohci->at_response_ctx);
2554 context_release(&ohci->at_request_ctx);
2555 ar_context_release(&ohci->ar_response_ctx);
2556 ar_context_release(&ohci->ar_request_ctx);
2557 pci_iounmap(dev, ohci->registers);
2558 fail_iomem:
2559 pci_release_region(dev, 0);
2560 fail_disable:
2561 pci_disable_device(dev);
2562 fail_free:
2563 kfree(&ohci->card);
2564 ohci_pmac_off(dev);
2565 fail:
2566 if (err == -ENOMEM)
2567 fw_error("Out of memory\n");
2568
2569 return err;
2570 }
2571
2572 static void pci_remove(struct pci_dev *dev)
2573 {
2574 struct fw_ohci *ohci;
2575
2576 ohci = pci_get_drvdata(dev);
2577 reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2578 flush_writes(ohci);
2579 fw_core_remove_card(&ohci->card);
2580
2581 /*
2582 * FIXME: Fail all pending packets here, now that the upper
2583 * layers can't queue any more.
2584 */
2585
2586 software_reset(ohci);
2587 free_irq(dev->irq, ohci);
2588
2589 if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom)
2590 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2591 ohci->next_config_rom, ohci->next_config_rom_bus);
2592 if (ohci->config_rom)
2593 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2594 ohci->config_rom, ohci->config_rom_bus);
2595 dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
2596 ohci->self_id_cpu, ohci->self_id_bus);
2597 ar_context_release(&ohci->ar_request_ctx);
2598 ar_context_release(&ohci->ar_response_ctx);
2599 context_release(&ohci->at_request_ctx);
2600 context_release(&ohci->at_response_ctx);
2601 kfree(ohci->it_context_list);
2602 kfree(ohci->ir_context_list);
2603 pci_iounmap(dev, ohci->registers);
2604 pci_release_region(dev, 0);
2605 pci_disable_device(dev);
2606 kfree(&ohci->card);
2607 ohci_pmac_off(dev);
2608
2609 fw_notify("Removed fw-ohci device.\n");
2610 }
2611
2612 #ifdef CONFIG_PM
2613 static int pci_suspend(struct pci_dev *dev, pm_message_t state)
2614 {
2615 struct fw_ohci *ohci = pci_get_drvdata(dev);
2616 int err;
2617
2618 software_reset(ohci);
2619 free_irq(dev->irq, ohci);
2620 err = pci_save_state(dev);
2621 if (err) {
2622 fw_error("pci_save_state failed\n");
2623 return err;
2624 }
2625 err = pci_set_power_state(dev, pci_choose_state(dev, state));
2626 if (err)
2627 fw_error("pci_set_power_state failed with %d\n", err);
2628 ohci_pmac_off(dev);
2629
2630 return 0;
2631 }
2632
2633 static int pci_resume(struct pci_dev *dev)
2634 {
2635 struct fw_ohci *ohci = pci_get_drvdata(dev);
2636 int err;
2637
2638 ohci_pmac_on(dev);
2639 pci_set_power_state(dev, PCI_D0);
2640 pci_restore_state(dev);
2641 err = pci_enable_device(dev);
2642 if (err) {
2643 fw_error("pci_enable_device failed\n");
2644 return err;
2645 }
2646
2647 return ohci_enable(&ohci->card, NULL, 0);
2648 }
2649 #endif
2650
2651 static const struct pci_device_id pci_table[] = {
2652 { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
2653 { }
2654 };
2655
2656 MODULE_DEVICE_TABLE(pci, pci_table);
2657
2658 static struct pci_driver fw_ohci_pci_driver = {
2659 .name = ohci_driver_name,
2660 .id_table = pci_table,
2661 .probe = pci_probe,
2662 .remove = pci_remove,
2663 #ifdef CONFIG_PM
2664 .resume = pci_resume,
2665 .suspend = pci_suspend,
2666 #endif
2667 };
2668
2669 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
2670 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
2671 MODULE_LICENSE("GPL");
2672
2673 /* Provide a module alias so root-on-sbp2 initrds don't break. */
2674 #ifndef CONFIG_IEEE1394_OHCI1394_MODULE
2675 MODULE_ALIAS("ohci1394");
2676 #endif
2677
2678 static int __init fw_ohci_init(void)
2679 {
2680 return pci_register_driver(&fw_ohci_pci_driver);
2681 }
2682
2683 static void __exit fw_ohci_cleanup(void)
2684 {
2685 pci_unregister_driver(&fw_ohci_pci_driver);
2686 }
2687
2688 module_init(fw_ohci_init);
2689 module_exit(fw_ohci_cleanup);