]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/firewire/ohci.c
Merge branch 'fixes' of git://git.user.in-berlin.de/s5r6/linux1394
[mirror_ubuntu-zesty-kernel.git] / drivers / firewire / ohci.c
1 /*
2 * Driver for OHCI 1394 controllers
3 *
4 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21 #include <linux/bitops.h>
22 #include <linux/bug.h>
23 #include <linux/compiler.h>
24 #include <linux/delay.h>
25 #include <linux/device.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/firewire.h>
28 #include <linux/firewire-constants.h>
29 #include <linux/init.h>
30 #include <linux/interrupt.h>
31 #include <linux/io.h>
32 #include <linux/kernel.h>
33 #include <linux/list.h>
34 #include <linux/mm.h>
35 #include <linux/module.h>
36 #include <linux/moduleparam.h>
37 #include <linux/mutex.h>
38 #include <linux/pci.h>
39 #include <linux/pci_ids.h>
40 #include <linux/slab.h>
41 #include <linux/spinlock.h>
42 #include <linux/string.h>
43 #include <linux/time.h>
44 #include <linux/vmalloc.h>
45
46 #include <asm/byteorder.h>
47 #include <asm/page.h>
48 #include <asm/system.h>
49
50 #ifdef CONFIG_PPC_PMAC
51 #include <asm/pmac_feature.h>
52 #endif
53
54 #include "core.h"
55 #include "ohci.h"
56
57 #define DESCRIPTOR_OUTPUT_MORE 0
58 #define DESCRIPTOR_OUTPUT_LAST (1 << 12)
59 #define DESCRIPTOR_INPUT_MORE (2 << 12)
60 #define DESCRIPTOR_INPUT_LAST (3 << 12)
61 #define DESCRIPTOR_STATUS (1 << 11)
62 #define DESCRIPTOR_KEY_IMMEDIATE (2 << 8)
63 #define DESCRIPTOR_PING (1 << 7)
64 #define DESCRIPTOR_YY (1 << 6)
65 #define DESCRIPTOR_NO_IRQ (0 << 4)
66 #define DESCRIPTOR_IRQ_ERROR (1 << 4)
67 #define DESCRIPTOR_IRQ_ALWAYS (3 << 4)
68 #define DESCRIPTOR_BRANCH_ALWAYS (3 << 2)
69 #define DESCRIPTOR_WAIT (3 << 0)
70
71 struct descriptor {
72 __le16 req_count;
73 __le16 control;
74 __le32 data_address;
75 __le32 branch_address;
76 __le16 res_count;
77 __le16 transfer_status;
78 } __attribute__((aligned(16)));
79
80 #define CONTROL_SET(regs) (regs)
81 #define CONTROL_CLEAR(regs) ((regs) + 4)
82 #define COMMAND_PTR(regs) ((regs) + 12)
83 #define CONTEXT_MATCH(regs) ((regs) + 16)
84
85 #define AR_BUFFER_SIZE (32*1024)
86 #define AR_BUFFERS_MIN DIV_ROUND_UP(AR_BUFFER_SIZE, PAGE_SIZE)
87 /* we need at least two pages for proper list management */
88 #define AR_BUFFERS (AR_BUFFERS_MIN >= 2 ? AR_BUFFERS_MIN : 2)
89
90 #define MAX_ASYNC_PAYLOAD 4096
91 #define MAX_AR_PACKET_SIZE (16 + MAX_ASYNC_PAYLOAD + 4)
92 #define AR_WRAPAROUND_PAGES DIV_ROUND_UP(MAX_AR_PACKET_SIZE, PAGE_SIZE)
93
94 struct ar_context {
95 struct fw_ohci *ohci;
96 struct page *pages[AR_BUFFERS];
97 void *buffer;
98 struct descriptor *descriptors;
99 dma_addr_t descriptors_bus;
100 void *pointer;
101 unsigned int last_buffer_index;
102 u32 regs;
103 struct tasklet_struct tasklet;
104 };
105
106 struct context;
107
108 typedef int (*descriptor_callback_t)(struct context *ctx,
109 struct descriptor *d,
110 struct descriptor *last);
111
112 /*
113 * A buffer that contains a block of DMA-able coherent memory used for
114 * storing a portion of a DMA descriptor program.
115 */
116 struct descriptor_buffer {
117 struct list_head list;
118 dma_addr_t buffer_bus;
119 size_t buffer_size;
120 size_t used;
121 struct descriptor buffer[0];
122 };
123
124 struct context {
125 struct fw_ohci *ohci;
126 u32 regs;
127 int total_allocation;
128 bool running;
129 bool flushing;
130
131 /*
132 * List of page-sized buffers for storing DMA descriptors.
133 * Head of list contains buffers in use and tail of list contains
134 * free buffers.
135 */
136 struct list_head buffer_list;
137
138 /*
139 * Pointer to a buffer inside buffer_list that contains the tail
140 * end of the current DMA program.
141 */
142 struct descriptor_buffer *buffer_tail;
143
144 /*
145 * The descriptor containing the branch address of the first
146 * descriptor that has not yet been filled by the device.
147 */
148 struct descriptor *last;
149
150 /*
151 * The last descriptor in the DMA program. It contains the branch
152 * address that must be updated upon appending a new descriptor.
153 */
154 struct descriptor *prev;
155
156 descriptor_callback_t callback;
157
158 struct tasklet_struct tasklet;
159 };
160
161 #define IT_HEADER_SY(v) ((v) << 0)
162 #define IT_HEADER_TCODE(v) ((v) << 4)
163 #define IT_HEADER_CHANNEL(v) ((v) << 8)
164 #define IT_HEADER_TAG(v) ((v) << 14)
165 #define IT_HEADER_SPEED(v) ((v) << 16)
166 #define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
167
168 struct iso_context {
169 struct fw_iso_context base;
170 struct context context;
171 int excess_bytes;
172 void *header;
173 size_t header_length;
174
175 u8 sync;
176 u8 tags;
177 };
178
179 #define CONFIG_ROM_SIZE 1024
180
181 struct fw_ohci {
182 struct fw_card card;
183
184 __iomem char *registers;
185 int node_id;
186 int generation;
187 int request_generation; /* for timestamping incoming requests */
188 unsigned quirks;
189 unsigned int pri_req_max;
190 u32 bus_time;
191 bool is_root;
192 bool csr_state_setclear_abdicate;
193 int n_ir;
194 int n_it;
195 /*
196 * Spinlock for accessing fw_ohci data. Never call out of
197 * this driver with this lock held.
198 */
199 spinlock_t lock;
200
201 struct mutex phy_reg_mutex;
202
203 void *misc_buffer;
204 dma_addr_t misc_buffer_bus;
205
206 struct ar_context ar_request_ctx;
207 struct ar_context ar_response_ctx;
208 struct context at_request_ctx;
209 struct context at_response_ctx;
210
211 u32 it_context_support;
212 u32 it_context_mask; /* unoccupied IT contexts */
213 struct iso_context *it_context_list;
214 u64 ir_context_channels; /* unoccupied channels */
215 u32 ir_context_support;
216 u32 ir_context_mask; /* unoccupied IR contexts */
217 struct iso_context *ir_context_list;
218 u64 mc_channels; /* channels in use by the multichannel IR context */
219 bool mc_allocated;
220
221 __be32 *config_rom;
222 dma_addr_t config_rom_bus;
223 __be32 *next_config_rom;
224 dma_addr_t next_config_rom_bus;
225 __be32 next_header;
226
227 __le32 *self_id_cpu;
228 dma_addr_t self_id_bus;
229 struct tasklet_struct bus_reset_tasklet;
230
231 u32 self_id_buffer[512];
232 };
233
234 static inline struct fw_ohci *fw_ohci(struct fw_card *card)
235 {
236 return container_of(card, struct fw_ohci, card);
237 }
238
239 #define IT_CONTEXT_CYCLE_MATCH_ENABLE 0x80000000
240 #define IR_CONTEXT_BUFFER_FILL 0x80000000
241 #define IR_CONTEXT_ISOCH_HEADER 0x40000000
242 #define IR_CONTEXT_CYCLE_MATCH_ENABLE 0x20000000
243 #define IR_CONTEXT_MULTI_CHANNEL_MODE 0x10000000
244 #define IR_CONTEXT_DUAL_BUFFER_MODE 0x08000000
245
246 #define CONTEXT_RUN 0x8000
247 #define CONTEXT_WAKE 0x1000
248 #define CONTEXT_DEAD 0x0800
249 #define CONTEXT_ACTIVE 0x0400
250
251 #define OHCI1394_MAX_AT_REQ_RETRIES 0xf
252 #define OHCI1394_MAX_AT_RESP_RETRIES 0x2
253 #define OHCI1394_MAX_PHYS_RESP_RETRIES 0x8
254
255 #define OHCI1394_REGISTER_SIZE 0x800
256 #define OHCI1394_PCI_HCI_Control 0x40
257 #define SELF_ID_BUF_SIZE 0x800
258 #define OHCI_TCODE_PHY_PACKET 0x0e
259 #define OHCI_VERSION_1_1 0x010010
260
261 static char ohci_driver_name[] = KBUILD_MODNAME;
262
263 #define PCI_DEVICE_ID_AGERE_FW643 0x5901
264 #define PCI_DEVICE_ID_JMICRON_JMB38X_FW 0x2380
265 #define PCI_DEVICE_ID_TI_TSB12LV22 0x8009
266 #define PCI_VENDOR_ID_PINNACLE_SYSTEMS 0x11bd
267
268 #define QUIRK_CYCLE_TIMER 1
269 #define QUIRK_RESET_PACKET 2
270 #define QUIRK_BE_HEADERS 4
271 #define QUIRK_NO_1394A 8
272 #define QUIRK_NO_MSI 16
273
274 /* In case of multiple matches in ohci_quirks[], only the first one is used. */
275 static const struct {
276 unsigned short vendor, device, revision, flags;
277 } ohci_quirks[] = {
278 {PCI_VENDOR_ID_AL, PCI_ANY_ID, PCI_ANY_ID,
279 QUIRK_CYCLE_TIMER},
280
281 {PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_FW, PCI_ANY_ID,
282 QUIRK_BE_HEADERS},
283
284 {PCI_VENDOR_ID_ATT, PCI_DEVICE_ID_AGERE_FW643, 6,
285 QUIRK_NO_MSI},
286
287 {PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB38X_FW, PCI_ANY_ID,
288 QUIRK_NO_MSI},
289
290 {PCI_VENDOR_ID_NEC, PCI_ANY_ID, PCI_ANY_ID,
291 QUIRK_CYCLE_TIMER},
292
293 {PCI_VENDOR_ID_O2, PCI_ANY_ID, PCI_ANY_ID,
294 QUIRK_NO_MSI},
295
296 {PCI_VENDOR_ID_RICOH, PCI_ANY_ID, PCI_ANY_ID,
297 QUIRK_CYCLE_TIMER},
298
299 {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV22, PCI_ANY_ID,
300 QUIRK_CYCLE_TIMER | QUIRK_RESET_PACKET | QUIRK_NO_1394A},
301
302 {PCI_VENDOR_ID_TI, PCI_ANY_ID, PCI_ANY_ID,
303 QUIRK_RESET_PACKET},
304
305 {PCI_VENDOR_ID_VIA, PCI_ANY_ID, PCI_ANY_ID,
306 QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
307 };
308
309 /* This overrides anything that was found in ohci_quirks[]. */
310 static int param_quirks;
311 module_param_named(quirks, param_quirks, int, 0644);
312 MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
313 ", nonatomic cycle timer = " __stringify(QUIRK_CYCLE_TIMER)
314 ", reset packet generation = " __stringify(QUIRK_RESET_PACKET)
315 ", AR/selfID endianess = " __stringify(QUIRK_BE_HEADERS)
316 ", no 1394a enhancements = " __stringify(QUIRK_NO_1394A)
317 ", disable MSI = " __stringify(QUIRK_NO_MSI)
318 ")");
319
320 #define OHCI_PARAM_DEBUG_AT_AR 1
321 #define OHCI_PARAM_DEBUG_SELFIDS 2
322 #define OHCI_PARAM_DEBUG_IRQS 4
323 #define OHCI_PARAM_DEBUG_BUSRESETS 8 /* only effective before chip init */
324
325 #ifdef CONFIG_FIREWIRE_OHCI_DEBUG
326
327 static int param_debug;
328 module_param_named(debug, param_debug, int, 0644);
329 MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
330 ", AT/AR events = " __stringify(OHCI_PARAM_DEBUG_AT_AR)
331 ", self-IDs = " __stringify(OHCI_PARAM_DEBUG_SELFIDS)
332 ", IRQs = " __stringify(OHCI_PARAM_DEBUG_IRQS)
333 ", busReset events = " __stringify(OHCI_PARAM_DEBUG_BUSRESETS)
334 ", or a combination, or all = -1)");
335
336 static void log_irqs(u32 evt)
337 {
338 if (likely(!(param_debug &
339 (OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
340 return;
341
342 if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
343 !(evt & OHCI1394_busReset))
344 return;
345
346 fw_notify("IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
347 evt & OHCI1394_selfIDComplete ? " selfID" : "",
348 evt & OHCI1394_RQPkt ? " AR_req" : "",
349 evt & OHCI1394_RSPkt ? " AR_resp" : "",
350 evt & OHCI1394_reqTxComplete ? " AT_req" : "",
351 evt & OHCI1394_respTxComplete ? " AT_resp" : "",
352 evt & OHCI1394_isochRx ? " IR" : "",
353 evt & OHCI1394_isochTx ? " IT" : "",
354 evt & OHCI1394_postedWriteErr ? " postedWriteErr" : "",
355 evt & OHCI1394_cycleTooLong ? " cycleTooLong" : "",
356 evt & OHCI1394_cycle64Seconds ? " cycle64Seconds" : "",
357 evt & OHCI1394_cycleInconsistent ? " cycleInconsistent" : "",
358 evt & OHCI1394_regAccessFail ? " regAccessFail" : "",
359 evt & OHCI1394_unrecoverableError ? " unrecoverableError" : "",
360 evt & OHCI1394_busReset ? " busReset" : "",
361 evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
362 OHCI1394_RSPkt | OHCI1394_reqTxComplete |
363 OHCI1394_respTxComplete | OHCI1394_isochRx |
364 OHCI1394_isochTx | OHCI1394_postedWriteErr |
365 OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
366 OHCI1394_cycleInconsistent |
367 OHCI1394_regAccessFail | OHCI1394_busReset)
368 ? " ?" : "");
369 }
370
371 static const char *speed[] = {
372 [0] = "S100", [1] = "S200", [2] = "S400", [3] = "beta",
373 };
374 static const char *power[] = {
375 [0] = "+0W", [1] = "+15W", [2] = "+30W", [3] = "+45W",
376 [4] = "-3W", [5] = " ?W", [6] = "-3..-6W", [7] = "-3..-10W",
377 };
378 static const char port[] = { '.', '-', 'p', 'c', };
379
380 static char _p(u32 *s, int shift)
381 {
382 return port[*s >> shift & 3];
383 }
384
385 static void log_selfids(int node_id, int generation, int self_id_count, u32 *s)
386 {
387 if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
388 return;
389
390 fw_notify("%d selfIDs, generation %d, local node ID %04x\n",
391 self_id_count, generation, node_id);
392
393 for (; self_id_count--; ++s)
394 if ((*s & 1 << 23) == 0)
395 fw_notify("selfID 0: %08x, phy %d [%c%c%c] "
396 "%s gc=%d %s %s%s%s\n",
397 *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
398 speed[*s >> 14 & 3], *s >> 16 & 63,
399 power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
400 *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
401 else
402 fw_notify("selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
403 *s, *s >> 24 & 63,
404 _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
405 _p(s, 8), _p(s, 6), _p(s, 4), _p(s, 2));
406 }
407
408 static const char *evts[] = {
409 [0x00] = "evt_no_status", [0x01] = "-reserved-",
410 [0x02] = "evt_long_packet", [0x03] = "evt_missing_ack",
411 [0x04] = "evt_underrun", [0x05] = "evt_overrun",
412 [0x06] = "evt_descriptor_read", [0x07] = "evt_data_read",
413 [0x08] = "evt_data_write", [0x09] = "evt_bus_reset",
414 [0x0a] = "evt_timeout", [0x0b] = "evt_tcode_err",
415 [0x0c] = "-reserved-", [0x0d] = "-reserved-",
416 [0x0e] = "evt_unknown", [0x0f] = "evt_flushed",
417 [0x10] = "-reserved-", [0x11] = "ack_complete",
418 [0x12] = "ack_pending ", [0x13] = "-reserved-",
419 [0x14] = "ack_busy_X", [0x15] = "ack_busy_A",
420 [0x16] = "ack_busy_B", [0x17] = "-reserved-",
421 [0x18] = "-reserved-", [0x19] = "-reserved-",
422 [0x1a] = "-reserved-", [0x1b] = "ack_tardy",
423 [0x1c] = "-reserved-", [0x1d] = "ack_data_error",
424 [0x1e] = "ack_type_error", [0x1f] = "-reserved-",
425 [0x20] = "pending/cancelled",
426 };
427 static const char *tcodes[] = {
428 [0x0] = "QW req", [0x1] = "BW req",
429 [0x2] = "W resp", [0x3] = "-reserved-",
430 [0x4] = "QR req", [0x5] = "BR req",
431 [0x6] = "QR resp", [0x7] = "BR resp",
432 [0x8] = "cycle start", [0x9] = "Lk req",
433 [0xa] = "async stream packet", [0xb] = "Lk resp",
434 [0xc] = "-reserved-", [0xd] = "-reserved-",
435 [0xe] = "link internal", [0xf] = "-reserved-",
436 };
437
438 static void log_ar_at_event(char dir, int speed, u32 *header, int evt)
439 {
440 int tcode = header[0] >> 4 & 0xf;
441 char specific[12];
442
443 if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
444 return;
445
446 if (unlikely(evt >= ARRAY_SIZE(evts)))
447 evt = 0x1f;
448
449 if (evt == OHCI1394_evt_bus_reset) {
450 fw_notify("A%c evt_bus_reset, generation %d\n",
451 dir, (header[2] >> 16) & 0xff);
452 return;
453 }
454
455 switch (tcode) {
456 case 0x0: case 0x6: case 0x8:
457 snprintf(specific, sizeof(specific), " = %08x",
458 be32_to_cpu((__force __be32)header[3]));
459 break;
460 case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
461 snprintf(specific, sizeof(specific), " %x,%x",
462 header[3] >> 16, header[3] & 0xffff);
463 break;
464 default:
465 specific[0] = '\0';
466 }
467
468 switch (tcode) {
469 case 0xa:
470 fw_notify("A%c %s, %s\n", dir, evts[evt], tcodes[tcode]);
471 break;
472 case 0xe:
473 fw_notify("A%c %s, PHY %08x %08x\n",
474 dir, evts[evt], header[1], header[2]);
475 break;
476 case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
477 fw_notify("A%c spd %x tl %02x, "
478 "%04x -> %04x, %s, "
479 "%s, %04x%08x%s\n",
480 dir, speed, header[0] >> 10 & 0x3f,
481 header[1] >> 16, header[0] >> 16, evts[evt],
482 tcodes[tcode], header[1] & 0xffff, header[2], specific);
483 break;
484 default:
485 fw_notify("A%c spd %x tl %02x, "
486 "%04x -> %04x, %s, "
487 "%s%s\n",
488 dir, speed, header[0] >> 10 & 0x3f,
489 header[1] >> 16, header[0] >> 16, evts[evt],
490 tcodes[tcode], specific);
491 }
492 }
493
494 #else
495
496 #define param_debug 0
497 static inline void log_irqs(u32 evt) {}
498 static inline void log_selfids(int node_id, int generation, int self_id_count, u32 *s) {}
499 static inline void log_ar_at_event(char dir, int speed, u32 *header, int evt) {}
500
501 #endif /* CONFIG_FIREWIRE_OHCI_DEBUG */
502
503 static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
504 {
505 writel(data, ohci->registers + offset);
506 }
507
508 static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
509 {
510 return readl(ohci->registers + offset);
511 }
512
513 static inline void flush_writes(const struct fw_ohci *ohci)
514 {
515 /* Do a dummy read to flush writes. */
516 reg_read(ohci, OHCI1394_Version);
517 }
518
519 /*
520 * Beware! read_phy_reg(), write_phy_reg(), update_phy_reg(), and
521 * read_paged_phy_reg() require the caller to hold ohci->phy_reg_mutex.
522 * In other words, only use ohci_read_phy_reg() and ohci_update_phy_reg()
523 * directly. Exceptions are intrinsically serialized contexts like pci_probe.
524 */
525 static int read_phy_reg(struct fw_ohci *ohci, int addr)
526 {
527 u32 val;
528 int i;
529
530 reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
531 for (i = 0; i < 3 + 100; i++) {
532 val = reg_read(ohci, OHCI1394_PhyControl);
533 if (!~val)
534 return -ENODEV; /* Card was ejected. */
535
536 if (val & OHCI1394_PhyControl_ReadDone)
537 return OHCI1394_PhyControl_ReadData(val);
538
539 /*
540 * Try a few times without waiting. Sleeping is necessary
541 * only when the link/PHY interface is busy.
542 */
543 if (i >= 3)
544 msleep(1);
545 }
546 fw_error("failed to read phy reg\n");
547
548 return -EBUSY;
549 }
550
551 static int write_phy_reg(const struct fw_ohci *ohci, int addr, u32 val)
552 {
553 int i;
554
555 reg_write(ohci, OHCI1394_PhyControl,
556 OHCI1394_PhyControl_Write(addr, val));
557 for (i = 0; i < 3 + 100; i++) {
558 val = reg_read(ohci, OHCI1394_PhyControl);
559 if (!~val)
560 return -ENODEV; /* Card was ejected. */
561
562 if (!(val & OHCI1394_PhyControl_WritePending))
563 return 0;
564
565 if (i >= 3)
566 msleep(1);
567 }
568 fw_error("failed to write phy reg\n");
569
570 return -EBUSY;
571 }
572
573 static int update_phy_reg(struct fw_ohci *ohci, int addr,
574 int clear_bits, int set_bits)
575 {
576 int ret = read_phy_reg(ohci, addr);
577 if (ret < 0)
578 return ret;
579
580 /*
581 * The interrupt status bits are cleared by writing a one bit.
582 * Avoid clearing them unless explicitly requested in set_bits.
583 */
584 if (addr == 5)
585 clear_bits |= PHY_INT_STATUS_BITS;
586
587 return write_phy_reg(ohci, addr, (ret & ~clear_bits) | set_bits);
588 }
589
590 static int read_paged_phy_reg(struct fw_ohci *ohci, int page, int addr)
591 {
592 int ret;
593
594 ret = update_phy_reg(ohci, 7, PHY_PAGE_SELECT, page << 5);
595 if (ret < 0)
596 return ret;
597
598 return read_phy_reg(ohci, addr);
599 }
600
601 static int ohci_read_phy_reg(struct fw_card *card, int addr)
602 {
603 struct fw_ohci *ohci = fw_ohci(card);
604 int ret;
605
606 mutex_lock(&ohci->phy_reg_mutex);
607 ret = read_phy_reg(ohci, addr);
608 mutex_unlock(&ohci->phy_reg_mutex);
609
610 return ret;
611 }
612
613 static int ohci_update_phy_reg(struct fw_card *card, int addr,
614 int clear_bits, int set_bits)
615 {
616 struct fw_ohci *ohci = fw_ohci(card);
617 int ret;
618
619 mutex_lock(&ohci->phy_reg_mutex);
620 ret = update_phy_reg(ohci, addr, clear_bits, set_bits);
621 mutex_unlock(&ohci->phy_reg_mutex);
622
623 return ret;
624 }
625
626 static inline dma_addr_t ar_buffer_bus(struct ar_context *ctx, unsigned int i)
627 {
628 return page_private(ctx->pages[i]);
629 }
630
631 static void ar_context_link_page(struct ar_context *ctx, unsigned int index)
632 {
633 struct descriptor *d;
634
635 d = &ctx->descriptors[index];
636 d->branch_address &= cpu_to_le32(~0xf);
637 d->res_count = cpu_to_le16(PAGE_SIZE);
638 d->transfer_status = 0;
639
640 wmb(); /* finish init of new descriptors before branch_address update */
641 d = &ctx->descriptors[ctx->last_buffer_index];
642 d->branch_address |= cpu_to_le32(1);
643
644 ctx->last_buffer_index = index;
645
646 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
647 }
648
649 static void ar_context_release(struct ar_context *ctx)
650 {
651 unsigned int i;
652
653 if (ctx->buffer)
654 vm_unmap_ram(ctx->buffer, AR_BUFFERS + AR_WRAPAROUND_PAGES);
655
656 for (i = 0; i < AR_BUFFERS; i++)
657 if (ctx->pages[i]) {
658 dma_unmap_page(ctx->ohci->card.device,
659 ar_buffer_bus(ctx, i),
660 PAGE_SIZE, DMA_FROM_DEVICE);
661 __free_page(ctx->pages[i]);
662 }
663 }
664
665 static void ar_context_abort(struct ar_context *ctx, const char *error_msg)
666 {
667 if (reg_read(ctx->ohci, CONTROL_CLEAR(ctx->regs)) & CONTEXT_RUN) {
668 reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
669 flush_writes(ctx->ohci);
670
671 fw_error("AR error: %s; DMA stopped\n", error_msg);
672 }
673 /* FIXME: restart? */
674 }
675
676 static inline unsigned int ar_next_buffer_index(unsigned int index)
677 {
678 return (index + 1) % AR_BUFFERS;
679 }
680
681 static inline unsigned int ar_prev_buffer_index(unsigned int index)
682 {
683 return (index - 1 + AR_BUFFERS) % AR_BUFFERS;
684 }
685
686 static inline unsigned int ar_first_buffer_index(struct ar_context *ctx)
687 {
688 return ar_next_buffer_index(ctx->last_buffer_index);
689 }
690
691 /*
692 * We search for the buffer that contains the last AR packet DMA data written
693 * by the controller.
694 */
695 static unsigned int ar_search_last_active_buffer(struct ar_context *ctx,
696 unsigned int *buffer_offset)
697 {
698 unsigned int i, next_i, last = ctx->last_buffer_index;
699 __le16 res_count, next_res_count;
700
701 i = ar_first_buffer_index(ctx);
702 res_count = ACCESS_ONCE(ctx->descriptors[i].res_count);
703
704 /* A buffer that is not yet completely filled must be the last one. */
705 while (i != last && res_count == 0) {
706
707 /* Peek at the next descriptor. */
708 next_i = ar_next_buffer_index(i);
709 rmb(); /* read descriptors in order */
710 next_res_count = ACCESS_ONCE(
711 ctx->descriptors[next_i].res_count);
712 /*
713 * If the next descriptor is still empty, we must stop at this
714 * descriptor.
715 */
716 if (next_res_count == cpu_to_le16(PAGE_SIZE)) {
717 /*
718 * The exception is when the DMA data for one packet is
719 * split over three buffers; in this case, the middle
720 * buffer's descriptor might be never updated by the
721 * controller and look still empty, and we have to peek
722 * at the third one.
723 */
724 if (MAX_AR_PACKET_SIZE > PAGE_SIZE && i != last) {
725 next_i = ar_next_buffer_index(next_i);
726 rmb();
727 next_res_count = ACCESS_ONCE(
728 ctx->descriptors[next_i].res_count);
729 if (next_res_count != cpu_to_le16(PAGE_SIZE))
730 goto next_buffer_is_active;
731 }
732
733 break;
734 }
735
736 next_buffer_is_active:
737 i = next_i;
738 res_count = next_res_count;
739 }
740
741 rmb(); /* read res_count before the DMA data */
742
743 *buffer_offset = PAGE_SIZE - le16_to_cpu(res_count);
744 if (*buffer_offset > PAGE_SIZE) {
745 *buffer_offset = 0;
746 ar_context_abort(ctx, "corrupted descriptor");
747 }
748
749 return i;
750 }
751
752 static void ar_sync_buffers_for_cpu(struct ar_context *ctx,
753 unsigned int end_buffer_index,
754 unsigned int end_buffer_offset)
755 {
756 unsigned int i;
757
758 i = ar_first_buffer_index(ctx);
759 while (i != end_buffer_index) {
760 dma_sync_single_for_cpu(ctx->ohci->card.device,
761 ar_buffer_bus(ctx, i),
762 PAGE_SIZE, DMA_FROM_DEVICE);
763 i = ar_next_buffer_index(i);
764 }
765 if (end_buffer_offset > 0)
766 dma_sync_single_for_cpu(ctx->ohci->card.device,
767 ar_buffer_bus(ctx, i),
768 end_buffer_offset, DMA_FROM_DEVICE);
769 }
770
771 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
772 #define cond_le32_to_cpu(v) \
773 (ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
774 #else
775 #define cond_le32_to_cpu(v) le32_to_cpu(v)
776 #endif
777
778 static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
779 {
780 struct fw_ohci *ohci = ctx->ohci;
781 struct fw_packet p;
782 u32 status, length, tcode;
783 int evt;
784
785 p.header[0] = cond_le32_to_cpu(buffer[0]);
786 p.header[1] = cond_le32_to_cpu(buffer[1]);
787 p.header[2] = cond_le32_to_cpu(buffer[2]);
788
789 tcode = (p.header[0] >> 4) & 0x0f;
790 switch (tcode) {
791 case TCODE_WRITE_QUADLET_REQUEST:
792 case TCODE_READ_QUADLET_RESPONSE:
793 p.header[3] = (__force __u32) buffer[3];
794 p.header_length = 16;
795 p.payload_length = 0;
796 break;
797
798 case TCODE_READ_BLOCK_REQUEST :
799 p.header[3] = cond_le32_to_cpu(buffer[3]);
800 p.header_length = 16;
801 p.payload_length = 0;
802 break;
803
804 case TCODE_WRITE_BLOCK_REQUEST:
805 case TCODE_READ_BLOCK_RESPONSE:
806 case TCODE_LOCK_REQUEST:
807 case TCODE_LOCK_RESPONSE:
808 p.header[3] = cond_le32_to_cpu(buffer[3]);
809 p.header_length = 16;
810 p.payload_length = p.header[3] >> 16;
811 if (p.payload_length > MAX_ASYNC_PAYLOAD) {
812 ar_context_abort(ctx, "invalid packet length");
813 return NULL;
814 }
815 break;
816
817 case TCODE_WRITE_RESPONSE:
818 case TCODE_READ_QUADLET_REQUEST:
819 case OHCI_TCODE_PHY_PACKET:
820 p.header_length = 12;
821 p.payload_length = 0;
822 break;
823
824 default:
825 ar_context_abort(ctx, "invalid tcode");
826 return NULL;
827 }
828
829 p.payload = (void *) buffer + p.header_length;
830
831 /* FIXME: What to do about evt_* errors? */
832 length = (p.header_length + p.payload_length + 3) / 4;
833 status = cond_le32_to_cpu(buffer[length]);
834 evt = (status >> 16) & 0x1f;
835
836 p.ack = evt - 16;
837 p.speed = (status >> 21) & 0x7;
838 p.timestamp = status & 0xffff;
839 p.generation = ohci->request_generation;
840
841 log_ar_at_event('R', p.speed, p.header, evt);
842
843 /*
844 * Several controllers, notably from NEC and VIA, forget to
845 * write ack_complete status at PHY packet reception.
846 */
847 if (evt == OHCI1394_evt_no_status &&
848 (p.header[0] & 0xff) == (OHCI1394_phy_tcode << 4))
849 p.ack = ACK_COMPLETE;
850
851 /*
852 * The OHCI bus reset handler synthesizes a PHY packet with
853 * the new generation number when a bus reset happens (see
854 * section 8.4.2.3). This helps us determine when a request
855 * was received and make sure we send the response in the same
856 * generation. We only need this for requests; for responses
857 * we use the unique tlabel for finding the matching
858 * request.
859 *
860 * Alas some chips sometimes emit bus reset packets with a
861 * wrong generation. We set the correct generation for these
862 * at a slightly incorrect time (in bus_reset_tasklet).
863 */
864 if (evt == OHCI1394_evt_bus_reset) {
865 if (!(ohci->quirks & QUIRK_RESET_PACKET))
866 ohci->request_generation = (p.header[2] >> 16) & 0xff;
867 } else if (ctx == &ohci->ar_request_ctx) {
868 fw_core_handle_request(&ohci->card, &p);
869 } else {
870 fw_core_handle_response(&ohci->card, &p);
871 }
872
873 return buffer + length + 1;
874 }
875
876 static void *handle_ar_packets(struct ar_context *ctx, void *p, void *end)
877 {
878 void *next;
879
880 while (p < end) {
881 next = handle_ar_packet(ctx, p);
882 if (!next)
883 return p;
884 p = next;
885 }
886
887 return p;
888 }
889
890 static void ar_recycle_buffers(struct ar_context *ctx, unsigned int end_buffer)
891 {
892 unsigned int i;
893
894 i = ar_first_buffer_index(ctx);
895 while (i != end_buffer) {
896 dma_sync_single_for_device(ctx->ohci->card.device,
897 ar_buffer_bus(ctx, i),
898 PAGE_SIZE, DMA_FROM_DEVICE);
899 ar_context_link_page(ctx, i);
900 i = ar_next_buffer_index(i);
901 }
902 }
903
904 static void ar_context_tasklet(unsigned long data)
905 {
906 struct ar_context *ctx = (struct ar_context *)data;
907 unsigned int end_buffer_index, end_buffer_offset;
908 void *p, *end;
909
910 p = ctx->pointer;
911 if (!p)
912 return;
913
914 end_buffer_index = ar_search_last_active_buffer(ctx,
915 &end_buffer_offset);
916 ar_sync_buffers_for_cpu(ctx, end_buffer_index, end_buffer_offset);
917 end = ctx->buffer + end_buffer_index * PAGE_SIZE + end_buffer_offset;
918
919 if (end_buffer_index < ar_first_buffer_index(ctx)) {
920 /*
921 * The filled part of the overall buffer wraps around; handle
922 * all packets up to the buffer end here. If the last packet
923 * wraps around, its tail will be visible after the buffer end
924 * because the buffer start pages are mapped there again.
925 */
926 void *buffer_end = ctx->buffer + AR_BUFFERS * PAGE_SIZE;
927 p = handle_ar_packets(ctx, p, buffer_end);
928 if (p < buffer_end)
929 goto error;
930 /* adjust p to point back into the actual buffer */
931 p -= AR_BUFFERS * PAGE_SIZE;
932 }
933
934 p = handle_ar_packets(ctx, p, end);
935 if (p != end) {
936 if (p > end)
937 ar_context_abort(ctx, "inconsistent descriptor");
938 goto error;
939 }
940
941 ctx->pointer = p;
942 ar_recycle_buffers(ctx, end_buffer_index);
943
944 return;
945
946 error:
947 ctx->pointer = NULL;
948 }
949
950 static int ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci,
951 unsigned int descriptors_offset, u32 regs)
952 {
953 unsigned int i;
954 dma_addr_t dma_addr;
955 struct page *pages[AR_BUFFERS + AR_WRAPAROUND_PAGES];
956 struct descriptor *d;
957
958 ctx->regs = regs;
959 ctx->ohci = ohci;
960 tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
961
962 for (i = 0; i < AR_BUFFERS; i++) {
963 ctx->pages[i] = alloc_page(GFP_KERNEL | GFP_DMA32);
964 if (!ctx->pages[i])
965 goto out_of_memory;
966 dma_addr = dma_map_page(ohci->card.device, ctx->pages[i],
967 0, PAGE_SIZE, DMA_FROM_DEVICE);
968 if (dma_mapping_error(ohci->card.device, dma_addr)) {
969 __free_page(ctx->pages[i]);
970 ctx->pages[i] = NULL;
971 goto out_of_memory;
972 }
973 set_page_private(ctx->pages[i], dma_addr);
974 }
975
976 for (i = 0; i < AR_BUFFERS; i++)
977 pages[i] = ctx->pages[i];
978 for (i = 0; i < AR_WRAPAROUND_PAGES; i++)
979 pages[AR_BUFFERS + i] = ctx->pages[i];
980 ctx->buffer = vm_map_ram(pages, AR_BUFFERS + AR_WRAPAROUND_PAGES,
981 -1, PAGE_KERNEL);
982 if (!ctx->buffer)
983 goto out_of_memory;
984
985 ctx->descriptors = ohci->misc_buffer + descriptors_offset;
986 ctx->descriptors_bus = ohci->misc_buffer_bus + descriptors_offset;
987
988 for (i = 0; i < AR_BUFFERS; i++) {
989 d = &ctx->descriptors[i];
990 d->req_count = cpu_to_le16(PAGE_SIZE);
991 d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
992 DESCRIPTOR_STATUS |
993 DESCRIPTOR_BRANCH_ALWAYS);
994 d->data_address = cpu_to_le32(ar_buffer_bus(ctx, i));
995 d->branch_address = cpu_to_le32(ctx->descriptors_bus +
996 ar_next_buffer_index(i) * sizeof(struct descriptor));
997 }
998
999 return 0;
1000
1001 out_of_memory:
1002 ar_context_release(ctx);
1003
1004 return -ENOMEM;
1005 }
1006
1007 static void ar_context_run(struct ar_context *ctx)
1008 {
1009 unsigned int i;
1010
1011 for (i = 0; i < AR_BUFFERS; i++)
1012 ar_context_link_page(ctx, i);
1013
1014 ctx->pointer = ctx->buffer;
1015
1016 reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ctx->descriptors_bus | 1);
1017 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
1018 }
1019
1020 static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
1021 {
1022 __le16 branch;
1023
1024 branch = d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS);
1025
1026 /* figure out which descriptor the branch address goes in */
1027 if (z == 2 && branch == cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
1028 return d;
1029 else
1030 return d + z - 1;
1031 }
1032
1033 static void context_tasklet(unsigned long data)
1034 {
1035 struct context *ctx = (struct context *) data;
1036 struct descriptor *d, *last;
1037 u32 address;
1038 int z;
1039 struct descriptor_buffer *desc;
1040
1041 desc = list_entry(ctx->buffer_list.next,
1042 struct descriptor_buffer, list);
1043 last = ctx->last;
1044 while (last->branch_address != 0) {
1045 struct descriptor_buffer *old_desc = desc;
1046 address = le32_to_cpu(last->branch_address);
1047 z = address & 0xf;
1048 address &= ~0xf;
1049
1050 /* If the branch address points to a buffer outside of the
1051 * current buffer, advance to the next buffer. */
1052 if (address < desc->buffer_bus ||
1053 address >= desc->buffer_bus + desc->used)
1054 desc = list_entry(desc->list.next,
1055 struct descriptor_buffer, list);
1056 d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
1057 last = find_branch_descriptor(d, z);
1058
1059 if (!ctx->callback(ctx, d, last))
1060 break;
1061
1062 if (old_desc != desc) {
1063 /* If we've advanced to the next buffer, move the
1064 * previous buffer to the free list. */
1065 unsigned long flags;
1066 old_desc->used = 0;
1067 spin_lock_irqsave(&ctx->ohci->lock, flags);
1068 list_move_tail(&old_desc->list, &ctx->buffer_list);
1069 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1070 }
1071 ctx->last = last;
1072 }
1073 }
1074
1075 /*
1076 * Allocate a new buffer and add it to the list of free buffers for this
1077 * context. Must be called with ohci->lock held.
1078 */
1079 static int context_add_buffer(struct context *ctx)
1080 {
1081 struct descriptor_buffer *desc;
1082 dma_addr_t uninitialized_var(bus_addr);
1083 int offset;
1084
1085 /*
1086 * 16MB of descriptors should be far more than enough for any DMA
1087 * program. This will catch run-away userspace or DoS attacks.
1088 */
1089 if (ctx->total_allocation >= 16*1024*1024)
1090 return -ENOMEM;
1091
1092 desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
1093 &bus_addr, GFP_ATOMIC);
1094 if (!desc)
1095 return -ENOMEM;
1096
1097 offset = (void *)&desc->buffer - (void *)desc;
1098 desc->buffer_size = PAGE_SIZE - offset;
1099 desc->buffer_bus = bus_addr + offset;
1100 desc->used = 0;
1101
1102 list_add_tail(&desc->list, &ctx->buffer_list);
1103 ctx->total_allocation += PAGE_SIZE;
1104
1105 return 0;
1106 }
1107
1108 static int context_init(struct context *ctx, struct fw_ohci *ohci,
1109 u32 regs, descriptor_callback_t callback)
1110 {
1111 ctx->ohci = ohci;
1112 ctx->regs = regs;
1113 ctx->total_allocation = 0;
1114
1115 INIT_LIST_HEAD(&ctx->buffer_list);
1116 if (context_add_buffer(ctx) < 0)
1117 return -ENOMEM;
1118
1119 ctx->buffer_tail = list_entry(ctx->buffer_list.next,
1120 struct descriptor_buffer, list);
1121
1122 tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
1123 ctx->callback = callback;
1124
1125 /*
1126 * We put a dummy descriptor in the buffer that has a NULL
1127 * branch address and looks like it's been sent. That way we
1128 * have a descriptor to append DMA programs to.
1129 */
1130 memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
1131 ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
1132 ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
1133 ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
1134 ctx->last = ctx->buffer_tail->buffer;
1135 ctx->prev = ctx->buffer_tail->buffer;
1136
1137 return 0;
1138 }
1139
1140 static void context_release(struct context *ctx)
1141 {
1142 struct fw_card *card = &ctx->ohci->card;
1143 struct descriptor_buffer *desc, *tmp;
1144
1145 list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
1146 dma_free_coherent(card->device, PAGE_SIZE, desc,
1147 desc->buffer_bus -
1148 ((void *)&desc->buffer - (void *)desc));
1149 }
1150
1151 /* Must be called with ohci->lock held */
1152 static struct descriptor *context_get_descriptors(struct context *ctx,
1153 int z, dma_addr_t *d_bus)
1154 {
1155 struct descriptor *d = NULL;
1156 struct descriptor_buffer *desc = ctx->buffer_tail;
1157
1158 if (z * sizeof(*d) > desc->buffer_size)
1159 return NULL;
1160
1161 if (z * sizeof(*d) > desc->buffer_size - desc->used) {
1162 /* No room for the descriptor in this buffer, so advance to the
1163 * next one. */
1164
1165 if (desc->list.next == &ctx->buffer_list) {
1166 /* If there is no free buffer next in the list,
1167 * allocate one. */
1168 if (context_add_buffer(ctx) < 0)
1169 return NULL;
1170 }
1171 desc = list_entry(desc->list.next,
1172 struct descriptor_buffer, list);
1173 ctx->buffer_tail = desc;
1174 }
1175
1176 d = desc->buffer + desc->used / sizeof(*d);
1177 memset(d, 0, z * sizeof(*d));
1178 *d_bus = desc->buffer_bus + desc->used;
1179
1180 return d;
1181 }
1182
1183 static void context_run(struct context *ctx, u32 extra)
1184 {
1185 struct fw_ohci *ohci = ctx->ohci;
1186
1187 reg_write(ohci, COMMAND_PTR(ctx->regs),
1188 le32_to_cpu(ctx->last->branch_address));
1189 reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
1190 reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
1191 ctx->running = true;
1192 flush_writes(ohci);
1193 }
1194
1195 static void context_append(struct context *ctx,
1196 struct descriptor *d, int z, int extra)
1197 {
1198 dma_addr_t d_bus;
1199 struct descriptor_buffer *desc = ctx->buffer_tail;
1200
1201 d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
1202
1203 desc->used += (z + extra) * sizeof(*d);
1204
1205 wmb(); /* finish init of new descriptors before branch_address update */
1206 ctx->prev->branch_address = cpu_to_le32(d_bus | z);
1207 ctx->prev = find_branch_descriptor(d, z);
1208 }
1209
1210 static void context_stop(struct context *ctx)
1211 {
1212 u32 reg;
1213 int i;
1214
1215 reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
1216 ctx->running = false;
1217
1218 for (i = 0; i < 1000; i++) {
1219 reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
1220 if ((reg & CONTEXT_ACTIVE) == 0)
1221 return;
1222
1223 if (i)
1224 udelay(10);
1225 }
1226 fw_error("Error: DMA context still active (0x%08x)\n", reg);
1227 }
1228
1229 struct driver_data {
1230 u8 inline_data[8];
1231 struct fw_packet *packet;
1232 };
1233
1234 /*
1235 * This function apppends a packet to the DMA queue for transmission.
1236 * Must always be called with the ochi->lock held to ensure proper
1237 * generation handling and locking around packet queue manipulation.
1238 */
1239 static int at_context_queue_packet(struct context *ctx,
1240 struct fw_packet *packet)
1241 {
1242 struct fw_ohci *ohci = ctx->ohci;
1243 dma_addr_t d_bus, uninitialized_var(payload_bus);
1244 struct driver_data *driver_data;
1245 struct descriptor *d, *last;
1246 __le32 *header;
1247 int z, tcode;
1248
1249 d = context_get_descriptors(ctx, 4, &d_bus);
1250 if (d == NULL) {
1251 packet->ack = RCODE_SEND_ERROR;
1252 return -1;
1253 }
1254
1255 d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1256 d[0].res_count = cpu_to_le16(packet->timestamp);
1257
1258 /*
1259 * The DMA format for asyncronous link packets is different
1260 * from the IEEE1394 layout, so shift the fields around
1261 * accordingly.
1262 */
1263
1264 tcode = (packet->header[0] >> 4) & 0x0f;
1265 header = (__le32 *) &d[1];
1266 switch (tcode) {
1267 case TCODE_WRITE_QUADLET_REQUEST:
1268 case TCODE_WRITE_BLOCK_REQUEST:
1269 case TCODE_WRITE_RESPONSE:
1270 case TCODE_READ_QUADLET_REQUEST:
1271 case TCODE_READ_BLOCK_REQUEST:
1272 case TCODE_READ_QUADLET_RESPONSE:
1273 case TCODE_READ_BLOCK_RESPONSE:
1274 case TCODE_LOCK_REQUEST:
1275 case TCODE_LOCK_RESPONSE:
1276 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1277 (packet->speed << 16));
1278 header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
1279 (packet->header[0] & 0xffff0000));
1280 header[2] = cpu_to_le32(packet->header[2]);
1281
1282 if (TCODE_IS_BLOCK_PACKET(tcode))
1283 header[3] = cpu_to_le32(packet->header[3]);
1284 else
1285 header[3] = (__force __le32) packet->header[3];
1286
1287 d[0].req_count = cpu_to_le16(packet->header_length);
1288 break;
1289
1290 case TCODE_LINK_INTERNAL:
1291 header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
1292 (packet->speed << 16));
1293 header[1] = cpu_to_le32(packet->header[1]);
1294 header[2] = cpu_to_le32(packet->header[2]);
1295 d[0].req_count = cpu_to_le16(12);
1296
1297 if (is_ping_packet(&packet->header[1]))
1298 d[0].control |= cpu_to_le16(DESCRIPTOR_PING);
1299 break;
1300
1301 case TCODE_STREAM_DATA:
1302 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1303 (packet->speed << 16));
1304 header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
1305 d[0].req_count = cpu_to_le16(8);
1306 break;
1307
1308 default:
1309 /* BUG(); */
1310 packet->ack = RCODE_SEND_ERROR;
1311 return -1;
1312 }
1313
1314 BUILD_BUG_ON(sizeof(struct driver_data) > sizeof(struct descriptor));
1315 driver_data = (struct driver_data *) &d[3];
1316 driver_data->packet = packet;
1317 packet->driver_data = driver_data;
1318
1319 if (packet->payload_length > 0) {
1320 if (packet->payload_length > sizeof(driver_data->inline_data)) {
1321 payload_bus = dma_map_single(ohci->card.device,
1322 packet->payload,
1323 packet->payload_length,
1324 DMA_TO_DEVICE);
1325 if (dma_mapping_error(ohci->card.device, payload_bus)) {
1326 packet->ack = RCODE_SEND_ERROR;
1327 return -1;
1328 }
1329 packet->payload_bus = payload_bus;
1330 packet->payload_mapped = true;
1331 } else {
1332 memcpy(driver_data->inline_data, packet->payload,
1333 packet->payload_length);
1334 payload_bus = d_bus + 3 * sizeof(*d);
1335 }
1336
1337 d[2].req_count = cpu_to_le16(packet->payload_length);
1338 d[2].data_address = cpu_to_le32(payload_bus);
1339 last = &d[2];
1340 z = 3;
1341 } else {
1342 last = &d[0];
1343 z = 2;
1344 }
1345
1346 last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
1347 DESCRIPTOR_IRQ_ALWAYS |
1348 DESCRIPTOR_BRANCH_ALWAYS);
1349
1350 /* FIXME: Document how the locking works. */
1351 if (ohci->generation != packet->generation) {
1352 if (packet->payload_mapped)
1353 dma_unmap_single(ohci->card.device, payload_bus,
1354 packet->payload_length, DMA_TO_DEVICE);
1355 packet->ack = RCODE_GENERATION;
1356 return -1;
1357 }
1358
1359 context_append(ctx, d, z, 4 - z);
1360
1361 if (ctx->running)
1362 reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
1363 else
1364 context_run(ctx, 0);
1365
1366 return 0;
1367 }
1368
1369 static void at_context_flush(struct context *ctx)
1370 {
1371 tasklet_disable(&ctx->tasklet);
1372
1373 ctx->flushing = true;
1374 context_tasklet((unsigned long)ctx);
1375 ctx->flushing = false;
1376
1377 tasklet_enable(&ctx->tasklet);
1378 }
1379
1380 static int handle_at_packet(struct context *context,
1381 struct descriptor *d,
1382 struct descriptor *last)
1383 {
1384 struct driver_data *driver_data;
1385 struct fw_packet *packet;
1386 struct fw_ohci *ohci = context->ohci;
1387 int evt;
1388
1389 if (last->transfer_status == 0 && !context->flushing)
1390 /* This descriptor isn't done yet, stop iteration. */
1391 return 0;
1392
1393 driver_data = (struct driver_data *) &d[3];
1394 packet = driver_data->packet;
1395 if (packet == NULL)
1396 /* This packet was cancelled, just continue. */
1397 return 1;
1398
1399 if (packet->payload_mapped)
1400 dma_unmap_single(ohci->card.device, packet->payload_bus,
1401 packet->payload_length, DMA_TO_DEVICE);
1402
1403 evt = le16_to_cpu(last->transfer_status) & 0x1f;
1404 packet->timestamp = le16_to_cpu(last->res_count);
1405
1406 log_ar_at_event('T', packet->speed, packet->header, evt);
1407
1408 switch (evt) {
1409 case OHCI1394_evt_timeout:
1410 /* Async response transmit timed out. */
1411 packet->ack = RCODE_CANCELLED;
1412 break;
1413
1414 case OHCI1394_evt_flushed:
1415 /*
1416 * The packet was flushed should give same error as
1417 * when we try to use a stale generation count.
1418 */
1419 packet->ack = RCODE_GENERATION;
1420 break;
1421
1422 case OHCI1394_evt_missing_ack:
1423 if (context->flushing)
1424 packet->ack = RCODE_GENERATION;
1425 else {
1426 /*
1427 * Using a valid (current) generation count, but the
1428 * node is not on the bus or not sending acks.
1429 */
1430 packet->ack = RCODE_NO_ACK;
1431 }
1432 break;
1433
1434 case ACK_COMPLETE + 0x10:
1435 case ACK_PENDING + 0x10:
1436 case ACK_BUSY_X + 0x10:
1437 case ACK_BUSY_A + 0x10:
1438 case ACK_BUSY_B + 0x10:
1439 case ACK_DATA_ERROR + 0x10:
1440 case ACK_TYPE_ERROR + 0x10:
1441 packet->ack = evt - 0x10;
1442 break;
1443
1444 case OHCI1394_evt_no_status:
1445 if (context->flushing) {
1446 packet->ack = RCODE_GENERATION;
1447 break;
1448 }
1449 /* fall through */
1450
1451 default:
1452 packet->ack = RCODE_SEND_ERROR;
1453 break;
1454 }
1455
1456 packet->callback(packet, &ohci->card, packet->ack);
1457
1458 return 1;
1459 }
1460
1461 #define HEADER_GET_DESTINATION(q) (((q) >> 16) & 0xffff)
1462 #define HEADER_GET_TCODE(q) (((q) >> 4) & 0x0f)
1463 #define HEADER_GET_OFFSET_HIGH(q) (((q) >> 0) & 0xffff)
1464 #define HEADER_GET_DATA_LENGTH(q) (((q) >> 16) & 0xffff)
1465 #define HEADER_GET_EXTENDED_TCODE(q) (((q) >> 0) & 0xffff)
1466
1467 static void handle_local_rom(struct fw_ohci *ohci,
1468 struct fw_packet *packet, u32 csr)
1469 {
1470 struct fw_packet response;
1471 int tcode, length, i;
1472
1473 tcode = HEADER_GET_TCODE(packet->header[0]);
1474 if (TCODE_IS_BLOCK_PACKET(tcode))
1475 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1476 else
1477 length = 4;
1478
1479 i = csr - CSR_CONFIG_ROM;
1480 if (i + length > CONFIG_ROM_SIZE) {
1481 fw_fill_response(&response, packet->header,
1482 RCODE_ADDRESS_ERROR, NULL, 0);
1483 } else if (!TCODE_IS_READ_REQUEST(tcode)) {
1484 fw_fill_response(&response, packet->header,
1485 RCODE_TYPE_ERROR, NULL, 0);
1486 } else {
1487 fw_fill_response(&response, packet->header, RCODE_COMPLETE,
1488 (void *) ohci->config_rom + i, length);
1489 }
1490
1491 fw_core_handle_response(&ohci->card, &response);
1492 }
1493
1494 static void handle_local_lock(struct fw_ohci *ohci,
1495 struct fw_packet *packet, u32 csr)
1496 {
1497 struct fw_packet response;
1498 int tcode, length, ext_tcode, sel, try;
1499 __be32 *payload, lock_old;
1500 u32 lock_arg, lock_data;
1501
1502 tcode = HEADER_GET_TCODE(packet->header[0]);
1503 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1504 payload = packet->payload;
1505 ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1506
1507 if (tcode == TCODE_LOCK_REQUEST &&
1508 ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
1509 lock_arg = be32_to_cpu(payload[0]);
1510 lock_data = be32_to_cpu(payload[1]);
1511 } else if (tcode == TCODE_READ_QUADLET_REQUEST) {
1512 lock_arg = 0;
1513 lock_data = 0;
1514 } else {
1515 fw_fill_response(&response, packet->header,
1516 RCODE_TYPE_ERROR, NULL, 0);
1517 goto out;
1518 }
1519
1520 sel = (csr - CSR_BUS_MANAGER_ID) / 4;
1521 reg_write(ohci, OHCI1394_CSRData, lock_data);
1522 reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
1523 reg_write(ohci, OHCI1394_CSRControl, sel);
1524
1525 for (try = 0; try < 20; try++)
1526 if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000) {
1527 lock_old = cpu_to_be32(reg_read(ohci,
1528 OHCI1394_CSRData));
1529 fw_fill_response(&response, packet->header,
1530 RCODE_COMPLETE,
1531 &lock_old, sizeof(lock_old));
1532 goto out;
1533 }
1534
1535 fw_error("swap not done (CSR lock timeout)\n");
1536 fw_fill_response(&response, packet->header, RCODE_BUSY, NULL, 0);
1537
1538 out:
1539 fw_core_handle_response(&ohci->card, &response);
1540 }
1541
1542 static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1543 {
1544 u64 offset, csr;
1545
1546 if (ctx == &ctx->ohci->at_request_ctx) {
1547 packet->ack = ACK_PENDING;
1548 packet->callback(packet, &ctx->ohci->card, packet->ack);
1549 }
1550
1551 offset =
1552 ((unsigned long long)
1553 HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1554 packet->header[2];
1555 csr = offset - CSR_REGISTER_BASE;
1556
1557 /* Handle config rom reads. */
1558 if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
1559 handle_local_rom(ctx->ohci, packet, csr);
1560 else switch (csr) {
1561 case CSR_BUS_MANAGER_ID:
1562 case CSR_BANDWIDTH_AVAILABLE:
1563 case CSR_CHANNELS_AVAILABLE_HI:
1564 case CSR_CHANNELS_AVAILABLE_LO:
1565 handle_local_lock(ctx->ohci, packet, csr);
1566 break;
1567 default:
1568 if (ctx == &ctx->ohci->at_request_ctx)
1569 fw_core_handle_request(&ctx->ohci->card, packet);
1570 else
1571 fw_core_handle_response(&ctx->ohci->card, packet);
1572 break;
1573 }
1574
1575 if (ctx == &ctx->ohci->at_response_ctx) {
1576 packet->ack = ACK_COMPLETE;
1577 packet->callback(packet, &ctx->ohci->card, packet->ack);
1578 }
1579 }
1580
1581 static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1582 {
1583 unsigned long flags;
1584 int ret;
1585
1586 spin_lock_irqsave(&ctx->ohci->lock, flags);
1587
1588 if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1589 ctx->ohci->generation == packet->generation) {
1590 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1591 handle_local_request(ctx, packet);
1592 return;
1593 }
1594
1595 ret = at_context_queue_packet(ctx, packet);
1596 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1597
1598 if (ret < 0)
1599 packet->callback(packet, &ctx->ohci->card, packet->ack);
1600
1601 }
1602
1603 static void detect_dead_context(struct fw_ohci *ohci,
1604 const char *name, unsigned int regs)
1605 {
1606 u32 ctl;
1607
1608 ctl = reg_read(ohci, CONTROL_SET(regs));
1609 if (ctl & CONTEXT_DEAD) {
1610 #ifdef CONFIG_FIREWIRE_OHCI_DEBUG
1611 fw_error("DMA context %s has stopped, error code: %s\n",
1612 name, evts[ctl & 0x1f]);
1613 #else
1614 fw_error("DMA context %s has stopped, error code: %#x\n",
1615 name, ctl & 0x1f);
1616 #endif
1617 }
1618 }
1619
1620 static void handle_dead_contexts(struct fw_ohci *ohci)
1621 {
1622 unsigned int i;
1623 char name[8];
1624
1625 detect_dead_context(ohci, "ATReq", OHCI1394_AsReqTrContextBase);
1626 detect_dead_context(ohci, "ATRsp", OHCI1394_AsRspTrContextBase);
1627 detect_dead_context(ohci, "ARReq", OHCI1394_AsReqRcvContextBase);
1628 detect_dead_context(ohci, "ARRsp", OHCI1394_AsRspRcvContextBase);
1629 for (i = 0; i < 32; ++i) {
1630 if (!(ohci->it_context_support & (1 << i)))
1631 continue;
1632 sprintf(name, "IT%u", i);
1633 detect_dead_context(ohci, name, OHCI1394_IsoXmitContextBase(i));
1634 }
1635 for (i = 0; i < 32; ++i) {
1636 if (!(ohci->ir_context_support & (1 << i)))
1637 continue;
1638 sprintf(name, "IR%u", i);
1639 detect_dead_context(ohci, name, OHCI1394_IsoRcvContextBase(i));
1640 }
1641 /* TODO: maybe try to flush and restart the dead contexts */
1642 }
1643
1644 static u32 cycle_timer_ticks(u32 cycle_timer)
1645 {
1646 u32 ticks;
1647
1648 ticks = cycle_timer & 0xfff;
1649 ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
1650 ticks += (3072 * 8000) * (cycle_timer >> 25);
1651
1652 return ticks;
1653 }
1654
1655 /*
1656 * Some controllers exhibit one or more of the following bugs when updating the
1657 * iso cycle timer register:
1658 * - When the lowest six bits are wrapping around to zero, a read that happens
1659 * at the same time will return garbage in the lowest ten bits.
1660 * - When the cycleOffset field wraps around to zero, the cycleCount field is
1661 * not incremented for about 60 ns.
1662 * - Occasionally, the entire register reads zero.
1663 *
1664 * To catch these, we read the register three times and ensure that the
1665 * difference between each two consecutive reads is approximately the same, i.e.
1666 * less than twice the other. Furthermore, any negative difference indicates an
1667 * error. (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
1668 * execute, so we have enough precision to compute the ratio of the differences.)
1669 */
1670 static u32 get_cycle_time(struct fw_ohci *ohci)
1671 {
1672 u32 c0, c1, c2;
1673 u32 t0, t1, t2;
1674 s32 diff01, diff12;
1675 int i;
1676
1677 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1678
1679 if (ohci->quirks & QUIRK_CYCLE_TIMER) {
1680 i = 0;
1681 c1 = c2;
1682 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1683 do {
1684 c0 = c1;
1685 c1 = c2;
1686 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1687 t0 = cycle_timer_ticks(c0);
1688 t1 = cycle_timer_ticks(c1);
1689 t2 = cycle_timer_ticks(c2);
1690 diff01 = t1 - t0;
1691 diff12 = t2 - t1;
1692 } while ((diff01 <= 0 || diff12 <= 0 ||
1693 diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
1694 && i++ < 20);
1695 }
1696
1697 return c2;
1698 }
1699
1700 /*
1701 * This function has to be called at least every 64 seconds. The bus_time
1702 * field stores not only the upper 25 bits of the BUS_TIME register but also
1703 * the most significant bit of the cycle timer in bit 6 so that we can detect
1704 * changes in this bit.
1705 */
1706 static u32 update_bus_time(struct fw_ohci *ohci)
1707 {
1708 u32 cycle_time_seconds = get_cycle_time(ohci) >> 25;
1709
1710 if ((ohci->bus_time & 0x40) != (cycle_time_seconds & 0x40))
1711 ohci->bus_time += 0x40;
1712
1713 return ohci->bus_time | cycle_time_seconds;
1714 }
1715
1716 static void bus_reset_tasklet(unsigned long data)
1717 {
1718 struct fw_ohci *ohci = (struct fw_ohci *)data;
1719 int self_id_count, i, j, reg;
1720 int generation, new_generation;
1721 unsigned long flags;
1722 void *free_rom = NULL;
1723 dma_addr_t free_rom_bus = 0;
1724 bool is_new_root;
1725
1726 reg = reg_read(ohci, OHCI1394_NodeID);
1727 if (!(reg & OHCI1394_NodeID_idValid)) {
1728 fw_notify("node ID not valid, new bus reset in progress\n");
1729 return;
1730 }
1731 if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
1732 fw_notify("malconfigured bus\n");
1733 return;
1734 }
1735 ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
1736 OHCI1394_NodeID_nodeNumber);
1737
1738 is_new_root = (reg & OHCI1394_NodeID_root) != 0;
1739 if (!(ohci->is_root && is_new_root))
1740 reg_write(ohci, OHCI1394_LinkControlSet,
1741 OHCI1394_LinkControl_cycleMaster);
1742 ohci->is_root = is_new_root;
1743
1744 reg = reg_read(ohci, OHCI1394_SelfIDCount);
1745 if (reg & OHCI1394_SelfIDCount_selfIDError) {
1746 fw_notify("inconsistent self IDs\n");
1747 return;
1748 }
1749 /*
1750 * The count in the SelfIDCount register is the number of
1751 * bytes in the self ID receive buffer. Since we also receive
1752 * the inverted quadlets and a header quadlet, we shift one
1753 * bit extra to get the actual number of self IDs.
1754 */
1755 self_id_count = (reg >> 3) & 0xff;
1756 if (self_id_count == 0 || self_id_count > 252) {
1757 fw_notify("inconsistent self IDs\n");
1758 return;
1759 }
1760 generation = (cond_le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
1761 rmb();
1762
1763 for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1764 if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1]) {
1765 fw_notify("inconsistent self IDs\n");
1766 return;
1767 }
1768 ohci->self_id_buffer[j] =
1769 cond_le32_to_cpu(ohci->self_id_cpu[i]);
1770 }
1771 rmb();
1772
1773 /*
1774 * Check the consistency of the self IDs we just read. The
1775 * problem we face is that a new bus reset can start while we
1776 * read out the self IDs from the DMA buffer. If this happens,
1777 * the DMA buffer will be overwritten with new self IDs and we
1778 * will read out inconsistent data. The OHCI specification
1779 * (section 11.2) recommends a technique similar to
1780 * linux/seqlock.h, where we remember the generation of the
1781 * self IDs in the buffer before reading them out and compare
1782 * it to the current generation after reading them out. If
1783 * the two generations match we know we have a consistent set
1784 * of self IDs.
1785 */
1786
1787 new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
1788 if (new_generation != generation) {
1789 fw_notify("recursive bus reset detected, "
1790 "discarding self ids\n");
1791 return;
1792 }
1793
1794 /* FIXME: Document how the locking works. */
1795 spin_lock_irqsave(&ohci->lock, flags);
1796
1797 ohci->generation = -1; /* prevent AT packet queueing */
1798 context_stop(&ohci->at_request_ctx);
1799 context_stop(&ohci->at_response_ctx);
1800
1801 spin_unlock_irqrestore(&ohci->lock, flags);
1802
1803 /*
1804 * Per OHCI 1.2 draft, clause 7.2.3.3, hardware may leave unsent
1805 * packets in the AT queues and software needs to drain them.
1806 * Some OHCI 1.1 controllers (JMicron) apparently require this too.
1807 */
1808 at_context_flush(&ohci->at_request_ctx);
1809 at_context_flush(&ohci->at_response_ctx);
1810
1811 spin_lock_irqsave(&ohci->lock, flags);
1812
1813 ohci->generation = generation;
1814 reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
1815
1816 if (ohci->quirks & QUIRK_RESET_PACKET)
1817 ohci->request_generation = generation;
1818
1819 /*
1820 * This next bit is unrelated to the AT context stuff but we
1821 * have to do it under the spinlock also. If a new config rom
1822 * was set up before this reset, the old one is now no longer
1823 * in use and we can free it. Update the config rom pointers
1824 * to point to the current config rom and clear the
1825 * next_config_rom pointer so a new update can take place.
1826 */
1827
1828 if (ohci->next_config_rom != NULL) {
1829 if (ohci->next_config_rom != ohci->config_rom) {
1830 free_rom = ohci->config_rom;
1831 free_rom_bus = ohci->config_rom_bus;
1832 }
1833 ohci->config_rom = ohci->next_config_rom;
1834 ohci->config_rom_bus = ohci->next_config_rom_bus;
1835 ohci->next_config_rom = NULL;
1836
1837 /*
1838 * Restore config_rom image and manually update
1839 * config_rom registers. Writing the header quadlet
1840 * will indicate that the config rom is ready, so we
1841 * do that last.
1842 */
1843 reg_write(ohci, OHCI1394_BusOptions,
1844 be32_to_cpu(ohci->config_rom[2]));
1845 ohci->config_rom[0] = ohci->next_header;
1846 reg_write(ohci, OHCI1394_ConfigROMhdr,
1847 be32_to_cpu(ohci->next_header));
1848 }
1849
1850 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1851 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
1852 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
1853 #endif
1854
1855 spin_unlock_irqrestore(&ohci->lock, flags);
1856
1857 if (free_rom)
1858 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1859 free_rom, free_rom_bus);
1860
1861 log_selfids(ohci->node_id, generation,
1862 self_id_count, ohci->self_id_buffer);
1863
1864 fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
1865 self_id_count, ohci->self_id_buffer,
1866 ohci->csr_state_setclear_abdicate);
1867 ohci->csr_state_setclear_abdicate = false;
1868 }
1869
1870 static irqreturn_t irq_handler(int irq, void *data)
1871 {
1872 struct fw_ohci *ohci = data;
1873 u32 event, iso_event;
1874 int i;
1875
1876 event = reg_read(ohci, OHCI1394_IntEventClear);
1877
1878 if (!event || !~event)
1879 return IRQ_NONE;
1880
1881 /*
1882 * busReset and postedWriteErr must not be cleared yet
1883 * (OHCI 1.1 clauses 7.2.3.2 and 13.2.8.1)
1884 */
1885 reg_write(ohci, OHCI1394_IntEventClear,
1886 event & ~(OHCI1394_busReset | OHCI1394_postedWriteErr));
1887 log_irqs(event);
1888
1889 if (event & OHCI1394_selfIDComplete)
1890 tasklet_schedule(&ohci->bus_reset_tasklet);
1891
1892 if (event & OHCI1394_RQPkt)
1893 tasklet_schedule(&ohci->ar_request_ctx.tasklet);
1894
1895 if (event & OHCI1394_RSPkt)
1896 tasklet_schedule(&ohci->ar_response_ctx.tasklet);
1897
1898 if (event & OHCI1394_reqTxComplete)
1899 tasklet_schedule(&ohci->at_request_ctx.tasklet);
1900
1901 if (event & OHCI1394_respTxComplete)
1902 tasklet_schedule(&ohci->at_response_ctx.tasklet);
1903
1904 if (event & OHCI1394_isochRx) {
1905 iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
1906 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
1907
1908 while (iso_event) {
1909 i = ffs(iso_event) - 1;
1910 tasklet_schedule(
1911 &ohci->ir_context_list[i].context.tasklet);
1912 iso_event &= ~(1 << i);
1913 }
1914 }
1915
1916 if (event & OHCI1394_isochTx) {
1917 iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
1918 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
1919
1920 while (iso_event) {
1921 i = ffs(iso_event) - 1;
1922 tasklet_schedule(
1923 &ohci->it_context_list[i].context.tasklet);
1924 iso_event &= ~(1 << i);
1925 }
1926 }
1927
1928 if (unlikely(event & OHCI1394_regAccessFail))
1929 fw_error("Register access failure - "
1930 "please notify linux1394-devel@lists.sf.net\n");
1931
1932 if (unlikely(event & OHCI1394_postedWriteErr)) {
1933 reg_read(ohci, OHCI1394_PostedWriteAddressHi);
1934 reg_read(ohci, OHCI1394_PostedWriteAddressLo);
1935 reg_write(ohci, OHCI1394_IntEventClear,
1936 OHCI1394_postedWriteErr);
1937 fw_error("PCI posted write error\n");
1938 }
1939
1940 if (unlikely(event & OHCI1394_cycleTooLong)) {
1941 if (printk_ratelimit())
1942 fw_notify("isochronous cycle too long\n");
1943 reg_write(ohci, OHCI1394_LinkControlSet,
1944 OHCI1394_LinkControl_cycleMaster);
1945 }
1946
1947 if (unlikely(event & OHCI1394_cycleInconsistent)) {
1948 /*
1949 * We need to clear this event bit in order to make
1950 * cycleMatch isochronous I/O work. In theory we should
1951 * stop active cycleMatch iso contexts now and restart
1952 * them at least two cycles later. (FIXME?)
1953 */
1954 if (printk_ratelimit())
1955 fw_notify("isochronous cycle inconsistent\n");
1956 }
1957
1958 if (unlikely(event & OHCI1394_unrecoverableError))
1959 handle_dead_contexts(ohci);
1960
1961 if (event & OHCI1394_cycle64Seconds) {
1962 spin_lock(&ohci->lock);
1963 update_bus_time(ohci);
1964 spin_unlock(&ohci->lock);
1965 } else
1966 flush_writes(ohci);
1967
1968 return IRQ_HANDLED;
1969 }
1970
1971 static int software_reset(struct fw_ohci *ohci)
1972 {
1973 u32 val;
1974 int i;
1975
1976 reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
1977 for (i = 0; i < 500; i++) {
1978 val = reg_read(ohci, OHCI1394_HCControlSet);
1979 if (!~val)
1980 return -ENODEV; /* Card was ejected. */
1981
1982 if (!(val & OHCI1394_HCControl_softReset))
1983 return 0;
1984
1985 msleep(1);
1986 }
1987
1988 return -EBUSY;
1989 }
1990
1991 static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
1992 {
1993 size_t size = length * 4;
1994
1995 memcpy(dest, src, size);
1996 if (size < CONFIG_ROM_SIZE)
1997 memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
1998 }
1999
2000 static int configure_1394a_enhancements(struct fw_ohci *ohci)
2001 {
2002 bool enable_1394a;
2003 int ret, clear, set, offset;
2004
2005 /* Check if the driver should configure link and PHY. */
2006 if (!(reg_read(ohci, OHCI1394_HCControlSet) &
2007 OHCI1394_HCControl_programPhyEnable))
2008 return 0;
2009
2010 /* Paranoia: check whether the PHY supports 1394a, too. */
2011 enable_1394a = false;
2012 ret = read_phy_reg(ohci, 2);
2013 if (ret < 0)
2014 return ret;
2015 if ((ret & PHY_EXTENDED_REGISTERS) == PHY_EXTENDED_REGISTERS) {
2016 ret = read_paged_phy_reg(ohci, 1, 8);
2017 if (ret < 0)
2018 return ret;
2019 if (ret >= 1)
2020 enable_1394a = true;
2021 }
2022
2023 if (ohci->quirks & QUIRK_NO_1394A)
2024 enable_1394a = false;
2025
2026 /* Configure PHY and link consistently. */
2027 if (enable_1394a) {
2028 clear = 0;
2029 set = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2030 } else {
2031 clear = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2032 set = 0;
2033 }
2034 ret = update_phy_reg(ohci, 5, clear, set);
2035 if (ret < 0)
2036 return ret;
2037
2038 if (enable_1394a)
2039 offset = OHCI1394_HCControlSet;
2040 else
2041 offset = OHCI1394_HCControlClear;
2042 reg_write(ohci, offset, OHCI1394_HCControl_aPhyEnhanceEnable);
2043
2044 /* Clean up: configuration has been taken care of. */
2045 reg_write(ohci, OHCI1394_HCControlClear,
2046 OHCI1394_HCControl_programPhyEnable);
2047
2048 return 0;
2049 }
2050
2051 static int ohci_enable(struct fw_card *card,
2052 const __be32 *config_rom, size_t length)
2053 {
2054 struct fw_ohci *ohci = fw_ohci(card);
2055 struct pci_dev *dev = to_pci_dev(card->device);
2056 u32 lps, seconds, version, irqs;
2057 int i, ret;
2058
2059 if (software_reset(ohci)) {
2060 fw_error("Failed to reset ohci card.\n");
2061 return -EBUSY;
2062 }
2063
2064 /*
2065 * Now enable LPS, which we need in order to start accessing
2066 * most of the registers. In fact, on some cards (ALI M5251),
2067 * accessing registers in the SClk domain without LPS enabled
2068 * will lock up the machine. Wait 50msec to make sure we have
2069 * full link enabled. However, with some cards (well, at least
2070 * a JMicron PCIe card), we have to try again sometimes.
2071 */
2072 reg_write(ohci, OHCI1394_HCControlSet,
2073 OHCI1394_HCControl_LPS |
2074 OHCI1394_HCControl_postedWriteEnable);
2075 flush_writes(ohci);
2076
2077 for (lps = 0, i = 0; !lps && i < 3; i++) {
2078 msleep(50);
2079 lps = reg_read(ohci, OHCI1394_HCControlSet) &
2080 OHCI1394_HCControl_LPS;
2081 }
2082
2083 if (!lps) {
2084 fw_error("Failed to set Link Power Status\n");
2085 return -EIO;
2086 }
2087
2088 reg_write(ohci, OHCI1394_HCControlClear,
2089 OHCI1394_HCControl_noByteSwapData);
2090
2091 reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
2092 reg_write(ohci, OHCI1394_LinkControlSet,
2093 OHCI1394_LinkControl_cycleTimerEnable |
2094 OHCI1394_LinkControl_cycleMaster);
2095
2096 reg_write(ohci, OHCI1394_ATRetries,
2097 OHCI1394_MAX_AT_REQ_RETRIES |
2098 (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
2099 (OHCI1394_MAX_PHYS_RESP_RETRIES << 8) |
2100 (200 << 16));
2101
2102 seconds = lower_32_bits(get_seconds());
2103 reg_write(ohci, OHCI1394_IsochronousCycleTimer, seconds << 25);
2104 ohci->bus_time = seconds & ~0x3f;
2105
2106 version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2107 if (version >= OHCI_VERSION_1_1) {
2108 reg_write(ohci, OHCI1394_InitialChannelsAvailableHi,
2109 0xfffffffe);
2110 card->broadcast_channel_auto_allocated = true;
2111 }
2112
2113 /* Get implemented bits of the priority arbitration request counter. */
2114 reg_write(ohci, OHCI1394_FairnessControl, 0x3f);
2115 ohci->pri_req_max = reg_read(ohci, OHCI1394_FairnessControl) & 0x3f;
2116 reg_write(ohci, OHCI1394_FairnessControl, 0);
2117 card->priority_budget_implemented = ohci->pri_req_max != 0;
2118
2119 reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
2120 reg_write(ohci, OHCI1394_IntEventClear, ~0);
2121 reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2122
2123 ret = configure_1394a_enhancements(ohci);
2124 if (ret < 0)
2125 return ret;
2126
2127 /* Activate link_on bit and contender bit in our self ID packets.*/
2128 ret = ohci_update_phy_reg(card, 4, 0, PHY_LINK_ACTIVE | PHY_CONTENDER);
2129 if (ret < 0)
2130 return ret;
2131
2132 /*
2133 * When the link is not yet enabled, the atomic config rom
2134 * update mechanism described below in ohci_set_config_rom()
2135 * is not active. We have to update ConfigRomHeader and
2136 * BusOptions manually, and the write to ConfigROMmap takes
2137 * effect immediately. We tie this to the enabling of the
2138 * link, so we have a valid config rom before enabling - the
2139 * OHCI requires that ConfigROMhdr and BusOptions have valid
2140 * values before enabling.
2141 *
2142 * However, when the ConfigROMmap is written, some controllers
2143 * always read back quadlets 0 and 2 from the config rom to
2144 * the ConfigRomHeader and BusOptions registers on bus reset.
2145 * They shouldn't do that in this initial case where the link
2146 * isn't enabled. This means we have to use the same
2147 * workaround here, setting the bus header to 0 and then write
2148 * the right values in the bus reset tasklet.
2149 */
2150
2151 if (config_rom) {
2152 ohci->next_config_rom =
2153 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2154 &ohci->next_config_rom_bus,
2155 GFP_KERNEL);
2156 if (ohci->next_config_rom == NULL)
2157 return -ENOMEM;
2158
2159 copy_config_rom(ohci->next_config_rom, config_rom, length);
2160 } else {
2161 /*
2162 * In the suspend case, config_rom is NULL, which
2163 * means that we just reuse the old config rom.
2164 */
2165 ohci->next_config_rom = ohci->config_rom;
2166 ohci->next_config_rom_bus = ohci->config_rom_bus;
2167 }
2168
2169 ohci->next_header = ohci->next_config_rom[0];
2170 ohci->next_config_rom[0] = 0;
2171 reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
2172 reg_write(ohci, OHCI1394_BusOptions,
2173 be32_to_cpu(ohci->next_config_rom[2]));
2174 reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2175
2176 reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
2177
2178 if (!(ohci->quirks & QUIRK_NO_MSI))
2179 pci_enable_msi(dev);
2180 if (request_irq(dev->irq, irq_handler,
2181 pci_dev_msi_enabled(dev) ? 0 : IRQF_SHARED,
2182 ohci_driver_name, ohci)) {
2183 fw_error("Failed to allocate interrupt %d.\n", dev->irq);
2184 pci_disable_msi(dev);
2185
2186 if (config_rom) {
2187 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2188 ohci->next_config_rom,
2189 ohci->next_config_rom_bus);
2190 ohci->next_config_rom = NULL;
2191 }
2192 return -EIO;
2193 }
2194
2195 irqs = OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
2196 OHCI1394_RQPkt | OHCI1394_RSPkt |
2197 OHCI1394_isochTx | OHCI1394_isochRx |
2198 OHCI1394_postedWriteErr |
2199 OHCI1394_selfIDComplete |
2200 OHCI1394_regAccessFail |
2201 OHCI1394_cycle64Seconds |
2202 OHCI1394_cycleInconsistent |
2203 OHCI1394_unrecoverableError |
2204 OHCI1394_cycleTooLong |
2205 OHCI1394_masterIntEnable;
2206 if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
2207 irqs |= OHCI1394_busReset;
2208 reg_write(ohci, OHCI1394_IntMaskSet, irqs);
2209
2210 reg_write(ohci, OHCI1394_HCControlSet,
2211 OHCI1394_HCControl_linkEnable |
2212 OHCI1394_HCControl_BIBimageValid);
2213
2214 reg_write(ohci, OHCI1394_LinkControlSet,
2215 OHCI1394_LinkControl_rcvSelfID |
2216 OHCI1394_LinkControl_rcvPhyPkt);
2217
2218 ar_context_run(&ohci->ar_request_ctx);
2219 ar_context_run(&ohci->ar_response_ctx);
2220
2221 flush_writes(ohci);
2222
2223 /* We are ready to go, reset bus to finish initialization. */
2224 fw_schedule_bus_reset(&ohci->card, false, true);
2225
2226 return 0;
2227 }
2228
2229 static int ohci_set_config_rom(struct fw_card *card,
2230 const __be32 *config_rom, size_t length)
2231 {
2232 struct fw_ohci *ohci;
2233 unsigned long flags;
2234 __be32 *next_config_rom;
2235 dma_addr_t uninitialized_var(next_config_rom_bus);
2236
2237 ohci = fw_ohci(card);
2238
2239 /*
2240 * When the OHCI controller is enabled, the config rom update
2241 * mechanism is a bit tricky, but easy enough to use. See
2242 * section 5.5.6 in the OHCI specification.
2243 *
2244 * The OHCI controller caches the new config rom address in a
2245 * shadow register (ConfigROMmapNext) and needs a bus reset
2246 * for the changes to take place. When the bus reset is
2247 * detected, the controller loads the new values for the
2248 * ConfigRomHeader and BusOptions registers from the specified
2249 * config rom and loads ConfigROMmap from the ConfigROMmapNext
2250 * shadow register. All automatically and atomically.
2251 *
2252 * Now, there's a twist to this story. The automatic load of
2253 * ConfigRomHeader and BusOptions doesn't honor the
2254 * noByteSwapData bit, so with a be32 config rom, the
2255 * controller will load be32 values in to these registers
2256 * during the atomic update, even on litte endian
2257 * architectures. The workaround we use is to put a 0 in the
2258 * header quadlet; 0 is endian agnostic and means that the
2259 * config rom isn't ready yet. In the bus reset tasklet we
2260 * then set up the real values for the two registers.
2261 *
2262 * We use ohci->lock to avoid racing with the code that sets
2263 * ohci->next_config_rom to NULL (see bus_reset_tasklet).
2264 */
2265
2266 next_config_rom =
2267 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2268 &next_config_rom_bus, GFP_KERNEL);
2269 if (next_config_rom == NULL)
2270 return -ENOMEM;
2271
2272 spin_lock_irqsave(&ohci->lock, flags);
2273
2274 /*
2275 * If there is not an already pending config_rom update,
2276 * push our new allocation into the ohci->next_config_rom
2277 * and then mark the local variable as null so that we
2278 * won't deallocate the new buffer.
2279 *
2280 * OTOH, if there is a pending config_rom update, just
2281 * use that buffer with the new config_rom data, and
2282 * let this routine free the unused DMA allocation.
2283 */
2284
2285 if (ohci->next_config_rom == NULL) {
2286 ohci->next_config_rom = next_config_rom;
2287 ohci->next_config_rom_bus = next_config_rom_bus;
2288 next_config_rom = NULL;
2289 }
2290
2291 copy_config_rom(ohci->next_config_rom, config_rom, length);
2292
2293 ohci->next_header = config_rom[0];
2294 ohci->next_config_rom[0] = 0;
2295
2296 reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2297
2298 spin_unlock_irqrestore(&ohci->lock, flags);
2299
2300 /* If we didn't use the DMA allocation, delete it. */
2301 if (next_config_rom != NULL)
2302 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2303 next_config_rom, next_config_rom_bus);
2304
2305 /*
2306 * Now initiate a bus reset to have the changes take
2307 * effect. We clean up the old config rom memory and DMA
2308 * mappings in the bus reset tasklet, since the OHCI
2309 * controller could need to access it before the bus reset
2310 * takes effect.
2311 */
2312
2313 fw_schedule_bus_reset(&ohci->card, true, true);
2314
2315 return 0;
2316 }
2317
2318 static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
2319 {
2320 struct fw_ohci *ohci = fw_ohci(card);
2321
2322 at_context_transmit(&ohci->at_request_ctx, packet);
2323 }
2324
2325 static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
2326 {
2327 struct fw_ohci *ohci = fw_ohci(card);
2328
2329 at_context_transmit(&ohci->at_response_ctx, packet);
2330 }
2331
2332 static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
2333 {
2334 struct fw_ohci *ohci = fw_ohci(card);
2335 struct context *ctx = &ohci->at_request_ctx;
2336 struct driver_data *driver_data = packet->driver_data;
2337 int ret = -ENOENT;
2338
2339 tasklet_disable(&ctx->tasklet);
2340
2341 if (packet->ack != 0)
2342 goto out;
2343
2344 if (packet->payload_mapped)
2345 dma_unmap_single(ohci->card.device, packet->payload_bus,
2346 packet->payload_length, DMA_TO_DEVICE);
2347
2348 log_ar_at_event('T', packet->speed, packet->header, 0x20);
2349 driver_data->packet = NULL;
2350 packet->ack = RCODE_CANCELLED;
2351 packet->callback(packet, &ohci->card, packet->ack);
2352 ret = 0;
2353 out:
2354 tasklet_enable(&ctx->tasklet);
2355
2356 return ret;
2357 }
2358
2359 static int ohci_enable_phys_dma(struct fw_card *card,
2360 int node_id, int generation)
2361 {
2362 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
2363 return 0;
2364 #else
2365 struct fw_ohci *ohci = fw_ohci(card);
2366 unsigned long flags;
2367 int n, ret = 0;
2368
2369 /*
2370 * FIXME: Make sure this bitmask is cleared when we clear the busReset
2371 * interrupt bit. Clear physReqResourceAllBuses on bus reset.
2372 */
2373
2374 spin_lock_irqsave(&ohci->lock, flags);
2375
2376 if (ohci->generation != generation) {
2377 ret = -ESTALE;
2378 goto out;
2379 }
2380
2381 /*
2382 * Note, if the node ID contains a non-local bus ID, physical DMA is
2383 * enabled for _all_ nodes on remote buses.
2384 */
2385
2386 n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
2387 if (n < 32)
2388 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
2389 else
2390 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
2391
2392 flush_writes(ohci);
2393 out:
2394 spin_unlock_irqrestore(&ohci->lock, flags);
2395
2396 return ret;
2397 #endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
2398 }
2399
2400 static u32 ohci_read_csr(struct fw_card *card, int csr_offset)
2401 {
2402 struct fw_ohci *ohci = fw_ohci(card);
2403 unsigned long flags;
2404 u32 value;
2405
2406 switch (csr_offset) {
2407 case CSR_STATE_CLEAR:
2408 case CSR_STATE_SET:
2409 if (ohci->is_root &&
2410 (reg_read(ohci, OHCI1394_LinkControlSet) &
2411 OHCI1394_LinkControl_cycleMaster))
2412 value = CSR_STATE_BIT_CMSTR;
2413 else
2414 value = 0;
2415 if (ohci->csr_state_setclear_abdicate)
2416 value |= CSR_STATE_BIT_ABDICATE;
2417
2418 return value;
2419
2420 case CSR_NODE_IDS:
2421 return reg_read(ohci, OHCI1394_NodeID) << 16;
2422
2423 case CSR_CYCLE_TIME:
2424 return get_cycle_time(ohci);
2425
2426 case CSR_BUS_TIME:
2427 /*
2428 * We might be called just after the cycle timer has wrapped
2429 * around but just before the cycle64Seconds handler, so we
2430 * better check here, too, if the bus time needs to be updated.
2431 */
2432 spin_lock_irqsave(&ohci->lock, flags);
2433 value = update_bus_time(ohci);
2434 spin_unlock_irqrestore(&ohci->lock, flags);
2435 return value;
2436
2437 case CSR_BUSY_TIMEOUT:
2438 value = reg_read(ohci, OHCI1394_ATRetries);
2439 return (value >> 4) & 0x0ffff00f;
2440
2441 case CSR_PRIORITY_BUDGET:
2442 return (reg_read(ohci, OHCI1394_FairnessControl) & 0x3f) |
2443 (ohci->pri_req_max << 8);
2444
2445 default:
2446 WARN_ON(1);
2447 return 0;
2448 }
2449 }
2450
2451 static void ohci_write_csr(struct fw_card *card, int csr_offset, u32 value)
2452 {
2453 struct fw_ohci *ohci = fw_ohci(card);
2454 unsigned long flags;
2455
2456 switch (csr_offset) {
2457 case CSR_STATE_CLEAR:
2458 if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2459 reg_write(ohci, OHCI1394_LinkControlClear,
2460 OHCI1394_LinkControl_cycleMaster);
2461 flush_writes(ohci);
2462 }
2463 if (value & CSR_STATE_BIT_ABDICATE)
2464 ohci->csr_state_setclear_abdicate = false;
2465 break;
2466
2467 case CSR_STATE_SET:
2468 if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2469 reg_write(ohci, OHCI1394_LinkControlSet,
2470 OHCI1394_LinkControl_cycleMaster);
2471 flush_writes(ohci);
2472 }
2473 if (value & CSR_STATE_BIT_ABDICATE)
2474 ohci->csr_state_setclear_abdicate = true;
2475 break;
2476
2477 case CSR_NODE_IDS:
2478 reg_write(ohci, OHCI1394_NodeID, value >> 16);
2479 flush_writes(ohci);
2480 break;
2481
2482 case CSR_CYCLE_TIME:
2483 reg_write(ohci, OHCI1394_IsochronousCycleTimer, value);
2484 reg_write(ohci, OHCI1394_IntEventSet,
2485 OHCI1394_cycleInconsistent);
2486 flush_writes(ohci);
2487 break;
2488
2489 case CSR_BUS_TIME:
2490 spin_lock_irqsave(&ohci->lock, flags);
2491 ohci->bus_time = (ohci->bus_time & 0x7f) | (value & ~0x7f);
2492 spin_unlock_irqrestore(&ohci->lock, flags);
2493 break;
2494
2495 case CSR_BUSY_TIMEOUT:
2496 value = (value & 0xf) | ((value & 0xf) << 4) |
2497 ((value & 0xf) << 8) | ((value & 0x0ffff000) << 4);
2498 reg_write(ohci, OHCI1394_ATRetries, value);
2499 flush_writes(ohci);
2500 break;
2501
2502 case CSR_PRIORITY_BUDGET:
2503 reg_write(ohci, OHCI1394_FairnessControl, value & 0x3f);
2504 flush_writes(ohci);
2505 break;
2506
2507 default:
2508 WARN_ON(1);
2509 break;
2510 }
2511 }
2512
2513 static void copy_iso_headers(struct iso_context *ctx, void *p)
2514 {
2515 int i = ctx->header_length;
2516
2517 if (i + ctx->base.header_size > PAGE_SIZE)
2518 return;
2519
2520 /*
2521 * The iso header is byteswapped to little endian by
2522 * the controller, but the remaining header quadlets
2523 * are big endian. We want to present all the headers
2524 * as big endian, so we have to swap the first quadlet.
2525 */
2526 if (ctx->base.header_size > 0)
2527 *(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
2528 if (ctx->base.header_size > 4)
2529 *(u32 *) (ctx->header + i + 4) = __swab32(*(u32 *) p);
2530 if (ctx->base.header_size > 8)
2531 memcpy(ctx->header + i + 8, p + 8, ctx->base.header_size - 8);
2532 ctx->header_length += ctx->base.header_size;
2533 }
2534
2535 static int handle_ir_packet_per_buffer(struct context *context,
2536 struct descriptor *d,
2537 struct descriptor *last)
2538 {
2539 struct iso_context *ctx =
2540 container_of(context, struct iso_context, context);
2541 struct descriptor *pd;
2542 __le32 *ir_header;
2543 void *p;
2544
2545 for (pd = d; pd <= last; pd++)
2546 if (pd->transfer_status)
2547 break;
2548 if (pd > last)
2549 /* Descriptor(s) not done yet, stop iteration */
2550 return 0;
2551
2552 p = last + 1;
2553 copy_iso_headers(ctx, p);
2554
2555 if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
2556 ir_header = (__le32 *) p;
2557 ctx->base.callback.sc(&ctx->base,
2558 le32_to_cpu(ir_header[0]) & 0xffff,
2559 ctx->header_length, ctx->header,
2560 ctx->base.callback_data);
2561 ctx->header_length = 0;
2562 }
2563
2564 return 1;
2565 }
2566
2567 /* d == last because each descriptor block is only a single descriptor. */
2568 static int handle_ir_buffer_fill(struct context *context,
2569 struct descriptor *d,
2570 struct descriptor *last)
2571 {
2572 struct iso_context *ctx =
2573 container_of(context, struct iso_context, context);
2574
2575 if (!last->transfer_status)
2576 /* Descriptor(s) not done yet, stop iteration */
2577 return 0;
2578
2579 if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS)
2580 ctx->base.callback.mc(&ctx->base,
2581 le32_to_cpu(last->data_address) +
2582 le16_to_cpu(last->req_count) -
2583 le16_to_cpu(last->res_count),
2584 ctx->base.callback_data);
2585
2586 return 1;
2587 }
2588
2589 static int handle_it_packet(struct context *context,
2590 struct descriptor *d,
2591 struct descriptor *last)
2592 {
2593 struct iso_context *ctx =
2594 container_of(context, struct iso_context, context);
2595 int i;
2596 struct descriptor *pd;
2597
2598 for (pd = d; pd <= last; pd++)
2599 if (pd->transfer_status)
2600 break;
2601 if (pd > last)
2602 /* Descriptor(s) not done yet, stop iteration */
2603 return 0;
2604
2605 i = ctx->header_length;
2606 if (i + 4 < PAGE_SIZE) {
2607 /* Present this value as big-endian to match the receive code */
2608 *(__be32 *)(ctx->header + i) = cpu_to_be32(
2609 ((u32)le16_to_cpu(pd->transfer_status) << 16) |
2610 le16_to_cpu(pd->res_count));
2611 ctx->header_length += 4;
2612 }
2613 if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
2614 ctx->base.callback.sc(&ctx->base, le16_to_cpu(last->res_count),
2615 ctx->header_length, ctx->header,
2616 ctx->base.callback_data);
2617 ctx->header_length = 0;
2618 }
2619 return 1;
2620 }
2621
2622 static void set_multichannel_mask(struct fw_ohci *ohci, u64 channels)
2623 {
2624 u32 hi = channels >> 32, lo = channels;
2625
2626 reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear, ~hi);
2627 reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear, ~lo);
2628 reg_write(ohci, OHCI1394_IRMultiChanMaskHiSet, hi);
2629 reg_write(ohci, OHCI1394_IRMultiChanMaskLoSet, lo);
2630 mmiowb();
2631 ohci->mc_channels = channels;
2632 }
2633
2634 static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
2635 int type, int channel, size_t header_size)
2636 {
2637 struct fw_ohci *ohci = fw_ohci(card);
2638 struct iso_context *uninitialized_var(ctx);
2639 descriptor_callback_t uninitialized_var(callback);
2640 u64 *uninitialized_var(channels);
2641 u32 *uninitialized_var(mask), uninitialized_var(regs);
2642 unsigned long flags;
2643 int index, ret = -EBUSY;
2644
2645 spin_lock_irqsave(&ohci->lock, flags);
2646
2647 switch (type) {
2648 case FW_ISO_CONTEXT_TRANSMIT:
2649 mask = &ohci->it_context_mask;
2650 callback = handle_it_packet;
2651 index = ffs(*mask) - 1;
2652 if (index >= 0) {
2653 *mask &= ~(1 << index);
2654 regs = OHCI1394_IsoXmitContextBase(index);
2655 ctx = &ohci->it_context_list[index];
2656 }
2657 break;
2658
2659 case FW_ISO_CONTEXT_RECEIVE:
2660 channels = &ohci->ir_context_channels;
2661 mask = &ohci->ir_context_mask;
2662 callback = handle_ir_packet_per_buffer;
2663 index = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
2664 if (index >= 0) {
2665 *channels &= ~(1ULL << channel);
2666 *mask &= ~(1 << index);
2667 regs = OHCI1394_IsoRcvContextBase(index);
2668 ctx = &ohci->ir_context_list[index];
2669 }
2670 break;
2671
2672 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2673 mask = &ohci->ir_context_mask;
2674 callback = handle_ir_buffer_fill;
2675 index = !ohci->mc_allocated ? ffs(*mask) - 1 : -1;
2676 if (index >= 0) {
2677 ohci->mc_allocated = true;
2678 *mask &= ~(1 << index);
2679 regs = OHCI1394_IsoRcvContextBase(index);
2680 ctx = &ohci->ir_context_list[index];
2681 }
2682 break;
2683
2684 default:
2685 index = -1;
2686 ret = -ENOSYS;
2687 }
2688
2689 spin_unlock_irqrestore(&ohci->lock, flags);
2690
2691 if (index < 0)
2692 return ERR_PTR(ret);
2693
2694 memset(ctx, 0, sizeof(*ctx));
2695 ctx->header_length = 0;
2696 ctx->header = (void *) __get_free_page(GFP_KERNEL);
2697 if (ctx->header == NULL) {
2698 ret = -ENOMEM;
2699 goto out;
2700 }
2701 ret = context_init(&ctx->context, ohci, regs, callback);
2702 if (ret < 0)
2703 goto out_with_header;
2704
2705 if (type == FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL)
2706 set_multichannel_mask(ohci, 0);
2707
2708 return &ctx->base;
2709
2710 out_with_header:
2711 free_page((unsigned long)ctx->header);
2712 out:
2713 spin_lock_irqsave(&ohci->lock, flags);
2714
2715 switch (type) {
2716 case FW_ISO_CONTEXT_RECEIVE:
2717 *channels |= 1ULL << channel;
2718 break;
2719
2720 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2721 ohci->mc_allocated = false;
2722 break;
2723 }
2724 *mask |= 1 << index;
2725
2726 spin_unlock_irqrestore(&ohci->lock, flags);
2727
2728 return ERR_PTR(ret);
2729 }
2730
2731 static int ohci_start_iso(struct fw_iso_context *base,
2732 s32 cycle, u32 sync, u32 tags)
2733 {
2734 struct iso_context *ctx = container_of(base, struct iso_context, base);
2735 struct fw_ohci *ohci = ctx->context.ohci;
2736 u32 control = IR_CONTEXT_ISOCH_HEADER, match;
2737 int index;
2738
2739 /* the controller cannot start without any queued packets */
2740 if (ctx->context.last->branch_address == 0)
2741 return -ENODATA;
2742
2743 switch (ctx->base.type) {
2744 case FW_ISO_CONTEXT_TRANSMIT:
2745 index = ctx - ohci->it_context_list;
2746 match = 0;
2747 if (cycle >= 0)
2748 match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
2749 (cycle & 0x7fff) << 16;
2750
2751 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
2752 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
2753 context_run(&ctx->context, match);
2754 break;
2755
2756 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2757 control |= IR_CONTEXT_BUFFER_FILL|IR_CONTEXT_MULTI_CHANNEL_MODE;
2758 /* fall through */
2759 case FW_ISO_CONTEXT_RECEIVE:
2760 index = ctx - ohci->ir_context_list;
2761 match = (tags << 28) | (sync << 8) | ctx->base.channel;
2762 if (cycle >= 0) {
2763 match |= (cycle & 0x07fff) << 12;
2764 control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
2765 }
2766
2767 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
2768 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
2769 reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
2770 context_run(&ctx->context, control);
2771
2772 ctx->sync = sync;
2773 ctx->tags = tags;
2774
2775 break;
2776 }
2777
2778 return 0;
2779 }
2780
2781 static int ohci_stop_iso(struct fw_iso_context *base)
2782 {
2783 struct fw_ohci *ohci = fw_ohci(base->card);
2784 struct iso_context *ctx = container_of(base, struct iso_context, base);
2785 int index;
2786
2787 switch (ctx->base.type) {
2788 case FW_ISO_CONTEXT_TRANSMIT:
2789 index = ctx - ohci->it_context_list;
2790 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
2791 break;
2792
2793 case FW_ISO_CONTEXT_RECEIVE:
2794 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2795 index = ctx - ohci->ir_context_list;
2796 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
2797 break;
2798 }
2799 flush_writes(ohci);
2800 context_stop(&ctx->context);
2801 tasklet_kill(&ctx->context.tasklet);
2802
2803 return 0;
2804 }
2805
2806 static void ohci_free_iso_context(struct fw_iso_context *base)
2807 {
2808 struct fw_ohci *ohci = fw_ohci(base->card);
2809 struct iso_context *ctx = container_of(base, struct iso_context, base);
2810 unsigned long flags;
2811 int index;
2812
2813 ohci_stop_iso(base);
2814 context_release(&ctx->context);
2815 free_page((unsigned long)ctx->header);
2816
2817 spin_lock_irqsave(&ohci->lock, flags);
2818
2819 switch (base->type) {
2820 case FW_ISO_CONTEXT_TRANSMIT:
2821 index = ctx - ohci->it_context_list;
2822 ohci->it_context_mask |= 1 << index;
2823 break;
2824
2825 case FW_ISO_CONTEXT_RECEIVE:
2826 index = ctx - ohci->ir_context_list;
2827 ohci->ir_context_mask |= 1 << index;
2828 ohci->ir_context_channels |= 1ULL << base->channel;
2829 break;
2830
2831 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2832 index = ctx - ohci->ir_context_list;
2833 ohci->ir_context_mask |= 1 << index;
2834 ohci->ir_context_channels |= ohci->mc_channels;
2835 ohci->mc_channels = 0;
2836 ohci->mc_allocated = false;
2837 break;
2838 }
2839
2840 spin_unlock_irqrestore(&ohci->lock, flags);
2841 }
2842
2843 static int ohci_set_iso_channels(struct fw_iso_context *base, u64 *channels)
2844 {
2845 struct fw_ohci *ohci = fw_ohci(base->card);
2846 unsigned long flags;
2847 int ret;
2848
2849 switch (base->type) {
2850 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2851
2852 spin_lock_irqsave(&ohci->lock, flags);
2853
2854 /* Don't allow multichannel to grab other contexts' channels. */
2855 if (~ohci->ir_context_channels & ~ohci->mc_channels & *channels) {
2856 *channels = ohci->ir_context_channels;
2857 ret = -EBUSY;
2858 } else {
2859 set_multichannel_mask(ohci, *channels);
2860 ret = 0;
2861 }
2862
2863 spin_unlock_irqrestore(&ohci->lock, flags);
2864
2865 break;
2866 default:
2867 ret = -EINVAL;
2868 }
2869
2870 return ret;
2871 }
2872
2873 #ifdef CONFIG_PM
2874 static void ohci_resume_iso_dma(struct fw_ohci *ohci)
2875 {
2876 int i;
2877 struct iso_context *ctx;
2878
2879 for (i = 0 ; i < ohci->n_ir ; i++) {
2880 ctx = &ohci->ir_context_list[i];
2881 if (ctx->context.running)
2882 ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
2883 }
2884
2885 for (i = 0 ; i < ohci->n_it ; i++) {
2886 ctx = &ohci->it_context_list[i];
2887 if (ctx->context.running)
2888 ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
2889 }
2890 }
2891 #endif
2892
2893 static int queue_iso_transmit(struct iso_context *ctx,
2894 struct fw_iso_packet *packet,
2895 struct fw_iso_buffer *buffer,
2896 unsigned long payload)
2897 {
2898 struct descriptor *d, *last, *pd;
2899 struct fw_iso_packet *p;
2900 __le32 *header;
2901 dma_addr_t d_bus, page_bus;
2902 u32 z, header_z, payload_z, irq;
2903 u32 payload_index, payload_end_index, next_page_index;
2904 int page, end_page, i, length, offset;
2905
2906 p = packet;
2907 payload_index = payload;
2908
2909 if (p->skip)
2910 z = 1;
2911 else
2912 z = 2;
2913 if (p->header_length > 0)
2914 z++;
2915
2916 /* Determine the first page the payload isn't contained in. */
2917 end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
2918 if (p->payload_length > 0)
2919 payload_z = end_page - (payload_index >> PAGE_SHIFT);
2920 else
2921 payload_z = 0;
2922
2923 z += payload_z;
2924
2925 /* Get header size in number of descriptors. */
2926 header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
2927
2928 d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
2929 if (d == NULL)
2930 return -ENOMEM;
2931
2932 if (!p->skip) {
2933 d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
2934 d[0].req_count = cpu_to_le16(8);
2935 /*
2936 * Link the skip address to this descriptor itself. This causes
2937 * a context to skip a cycle whenever lost cycles or FIFO
2938 * overruns occur, without dropping the data. The application
2939 * should then decide whether this is an error condition or not.
2940 * FIXME: Make the context's cycle-lost behaviour configurable?
2941 */
2942 d[0].branch_address = cpu_to_le32(d_bus | z);
2943
2944 header = (__le32 *) &d[1];
2945 header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
2946 IT_HEADER_TAG(p->tag) |
2947 IT_HEADER_TCODE(TCODE_STREAM_DATA) |
2948 IT_HEADER_CHANNEL(ctx->base.channel) |
2949 IT_HEADER_SPEED(ctx->base.speed));
2950 header[1] =
2951 cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
2952 p->payload_length));
2953 }
2954
2955 if (p->header_length > 0) {
2956 d[2].req_count = cpu_to_le16(p->header_length);
2957 d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
2958 memcpy(&d[z], p->header, p->header_length);
2959 }
2960
2961 pd = d + z - payload_z;
2962 payload_end_index = payload_index + p->payload_length;
2963 for (i = 0; i < payload_z; i++) {
2964 page = payload_index >> PAGE_SHIFT;
2965 offset = payload_index & ~PAGE_MASK;
2966 next_page_index = (page + 1) << PAGE_SHIFT;
2967 length =
2968 min(next_page_index, payload_end_index) - payload_index;
2969 pd[i].req_count = cpu_to_le16(length);
2970
2971 page_bus = page_private(buffer->pages[page]);
2972 pd[i].data_address = cpu_to_le32(page_bus + offset);
2973
2974 payload_index += length;
2975 }
2976
2977 if (p->interrupt)
2978 irq = DESCRIPTOR_IRQ_ALWAYS;
2979 else
2980 irq = DESCRIPTOR_NO_IRQ;
2981
2982 last = z == 2 ? d : d + z - 1;
2983 last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
2984 DESCRIPTOR_STATUS |
2985 DESCRIPTOR_BRANCH_ALWAYS |
2986 irq);
2987
2988 context_append(&ctx->context, d, z, header_z);
2989
2990 return 0;
2991 }
2992
2993 static int queue_iso_packet_per_buffer(struct iso_context *ctx,
2994 struct fw_iso_packet *packet,
2995 struct fw_iso_buffer *buffer,
2996 unsigned long payload)
2997 {
2998 struct descriptor *d, *pd;
2999 dma_addr_t d_bus, page_bus;
3000 u32 z, header_z, rest;
3001 int i, j, length;
3002 int page, offset, packet_count, header_size, payload_per_buffer;
3003
3004 /*
3005 * The OHCI controller puts the isochronous header and trailer in the
3006 * buffer, so we need at least 8 bytes.
3007 */
3008 packet_count = packet->header_length / ctx->base.header_size;
3009 header_size = max(ctx->base.header_size, (size_t)8);
3010
3011 /* Get header size in number of descriptors. */
3012 header_z = DIV_ROUND_UP(header_size, sizeof(*d));
3013 page = payload >> PAGE_SHIFT;
3014 offset = payload & ~PAGE_MASK;
3015 payload_per_buffer = packet->payload_length / packet_count;
3016
3017 for (i = 0; i < packet_count; i++) {
3018 /* d points to the header descriptor */
3019 z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
3020 d = context_get_descriptors(&ctx->context,
3021 z + header_z, &d_bus);
3022 if (d == NULL)
3023 return -ENOMEM;
3024
3025 d->control = cpu_to_le16(DESCRIPTOR_STATUS |
3026 DESCRIPTOR_INPUT_MORE);
3027 if (packet->skip && i == 0)
3028 d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3029 d->req_count = cpu_to_le16(header_size);
3030 d->res_count = d->req_count;
3031 d->transfer_status = 0;
3032 d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
3033
3034 rest = payload_per_buffer;
3035 pd = d;
3036 for (j = 1; j < z; j++) {
3037 pd++;
3038 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3039 DESCRIPTOR_INPUT_MORE);
3040
3041 if (offset + rest < PAGE_SIZE)
3042 length = rest;
3043 else
3044 length = PAGE_SIZE - offset;
3045 pd->req_count = cpu_to_le16(length);
3046 pd->res_count = pd->req_count;
3047 pd->transfer_status = 0;
3048
3049 page_bus = page_private(buffer->pages[page]);
3050 pd->data_address = cpu_to_le32(page_bus + offset);
3051
3052 offset = (offset + length) & ~PAGE_MASK;
3053 rest -= length;
3054 if (offset == 0)
3055 page++;
3056 }
3057 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3058 DESCRIPTOR_INPUT_LAST |
3059 DESCRIPTOR_BRANCH_ALWAYS);
3060 if (packet->interrupt && i == packet_count - 1)
3061 pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3062
3063 context_append(&ctx->context, d, z, header_z);
3064 }
3065
3066 return 0;
3067 }
3068
3069 static int queue_iso_buffer_fill(struct iso_context *ctx,
3070 struct fw_iso_packet *packet,
3071 struct fw_iso_buffer *buffer,
3072 unsigned long payload)
3073 {
3074 struct descriptor *d;
3075 dma_addr_t d_bus, page_bus;
3076 int page, offset, rest, z, i, length;
3077
3078 page = payload >> PAGE_SHIFT;
3079 offset = payload & ~PAGE_MASK;
3080 rest = packet->payload_length;
3081
3082 /* We need one descriptor for each page in the buffer. */
3083 z = DIV_ROUND_UP(offset + rest, PAGE_SIZE);
3084
3085 if (WARN_ON(offset & 3 || rest & 3 || page + z > buffer->page_count))
3086 return -EFAULT;
3087
3088 for (i = 0; i < z; i++) {
3089 d = context_get_descriptors(&ctx->context, 1, &d_bus);
3090 if (d == NULL)
3091 return -ENOMEM;
3092
3093 d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
3094 DESCRIPTOR_BRANCH_ALWAYS);
3095 if (packet->skip && i == 0)
3096 d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3097 if (packet->interrupt && i == z - 1)
3098 d->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3099
3100 if (offset + rest < PAGE_SIZE)
3101 length = rest;
3102 else
3103 length = PAGE_SIZE - offset;
3104 d->req_count = cpu_to_le16(length);
3105 d->res_count = d->req_count;
3106 d->transfer_status = 0;
3107
3108 page_bus = page_private(buffer->pages[page]);
3109 d->data_address = cpu_to_le32(page_bus + offset);
3110
3111 rest -= length;
3112 offset = 0;
3113 page++;
3114
3115 context_append(&ctx->context, d, 1, 0);
3116 }
3117
3118 return 0;
3119 }
3120
3121 static int ohci_queue_iso(struct fw_iso_context *base,
3122 struct fw_iso_packet *packet,
3123 struct fw_iso_buffer *buffer,
3124 unsigned long payload)
3125 {
3126 struct iso_context *ctx = container_of(base, struct iso_context, base);
3127 unsigned long flags;
3128 int ret = -ENOSYS;
3129
3130 spin_lock_irqsave(&ctx->context.ohci->lock, flags);
3131 switch (base->type) {
3132 case FW_ISO_CONTEXT_TRANSMIT:
3133 ret = queue_iso_transmit(ctx, packet, buffer, payload);
3134 break;
3135 case FW_ISO_CONTEXT_RECEIVE:
3136 ret = queue_iso_packet_per_buffer(ctx, packet, buffer, payload);
3137 break;
3138 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3139 ret = queue_iso_buffer_fill(ctx, packet, buffer, payload);
3140 break;
3141 }
3142 spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);
3143
3144 return ret;
3145 }
3146
3147 static void ohci_flush_queue_iso(struct fw_iso_context *base)
3148 {
3149 struct context *ctx =
3150 &container_of(base, struct iso_context, base)->context;
3151
3152 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
3153 }
3154
3155 static const struct fw_card_driver ohci_driver = {
3156 .enable = ohci_enable,
3157 .read_phy_reg = ohci_read_phy_reg,
3158 .update_phy_reg = ohci_update_phy_reg,
3159 .set_config_rom = ohci_set_config_rom,
3160 .send_request = ohci_send_request,
3161 .send_response = ohci_send_response,
3162 .cancel_packet = ohci_cancel_packet,
3163 .enable_phys_dma = ohci_enable_phys_dma,
3164 .read_csr = ohci_read_csr,
3165 .write_csr = ohci_write_csr,
3166
3167 .allocate_iso_context = ohci_allocate_iso_context,
3168 .free_iso_context = ohci_free_iso_context,
3169 .set_iso_channels = ohci_set_iso_channels,
3170 .queue_iso = ohci_queue_iso,
3171 .flush_queue_iso = ohci_flush_queue_iso,
3172 .start_iso = ohci_start_iso,
3173 .stop_iso = ohci_stop_iso,
3174 };
3175
3176 #ifdef CONFIG_PPC_PMAC
3177 static void pmac_ohci_on(struct pci_dev *dev)
3178 {
3179 if (machine_is(powermac)) {
3180 struct device_node *ofn = pci_device_to_OF_node(dev);
3181
3182 if (ofn) {
3183 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
3184 pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
3185 }
3186 }
3187 }
3188
3189 static void pmac_ohci_off(struct pci_dev *dev)
3190 {
3191 if (machine_is(powermac)) {
3192 struct device_node *ofn = pci_device_to_OF_node(dev);
3193
3194 if (ofn) {
3195 pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
3196 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
3197 }
3198 }
3199 }
3200 #else
3201 static inline void pmac_ohci_on(struct pci_dev *dev) {}
3202 static inline void pmac_ohci_off(struct pci_dev *dev) {}
3203 #endif /* CONFIG_PPC_PMAC */
3204
3205 static int __devinit pci_probe(struct pci_dev *dev,
3206 const struct pci_device_id *ent)
3207 {
3208 struct fw_ohci *ohci;
3209 u32 bus_options, max_receive, link_speed, version;
3210 u64 guid;
3211 int i, err;
3212 size_t size;
3213
3214 if (dev->vendor == PCI_VENDOR_ID_PINNACLE_SYSTEMS) {
3215 dev_err(&dev->dev, "Pinnacle MovieBoard is not yet supported\n");
3216 return -ENOSYS;
3217 }
3218
3219 ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
3220 if (ohci == NULL) {
3221 err = -ENOMEM;
3222 goto fail;
3223 }
3224
3225 fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
3226
3227 pmac_ohci_on(dev);
3228
3229 err = pci_enable_device(dev);
3230 if (err) {
3231 fw_error("Failed to enable OHCI hardware\n");
3232 goto fail_free;
3233 }
3234
3235 pci_set_master(dev);
3236 pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
3237 pci_set_drvdata(dev, ohci);
3238
3239 spin_lock_init(&ohci->lock);
3240 mutex_init(&ohci->phy_reg_mutex);
3241
3242 tasklet_init(&ohci->bus_reset_tasklet,
3243 bus_reset_tasklet, (unsigned long)ohci);
3244
3245 err = pci_request_region(dev, 0, ohci_driver_name);
3246 if (err) {
3247 fw_error("MMIO resource unavailable\n");
3248 goto fail_disable;
3249 }
3250
3251 ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
3252 if (ohci->registers == NULL) {
3253 fw_error("Failed to remap registers\n");
3254 err = -ENXIO;
3255 goto fail_iomem;
3256 }
3257
3258 for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
3259 if ((ohci_quirks[i].vendor == dev->vendor) &&
3260 (ohci_quirks[i].device == (unsigned short)PCI_ANY_ID ||
3261 ohci_quirks[i].device == dev->device) &&
3262 (ohci_quirks[i].revision == (unsigned short)PCI_ANY_ID ||
3263 ohci_quirks[i].revision >= dev->revision)) {
3264 ohci->quirks = ohci_quirks[i].flags;
3265 break;
3266 }
3267 if (param_quirks)
3268 ohci->quirks = param_quirks;
3269
3270 /*
3271 * Because dma_alloc_coherent() allocates at least one page,
3272 * we save space by using a common buffer for the AR request/
3273 * response descriptors and the self IDs buffer.
3274 */
3275 BUILD_BUG_ON(AR_BUFFERS * sizeof(struct descriptor) > PAGE_SIZE/4);
3276 BUILD_BUG_ON(SELF_ID_BUF_SIZE > PAGE_SIZE/2);
3277 ohci->misc_buffer = dma_alloc_coherent(ohci->card.device,
3278 PAGE_SIZE,
3279 &ohci->misc_buffer_bus,
3280 GFP_KERNEL);
3281 if (!ohci->misc_buffer) {
3282 err = -ENOMEM;
3283 goto fail_iounmap;
3284 }
3285
3286 err = ar_context_init(&ohci->ar_request_ctx, ohci, 0,
3287 OHCI1394_AsReqRcvContextControlSet);
3288 if (err < 0)
3289 goto fail_misc_buf;
3290
3291 err = ar_context_init(&ohci->ar_response_ctx, ohci, PAGE_SIZE/4,
3292 OHCI1394_AsRspRcvContextControlSet);
3293 if (err < 0)
3294 goto fail_arreq_ctx;
3295
3296 err = context_init(&ohci->at_request_ctx, ohci,
3297 OHCI1394_AsReqTrContextControlSet, handle_at_packet);
3298 if (err < 0)
3299 goto fail_arrsp_ctx;
3300
3301 err = context_init(&ohci->at_response_ctx, ohci,
3302 OHCI1394_AsRspTrContextControlSet, handle_at_packet);
3303 if (err < 0)
3304 goto fail_atreq_ctx;
3305
3306 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
3307 ohci->ir_context_channels = ~0ULL;
3308 ohci->ir_context_support = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
3309 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
3310 ohci->ir_context_mask = ohci->ir_context_support;
3311 ohci->n_ir = hweight32(ohci->ir_context_mask);
3312 size = sizeof(struct iso_context) * ohci->n_ir;
3313 ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
3314
3315 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
3316 ohci->it_context_support = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
3317 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
3318 ohci->it_context_mask = ohci->it_context_support;
3319 ohci->n_it = hweight32(ohci->it_context_mask);
3320 size = sizeof(struct iso_context) * ohci->n_it;
3321 ohci->it_context_list = kzalloc(size, GFP_KERNEL);
3322
3323 if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
3324 err = -ENOMEM;
3325 goto fail_contexts;
3326 }
3327
3328 ohci->self_id_cpu = ohci->misc_buffer + PAGE_SIZE/2;
3329 ohci->self_id_bus = ohci->misc_buffer_bus + PAGE_SIZE/2;
3330
3331 bus_options = reg_read(ohci, OHCI1394_BusOptions);
3332 max_receive = (bus_options >> 12) & 0xf;
3333 link_speed = bus_options & 0x7;
3334 guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
3335 reg_read(ohci, OHCI1394_GUIDLo);
3336
3337 err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
3338 if (err)
3339 goto fail_contexts;
3340
3341 version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
3342 fw_notify("Added fw-ohci device %s, OHCI v%x.%x, "
3343 "%d IR + %d IT contexts, quirks 0x%x\n",
3344 dev_name(&dev->dev), version >> 16, version & 0xff,
3345 ohci->n_ir, ohci->n_it, ohci->quirks);
3346
3347 return 0;
3348
3349 fail_contexts:
3350 kfree(ohci->ir_context_list);
3351 kfree(ohci->it_context_list);
3352 context_release(&ohci->at_response_ctx);
3353 fail_atreq_ctx:
3354 context_release(&ohci->at_request_ctx);
3355 fail_arrsp_ctx:
3356 ar_context_release(&ohci->ar_response_ctx);
3357 fail_arreq_ctx:
3358 ar_context_release(&ohci->ar_request_ctx);
3359 fail_misc_buf:
3360 dma_free_coherent(ohci->card.device, PAGE_SIZE,
3361 ohci->misc_buffer, ohci->misc_buffer_bus);
3362 fail_iounmap:
3363 pci_iounmap(dev, ohci->registers);
3364 fail_iomem:
3365 pci_release_region(dev, 0);
3366 fail_disable:
3367 pci_disable_device(dev);
3368 fail_free:
3369 kfree(ohci);
3370 pmac_ohci_off(dev);
3371 fail:
3372 if (err == -ENOMEM)
3373 fw_error("Out of memory\n");
3374
3375 return err;
3376 }
3377
3378 static void pci_remove(struct pci_dev *dev)
3379 {
3380 struct fw_ohci *ohci;
3381
3382 ohci = pci_get_drvdata(dev);
3383 reg_write(ohci, OHCI1394_IntMaskClear, ~0);
3384 flush_writes(ohci);
3385 fw_core_remove_card(&ohci->card);
3386
3387 /*
3388 * FIXME: Fail all pending packets here, now that the upper
3389 * layers can't queue any more.
3390 */
3391
3392 software_reset(ohci);
3393 free_irq(dev->irq, ohci);
3394
3395 if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom)
3396 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
3397 ohci->next_config_rom, ohci->next_config_rom_bus);
3398 if (ohci->config_rom)
3399 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
3400 ohci->config_rom, ohci->config_rom_bus);
3401 ar_context_release(&ohci->ar_request_ctx);
3402 ar_context_release(&ohci->ar_response_ctx);
3403 dma_free_coherent(ohci->card.device, PAGE_SIZE,
3404 ohci->misc_buffer, ohci->misc_buffer_bus);
3405 context_release(&ohci->at_request_ctx);
3406 context_release(&ohci->at_response_ctx);
3407 kfree(ohci->it_context_list);
3408 kfree(ohci->ir_context_list);
3409 pci_disable_msi(dev);
3410 pci_iounmap(dev, ohci->registers);
3411 pci_release_region(dev, 0);
3412 pci_disable_device(dev);
3413 kfree(ohci);
3414 pmac_ohci_off(dev);
3415
3416 fw_notify("Removed fw-ohci device.\n");
3417 }
3418
3419 #ifdef CONFIG_PM
3420 static int pci_suspend(struct pci_dev *dev, pm_message_t state)
3421 {
3422 struct fw_ohci *ohci = pci_get_drvdata(dev);
3423 int err;
3424
3425 software_reset(ohci);
3426 free_irq(dev->irq, ohci);
3427 pci_disable_msi(dev);
3428 err = pci_save_state(dev);
3429 if (err) {
3430 fw_error("pci_save_state failed\n");
3431 return err;
3432 }
3433 err = pci_set_power_state(dev, pci_choose_state(dev, state));
3434 if (err)
3435 fw_error("pci_set_power_state failed with %d\n", err);
3436 pmac_ohci_off(dev);
3437
3438 return 0;
3439 }
3440
3441 static int pci_resume(struct pci_dev *dev)
3442 {
3443 struct fw_ohci *ohci = pci_get_drvdata(dev);
3444 int err;
3445
3446 pmac_ohci_on(dev);
3447 pci_set_power_state(dev, PCI_D0);
3448 pci_restore_state(dev);
3449 err = pci_enable_device(dev);
3450 if (err) {
3451 fw_error("pci_enable_device failed\n");
3452 return err;
3453 }
3454
3455 /* Some systems don't setup GUID register on resume from ram */
3456 if (!reg_read(ohci, OHCI1394_GUIDLo) &&
3457 !reg_read(ohci, OHCI1394_GUIDHi)) {
3458 reg_write(ohci, OHCI1394_GUIDLo, (u32)ohci->card.guid);
3459 reg_write(ohci, OHCI1394_GUIDHi, (u32)(ohci->card.guid >> 32));
3460 }
3461
3462 err = ohci_enable(&ohci->card, NULL, 0);
3463 if (err)
3464 return err;
3465
3466 ohci_resume_iso_dma(ohci);
3467
3468 return 0;
3469 }
3470 #endif
3471
3472 static const struct pci_device_id pci_table[] = {
3473 { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
3474 { }
3475 };
3476
3477 MODULE_DEVICE_TABLE(pci, pci_table);
3478
3479 static struct pci_driver fw_ohci_pci_driver = {
3480 .name = ohci_driver_name,
3481 .id_table = pci_table,
3482 .probe = pci_probe,
3483 .remove = pci_remove,
3484 #ifdef CONFIG_PM
3485 .resume = pci_resume,
3486 .suspend = pci_suspend,
3487 #endif
3488 };
3489
3490 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
3491 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
3492 MODULE_LICENSE("GPL");
3493
3494 /* Provide a module alias so root-on-sbp2 initrds don't break. */
3495 #ifndef CONFIG_IEEE1394_OHCI1394_MODULE
3496 MODULE_ALIAS("ohci1394");
3497 #endif
3498
3499 static int __init fw_ohci_init(void)
3500 {
3501 return pci_register_driver(&fw_ohci_pci_driver);
3502 }
3503
3504 static void __exit fw_ohci_cleanup(void)
3505 {
3506 pci_unregister_driver(&fw_ohci_pci_driver);
3507 }
3508
3509 module_init(fw_ohci_init);
3510 module_exit(fw_ohci_cleanup);