]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/firewire/sbp2.c
firewire: remove an unused function argument
[mirror_ubuntu-hirsute-kernel.git] / drivers / firewire / sbp2.c
1 /*
2 * SBP2 driver (SCSI over IEEE1394)
3 *
4 * Copyright (C) 2005-2007 Kristian Hoegsberg <krh@bitplanet.net>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21 /*
22 * The basic structure of this driver is based on the old storage driver,
23 * drivers/ieee1394/sbp2.c, originally written by
24 * James Goodwin <jamesg@filanet.com>
25 * with later contributions and ongoing maintenance from
26 * Ben Collins <bcollins@debian.org>,
27 * Stefan Richter <stefanr@s5r6.in-berlin.de>
28 * and many others.
29 */
30
31 #include <linux/blkdev.h>
32 #include <linux/bug.h>
33 #include <linux/completion.h>
34 #include <linux/delay.h>
35 #include <linux/device.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/firewire.h>
38 #include <linux/firewire-constants.h>
39 #include <linux/init.h>
40 #include <linux/jiffies.h>
41 #include <linux/kernel.h>
42 #include <linux/kref.h>
43 #include <linux/list.h>
44 #include <linux/mod_devicetable.h>
45 #include <linux/module.h>
46 #include <linux/moduleparam.h>
47 #include <linux/scatterlist.h>
48 #include <linux/slab.h>
49 #include <linux/spinlock.h>
50 #include <linux/string.h>
51 #include <linux/stringify.h>
52 #include <linux/workqueue.h>
53
54 #include <asm/byteorder.h>
55 #include <asm/system.h>
56
57 #include <scsi/scsi.h>
58 #include <scsi/scsi_cmnd.h>
59 #include <scsi/scsi_device.h>
60 #include <scsi/scsi_host.h>
61
62 /*
63 * So far only bridges from Oxford Semiconductor are known to support
64 * concurrent logins. Depending on firmware, four or two concurrent logins
65 * are possible on OXFW911 and newer Oxsemi bridges.
66 *
67 * Concurrent logins are useful together with cluster filesystems.
68 */
69 static int sbp2_param_exclusive_login = 1;
70 module_param_named(exclusive_login, sbp2_param_exclusive_login, bool, 0644);
71 MODULE_PARM_DESC(exclusive_login, "Exclusive login to sbp2 device "
72 "(default = Y, use N for concurrent initiators)");
73
74 /*
75 * Flags for firmware oddities
76 *
77 * - 128kB max transfer
78 * Limit transfer size. Necessary for some old bridges.
79 *
80 * - 36 byte inquiry
81 * When scsi_mod probes the device, let the inquiry command look like that
82 * from MS Windows.
83 *
84 * - skip mode page 8
85 * Suppress sending of mode_sense for mode page 8 if the device pretends to
86 * support the SCSI Primary Block commands instead of Reduced Block Commands.
87 *
88 * - fix capacity
89 * Tell sd_mod to correct the last sector number reported by read_capacity.
90 * Avoids access beyond actual disk limits on devices with an off-by-one bug.
91 * Don't use this with devices which don't have this bug.
92 *
93 * - delay inquiry
94 * Wait extra SBP2_INQUIRY_DELAY seconds after login before SCSI inquiry.
95 *
96 * - power condition
97 * Set the power condition field in the START STOP UNIT commands sent by
98 * sd_mod on suspend, resume, and shutdown (if manage_start_stop is on).
99 * Some disks need this to spin down or to resume properly.
100 *
101 * - override internal blacklist
102 * Instead of adding to the built-in blacklist, use only the workarounds
103 * specified in the module load parameter.
104 * Useful if a blacklist entry interfered with a non-broken device.
105 */
106 #define SBP2_WORKAROUND_128K_MAX_TRANS 0x1
107 #define SBP2_WORKAROUND_INQUIRY_36 0x2
108 #define SBP2_WORKAROUND_MODE_SENSE_8 0x4
109 #define SBP2_WORKAROUND_FIX_CAPACITY 0x8
110 #define SBP2_WORKAROUND_DELAY_INQUIRY 0x10
111 #define SBP2_INQUIRY_DELAY 12
112 #define SBP2_WORKAROUND_POWER_CONDITION 0x20
113 #define SBP2_WORKAROUND_OVERRIDE 0x100
114
115 static int sbp2_param_workarounds;
116 module_param_named(workarounds, sbp2_param_workarounds, int, 0644);
117 MODULE_PARM_DESC(workarounds, "Work around device bugs (default = 0"
118 ", 128kB max transfer = " __stringify(SBP2_WORKAROUND_128K_MAX_TRANS)
119 ", 36 byte inquiry = " __stringify(SBP2_WORKAROUND_INQUIRY_36)
120 ", skip mode page 8 = " __stringify(SBP2_WORKAROUND_MODE_SENSE_8)
121 ", fix capacity = " __stringify(SBP2_WORKAROUND_FIX_CAPACITY)
122 ", delay inquiry = " __stringify(SBP2_WORKAROUND_DELAY_INQUIRY)
123 ", set power condition in start stop unit = "
124 __stringify(SBP2_WORKAROUND_POWER_CONDITION)
125 ", override internal blacklist = " __stringify(SBP2_WORKAROUND_OVERRIDE)
126 ", or a combination)");
127
128 /* I don't know why the SCSI stack doesn't define something like this... */
129 typedef void (*scsi_done_fn_t)(struct scsi_cmnd *);
130
131 static const char sbp2_driver_name[] = "sbp2";
132
133 /*
134 * We create one struct sbp2_logical_unit per SBP-2 Logical Unit Number Entry
135 * and one struct scsi_device per sbp2_logical_unit.
136 */
137 struct sbp2_logical_unit {
138 struct sbp2_target *tgt;
139 struct list_head link;
140 struct fw_address_handler address_handler;
141 struct list_head orb_list;
142
143 u64 command_block_agent_address;
144 u16 lun;
145 int login_id;
146
147 /*
148 * The generation is updated once we've logged in or reconnected
149 * to the logical unit. Thus, I/O to the device will automatically
150 * fail and get retried if it happens in a window where the device
151 * is not ready, e.g. after a bus reset but before we reconnect.
152 */
153 int generation;
154 int retries;
155 struct delayed_work work;
156 bool has_sdev;
157 bool blocked;
158 };
159
160 /*
161 * We create one struct sbp2_target per IEEE 1212 Unit Directory
162 * and one struct Scsi_Host per sbp2_target.
163 */
164 struct sbp2_target {
165 struct kref kref;
166 struct fw_unit *unit;
167 const char *bus_id;
168 struct list_head lu_list;
169
170 u64 management_agent_address;
171 u64 guid;
172 int directory_id;
173 int node_id;
174 int address_high;
175 unsigned int workarounds;
176 unsigned int mgt_orb_timeout;
177 unsigned int max_payload;
178
179 int dont_block; /* counter for each logical unit */
180 int blocked; /* ditto */
181 };
182
183 static struct fw_device *target_device(struct sbp2_target *tgt)
184 {
185 return fw_parent_device(tgt->unit);
186 }
187
188 /* Impossible login_id, to detect logout attempt before successful login */
189 #define INVALID_LOGIN_ID 0x10000
190
191 #define SBP2_ORB_TIMEOUT 2000U /* Timeout in ms */
192 #define SBP2_ORB_NULL 0x80000000
193 #define SBP2_RETRY_LIMIT 0xf /* 15 retries */
194 #define SBP2_CYCLE_LIMIT (0xc8 << 12) /* 200 125us cycles */
195
196 /*
197 * There is no transport protocol limit to the CDB length, but we implement
198 * a fixed length only. 16 bytes is enough for disks larger than 2 TB.
199 */
200 #define SBP2_MAX_CDB_SIZE 16
201
202 /*
203 * The default maximum s/g segment size of a FireWire controller is
204 * usually 0x10000, but SBP-2 only allows 0xffff. Since buffers have to
205 * be quadlet-aligned, we set the length limit to 0xffff & ~3.
206 */
207 #define SBP2_MAX_SEG_SIZE 0xfffc
208
209 /* Unit directory keys */
210 #define SBP2_CSR_UNIT_CHARACTERISTICS 0x3a
211 #define SBP2_CSR_FIRMWARE_REVISION 0x3c
212 #define SBP2_CSR_LOGICAL_UNIT_NUMBER 0x14
213 #define SBP2_CSR_LOGICAL_UNIT_DIRECTORY 0xd4
214
215 /* Management orb opcodes */
216 #define SBP2_LOGIN_REQUEST 0x0
217 #define SBP2_QUERY_LOGINS_REQUEST 0x1
218 #define SBP2_RECONNECT_REQUEST 0x3
219 #define SBP2_SET_PASSWORD_REQUEST 0x4
220 #define SBP2_LOGOUT_REQUEST 0x7
221 #define SBP2_ABORT_TASK_REQUEST 0xb
222 #define SBP2_ABORT_TASK_SET 0xc
223 #define SBP2_LOGICAL_UNIT_RESET 0xe
224 #define SBP2_TARGET_RESET_REQUEST 0xf
225
226 /* Offsets for command block agent registers */
227 #define SBP2_AGENT_STATE 0x00
228 #define SBP2_AGENT_RESET 0x04
229 #define SBP2_ORB_POINTER 0x08
230 #define SBP2_DOORBELL 0x10
231 #define SBP2_UNSOLICITED_STATUS_ENABLE 0x14
232
233 /* Status write response codes */
234 #define SBP2_STATUS_REQUEST_COMPLETE 0x0
235 #define SBP2_STATUS_TRANSPORT_FAILURE 0x1
236 #define SBP2_STATUS_ILLEGAL_REQUEST 0x2
237 #define SBP2_STATUS_VENDOR_DEPENDENT 0x3
238
239 #define STATUS_GET_ORB_HIGH(v) ((v).status & 0xffff)
240 #define STATUS_GET_SBP_STATUS(v) (((v).status >> 16) & 0xff)
241 #define STATUS_GET_LEN(v) (((v).status >> 24) & 0x07)
242 #define STATUS_GET_DEAD(v) (((v).status >> 27) & 0x01)
243 #define STATUS_GET_RESPONSE(v) (((v).status >> 28) & 0x03)
244 #define STATUS_GET_SOURCE(v) (((v).status >> 30) & 0x03)
245 #define STATUS_GET_ORB_LOW(v) ((v).orb_low)
246 #define STATUS_GET_DATA(v) ((v).data)
247
248 struct sbp2_status {
249 u32 status;
250 u32 orb_low;
251 u8 data[24];
252 };
253
254 struct sbp2_pointer {
255 __be32 high;
256 __be32 low;
257 };
258
259 struct sbp2_orb {
260 struct fw_transaction t;
261 struct kref kref;
262 dma_addr_t request_bus;
263 int rcode;
264 struct sbp2_pointer pointer;
265 void (*callback)(struct sbp2_orb * orb, struct sbp2_status * status);
266 struct list_head link;
267 };
268
269 #define MANAGEMENT_ORB_LUN(v) ((v))
270 #define MANAGEMENT_ORB_FUNCTION(v) ((v) << 16)
271 #define MANAGEMENT_ORB_RECONNECT(v) ((v) << 20)
272 #define MANAGEMENT_ORB_EXCLUSIVE(v) ((v) ? 1 << 28 : 0)
273 #define MANAGEMENT_ORB_REQUEST_FORMAT(v) ((v) << 29)
274 #define MANAGEMENT_ORB_NOTIFY ((1) << 31)
275
276 #define MANAGEMENT_ORB_RESPONSE_LENGTH(v) ((v))
277 #define MANAGEMENT_ORB_PASSWORD_LENGTH(v) ((v) << 16)
278
279 struct sbp2_management_orb {
280 struct sbp2_orb base;
281 struct {
282 struct sbp2_pointer password;
283 struct sbp2_pointer response;
284 __be32 misc;
285 __be32 length;
286 struct sbp2_pointer status_fifo;
287 } request;
288 __be32 response[4];
289 dma_addr_t response_bus;
290 struct completion done;
291 struct sbp2_status status;
292 };
293
294 struct sbp2_login_response {
295 __be32 misc;
296 struct sbp2_pointer command_block_agent;
297 __be32 reconnect_hold;
298 };
299 #define COMMAND_ORB_DATA_SIZE(v) ((v))
300 #define COMMAND_ORB_PAGE_SIZE(v) ((v) << 16)
301 #define COMMAND_ORB_PAGE_TABLE_PRESENT ((1) << 19)
302 #define COMMAND_ORB_MAX_PAYLOAD(v) ((v) << 20)
303 #define COMMAND_ORB_SPEED(v) ((v) << 24)
304 #define COMMAND_ORB_DIRECTION ((1) << 27)
305 #define COMMAND_ORB_REQUEST_FORMAT(v) ((v) << 29)
306 #define COMMAND_ORB_NOTIFY ((1) << 31)
307
308 struct sbp2_command_orb {
309 struct sbp2_orb base;
310 struct {
311 struct sbp2_pointer next;
312 struct sbp2_pointer data_descriptor;
313 __be32 misc;
314 u8 command_block[SBP2_MAX_CDB_SIZE];
315 } request;
316 struct scsi_cmnd *cmd;
317 scsi_done_fn_t done;
318 struct sbp2_logical_unit *lu;
319
320 struct sbp2_pointer page_table[SG_ALL] __attribute__((aligned(8)));
321 dma_addr_t page_table_bus;
322 };
323
324 #define SBP2_ROM_VALUE_WILDCARD ~0 /* match all */
325 #define SBP2_ROM_VALUE_MISSING 0xff000000 /* not present in the unit dir. */
326
327 /*
328 * List of devices with known bugs.
329 *
330 * The firmware_revision field, masked with 0xffff00, is the best
331 * indicator for the type of bridge chip of a device. It yields a few
332 * false positives but this did not break correctly behaving devices
333 * so far.
334 */
335 static const struct {
336 u32 firmware_revision;
337 u32 model;
338 unsigned int workarounds;
339 } sbp2_workarounds_table[] = {
340 /* DViCO Momobay CX-1 with TSB42AA9 bridge */ {
341 .firmware_revision = 0x002800,
342 .model = 0x001010,
343 .workarounds = SBP2_WORKAROUND_INQUIRY_36 |
344 SBP2_WORKAROUND_MODE_SENSE_8 |
345 SBP2_WORKAROUND_POWER_CONDITION,
346 },
347 /* DViCO Momobay FX-3A with TSB42AA9A bridge */ {
348 .firmware_revision = 0x002800,
349 .model = 0x000000,
350 .workarounds = SBP2_WORKAROUND_POWER_CONDITION,
351 },
352 /* Initio bridges, actually only needed for some older ones */ {
353 .firmware_revision = 0x000200,
354 .model = SBP2_ROM_VALUE_WILDCARD,
355 .workarounds = SBP2_WORKAROUND_INQUIRY_36,
356 },
357 /* PL-3507 bridge with Prolific firmware */ {
358 .firmware_revision = 0x012800,
359 .model = SBP2_ROM_VALUE_WILDCARD,
360 .workarounds = SBP2_WORKAROUND_POWER_CONDITION,
361 },
362 /* Symbios bridge */ {
363 .firmware_revision = 0xa0b800,
364 .model = SBP2_ROM_VALUE_WILDCARD,
365 .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS,
366 },
367 /* Datafab MD2-FW2 with Symbios/LSILogic SYM13FW500 bridge */ {
368 .firmware_revision = 0x002600,
369 .model = SBP2_ROM_VALUE_WILDCARD,
370 .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS,
371 },
372 /*
373 * iPod 2nd generation: needs 128k max transfer size workaround
374 * iPod 3rd generation: needs fix capacity workaround
375 */
376 {
377 .firmware_revision = 0x0a2700,
378 .model = 0x000000,
379 .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS |
380 SBP2_WORKAROUND_FIX_CAPACITY,
381 },
382 /* iPod 4th generation */ {
383 .firmware_revision = 0x0a2700,
384 .model = 0x000021,
385 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
386 },
387 /* iPod mini */ {
388 .firmware_revision = 0x0a2700,
389 .model = 0x000022,
390 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
391 },
392 /* iPod mini */ {
393 .firmware_revision = 0x0a2700,
394 .model = 0x000023,
395 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
396 },
397 /* iPod Photo */ {
398 .firmware_revision = 0x0a2700,
399 .model = 0x00007e,
400 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
401 }
402 };
403
404 static void free_orb(struct kref *kref)
405 {
406 struct sbp2_orb *orb = container_of(kref, struct sbp2_orb, kref);
407
408 kfree(orb);
409 }
410
411 static void sbp2_status_write(struct fw_card *card, struct fw_request *request,
412 int tcode, int destination, int source,
413 int generation, unsigned long long offset,
414 void *payload, size_t length, void *callback_data)
415 {
416 struct sbp2_logical_unit *lu = callback_data;
417 struct sbp2_orb *orb;
418 struct sbp2_status status;
419 unsigned long flags;
420
421 if (tcode != TCODE_WRITE_BLOCK_REQUEST ||
422 length < 8 || length > sizeof(status)) {
423 fw_send_response(card, request, RCODE_TYPE_ERROR);
424 return;
425 }
426
427 status.status = be32_to_cpup(payload);
428 status.orb_low = be32_to_cpup(payload + 4);
429 memset(status.data, 0, sizeof(status.data));
430 if (length > 8)
431 memcpy(status.data, payload + 8, length - 8);
432
433 if (STATUS_GET_SOURCE(status) == 2 || STATUS_GET_SOURCE(status) == 3) {
434 fw_notify("non-orb related status write, not handled\n");
435 fw_send_response(card, request, RCODE_COMPLETE);
436 return;
437 }
438
439 /* Lookup the orb corresponding to this status write. */
440 spin_lock_irqsave(&card->lock, flags);
441 list_for_each_entry(orb, &lu->orb_list, link) {
442 if (STATUS_GET_ORB_HIGH(status) == 0 &&
443 STATUS_GET_ORB_LOW(status) == orb->request_bus) {
444 orb->rcode = RCODE_COMPLETE;
445 list_del(&orb->link);
446 break;
447 }
448 }
449 spin_unlock_irqrestore(&card->lock, flags);
450
451 if (&orb->link != &lu->orb_list) {
452 orb->callback(orb, &status);
453 kref_put(&orb->kref, free_orb);
454 } else {
455 fw_error("status write for unknown orb\n");
456 }
457
458 fw_send_response(card, request, RCODE_COMPLETE);
459 }
460
461 static void complete_transaction(struct fw_card *card, int rcode,
462 void *payload, size_t length, void *data)
463 {
464 struct sbp2_orb *orb = data;
465 unsigned long flags;
466
467 /*
468 * This is a little tricky. We can get the status write for
469 * the orb before we get this callback. The status write
470 * handler above will assume the orb pointer transaction was
471 * successful and set the rcode to RCODE_COMPLETE for the orb.
472 * So this callback only sets the rcode if it hasn't already
473 * been set and only does the cleanup if the transaction
474 * failed and we didn't already get a status write.
475 */
476 spin_lock_irqsave(&card->lock, flags);
477
478 if (orb->rcode == -1)
479 orb->rcode = rcode;
480 if (orb->rcode != RCODE_COMPLETE) {
481 list_del(&orb->link);
482 spin_unlock_irqrestore(&card->lock, flags);
483 orb->callback(orb, NULL);
484 } else {
485 spin_unlock_irqrestore(&card->lock, flags);
486 }
487
488 kref_put(&orb->kref, free_orb);
489 }
490
491 static void sbp2_send_orb(struct sbp2_orb *orb, struct sbp2_logical_unit *lu,
492 int node_id, int generation, u64 offset)
493 {
494 struct fw_device *device = target_device(lu->tgt);
495 unsigned long flags;
496
497 orb->pointer.high = 0;
498 orb->pointer.low = cpu_to_be32(orb->request_bus);
499
500 spin_lock_irqsave(&device->card->lock, flags);
501 list_add_tail(&orb->link, &lu->orb_list);
502 spin_unlock_irqrestore(&device->card->lock, flags);
503
504 /* Take a ref for the orb list and for the transaction callback. */
505 kref_get(&orb->kref);
506 kref_get(&orb->kref);
507
508 fw_send_request(device->card, &orb->t, TCODE_WRITE_BLOCK_REQUEST,
509 node_id, generation, device->max_speed, offset,
510 &orb->pointer, 8, complete_transaction, orb);
511 }
512
513 static int sbp2_cancel_orbs(struct sbp2_logical_unit *lu)
514 {
515 struct fw_device *device = target_device(lu->tgt);
516 struct sbp2_orb *orb, *next;
517 struct list_head list;
518 unsigned long flags;
519 int retval = -ENOENT;
520
521 INIT_LIST_HEAD(&list);
522 spin_lock_irqsave(&device->card->lock, flags);
523 list_splice_init(&lu->orb_list, &list);
524 spin_unlock_irqrestore(&device->card->lock, flags);
525
526 list_for_each_entry_safe(orb, next, &list, link) {
527 retval = 0;
528 if (fw_cancel_transaction(device->card, &orb->t) == 0)
529 continue;
530
531 orb->rcode = RCODE_CANCELLED;
532 orb->callback(orb, NULL);
533 }
534
535 return retval;
536 }
537
538 static void complete_management_orb(struct sbp2_orb *base_orb,
539 struct sbp2_status *status)
540 {
541 struct sbp2_management_orb *orb =
542 container_of(base_orb, struct sbp2_management_orb, base);
543
544 if (status)
545 memcpy(&orb->status, status, sizeof(*status));
546 complete(&orb->done);
547 }
548
549 static int sbp2_send_management_orb(struct sbp2_logical_unit *lu, int node_id,
550 int generation, int function,
551 int lun_or_login_id, void *response)
552 {
553 struct fw_device *device = target_device(lu->tgt);
554 struct sbp2_management_orb *orb;
555 unsigned int timeout;
556 int retval = -ENOMEM;
557
558 if (function == SBP2_LOGOUT_REQUEST && fw_device_is_shutdown(device))
559 return 0;
560
561 orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
562 if (orb == NULL)
563 return -ENOMEM;
564
565 kref_init(&orb->base.kref);
566 orb->response_bus =
567 dma_map_single(device->card->device, &orb->response,
568 sizeof(orb->response), DMA_FROM_DEVICE);
569 if (dma_mapping_error(device->card->device, orb->response_bus))
570 goto fail_mapping_response;
571
572 orb->request.response.high = 0;
573 orb->request.response.low = cpu_to_be32(orb->response_bus);
574
575 orb->request.misc = cpu_to_be32(
576 MANAGEMENT_ORB_NOTIFY |
577 MANAGEMENT_ORB_FUNCTION(function) |
578 MANAGEMENT_ORB_LUN(lun_or_login_id));
579 orb->request.length = cpu_to_be32(
580 MANAGEMENT_ORB_RESPONSE_LENGTH(sizeof(orb->response)));
581
582 orb->request.status_fifo.high =
583 cpu_to_be32(lu->address_handler.offset >> 32);
584 orb->request.status_fifo.low =
585 cpu_to_be32(lu->address_handler.offset);
586
587 if (function == SBP2_LOGIN_REQUEST) {
588 /* Ask for 2^2 == 4 seconds reconnect grace period */
589 orb->request.misc |= cpu_to_be32(
590 MANAGEMENT_ORB_RECONNECT(2) |
591 MANAGEMENT_ORB_EXCLUSIVE(sbp2_param_exclusive_login));
592 timeout = lu->tgt->mgt_orb_timeout;
593 } else {
594 timeout = SBP2_ORB_TIMEOUT;
595 }
596
597 init_completion(&orb->done);
598 orb->base.callback = complete_management_orb;
599
600 orb->base.request_bus =
601 dma_map_single(device->card->device, &orb->request,
602 sizeof(orb->request), DMA_TO_DEVICE);
603 if (dma_mapping_error(device->card->device, orb->base.request_bus))
604 goto fail_mapping_request;
605
606 sbp2_send_orb(&orb->base, lu, node_id, generation,
607 lu->tgt->management_agent_address);
608
609 wait_for_completion_timeout(&orb->done, msecs_to_jiffies(timeout));
610
611 retval = -EIO;
612 if (sbp2_cancel_orbs(lu) == 0) {
613 fw_error("%s: orb reply timed out, rcode=0x%02x\n",
614 lu->tgt->bus_id, orb->base.rcode);
615 goto out;
616 }
617
618 if (orb->base.rcode != RCODE_COMPLETE) {
619 fw_error("%s: management write failed, rcode 0x%02x\n",
620 lu->tgt->bus_id, orb->base.rcode);
621 goto out;
622 }
623
624 if (STATUS_GET_RESPONSE(orb->status) != 0 ||
625 STATUS_GET_SBP_STATUS(orb->status) != 0) {
626 fw_error("%s: error status: %d:%d\n", lu->tgt->bus_id,
627 STATUS_GET_RESPONSE(orb->status),
628 STATUS_GET_SBP_STATUS(orb->status));
629 goto out;
630 }
631
632 retval = 0;
633 out:
634 dma_unmap_single(device->card->device, orb->base.request_bus,
635 sizeof(orb->request), DMA_TO_DEVICE);
636 fail_mapping_request:
637 dma_unmap_single(device->card->device, orb->response_bus,
638 sizeof(orb->response), DMA_FROM_DEVICE);
639 fail_mapping_response:
640 if (response)
641 memcpy(response, orb->response, sizeof(orb->response));
642 kref_put(&orb->base.kref, free_orb);
643
644 return retval;
645 }
646
647 static void sbp2_agent_reset(struct sbp2_logical_unit *lu)
648 {
649 struct fw_device *device = target_device(lu->tgt);
650 __be32 d = 0;
651
652 fw_run_transaction(device->card, TCODE_WRITE_QUADLET_REQUEST,
653 lu->tgt->node_id, lu->generation, device->max_speed,
654 lu->command_block_agent_address + SBP2_AGENT_RESET,
655 &d, 4);
656 }
657
658 static void complete_agent_reset_write_no_wait(struct fw_card *card,
659 int rcode, void *payload, size_t length, void *data)
660 {
661 kfree(data);
662 }
663
664 static void sbp2_agent_reset_no_wait(struct sbp2_logical_unit *lu)
665 {
666 struct fw_device *device = target_device(lu->tgt);
667 struct fw_transaction *t;
668 static __be32 d;
669
670 t = kmalloc(sizeof(*t), GFP_ATOMIC);
671 if (t == NULL)
672 return;
673
674 fw_send_request(device->card, t, TCODE_WRITE_QUADLET_REQUEST,
675 lu->tgt->node_id, lu->generation, device->max_speed,
676 lu->command_block_agent_address + SBP2_AGENT_RESET,
677 &d, 4, complete_agent_reset_write_no_wait, t);
678 }
679
680 static inline void sbp2_allow_block(struct sbp2_logical_unit *lu)
681 {
682 /*
683 * We may access dont_block without taking card->lock here:
684 * All callers of sbp2_allow_block() and all callers of sbp2_unblock()
685 * are currently serialized against each other.
686 * And a wrong result in sbp2_conditionally_block()'s access of
687 * dont_block is rather harmless, it simply misses its first chance.
688 */
689 --lu->tgt->dont_block;
690 }
691
692 /*
693 * Blocks lu->tgt if all of the following conditions are met:
694 * - Login, INQUIRY, and high-level SCSI setup of all of the target's
695 * logical units have been finished (indicated by dont_block == 0).
696 * - lu->generation is stale.
697 *
698 * Note, scsi_block_requests() must be called while holding card->lock,
699 * otherwise it might foil sbp2_[conditionally_]unblock()'s attempt to
700 * unblock the target.
701 */
702 static void sbp2_conditionally_block(struct sbp2_logical_unit *lu)
703 {
704 struct sbp2_target *tgt = lu->tgt;
705 struct fw_card *card = target_device(tgt)->card;
706 struct Scsi_Host *shost =
707 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
708 unsigned long flags;
709
710 spin_lock_irqsave(&card->lock, flags);
711 if (!tgt->dont_block && !lu->blocked &&
712 lu->generation != card->generation) {
713 lu->blocked = true;
714 if (++tgt->blocked == 1)
715 scsi_block_requests(shost);
716 }
717 spin_unlock_irqrestore(&card->lock, flags);
718 }
719
720 /*
721 * Unblocks lu->tgt as soon as all its logical units can be unblocked.
722 * Note, it is harmless to run scsi_unblock_requests() outside the
723 * card->lock protected section. On the other hand, running it inside
724 * the section might clash with shost->host_lock.
725 */
726 static void sbp2_conditionally_unblock(struct sbp2_logical_unit *lu)
727 {
728 struct sbp2_target *tgt = lu->tgt;
729 struct fw_card *card = target_device(tgt)->card;
730 struct Scsi_Host *shost =
731 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
732 unsigned long flags;
733 bool unblock = false;
734
735 spin_lock_irqsave(&card->lock, flags);
736 if (lu->blocked && lu->generation == card->generation) {
737 lu->blocked = false;
738 unblock = --tgt->blocked == 0;
739 }
740 spin_unlock_irqrestore(&card->lock, flags);
741
742 if (unblock)
743 scsi_unblock_requests(shost);
744 }
745
746 /*
747 * Prevents future blocking of tgt and unblocks it.
748 * Note, it is harmless to run scsi_unblock_requests() outside the
749 * card->lock protected section. On the other hand, running it inside
750 * the section might clash with shost->host_lock.
751 */
752 static void sbp2_unblock(struct sbp2_target *tgt)
753 {
754 struct fw_card *card = target_device(tgt)->card;
755 struct Scsi_Host *shost =
756 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
757 unsigned long flags;
758
759 spin_lock_irqsave(&card->lock, flags);
760 ++tgt->dont_block;
761 spin_unlock_irqrestore(&card->lock, flags);
762
763 scsi_unblock_requests(shost);
764 }
765
766 static int sbp2_lun2int(u16 lun)
767 {
768 struct scsi_lun eight_bytes_lun;
769
770 memset(&eight_bytes_lun, 0, sizeof(eight_bytes_lun));
771 eight_bytes_lun.scsi_lun[0] = (lun >> 8) & 0xff;
772 eight_bytes_lun.scsi_lun[1] = lun & 0xff;
773
774 return scsilun_to_int(&eight_bytes_lun);
775 }
776
777 static void sbp2_release_target(struct kref *kref)
778 {
779 struct sbp2_target *tgt = container_of(kref, struct sbp2_target, kref);
780 struct sbp2_logical_unit *lu, *next;
781 struct Scsi_Host *shost =
782 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
783 struct scsi_device *sdev;
784 struct fw_device *device = target_device(tgt);
785
786 /* prevent deadlocks */
787 sbp2_unblock(tgt);
788
789 list_for_each_entry_safe(lu, next, &tgt->lu_list, link) {
790 sdev = scsi_device_lookup(shost, 0, 0, sbp2_lun2int(lu->lun));
791 if (sdev) {
792 scsi_remove_device(sdev);
793 scsi_device_put(sdev);
794 }
795 if (lu->login_id != INVALID_LOGIN_ID) {
796 int generation, node_id;
797 /*
798 * tgt->node_id may be obsolete here if we failed
799 * during initial login or after a bus reset where
800 * the topology changed.
801 */
802 generation = device->generation;
803 smp_rmb(); /* node_id vs. generation */
804 node_id = device->node_id;
805 sbp2_send_management_orb(lu, node_id, generation,
806 SBP2_LOGOUT_REQUEST,
807 lu->login_id, NULL);
808 }
809 fw_core_remove_address_handler(&lu->address_handler);
810 list_del(&lu->link);
811 kfree(lu);
812 }
813 scsi_remove_host(shost);
814 fw_notify("released %s, target %d:0:0\n", tgt->bus_id, shost->host_no);
815
816 fw_unit_put(tgt->unit);
817 scsi_host_put(shost);
818 fw_device_put(device);
819 }
820
821 static void sbp2_target_get(struct sbp2_target *tgt)
822 {
823 kref_get(&tgt->kref);
824 }
825
826 static void sbp2_target_put(struct sbp2_target *tgt)
827 {
828 kref_put(&tgt->kref, sbp2_release_target);
829 }
830
831 static struct workqueue_struct *sbp2_wq;
832
833 /*
834 * Always get the target's kref when scheduling work on one its units.
835 * Each workqueue job is responsible to call sbp2_target_put() upon return.
836 */
837 static void sbp2_queue_work(struct sbp2_logical_unit *lu, unsigned long delay)
838 {
839 sbp2_target_get(lu->tgt);
840 if (!queue_delayed_work(sbp2_wq, &lu->work, delay))
841 sbp2_target_put(lu->tgt);
842 }
843
844 /*
845 * Write retransmit retry values into the BUSY_TIMEOUT register.
846 * - The single-phase retry protocol is supported by all SBP-2 devices, but the
847 * default retry_limit value is 0 (i.e. never retry transmission). We write a
848 * saner value after logging into the device.
849 * - The dual-phase retry protocol is optional to implement, and if not
850 * supported, writes to the dual-phase portion of the register will be
851 * ignored. We try to write the original 1394-1995 default here.
852 * - In the case of devices that are also SBP-3-compliant, all writes are
853 * ignored, as the register is read-only, but contains single-phase retry of
854 * 15, which is what we're trying to set for all SBP-2 device anyway, so this
855 * write attempt is safe and yields more consistent behavior for all devices.
856 *
857 * See section 8.3.2.3.5 of the 1394-1995 spec, section 6.2 of the SBP-2 spec,
858 * and section 6.4 of the SBP-3 spec for further details.
859 */
860 static void sbp2_set_busy_timeout(struct sbp2_logical_unit *lu)
861 {
862 struct fw_device *device = target_device(lu->tgt);
863 __be32 d = cpu_to_be32(SBP2_CYCLE_LIMIT | SBP2_RETRY_LIMIT);
864
865 fw_run_transaction(device->card, TCODE_WRITE_QUADLET_REQUEST,
866 lu->tgt->node_id, lu->generation, device->max_speed,
867 CSR_REGISTER_BASE + CSR_BUSY_TIMEOUT, &d, 4);
868 }
869
870 static void sbp2_reconnect(struct work_struct *work);
871
872 static void sbp2_login(struct work_struct *work)
873 {
874 struct sbp2_logical_unit *lu =
875 container_of(work, struct sbp2_logical_unit, work.work);
876 struct sbp2_target *tgt = lu->tgt;
877 struct fw_device *device = target_device(tgt);
878 struct Scsi_Host *shost;
879 struct scsi_device *sdev;
880 struct sbp2_login_response response;
881 int generation, node_id, local_node_id;
882
883 if (fw_device_is_shutdown(device))
884 goto out;
885
886 generation = device->generation;
887 smp_rmb(); /* node IDs must not be older than generation */
888 node_id = device->node_id;
889 local_node_id = device->card->node_id;
890
891 /* If this is a re-login attempt, log out, or we might be rejected. */
892 if (lu->has_sdev)
893 sbp2_send_management_orb(lu, device->node_id, generation,
894 SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
895
896 if (sbp2_send_management_orb(lu, node_id, generation,
897 SBP2_LOGIN_REQUEST, lu->lun, &response) < 0) {
898 if (lu->retries++ < 5) {
899 sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
900 } else {
901 fw_error("%s: failed to login to LUN %04x\n",
902 tgt->bus_id, lu->lun);
903 /* Let any waiting I/O fail from now on. */
904 sbp2_unblock(lu->tgt);
905 }
906 goto out;
907 }
908
909 tgt->node_id = node_id;
910 tgt->address_high = local_node_id << 16;
911 smp_wmb(); /* node IDs must not be older than generation */
912 lu->generation = generation;
913
914 lu->command_block_agent_address =
915 ((u64)(be32_to_cpu(response.command_block_agent.high) & 0xffff)
916 << 32) | be32_to_cpu(response.command_block_agent.low);
917 lu->login_id = be32_to_cpu(response.misc) & 0xffff;
918
919 fw_notify("%s: logged in to LUN %04x (%d retries)\n",
920 tgt->bus_id, lu->lun, lu->retries);
921
922 /* set appropriate retry limit(s) in BUSY_TIMEOUT register */
923 sbp2_set_busy_timeout(lu);
924
925 PREPARE_DELAYED_WORK(&lu->work, sbp2_reconnect);
926 sbp2_agent_reset(lu);
927
928 /* This was a re-login. */
929 if (lu->has_sdev) {
930 sbp2_cancel_orbs(lu);
931 sbp2_conditionally_unblock(lu);
932 goto out;
933 }
934
935 if (lu->tgt->workarounds & SBP2_WORKAROUND_DELAY_INQUIRY)
936 ssleep(SBP2_INQUIRY_DELAY);
937
938 shost = container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
939 sdev = __scsi_add_device(shost, 0, 0, sbp2_lun2int(lu->lun), lu);
940 /*
941 * FIXME: We are unable to perform reconnects while in sbp2_login().
942 * Therefore __scsi_add_device() will get into trouble if a bus reset
943 * happens in parallel. It will either fail or leave us with an
944 * unusable sdev. As a workaround we check for this and retry the
945 * whole login and SCSI probing.
946 */
947
948 /* Reported error during __scsi_add_device() */
949 if (IS_ERR(sdev))
950 goto out_logout_login;
951
952 /* Unreported error during __scsi_add_device() */
953 smp_rmb(); /* get current card generation */
954 if (generation != device->card->generation) {
955 scsi_remove_device(sdev);
956 scsi_device_put(sdev);
957 goto out_logout_login;
958 }
959
960 /* No error during __scsi_add_device() */
961 lu->has_sdev = true;
962 scsi_device_put(sdev);
963 sbp2_allow_block(lu);
964 goto out;
965
966 out_logout_login:
967 smp_rmb(); /* generation may have changed */
968 generation = device->generation;
969 smp_rmb(); /* node_id must not be older than generation */
970
971 sbp2_send_management_orb(lu, device->node_id, generation,
972 SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
973 /*
974 * If a bus reset happened, sbp2_update will have requeued
975 * lu->work already. Reset the work from reconnect to login.
976 */
977 PREPARE_DELAYED_WORK(&lu->work, sbp2_login);
978 out:
979 sbp2_target_put(tgt);
980 }
981
982 static int sbp2_add_logical_unit(struct sbp2_target *tgt, int lun_entry)
983 {
984 struct sbp2_logical_unit *lu;
985
986 lu = kmalloc(sizeof(*lu), GFP_KERNEL);
987 if (!lu)
988 return -ENOMEM;
989
990 lu->address_handler.length = 0x100;
991 lu->address_handler.address_callback = sbp2_status_write;
992 lu->address_handler.callback_data = lu;
993
994 if (fw_core_add_address_handler(&lu->address_handler,
995 &fw_high_memory_region) < 0) {
996 kfree(lu);
997 return -ENOMEM;
998 }
999
1000 lu->tgt = tgt;
1001 lu->lun = lun_entry & 0xffff;
1002 lu->login_id = INVALID_LOGIN_ID;
1003 lu->retries = 0;
1004 lu->has_sdev = false;
1005 lu->blocked = false;
1006 ++tgt->dont_block;
1007 INIT_LIST_HEAD(&lu->orb_list);
1008 INIT_DELAYED_WORK(&lu->work, sbp2_login);
1009
1010 list_add_tail(&lu->link, &tgt->lu_list);
1011 return 0;
1012 }
1013
1014 static int sbp2_scan_logical_unit_dir(struct sbp2_target *tgt,
1015 const u32 *directory)
1016 {
1017 struct fw_csr_iterator ci;
1018 int key, value;
1019
1020 fw_csr_iterator_init(&ci, directory);
1021 while (fw_csr_iterator_next(&ci, &key, &value))
1022 if (key == SBP2_CSR_LOGICAL_UNIT_NUMBER &&
1023 sbp2_add_logical_unit(tgt, value) < 0)
1024 return -ENOMEM;
1025 return 0;
1026 }
1027
1028 static int sbp2_scan_unit_dir(struct sbp2_target *tgt, const u32 *directory,
1029 u32 *model, u32 *firmware_revision)
1030 {
1031 struct fw_csr_iterator ci;
1032 int key, value;
1033
1034 fw_csr_iterator_init(&ci, directory);
1035 while (fw_csr_iterator_next(&ci, &key, &value)) {
1036 switch (key) {
1037
1038 case CSR_DEPENDENT_INFO | CSR_OFFSET:
1039 tgt->management_agent_address =
1040 CSR_REGISTER_BASE + 4 * value;
1041 break;
1042
1043 case CSR_DIRECTORY_ID:
1044 tgt->directory_id = value;
1045 break;
1046
1047 case CSR_MODEL:
1048 *model = value;
1049 break;
1050
1051 case SBP2_CSR_FIRMWARE_REVISION:
1052 *firmware_revision = value;
1053 break;
1054
1055 case SBP2_CSR_UNIT_CHARACTERISTICS:
1056 /* the timeout value is stored in 500ms units */
1057 tgt->mgt_orb_timeout = (value >> 8 & 0xff) * 500;
1058 break;
1059
1060 case SBP2_CSR_LOGICAL_UNIT_NUMBER:
1061 if (sbp2_add_logical_unit(tgt, value) < 0)
1062 return -ENOMEM;
1063 break;
1064
1065 case SBP2_CSR_LOGICAL_UNIT_DIRECTORY:
1066 /* Adjust for the increment in the iterator */
1067 if (sbp2_scan_logical_unit_dir(tgt, ci.p - 1 + value) < 0)
1068 return -ENOMEM;
1069 break;
1070 }
1071 }
1072 return 0;
1073 }
1074
1075 /*
1076 * Per section 7.4.8 of the SBP-2 spec, a mgt_ORB_timeout value can be
1077 * provided in the config rom. Most devices do provide a value, which
1078 * we'll use for login management orbs, but with some sane limits.
1079 */
1080 static void sbp2_clamp_management_orb_timeout(struct sbp2_target *tgt)
1081 {
1082 unsigned int timeout = tgt->mgt_orb_timeout;
1083
1084 if (timeout > 40000)
1085 fw_notify("%s: %ds mgt_ORB_timeout limited to 40s\n",
1086 tgt->bus_id, timeout / 1000);
1087
1088 tgt->mgt_orb_timeout = clamp_val(timeout, 5000, 40000);
1089 }
1090
1091 static void sbp2_init_workarounds(struct sbp2_target *tgt, u32 model,
1092 u32 firmware_revision)
1093 {
1094 int i;
1095 unsigned int w = sbp2_param_workarounds;
1096
1097 if (w)
1098 fw_notify("Please notify linux1394-devel@lists.sourceforge.net "
1099 "if you need the workarounds parameter for %s\n",
1100 tgt->bus_id);
1101
1102 if (w & SBP2_WORKAROUND_OVERRIDE)
1103 goto out;
1104
1105 for (i = 0; i < ARRAY_SIZE(sbp2_workarounds_table); i++) {
1106
1107 if (sbp2_workarounds_table[i].firmware_revision !=
1108 (firmware_revision & 0xffffff00))
1109 continue;
1110
1111 if (sbp2_workarounds_table[i].model != model &&
1112 sbp2_workarounds_table[i].model != SBP2_ROM_VALUE_WILDCARD)
1113 continue;
1114
1115 w |= sbp2_workarounds_table[i].workarounds;
1116 break;
1117 }
1118 out:
1119 if (w)
1120 fw_notify("Workarounds for %s: 0x%x "
1121 "(firmware_revision 0x%06x, model_id 0x%06x)\n",
1122 tgt->bus_id, w, firmware_revision, model);
1123 tgt->workarounds = w;
1124 }
1125
1126 static struct scsi_host_template scsi_driver_template;
1127
1128 static int sbp2_probe(struct device *dev)
1129 {
1130 struct fw_unit *unit = fw_unit(dev);
1131 struct fw_device *device = fw_parent_device(unit);
1132 struct sbp2_target *tgt;
1133 struct sbp2_logical_unit *lu;
1134 struct Scsi_Host *shost;
1135 u32 model, firmware_revision;
1136
1137 if (dma_get_max_seg_size(device->card->device) > SBP2_MAX_SEG_SIZE)
1138 BUG_ON(dma_set_max_seg_size(device->card->device,
1139 SBP2_MAX_SEG_SIZE));
1140
1141 shost = scsi_host_alloc(&scsi_driver_template, sizeof(*tgt));
1142 if (shost == NULL)
1143 return -ENOMEM;
1144
1145 tgt = (struct sbp2_target *)shost->hostdata;
1146 dev_set_drvdata(&unit->device, tgt);
1147 tgt->unit = unit;
1148 kref_init(&tgt->kref);
1149 INIT_LIST_HEAD(&tgt->lu_list);
1150 tgt->bus_id = dev_name(&unit->device);
1151 tgt->guid = (u64)device->config_rom[3] << 32 | device->config_rom[4];
1152
1153 if (fw_device_enable_phys_dma(device) < 0)
1154 goto fail_shost_put;
1155
1156 shost->max_cmd_len = SBP2_MAX_CDB_SIZE;
1157
1158 if (scsi_add_host(shost, &unit->device) < 0)
1159 goto fail_shost_put;
1160
1161 fw_device_get(device);
1162 fw_unit_get(unit);
1163
1164 /* implicit directory ID */
1165 tgt->directory_id = ((unit->directory - device->config_rom) * 4
1166 + CSR_CONFIG_ROM) & 0xffffff;
1167
1168 firmware_revision = SBP2_ROM_VALUE_MISSING;
1169 model = SBP2_ROM_VALUE_MISSING;
1170
1171 if (sbp2_scan_unit_dir(tgt, unit->directory, &model,
1172 &firmware_revision) < 0)
1173 goto fail_tgt_put;
1174
1175 sbp2_clamp_management_orb_timeout(tgt);
1176 sbp2_init_workarounds(tgt, model, firmware_revision);
1177
1178 /*
1179 * At S100 we can do 512 bytes per packet, at S200 1024 bytes,
1180 * and so on up to 4096 bytes. The SBP-2 max_payload field
1181 * specifies the max payload size as 2 ^ (max_payload + 2), so
1182 * if we set this to max_speed + 7, we get the right value.
1183 */
1184 tgt->max_payload = min(device->max_speed + 7, 10U);
1185 tgt->max_payload = min(tgt->max_payload, device->card->max_receive - 1);
1186
1187 /* Do the login in a workqueue so we can easily reschedule retries. */
1188 list_for_each_entry(lu, &tgt->lu_list, link)
1189 sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
1190 return 0;
1191
1192 fail_tgt_put:
1193 sbp2_target_put(tgt);
1194 return -ENOMEM;
1195
1196 fail_shost_put:
1197 scsi_host_put(shost);
1198 return -ENOMEM;
1199 }
1200
1201 static int sbp2_remove(struct device *dev)
1202 {
1203 struct fw_unit *unit = fw_unit(dev);
1204 struct sbp2_target *tgt = dev_get_drvdata(&unit->device);
1205
1206 sbp2_target_put(tgt);
1207 return 0;
1208 }
1209
1210 static void sbp2_reconnect(struct work_struct *work)
1211 {
1212 struct sbp2_logical_unit *lu =
1213 container_of(work, struct sbp2_logical_unit, work.work);
1214 struct sbp2_target *tgt = lu->tgt;
1215 struct fw_device *device = target_device(tgt);
1216 int generation, node_id, local_node_id;
1217
1218 if (fw_device_is_shutdown(device))
1219 goto out;
1220
1221 generation = device->generation;
1222 smp_rmb(); /* node IDs must not be older than generation */
1223 node_id = device->node_id;
1224 local_node_id = device->card->node_id;
1225
1226 if (sbp2_send_management_orb(lu, node_id, generation,
1227 SBP2_RECONNECT_REQUEST,
1228 lu->login_id, NULL) < 0) {
1229 /*
1230 * If reconnect was impossible even though we are in the
1231 * current generation, fall back and try to log in again.
1232 *
1233 * We could check for "Function rejected" status, but
1234 * looking at the bus generation as simpler and more general.
1235 */
1236 smp_rmb(); /* get current card generation */
1237 if (generation == device->card->generation ||
1238 lu->retries++ >= 5) {
1239 fw_error("%s: failed to reconnect\n", tgt->bus_id);
1240 lu->retries = 0;
1241 PREPARE_DELAYED_WORK(&lu->work, sbp2_login);
1242 }
1243 sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
1244 goto out;
1245 }
1246
1247 tgt->node_id = node_id;
1248 tgt->address_high = local_node_id << 16;
1249 smp_wmb(); /* node IDs must not be older than generation */
1250 lu->generation = generation;
1251
1252 fw_notify("%s: reconnected to LUN %04x (%d retries)\n",
1253 tgt->bus_id, lu->lun, lu->retries);
1254
1255 sbp2_agent_reset(lu);
1256 sbp2_cancel_orbs(lu);
1257 sbp2_conditionally_unblock(lu);
1258 out:
1259 sbp2_target_put(tgt);
1260 }
1261
1262 static void sbp2_update(struct fw_unit *unit)
1263 {
1264 struct sbp2_target *tgt = dev_get_drvdata(&unit->device);
1265 struct sbp2_logical_unit *lu;
1266
1267 fw_device_enable_phys_dma(fw_parent_device(unit));
1268
1269 /*
1270 * Fw-core serializes sbp2_update() against sbp2_remove().
1271 * Iteration over tgt->lu_list is therefore safe here.
1272 */
1273 list_for_each_entry(lu, &tgt->lu_list, link) {
1274 sbp2_conditionally_block(lu);
1275 lu->retries = 0;
1276 sbp2_queue_work(lu, 0);
1277 }
1278 }
1279
1280 #define SBP2_UNIT_SPEC_ID_ENTRY 0x0000609e
1281 #define SBP2_SW_VERSION_ENTRY 0x00010483
1282
1283 static const struct ieee1394_device_id sbp2_id_table[] = {
1284 {
1285 .match_flags = IEEE1394_MATCH_SPECIFIER_ID |
1286 IEEE1394_MATCH_VERSION,
1287 .specifier_id = SBP2_UNIT_SPEC_ID_ENTRY,
1288 .version = SBP2_SW_VERSION_ENTRY,
1289 },
1290 { }
1291 };
1292
1293 static struct fw_driver sbp2_driver = {
1294 .driver = {
1295 .owner = THIS_MODULE,
1296 .name = sbp2_driver_name,
1297 .bus = &fw_bus_type,
1298 .probe = sbp2_probe,
1299 .remove = sbp2_remove,
1300 },
1301 .update = sbp2_update,
1302 .id_table = sbp2_id_table,
1303 };
1304
1305 static void sbp2_unmap_scatterlist(struct device *card_device,
1306 struct sbp2_command_orb *orb)
1307 {
1308 if (scsi_sg_count(orb->cmd))
1309 dma_unmap_sg(card_device, scsi_sglist(orb->cmd),
1310 scsi_sg_count(orb->cmd),
1311 orb->cmd->sc_data_direction);
1312
1313 if (orb->request.misc & cpu_to_be32(COMMAND_ORB_PAGE_TABLE_PRESENT))
1314 dma_unmap_single(card_device, orb->page_table_bus,
1315 sizeof(orb->page_table), DMA_TO_DEVICE);
1316 }
1317
1318 static unsigned int sbp2_status_to_sense_data(u8 *sbp2_status, u8 *sense_data)
1319 {
1320 int sam_status;
1321
1322 sense_data[0] = 0x70;
1323 sense_data[1] = 0x0;
1324 sense_data[2] = sbp2_status[1];
1325 sense_data[3] = sbp2_status[4];
1326 sense_data[4] = sbp2_status[5];
1327 sense_data[5] = sbp2_status[6];
1328 sense_data[6] = sbp2_status[7];
1329 sense_data[7] = 10;
1330 sense_data[8] = sbp2_status[8];
1331 sense_data[9] = sbp2_status[9];
1332 sense_data[10] = sbp2_status[10];
1333 sense_data[11] = sbp2_status[11];
1334 sense_data[12] = sbp2_status[2];
1335 sense_data[13] = sbp2_status[3];
1336 sense_data[14] = sbp2_status[12];
1337 sense_data[15] = sbp2_status[13];
1338
1339 sam_status = sbp2_status[0] & 0x3f;
1340
1341 switch (sam_status) {
1342 case SAM_STAT_GOOD:
1343 case SAM_STAT_CHECK_CONDITION:
1344 case SAM_STAT_CONDITION_MET:
1345 case SAM_STAT_BUSY:
1346 case SAM_STAT_RESERVATION_CONFLICT:
1347 case SAM_STAT_COMMAND_TERMINATED:
1348 return DID_OK << 16 | sam_status;
1349
1350 default:
1351 return DID_ERROR << 16;
1352 }
1353 }
1354
1355 static void complete_command_orb(struct sbp2_orb *base_orb,
1356 struct sbp2_status *status)
1357 {
1358 struct sbp2_command_orb *orb =
1359 container_of(base_orb, struct sbp2_command_orb, base);
1360 struct fw_device *device = target_device(orb->lu->tgt);
1361 int result;
1362
1363 if (status != NULL) {
1364 if (STATUS_GET_DEAD(*status))
1365 sbp2_agent_reset_no_wait(orb->lu);
1366
1367 switch (STATUS_GET_RESPONSE(*status)) {
1368 case SBP2_STATUS_REQUEST_COMPLETE:
1369 result = DID_OK << 16;
1370 break;
1371 case SBP2_STATUS_TRANSPORT_FAILURE:
1372 result = DID_BUS_BUSY << 16;
1373 break;
1374 case SBP2_STATUS_ILLEGAL_REQUEST:
1375 case SBP2_STATUS_VENDOR_DEPENDENT:
1376 default:
1377 result = DID_ERROR << 16;
1378 break;
1379 }
1380
1381 if (result == DID_OK << 16 && STATUS_GET_LEN(*status) > 1)
1382 result = sbp2_status_to_sense_data(STATUS_GET_DATA(*status),
1383 orb->cmd->sense_buffer);
1384 } else {
1385 /*
1386 * If the orb completes with status == NULL, something
1387 * went wrong, typically a bus reset happened mid-orb
1388 * or when sending the write (less likely).
1389 */
1390 result = DID_BUS_BUSY << 16;
1391 sbp2_conditionally_block(orb->lu);
1392 }
1393
1394 dma_unmap_single(device->card->device, orb->base.request_bus,
1395 sizeof(orb->request), DMA_TO_DEVICE);
1396 sbp2_unmap_scatterlist(device->card->device, orb);
1397
1398 orb->cmd->result = result;
1399 orb->done(orb->cmd);
1400 }
1401
1402 static int sbp2_map_scatterlist(struct sbp2_command_orb *orb,
1403 struct fw_device *device, struct sbp2_logical_unit *lu)
1404 {
1405 struct scatterlist *sg = scsi_sglist(orb->cmd);
1406 int i, n;
1407
1408 n = dma_map_sg(device->card->device, sg, scsi_sg_count(orb->cmd),
1409 orb->cmd->sc_data_direction);
1410 if (n == 0)
1411 goto fail;
1412
1413 /*
1414 * Handle the special case where there is only one element in
1415 * the scatter list by converting it to an immediate block
1416 * request. This is also a workaround for broken devices such
1417 * as the second generation iPod which doesn't support page
1418 * tables.
1419 */
1420 if (n == 1) {
1421 orb->request.data_descriptor.high =
1422 cpu_to_be32(lu->tgt->address_high);
1423 orb->request.data_descriptor.low =
1424 cpu_to_be32(sg_dma_address(sg));
1425 orb->request.misc |=
1426 cpu_to_be32(COMMAND_ORB_DATA_SIZE(sg_dma_len(sg)));
1427 return 0;
1428 }
1429
1430 for_each_sg(sg, sg, n, i) {
1431 orb->page_table[i].high = cpu_to_be32(sg_dma_len(sg) << 16);
1432 orb->page_table[i].low = cpu_to_be32(sg_dma_address(sg));
1433 }
1434
1435 orb->page_table_bus =
1436 dma_map_single(device->card->device, orb->page_table,
1437 sizeof(orb->page_table), DMA_TO_DEVICE);
1438 if (dma_mapping_error(device->card->device, orb->page_table_bus))
1439 goto fail_page_table;
1440
1441 /*
1442 * The data_descriptor pointer is the one case where we need
1443 * to fill in the node ID part of the address. All other
1444 * pointers assume that the data referenced reside on the
1445 * initiator (i.e. us), but data_descriptor can refer to data
1446 * on other nodes so we need to put our ID in descriptor.high.
1447 */
1448 orb->request.data_descriptor.high = cpu_to_be32(lu->tgt->address_high);
1449 orb->request.data_descriptor.low = cpu_to_be32(orb->page_table_bus);
1450 orb->request.misc |= cpu_to_be32(COMMAND_ORB_PAGE_TABLE_PRESENT |
1451 COMMAND_ORB_DATA_SIZE(n));
1452
1453 return 0;
1454
1455 fail_page_table:
1456 dma_unmap_sg(device->card->device, scsi_sglist(orb->cmd),
1457 scsi_sg_count(orb->cmd), orb->cmd->sc_data_direction);
1458 fail:
1459 return -ENOMEM;
1460 }
1461
1462 /* SCSI stack integration */
1463
1464 static int sbp2_scsi_queuecommand(struct scsi_cmnd *cmd, scsi_done_fn_t done)
1465 {
1466 struct sbp2_logical_unit *lu = cmd->device->hostdata;
1467 struct fw_device *device = target_device(lu->tgt);
1468 struct sbp2_command_orb *orb;
1469 int generation, retval = SCSI_MLQUEUE_HOST_BUSY;
1470
1471 /*
1472 * Bidirectional commands are not yet implemented, and unknown
1473 * transfer direction not handled.
1474 */
1475 if (cmd->sc_data_direction == DMA_BIDIRECTIONAL) {
1476 fw_error("Can't handle DMA_BIDIRECTIONAL, rejecting command\n");
1477 cmd->result = DID_ERROR << 16;
1478 done(cmd);
1479 return 0;
1480 }
1481
1482 orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
1483 if (orb == NULL) {
1484 fw_notify("failed to alloc orb\n");
1485 return SCSI_MLQUEUE_HOST_BUSY;
1486 }
1487
1488 /* Initialize rcode to something not RCODE_COMPLETE. */
1489 orb->base.rcode = -1;
1490 kref_init(&orb->base.kref);
1491
1492 orb->lu = lu;
1493 orb->done = done;
1494 orb->cmd = cmd;
1495
1496 orb->request.next.high = cpu_to_be32(SBP2_ORB_NULL);
1497 orb->request.misc = cpu_to_be32(
1498 COMMAND_ORB_MAX_PAYLOAD(lu->tgt->max_payload) |
1499 COMMAND_ORB_SPEED(device->max_speed) |
1500 COMMAND_ORB_NOTIFY);
1501
1502 if (cmd->sc_data_direction == DMA_FROM_DEVICE)
1503 orb->request.misc |= cpu_to_be32(COMMAND_ORB_DIRECTION);
1504
1505 generation = device->generation;
1506 smp_rmb(); /* sbp2_map_scatterlist looks at tgt->address_high */
1507
1508 if (scsi_sg_count(cmd) && sbp2_map_scatterlist(orb, device, lu) < 0)
1509 goto out;
1510
1511 memcpy(orb->request.command_block, cmd->cmnd, cmd->cmd_len);
1512
1513 orb->base.callback = complete_command_orb;
1514 orb->base.request_bus =
1515 dma_map_single(device->card->device, &orb->request,
1516 sizeof(orb->request), DMA_TO_DEVICE);
1517 if (dma_mapping_error(device->card->device, orb->base.request_bus)) {
1518 sbp2_unmap_scatterlist(device->card->device, orb);
1519 goto out;
1520 }
1521
1522 sbp2_send_orb(&orb->base, lu, lu->tgt->node_id, generation,
1523 lu->command_block_agent_address + SBP2_ORB_POINTER);
1524 retval = 0;
1525 out:
1526 kref_put(&orb->base.kref, free_orb);
1527 return retval;
1528 }
1529
1530 static int sbp2_scsi_slave_alloc(struct scsi_device *sdev)
1531 {
1532 struct sbp2_logical_unit *lu = sdev->hostdata;
1533
1534 /* (Re-)Adding logical units via the SCSI stack is not supported. */
1535 if (!lu)
1536 return -ENOSYS;
1537
1538 sdev->allow_restart = 1;
1539
1540 /* SBP-2 requires quadlet alignment of the data buffers. */
1541 blk_queue_update_dma_alignment(sdev->request_queue, 4 - 1);
1542
1543 if (lu->tgt->workarounds & SBP2_WORKAROUND_INQUIRY_36)
1544 sdev->inquiry_len = 36;
1545
1546 return 0;
1547 }
1548
1549 static int sbp2_scsi_slave_configure(struct scsi_device *sdev)
1550 {
1551 struct sbp2_logical_unit *lu = sdev->hostdata;
1552
1553 sdev->use_10_for_rw = 1;
1554
1555 if (sbp2_param_exclusive_login)
1556 sdev->manage_start_stop = 1;
1557
1558 if (sdev->type == TYPE_ROM)
1559 sdev->use_10_for_ms = 1;
1560
1561 if (sdev->type == TYPE_DISK &&
1562 lu->tgt->workarounds & SBP2_WORKAROUND_MODE_SENSE_8)
1563 sdev->skip_ms_page_8 = 1;
1564
1565 if (lu->tgt->workarounds & SBP2_WORKAROUND_FIX_CAPACITY)
1566 sdev->fix_capacity = 1;
1567
1568 if (lu->tgt->workarounds & SBP2_WORKAROUND_POWER_CONDITION)
1569 sdev->start_stop_pwr_cond = 1;
1570
1571 if (lu->tgt->workarounds & SBP2_WORKAROUND_128K_MAX_TRANS)
1572 blk_queue_max_sectors(sdev->request_queue, 128 * 1024 / 512);
1573
1574 blk_queue_max_segment_size(sdev->request_queue, SBP2_MAX_SEG_SIZE);
1575
1576 return 0;
1577 }
1578
1579 /*
1580 * Called by scsi stack when something has really gone wrong. Usually
1581 * called when a command has timed-out for some reason.
1582 */
1583 static int sbp2_scsi_abort(struct scsi_cmnd *cmd)
1584 {
1585 struct sbp2_logical_unit *lu = cmd->device->hostdata;
1586
1587 fw_notify("%s: sbp2_scsi_abort\n", lu->tgt->bus_id);
1588 sbp2_agent_reset(lu);
1589 sbp2_cancel_orbs(lu);
1590
1591 return SUCCESS;
1592 }
1593
1594 /*
1595 * Format of /sys/bus/scsi/devices/.../ieee1394_id:
1596 * u64 EUI-64 : u24 directory_ID : u16 LUN (all printed in hexadecimal)
1597 *
1598 * This is the concatenation of target port identifier and logical unit
1599 * identifier as per SAM-2...SAM-4 annex A.
1600 */
1601 static ssize_t sbp2_sysfs_ieee1394_id_show(struct device *dev,
1602 struct device_attribute *attr, char *buf)
1603 {
1604 struct scsi_device *sdev = to_scsi_device(dev);
1605 struct sbp2_logical_unit *lu;
1606
1607 if (!sdev)
1608 return 0;
1609
1610 lu = sdev->hostdata;
1611
1612 return sprintf(buf, "%016llx:%06x:%04x\n",
1613 (unsigned long long)lu->tgt->guid,
1614 lu->tgt->directory_id, lu->lun);
1615 }
1616
1617 static DEVICE_ATTR(ieee1394_id, S_IRUGO, sbp2_sysfs_ieee1394_id_show, NULL);
1618
1619 static struct device_attribute *sbp2_scsi_sysfs_attrs[] = {
1620 &dev_attr_ieee1394_id,
1621 NULL
1622 };
1623
1624 static struct scsi_host_template scsi_driver_template = {
1625 .module = THIS_MODULE,
1626 .name = "SBP-2 IEEE-1394",
1627 .proc_name = sbp2_driver_name,
1628 .queuecommand = sbp2_scsi_queuecommand,
1629 .slave_alloc = sbp2_scsi_slave_alloc,
1630 .slave_configure = sbp2_scsi_slave_configure,
1631 .eh_abort_handler = sbp2_scsi_abort,
1632 .this_id = -1,
1633 .sg_tablesize = SG_ALL,
1634 .use_clustering = ENABLE_CLUSTERING,
1635 .cmd_per_lun = 1,
1636 .can_queue = 1,
1637 .sdev_attrs = sbp2_scsi_sysfs_attrs,
1638 };
1639
1640 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1641 MODULE_DESCRIPTION("SCSI over IEEE1394");
1642 MODULE_LICENSE("GPL");
1643 MODULE_DEVICE_TABLE(ieee1394, sbp2_id_table);
1644
1645 /* Provide a module alias so root-on-sbp2 initrds don't break. */
1646 #ifndef CONFIG_IEEE1394_SBP2_MODULE
1647 MODULE_ALIAS("sbp2");
1648 #endif
1649
1650 static int __init sbp2_init(void)
1651 {
1652 sbp2_wq = create_singlethread_workqueue(KBUILD_MODNAME);
1653 if (!sbp2_wq)
1654 return -ENOMEM;
1655
1656 return driver_register(&sbp2_driver.driver);
1657 }
1658
1659 static void __exit sbp2_cleanup(void)
1660 {
1661 driver_unregister(&sbp2_driver.driver);
1662 destroy_workqueue(sbp2_wq);
1663 }
1664
1665 module_init(sbp2_init);
1666 module_exit(sbp2_cleanup);