]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/firewire/sbp2.c
Merge branch 'imm.timestamp' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[mirror_ubuntu-hirsute-kernel.git] / drivers / firewire / sbp2.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * SBP2 driver (SCSI over IEEE1394)
4 *
5 * Copyright (C) 2005-2007 Kristian Hoegsberg <krh@bitplanet.net>
6 */
7
8 /*
9 * The basic structure of this driver is based on the old storage driver,
10 * drivers/ieee1394/sbp2.c, originally written by
11 * James Goodwin <jamesg@filanet.com>
12 * with later contributions and ongoing maintenance from
13 * Ben Collins <bcollins@debian.org>,
14 * Stefan Richter <stefanr@s5r6.in-berlin.de>
15 * and many others.
16 */
17
18 #include <linux/blkdev.h>
19 #include <linux/bug.h>
20 #include <linux/completion.h>
21 #include <linux/delay.h>
22 #include <linux/device.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/firewire.h>
25 #include <linux/firewire-constants.h>
26 #include <linux/init.h>
27 #include <linux/jiffies.h>
28 #include <linux/kernel.h>
29 #include <linux/kref.h>
30 #include <linux/list.h>
31 #include <linux/mod_devicetable.h>
32 #include <linux/module.h>
33 #include <linux/moduleparam.h>
34 #include <linux/scatterlist.h>
35 #include <linux/slab.h>
36 #include <linux/spinlock.h>
37 #include <linux/string.h>
38 #include <linux/stringify.h>
39 #include <linux/workqueue.h>
40
41 #include <asm/byteorder.h>
42
43 #include <scsi/scsi.h>
44 #include <scsi/scsi_cmnd.h>
45 #include <scsi/scsi_device.h>
46 #include <scsi/scsi_host.h>
47
48 /*
49 * So far only bridges from Oxford Semiconductor are known to support
50 * concurrent logins. Depending on firmware, four or two concurrent logins
51 * are possible on OXFW911 and newer Oxsemi bridges.
52 *
53 * Concurrent logins are useful together with cluster filesystems.
54 */
55 static bool sbp2_param_exclusive_login = 1;
56 module_param_named(exclusive_login, sbp2_param_exclusive_login, bool, 0644);
57 MODULE_PARM_DESC(exclusive_login, "Exclusive login to sbp2 device "
58 "(default = Y, use N for concurrent initiators)");
59
60 /*
61 * Flags for firmware oddities
62 *
63 * - 128kB max transfer
64 * Limit transfer size. Necessary for some old bridges.
65 *
66 * - 36 byte inquiry
67 * When scsi_mod probes the device, let the inquiry command look like that
68 * from MS Windows.
69 *
70 * - skip mode page 8
71 * Suppress sending of mode_sense for mode page 8 if the device pretends to
72 * support the SCSI Primary Block commands instead of Reduced Block Commands.
73 *
74 * - fix capacity
75 * Tell sd_mod to correct the last sector number reported by read_capacity.
76 * Avoids access beyond actual disk limits on devices with an off-by-one bug.
77 * Don't use this with devices which don't have this bug.
78 *
79 * - delay inquiry
80 * Wait extra SBP2_INQUIRY_DELAY seconds after login before SCSI inquiry.
81 *
82 * - power condition
83 * Set the power condition field in the START STOP UNIT commands sent by
84 * sd_mod on suspend, resume, and shutdown (if manage_start_stop is on).
85 * Some disks need this to spin down or to resume properly.
86 *
87 * - override internal blacklist
88 * Instead of adding to the built-in blacklist, use only the workarounds
89 * specified in the module load parameter.
90 * Useful if a blacklist entry interfered with a non-broken device.
91 */
92 #define SBP2_WORKAROUND_128K_MAX_TRANS 0x1
93 #define SBP2_WORKAROUND_INQUIRY_36 0x2
94 #define SBP2_WORKAROUND_MODE_SENSE_8 0x4
95 #define SBP2_WORKAROUND_FIX_CAPACITY 0x8
96 #define SBP2_WORKAROUND_DELAY_INQUIRY 0x10
97 #define SBP2_INQUIRY_DELAY 12
98 #define SBP2_WORKAROUND_POWER_CONDITION 0x20
99 #define SBP2_WORKAROUND_OVERRIDE 0x100
100
101 static int sbp2_param_workarounds;
102 module_param_named(workarounds, sbp2_param_workarounds, int, 0644);
103 MODULE_PARM_DESC(workarounds, "Work around device bugs (default = 0"
104 ", 128kB max transfer = " __stringify(SBP2_WORKAROUND_128K_MAX_TRANS)
105 ", 36 byte inquiry = " __stringify(SBP2_WORKAROUND_INQUIRY_36)
106 ", skip mode page 8 = " __stringify(SBP2_WORKAROUND_MODE_SENSE_8)
107 ", fix capacity = " __stringify(SBP2_WORKAROUND_FIX_CAPACITY)
108 ", delay inquiry = " __stringify(SBP2_WORKAROUND_DELAY_INQUIRY)
109 ", set power condition in start stop unit = "
110 __stringify(SBP2_WORKAROUND_POWER_CONDITION)
111 ", override internal blacklist = " __stringify(SBP2_WORKAROUND_OVERRIDE)
112 ", or a combination)");
113
114 /*
115 * We create one struct sbp2_logical_unit per SBP-2 Logical Unit Number Entry
116 * and one struct scsi_device per sbp2_logical_unit.
117 */
118 struct sbp2_logical_unit {
119 struct sbp2_target *tgt;
120 struct list_head link;
121 struct fw_address_handler address_handler;
122 struct list_head orb_list;
123
124 u64 command_block_agent_address;
125 u16 lun;
126 int login_id;
127
128 /*
129 * The generation is updated once we've logged in or reconnected
130 * to the logical unit. Thus, I/O to the device will automatically
131 * fail and get retried if it happens in a window where the device
132 * is not ready, e.g. after a bus reset but before we reconnect.
133 */
134 int generation;
135 int retries;
136 work_func_t workfn;
137 struct delayed_work work;
138 bool has_sdev;
139 bool blocked;
140 };
141
142 static void sbp2_queue_work(struct sbp2_logical_unit *lu, unsigned long delay)
143 {
144 queue_delayed_work(fw_workqueue, &lu->work, delay);
145 }
146
147 /*
148 * We create one struct sbp2_target per IEEE 1212 Unit Directory
149 * and one struct Scsi_Host per sbp2_target.
150 */
151 struct sbp2_target {
152 struct fw_unit *unit;
153 struct list_head lu_list;
154
155 u64 management_agent_address;
156 u64 guid;
157 int directory_id;
158 int node_id;
159 int address_high;
160 unsigned int workarounds;
161 unsigned int mgt_orb_timeout;
162 unsigned int max_payload;
163
164 spinlock_t lock;
165 int dont_block; /* counter for each logical unit */
166 int blocked; /* ditto */
167 };
168
169 static struct fw_device *target_parent_device(struct sbp2_target *tgt)
170 {
171 return fw_parent_device(tgt->unit);
172 }
173
174 static const struct device *tgt_dev(const struct sbp2_target *tgt)
175 {
176 return &tgt->unit->device;
177 }
178
179 static const struct device *lu_dev(const struct sbp2_logical_unit *lu)
180 {
181 return &lu->tgt->unit->device;
182 }
183
184 /* Impossible login_id, to detect logout attempt before successful login */
185 #define INVALID_LOGIN_ID 0x10000
186
187 #define SBP2_ORB_TIMEOUT 2000U /* Timeout in ms */
188 #define SBP2_ORB_NULL 0x80000000
189 #define SBP2_RETRY_LIMIT 0xf /* 15 retries */
190 #define SBP2_CYCLE_LIMIT (0xc8 << 12) /* 200 125us cycles */
191
192 /*
193 * There is no transport protocol limit to the CDB length, but we implement
194 * a fixed length only. 16 bytes is enough for disks larger than 2 TB.
195 */
196 #define SBP2_MAX_CDB_SIZE 16
197
198 /*
199 * The maximum SBP-2 data buffer size is 0xffff. We quadlet-align this
200 * for compatibility with earlier versions of this driver.
201 */
202 #define SBP2_MAX_SEG_SIZE 0xfffc
203
204 /* Unit directory keys */
205 #define SBP2_CSR_UNIT_CHARACTERISTICS 0x3a
206 #define SBP2_CSR_FIRMWARE_REVISION 0x3c
207 #define SBP2_CSR_LOGICAL_UNIT_NUMBER 0x14
208 #define SBP2_CSR_UNIT_UNIQUE_ID 0x8d
209 #define SBP2_CSR_LOGICAL_UNIT_DIRECTORY 0xd4
210
211 /* Management orb opcodes */
212 #define SBP2_LOGIN_REQUEST 0x0
213 #define SBP2_QUERY_LOGINS_REQUEST 0x1
214 #define SBP2_RECONNECT_REQUEST 0x3
215 #define SBP2_SET_PASSWORD_REQUEST 0x4
216 #define SBP2_LOGOUT_REQUEST 0x7
217 #define SBP2_ABORT_TASK_REQUEST 0xb
218 #define SBP2_ABORT_TASK_SET 0xc
219 #define SBP2_LOGICAL_UNIT_RESET 0xe
220 #define SBP2_TARGET_RESET_REQUEST 0xf
221
222 /* Offsets for command block agent registers */
223 #define SBP2_AGENT_STATE 0x00
224 #define SBP2_AGENT_RESET 0x04
225 #define SBP2_ORB_POINTER 0x08
226 #define SBP2_DOORBELL 0x10
227 #define SBP2_UNSOLICITED_STATUS_ENABLE 0x14
228
229 /* Status write response codes */
230 #define SBP2_STATUS_REQUEST_COMPLETE 0x0
231 #define SBP2_STATUS_TRANSPORT_FAILURE 0x1
232 #define SBP2_STATUS_ILLEGAL_REQUEST 0x2
233 #define SBP2_STATUS_VENDOR_DEPENDENT 0x3
234
235 #define STATUS_GET_ORB_HIGH(v) ((v).status & 0xffff)
236 #define STATUS_GET_SBP_STATUS(v) (((v).status >> 16) & 0xff)
237 #define STATUS_GET_LEN(v) (((v).status >> 24) & 0x07)
238 #define STATUS_GET_DEAD(v) (((v).status >> 27) & 0x01)
239 #define STATUS_GET_RESPONSE(v) (((v).status >> 28) & 0x03)
240 #define STATUS_GET_SOURCE(v) (((v).status >> 30) & 0x03)
241 #define STATUS_GET_ORB_LOW(v) ((v).orb_low)
242 #define STATUS_GET_DATA(v) ((v).data)
243
244 struct sbp2_status {
245 u32 status;
246 u32 orb_low;
247 u8 data[24];
248 };
249
250 struct sbp2_pointer {
251 __be32 high;
252 __be32 low;
253 };
254
255 struct sbp2_orb {
256 struct fw_transaction t;
257 struct kref kref;
258 dma_addr_t request_bus;
259 int rcode;
260 void (*callback)(struct sbp2_orb * orb, struct sbp2_status * status);
261 struct sbp2_logical_unit *lu;
262 struct list_head link;
263 };
264
265 #define MANAGEMENT_ORB_LUN(v) ((v))
266 #define MANAGEMENT_ORB_FUNCTION(v) ((v) << 16)
267 #define MANAGEMENT_ORB_RECONNECT(v) ((v) << 20)
268 #define MANAGEMENT_ORB_EXCLUSIVE(v) ((v) ? 1 << 28 : 0)
269 #define MANAGEMENT_ORB_REQUEST_FORMAT(v) ((v) << 29)
270 #define MANAGEMENT_ORB_NOTIFY ((1) << 31)
271
272 #define MANAGEMENT_ORB_RESPONSE_LENGTH(v) ((v))
273 #define MANAGEMENT_ORB_PASSWORD_LENGTH(v) ((v) << 16)
274
275 struct sbp2_management_orb {
276 struct sbp2_orb base;
277 struct {
278 struct sbp2_pointer password;
279 struct sbp2_pointer response;
280 __be32 misc;
281 __be32 length;
282 struct sbp2_pointer status_fifo;
283 } request;
284 __be32 response[4];
285 dma_addr_t response_bus;
286 struct completion done;
287 struct sbp2_status status;
288 };
289
290 struct sbp2_login_response {
291 __be32 misc;
292 struct sbp2_pointer command_block_agent;
293 __be32 reconnect_hold;
294 };
295 #define COMMAND_ORB_DATA_SIZE(v) ((v))
296 #define COMMAND_ORB_PAGE_SIZE(v) ((v) << 16)
297 #define COMMAND_ORB_PAGE_TABLE_PRESENT ((1) << 19)
298 #define COMMAND_ORB_MAX_PAYLOAD(v) ((v) << 20)
299 #define COMMAND_ORB_SPEED(v) ((v) << 24)
300 #define COMMAND_ORB_DIRECTION ((1) << 27)
301 #define COMMAND_ORB_REQUEST_FORMAT(v) ((v) << 29)
302 #define COMMAND_ORB_NOTIFY ((1) << 31)
303
304 struct sbp2_command_orb {
305 struct sbp2_orb base;
306 struct {
307 struct sbp2_pointer next;
308 struct sbp2_pointer data_descriptor;
309 __be32 misc;
310 u8 command_block[SBP2_MAX_CDB_SIZE];
311 } request;
312 struct scsi_cmnd *cmd;
313
314 struct sbp2_pointer page_table[SG_ALL] __attribute__((aligned(8)));
315 dma_addr_t page_table_bus;
316 };
317
318 #define SBP2_ROM_VALUE_WILDCARD ~0 /* match all */
319 #define SBP2_ROM_VALUE_MISSING 0xff000000 /* not present in the unit dir. */
320
321 /*
322 * List of devices with known bugs.
323 *
324 * The firmware_revision field, masked with 0xffff00, is the best
325 * indicator for the type of bridge chip of a device. It yields a few
326 * false positives but this did not break correctly behaving devices
327 * so far.
328 */
329 static const struct {
330 u32 firmware_revision;
331 u32 model;
332 unsigned int workarounds;
333 } sbp2_workarounds_table[] = {
334 /* DViCO Momobay CX-1 with TSB42AA9 bridge */ {
335 .firmware_revision = 0x002800,
336 .model = 0x001010,
337 .workarounds = SBP2_WORKAROUND_INQUIRY_36 |
338 SBP2_WORKAROUND_MODE_SENSE_8 |
339 SBP2_WORKAROUND_POWER_CONDITION,
340 },
341 /* DViCO Momobay FX-3A with TSB42AA9A bridge */ {
342 .firmware_revision = 0x002800,
343 .model = 0x000000,
344 .workarounds = SBP2_WORKAROUND_POWER_CONDITION,
345 },
346 /* Initio bridges, actually only needed for some older ones */ {
347 .firmware_revision = 0x000200,
348 .model = SBP2_ROM_VALUE_WILDCARD,
349 .workarounds = SBP2_WORKAROUND_INQUIRY_36,
350 },
351 /* PL-3507 bridge with Prolific firmware */ {
352 .firmware_revision = 0x012800,
353 .model = SBP2_ROM_VALUE_WILDCARD,
354 .workarounds = SBP2_WORKAROUND_POWER_CONDITION,
355 },
356 /* Symbios bridge */ {
357 .firmware_revision = 0xa0b800,
358 .model = SBP2_ROM_VALUE_WILDCARD,
359 .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS,
360 },
361 /* Datafab MD2-FW2 with Symbios/LSILogic SYM13FW500 bridge */ {
362 .firmware_revision = 0x002600,
363 .model = SBP2_ROM_VALUE_WILDCARD,
364 .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS,
365 },
366 /*
367 * iPod 2nd generation: needs 128k max transfer size workaround
368 * iPod 3rd generation: needs fix capacity workaround
369 */
370 {
371 .firmware_revision = 0x0a2700,
372 .model = 0x000000,
373 .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS |
374 SBP2_WORKAROUND_FIX_CAPACITY,
375 },
376 /* iPod 4th generation */ {
377 .firmware_revision = 0x0a2700,
378 .model = 0x000021,
379 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
380 },
381 /* iPod mini */ {
382 .firmware_revision = 0x0a2700,
383 .model = 0x000022,
384 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
385 },
386 /* iPod mini */ {
387 .firmware_revision = 0x0a2700,
388 .model = 0x000023,
389 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
390 },
391 /* iPod Photo */ {
392 .firmware_revision = 0x0a2700,
393 .model = 0x00007e,
394 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
395 }
396 };
397
398 static void free_orb(struct kref *kref)
399 {
400 struct sbp2_orb *orb = container_of(kref, struct sbp2_orb, kref);
401
402 kfree(orb);
403 }
404
405 static void sbp2_status_write(struct fw_card *card, struct fw_request *request,
406 int tcode, int destination, int source,
407 int generation, unsigned long long offset,
408 void *payload, size_t length, void *callback_data)
409 {
410 struct sbp2_logical_unit *lu = callback_data;
411 struct sbp2_orb *orb;
412 struct sbp2_status status;
413 unsigned long flags;
414
415 if (tcode != TCODE_WRITE_BLOCK_REQUEST ||
416 length < 8 || length > sizeof(status)) {
417 fw_send_response(card, request, RCODE_TYPE_ERROR);
418 return;
419 }
420
421 status.status = be32_to_cpup(payload);
422 status.orb_low = be32_to_cpup(payload + 4);
423 memset(status.data, 0, sizeof(status.data));
424 if (length > 8)
425 memcpy(status.data, payload + 8, length - 8);
426
427 if (STATUS_GET_SOURCE(status) == 2 || STATUS_GET_SOURCE(status) == 3) {
428 dev_notice(lu_dev(lu),
429 "non-ORB related status write, not handled\n");
430 fw_send_response(card, request, RCODE_COMPLETE);
431 return;
432 }
433
434 /* Lookup the orb corresponding to this status write. */
435 spin_lock_irqsave(&lu->tgt->lock, flags);
436 list_for_each_entry(orb, &lu->orb_list, link) {
437 if (STATUS_GET_ORB_HIGH(status) == 0 &&
438 STATUS_GET_ORB_LOW(status) == orb->request_bus) {
439 orb->rcode = RCODE_COMPLETE;
440 list_del(&orb->link);
441 break;
442 }
443 }
444 spin_unlock_irqrestore(&lu->tgt->lock, flags);
445
446 if (&orb->link != &lu->orb_list) {
447 orb->callback(orb, &status);
448 kref_put(&orb->kref, free_orb); /* orb callback reference */
449 } else {
450 dev_err(lu_dev(lu), "status write for unknown ORB\n");
451 }
452
453 fw_send_response(card, request, RCODE_COMPLETE);
454 }
455
456 static void complete_transaction(struct fw_card *card, int rcode,
457 void *payload, size_t length, void *data)
458 {
459 struct sbp2_orb *orb = data;
460 unsigned long flags;
461
462 /*
463 * This is a little tricky. We can get the status write for
464 * the orb before we get this callback. The status write
465 * handler above will assume the orb pointer transaction was
466 * successful and set the rcode to RCODE_COMPLETE for the orb.
467 * So this callback only sets the rcode if it hasn't already
468 * been set and only does the cleanup if the transaction
469 * failed and we didn't already get a status write.
470 */
471 spin_lock_irqsave(&orb->lu->tgt->lock, flags);
472
473 if (orb->rcode == -1)
474 orb->rcode = rcode;
475 if (orb->rcode != RCODE_COMPLETE) {
476 list_del(&orb->link);
477 spin_unlock_irqrestore(&orb->lu->tgt->lock, flags);
478
479 orb->callback(orb, NULL);
480 kref_put(&orb->kref, free_orb); /* orb callback reference */
481 } else {
482 spin_unlock_irqrestore(&orb->lu->tgt->lock, flags);
483 }
484
485 kref_put(&orb->kref, free_orb); /* transaction callback reference */
486 }
487
488 static void sbp2_send_orb(struct sbp2_orb *orb, struct sbp2_logical_unit *lu,
489 int node_id, int generation, u64 offset)
490 {
491 struct fw_device *device = target_parent_device(lu->tgt);
492 struct sbp2_pointer orb_pointer;
493 unsigned long flags;
494
495 orb_pointer.high = 0;
496 orb_pointer.low = cpu_to_be32(orb->request_bus);
497
498 orb->lu = lu;
499 spin_lock_irqsave(&lu->tgt->lock, flags);
500 list_add_tail(&orb->link, &lu->orb_list);
501 spin_unlock_irqrestore(&lu->tgt->lock, flags);
502
503 kref_get(&orb->kref); /* transaction callback reference */
504 kref_get(&orb->kref); /* orb callback reference */
505
506 fw_send_request(device->card, &orb->t, TCODE_WRITE_BLOCK_REQUEST,
507 node_id, generation, device->max_speed, offset,
508 &orb_pointer, 8, complete_transaction, orb);
509 }
510
511 static int sbp2_cancel_orbs(struct sbp2_logical_unit *lu)
512 {
513 struct fw_device *device = target_parent_device(lu->tgt);
514 struct sbp2_orb *orb, *next;
515 struct list_head list;
516 int retval = -ENOENT;
517
518 INIT_LIST_HEAD(&list);
519 spin_lock_irq(&lu->tgt->lock);
520 list_splice_init(&lu->orb_list, &list);
521 spin_unlock_irq(&lu->tgt->lock);
522
523 list_for_each_entry_safe(orb, next, &list, link) {
524 retval = 0;
525 if (fw_cancel_transaction(device->card, &orb->t) == 0)
526 continue;
527
528 orb->rcode = RCODE_CANCELLED;
529 orb->callback(orb, NULL);
530 kref_put(&orb->kref, free_orb); /* orb callback reference */
531 }
532
533 return retval;
534 }
535
536 static void complete_management_orb(struct sbp2_orb *base_orb,
537 struct sbp2_status *status)
538 {
539 struct sbp2_management_orb *orb =
540 container_of(base_orb, struct sbp2_management_orb, base);
541
542 if (status)
543 memcpy(&orb->status, status, sizeof(*status));
544 complete(&orb->done);
545 }
546
547 static int sbp2_send_management_orb(struct sbp2_logical_unit *lu, int node_id,
548 int generation, int function,
549 int lun_or_login_id, void *response)
550 {
551 struct fw_device *device = target_parent_device(lu->tgt);
552 struct sbp2_management_orb *orb;
553 unsigned int timeout;
554 int retval = -ENOMEM;
555
556 if (function == SBP2_LOGOUT_REQUEST && fw_device_is_shutdown(device))
557 return 0;
558
559 orb = kzalloc(sizeof(*orb), GFP_NOIO);
560 if (orb == NULL)
561 return -ENOMEM;
562
563 kref_init(&orb->base.kref);
564 orb->response_bus =
565 dma_map_single(device->card->device, &orb->response,
566 sizeof(orb->response), DMA_FROM_DEVICE);
567 if (dma_mapping_error(device->card->device, orb->response_bus))
568 goto fail_mapping_response;
569
570 orb->request.response.high = 0;
571 orb->request.response.low = cpu_to_be32(orb->response_bus);
572
573 orb->request.misc = cpu_to_be32(
574 MANAGEMENT_ORB_NOTIFY |
575 MANAGEMENT_ORB_FUNCTION(function) |
576 MANAGEMENT_ORB_LUN(lun_or_login_id));
577 orb->request.length = cpu_to_be32(
578 MANAGEMENT_ORB_RESPONSE_LENGTH(sizeof(orb->response)));
579
580 orb->request.status_fifo.high =
581 cpu_to_be32(lu->address_handler.offset >> 32);
582 orb->request.status_fifo.low =
583 cpu_to_be32(lu->address_handler.offset);
584
585 if (function == SBP2_LOGIN_REQUEST) {
586 /* Ask for 2^2 == 4 seconds reconnect grace period */
587 orb->request.misc |= cpu_to_be32(
588 MANAGEMENT_ORB_RECONNECT(2) |
589 MANAGEMENT_ORB_EXCLUSIVE(sbp2_param_exclusive_login));
590 timeout = lu->tgt->mgt_orb_timeout;
591 } else {
592 timeout = SBP2_ORB_TIMEOUT;
593 }
594
595 init_completion(&orb->done);
596 orb->base.callback = complete_management_orb;
597
598 orb->base.request_bus =
599 dma_map_single(device->card->device, &orb->request,
600 sizeof(orb->request), DMA_TO_DEVICE);
601 if (dma_mapping_error(device->card->device, orb->base.request_bus))
602 goto fail_mapping_request;
603
604 sbp2_send_orb(&orb->base, lu, node_id, generation,
605 lu->tgt->management_agent_address);
606
607 wait_for_completion_timeout(&orb->done, msecs_to_jiffies(timeout));
608
609 retval = -EIO;
610 if (sbp2_cancel_orbs(lu) == 0) {
611 dev_err(lu_dev(lu), "ORB reply timed out, rcode 0x%02x\n",
612 orb->base.rcode);
613 goto out;
614 }
615
616 if (orb->base.rcode != RCODE_COMPLETE) {
617 dev_err(lu_dev(lu), "management write failed, rcode 0x%02x\n",
618 orb->base.rcode);
619 goto out;
620 }
621
622 if (STATUS_GET_RESPONSE(orb->status) != 0 ||
623 STATUS_GET_SBP_STATUS(orb->status) != 0) {
624 dev_err(lu_dev(lu), "error status: %d:%d\n",
625 STATUS_GET_RESPONSE(orb->status),
626 STATUS_GET_SBP_STATUS(orb->status));
627 goto out;
628 }
629
630 retval = 0;
631 out:
632 dma_unmap_single(device->card->device, orb->base.request_bus,
633 sizeof(orb->request), DMA_TO_DEVICE);
634 fail_mapping_request:
635 dma_unmap_single(device->card->device, orb->response_bus,
636 sizeof(orb->response), DMA_FROM_DEVICE);
637 fail_mapping_response:
638 if (response)
639 memcpy(response, orb->response, sizeof(orb->response));
640 kref_put(&orb->base.kref, free_orb);
641
642 return retval;
643 }
644
645 static void sbp2_agent_reset(struct sbp2_logical_unit *lu)
646 {
647 struct fw_device *device = target_parent_device(lu->tgt);
648 __be32 d = 0;
649
650 fw_run_transaction(device->card, TCODE_WRITE_QUADLET_REQUEST,
651 lu->tgt->node_id, lu->generation, device->max_speed,
652 lu->command_block_agent_address + SBP2_AGENT_RESET,
653 &d, 4);
654 }
655
656 static void complete_agent_reset_write_no_wait(struct fw_card *card,
657 int rcode, void *payload, size_t length, void *data)
658 {
659 kfree(data);
660 }
661
662 static void sbp2_agent_reset_no_wait(struct sbp2_logical_unit *lu)
663 {
664 struct fw_device *device = target_parent_device(lu->tgt);
665 struct fw_transaction *t;
666 static __be32 d;
667
668 t = kmalloc(sizeof(*t), GFP_ATOMIC);
669 if (t == NULL)
670 return;
671
672 fw_send_request(device->card, t, TCODE_WRITE_QUADLET_REQUEST,
673 lu->tgt->node_id, lu->generation, device->max_speed,
674 lu->command_block_agent_address + SBP2_AGENT_RESET,
675 &d, 4, complete_agent_reset_write_no_wait, t);
676 }
677
678 static inline void sbp2_allow_block(struct sbp2_target *tgt)
679 {
680 spin_lock_irq(&tgt->lock);
681 --tgt->dont_block;
682 spin_unlock_irq(&tgt->lock);
683 }
684
685 /*
686 * Blocks lu->tgt if all of the following conditions are met:
687 * - Login, INQUIRY, and high-level SCSI setup of all of the target's
688 * logical units have been finished (indicated by dont_block == 0).
689 * - lu->generation is stale.
690 *
691 * Note, scsi_block_requests() must be called while holding tgt->lock,
692 * otherwise it might foil sbp2_[conditionally_]unblock()'s attempt to
693 * unblock the target.
694 */
695 static void sbp2_conditionally_block(struct sbp2_logical_unit *lu)
696 {
697 struct sbp2_target *tgt = lu->tgt;
698 struct fw_card *card = target_parent_device(tgt)->card;
699 struct Scsi_Host *shost =
700 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
701 unsigned long flags;
702
703 spin_lock_irqsave(&tgt->lock, flags);
704 if (!tgt->dont_block && !lu->blocked &&
705 lu->generation != card->generation) {
706 lu->blocked = true;
707 if (++tgt->blocked == 1)
708 scsi_block_requests(shost);
709 }
710 spin_unlock_irqrestore(&tgt->lock, flags);
711 }
712
713 /*
714 * Unblocks lu->tgt as soon as all its logical units can be unblocked.
715 * Note, it is harmless to run scsi_unblock_requests() outside the
716 * tgt->lock protected section. On the other hand, running it inside
717 * the section might clash with shost->host_lock.
718 */
719 static void sbp2_conditionally_unblock(struct sbp2_logical_unit *lu)
720 {
721 struct sbp2_target *tgt = lu->tgt;
722 struct fw_card *card = target_parent_device(tgt)->card;
723 struct Scsi_Host *shost =
724 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
725 bool unblock = false;
726
727 spin_lock_irq(&tgt->lock);
728 if (lu->blocked && lu->generation == card->generation) {
729 lu->blocked = false;
730 unblock = --tgt->blocked == 0;
731 }
732 spin_unlock_irq(&tgt->lock);
733
734 if (unblock)
735 scsi_unblock_requests(shost);
736 }
737
738 /*
739 * Prevents future blocking of tgt and unblocks it.
740 * Note, it is harmless to run scsi_unblock_requests() outside the
741 * tgt->lock protected section. On the other hand, running it inside
742 * the section might clash with shost->host_lock.
743 */
744 static void sbp2_unblock(struct sbp2_target *tgt)
745 {
746 struct Scsi_Host *shost =
747 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
748
749 spin_lock_irq(&tgt->lock);
750 ++tgt->dont_block;
751 spin_unlock_irq(&tgt->lock);
752
753 scsi_unblock_requests(shost);
754 }
755
756 static int sbp2_lun2int(u16 lun)
757 {
758 struct scsi_lun eight_bytes_lun;
759
760 memset(&eight_bytes_lun, 0, sizeof(eight_bytes_lun));
761 eight_bytes_lun.scsi_lun[0] = (lun >> 8) & 0xff;
762 eight_bytes_lun.scsi_lun[1] = lun & 0xff;
763
764 return scsilun_to_int(&eight_bytes_lun);
765 }
766
767 /*
768 * Write retransmit retry values into the BUSY_TIMEOUT register.
769 * - The single-phase retry protocol is supported by all SBP-2 devices, but the
770 * default retry_limit value is 0 (i.e. never retry transmission). We write a
771 * saner value after logging into the device.
772 * - The dual-phase retry protocol is optional to implement, and if not
773 * supported, writes to the dual-phase portion of the register will be
774 * ignored. We try to write the original 1394-1995 default here.
775 * - In the case of devices that are also SBP-3-compliant, all writes are
776 * ignored, as the register is read-only, but contains single-phase retry of
777 * 15, which is what we're trying to set for all SBP-2 device anyway, so this
778 * write attempt is safe and yields more consistent behavior for all devices.
779 *
780 * See section 8.3.2.3.5 of the 1394-1995 spec, section 6.2 of the SBP-2 spec,
781 * and section 6.4 of the SBP-3 spec for further details.
782 */
783 static void sbp2_set_busy_timeout(struct sbp2_logical_unit *lu)
784 {
785 struct fw_device *device = target_parent_device(lu->tgt);
786 __be32 d = cpu_to_be32(SBP2_CYCLE_LIMIT | SBP2_RETRY_LIMIT);
787
788 fw_run_transaction(device->card, TCODE_WRITE_QUADLET_REQUEST,
789 lu->tgt->node_id, lu->generation, device->max_speed,
790 CSR_REGISTER_BASE + CSR_BUSY_TIMEOUT, &d, 4);
791 }
792
793 static void sbp2_reconnect(struct work_struct *work);
794
795 static void sbp2_login(struct work_struct *work)
796 {
797 struct sbp2_logical_unit *lu =
798 container_of(work, struct sbp2_logical_unit, work.work);
799 struct sbp2_target *tgt = lu->tgt;
800 struct fw_device *device = target_parent_device(tgt);
801 struct Scsi_Host *shost;
802 struct scsi_device *sdev;
803 struct sbp2_login_response response;
804 int generation, node_id, local_node_id;
805
806 if (fw_device_is_shutdown(device))
807 return;
808
809 generation = device->generation;
810 smp_rmb(); /* node IDs must not be older than generation */
811 node_id = device->node_id;
812 local_node_id = device->card->node_id;
813
814 /* If this is a re-login attempt, log out, or we might be rejected. */
815 if (lu->has_sdev)
816 sbp2_send_management_orb(lu, device->node_id, generation,
817 SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
818
819 if (sbp2_send_management_orb(lu, node_id, generation,
820 SBP2_LOGIN_REQUEST, lu->lun, &response) < 0) {
821 if (lu->retries++ < 5) {
822 sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
823 } else {
824 dev_err(tgt_dev(tgt), "failed to login to LUN %04x\n",
825 lu->lun);
826 /* Let any waiting I/O fail from now on. */
827 sbp2_unblock(lu->tgt);
828 }
829 return;
830 }
831
832 tgt->node_id = node_id;
833 tgt->address_high = local_node_id << 16;
834 smp_wmb(); /* node IDs must not be older than generation */
835 lu->generation = generation;
836
837 lu->command_block_agent_address =
838 ((u64)(be32_to_cpu(response.command_block_agent.high) & 0xffff)
839 << 32) | be32_to_cpu(response.command_block_agent.low);
840 lu->login_id = be32_to_cpu(response.misc) & 0xffff;
841
842 dev_notice(tgt_dev(tgt), "logged in to LUN %04x (%d retries)\n",
843 lu->lun, lu->retries);
844
845 /* set appropriate retry limit(s) in BUSY_TIMEOUT register */
846 sbp2_set_busy_timeout(lu);
847
848 lu->workfn = sbp2_reconnect;
849 sbp2_agent_reset(lu);
850
851 /* This was a re-login. */
852 if (lu->has_sdev) {
853 sbp2_cancel_orbs(lu);
854 sbp2_conditionally_unblock(lu);
855
856 return;
857 }
858
859 if (lu->tgt->workarounds & SBP2_WORKAROUND_DELAY_INQUIRY)
860 ssleep(SBP2_INQUIRY_DELAY);
861
862 shost = container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
863 sdev = __scsi_add_device(shost, 0, 0, sbp2_lun2int(lu->lun), lu);
864 /*
865 * FIXME: We are unable to perform reconnects while in sbp2_login().
866 * Therefore __scsi_add_device() will get into trouble if a bus reset
867 * happens in parallel. It will either fail or leave us with an
868 * unusable sdev. As a workaround we check for this and retry the
869 * whole login and SCSI probing.
870 */
871
872 /* Reported error during __scsi_add_device() */
873 if (IS_ERR(sdev))
874 goto out_logout_login;
875
876 /* Unreported error during __scsi_add_device() */
877 smp_rmb(); /* get current card generation */
878 if (generation != device->card->generation) {
879 scsi_remove_device(sdev);
880 scsi_device_put(sdev);
881 goto out_logout_login;
882 }
883
884 /* No error during __scsi_add_device() */
885 lu->has_sdev = true;
886 scsi_device_put(sdev);
887 sbp2_allow_block(tgt);
888
889 return;
890
891 out_logout_login:
892 smp_rmb(); /* generation may have changed */
893 generation = device->generation;
894 smp_rmb(); /* node_id must not be older than generation */
895
896 sbp2_send_management_orb(lu, device->node_id, generation,
897 SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
898 /*
899 * If a bus reset happened, sbp2_update will have requeued
900 * lu->work already. Reset the work from reconnect to login.
901 */
902 lu->workfn = sbp2_login;
903 }
904
905 static void sbp2_reconnect(struct work_struct *work)
906 {
907 struct sbp2_logical_unit *lu =
908 container_of(work, struct sbp2_logical_unit, work.work);
909 struct sbp2_target *tgt = lu->tgt;
910 struct fw_device *device = target_parent_device(tgt);
911 int generation, node_id, local_node_id;
912
913 if (fw_device_is_shutdown(device))
914 return;
915
916 generation = device->generation;
917 smp_rmb(); /* node IDs must not be older than generation */
918 node_id = device->node_id;
919 local_node_id = device->card->node_id;
920
921 if (sbp2_send_management_orb(lu, node_id, generation,
922 SBP2_RECONNECT_REQUEST,
923 lu->login_id, NULL) < 0) {
924 /*
925 * If reconnect was impossible even though we are in the
926 * current generation, fall back and try to log in again.
927 *
928 * We could check for "Function rejected" status, but
929 * looking at the bus generation as simpler and more general.
930 */
931 smp_rmb(); /* get current card generation */
932 if (generation == device->card->generation ||
933 lu->retries++ >= 5) {
934 dev_err(tgt_dev(tgt), "failed to reconnect\n");
935 lu->retries = 0;
936 lu->workfn = sbp2_login;
937 }
938 sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
939
940 return;
941 }
942
943 tgt->node_id = node_id;
944 tgt->address_high = local_node_id << 16;
945 smp_wmb(); /* node IDs must not be older than generation */
946 lu->generation = generation;
947
948 dev_notice(tgt_dev(tgt), "reconnected to LUN %04x (%d retries)\n",
949 lu->lun, lu->retries);
950
951 sbp2_agent_reset(lu);
952 sbp2_cancel_orbs(lu);
953 sbp2_conditionally_unblock(lu);
954 }
955
956 static void sbp2_lu_workfn(struct work_struct *work)
957 {
958 struct sbp2_logical_unit *lu = container_of(to_delayed_work(work),
959 struct sbp2_logical_unit, work);
960 lu->workfn(work);
961 }
962
963 static int sbp2_add_logical_unit(struct sbp2_target *tgt, int lun_entry)
964 {
965 struct sbp2_logical_unit *lu;
966
967 lu = kmalloc(sizeof(*lu), GFP_KERNEL);
968 if (!lu)
969 return -ENOMEM;
970
971 lu->address_handler.length = 0x100;
972 lu->address_handler.address_callback = sbp2_status_write;
973 lu->address_handler.callback_data = lu;
974
975 if (fw_core_add_address_handler(&lu->address_handler,
976 &fw_high_memory_region) < 0) {
977 kfree(lu);
978 return -ENOMEM;
979 }
980
981 lu->tgt = tgt;
982 lu->lun = lun_entry & 0xffff;
983 lu->login_id = INVALID_LOGIN_ID;
984 lu->retries = 0;
985 lu->has_sdev = false;
986 lu->blocked = false;
987 ++tgt->dont_block;
988 INIT_LIST_HEAD(&lu->orb_list);
989 lu->workfn = sbp2_login;
990 INIT_DELAYED_WORK(&lu->work, sbp2_lu_workfn);
991
992 list_add_tail(&lu->link, &tgt->lu_list);
993 return 0;
994 }
995
996 static void sbp2_get_unit_unique_id(struct sbp2_target *tgt,
997 const u32 *leaf)
998 {
999 if ((leaf[0] & 0xffff0000) == 0x00020000)
1000 tgt->guid = (u64)leaf[1] << 32 | leaf[2];
1001 }
1002
1003 static int sbp2_scan_logical_unit_dir(struct sbp2_target *tgt,
1004 const u32 *directory)
1005 {
1006 struct fw_csr_iterator ci;
1007 int key, value;
1008
1009 fw_csr_iterator_init(&ci, directory);
1010 while (fw_csr_iterator_next(&ci, &key, &value))
1011 if (key == SBP2_CSR_LOGICAL_UNIT_NUMBER &&
1012 sbp2_add_logical_unit(tgt, value) < 0)
1013 return -ENOMEM;
1014 return 0;
1015 }
1016
1017 static int sbp2_scan_unit_dir(struct sbp2_target *tgt, const u32 *directory,
1018 u32 *model, u32 *firmware_revision)
1019 {
1020 struct fw_csr_iterator ci;
1021 int key, value;
1022
1023 fw_csr_iterator_init(&ci, directory);
1024 while (fw_csr_iterator_next(&ci, &key, &value)) {
1025 switch (key) {
1026
1027 case CSR_DEPENDENT_INFO | CSR_OFFSET:
1028 tgt->management_agent_address =
1029 CSR_REGISTER_BASE + 4 * value;
1030 break;
1031
1032 case CSR_DIRECTORY_ID:
1033 tgt->directory_id = value;
1034 break;
1035
1036 case CSR_MODEL:
1037 *model = value;
1038 break;
1039
1040 case SBP2_CSR_FIRMWARE_REVISION:
1041 *firmware_revision = value;
1042 break;
1043
1044 case SBP2_CSR_UNIT_CHARACTERISTICS:
1045 /* the timeout value is stored in 500ms units */
1046 tgt->mgt_orb_timeout = (value >> 8 & 0xff) * 500;
1047 break;
1048
1049 case SBP2_CSR_LOGICAL_UNIT_NUMBER:
1050 if (sbp2_add_logical_unit(tgt, value) < 0)
1051 return -ENOMEM;
1052 break;
1053
1054 case SBP2_CSR_UNIT_UNIQUE_ID:
1055 sbp2_get_unit_unique_id(tgt, ci.p - 1 + value);
1056 break;
1057
1058 case SBP2_CSR_LOGICAL_UNIT_DIRECTORY:
1059 /* Adjust for the increment in the iterator */
1060 if (sbp2_scan_logical_unit_dir(tgt, ci.p - 1 + value) < 0)
1061 return -ENOMEM;
1062 break;
1063 }
1064 }
1065 return 0;
1066 }
1067
1068 /*
1069 * Per section 7.4.8 of the SBP-2 spec, a mgt_ORB_timeout value can be
1070 * provided in the config rom. Most devices do provide a value, which
1071 * we'll use for login management orbs, but with some sane limits.
1072 */
1073 static void sbp2_clamp_management_orb_timeout(struct sbp2_target *tgt)
1074 {
1075 unsigned int timeout = tgt->mgt_orb_timeout;
1076
1077 if (timeout > 40000)
1078 dev_notice(tgt_dev(tgt), "%ds mgt_ORB_timeout limited to 40s\n",
1079 timeout / 1000);
1080
1081 tgt->mgt_orb_timeout = clamp_val(timeout, 5000, 40000);
1082 }
1083
1084 static void sbp2_init_workarounds(struct sbp2_target *tgt, u32 model,
1085 u32 firmware_revision)
1086 {
1087 int i;
1088 unsigned int w = sbp2_param_workarounds;
1089
1090 if (w)
1091 dev_notice(tgt_dev(tgt),
1092 "Please notify linux1394-devel@lists.sf.net "
1093 "if you need the workarounds parameter\n");
1094
1095 if (w & SBP2_WORKAROUND_OVERRIDE)
1096 goto out;
1097
1098 for (i = 0; i < ARRAY_SIZE(sbp2_workarounds_table); i++) {
1099
1100 if (sbp2_workarounds_table[i].firmware_revision !=
1101 (firmware_revision & 0xffffff00))
1102 continue;
1103
1104 if (sbp2_workarounds_table[i].model != model &&
1105 sbp2_workarounds_table[i].model != SBP2_ROM_VALUE_WILDCARD)
1106 continue;
1107
1108 w |= sbp2_workarounds_table[i].workarounds;
1109 break;
1110 }
1111 out:
1112 if (w)
1113 dev_notice(tgt_dev(tgt), "workarounds 0x%x "
1114 "(firmware_revision 0x%06x, model_id 0x%06x)\n",
1115 w, firmware_revision, model);
1116 tgt->workarounds = w;
1117 }
1118
1119 static struct scsi_host_template scsi_driver_template;
1120 static void sbp2_remove(struct fw_unit *unit);
1121
1122 static int sbp2_probe(struct fw_unit *unit, const struct ieee1394_device_id *id)
1123 {
1124 struct fw_device *device = fw_parent_device(unit);
1125 struct sbp2_target *tgt;
1126 struct sbp2_logical_unit *lu;
1127 struct Scsi_Host *shost;
1128 u32 model, firmware_revision;
1129
1130 /* cannot (or should not) handle targets on the local node */
1131 if (device->is_local)
1132 return -ENODEV;
1133
1134 shost = scsi_host_alloc(&scsi_driver_template, sizeof(*tgt));
1135 if (shost == NULL)
1136 return -ENOMEM;
1137
1138 tgt = (struct sbp2_target *)shost->hostdata;
1139 dev_set_drvdata(&unit->device, tgt);
1140 tgt->unit = unit;
1141 INIT_LIST_HEAD(&tgt->lu_list);
1142 spin_lock_init(&tgt->lock);
1143 tgt->guid = (u64)device->config_rom[3] << 32 | device->config_rom[4];
1144
1145 if (fw_device_enable_phys_dma(device) < 0)
1146 goto fail_shost_put;
1147
1148 shost->max_cmd_len = SBP2_MAX_CDB_SIZE;
1149
1150 if (scsi_add_host_with_dma(shost, &unit->device,
1151 device->card->device) < 0)
1152 goto fail_shost_put;
1153
1154 /* implicit directory ID */
1155 tgt->directory_id = ((unit->directory - device->config_rom) * 4
1156 + CSR_CONFIG_ROM) & 0xffffff;
1157
1158 firmware_revision = SBP2_ROM_VALUE_MISSING;
1159 model = SBP2_ROM_VALUE_MISSING;
1160
1161 if (sbp2_scan_unit_dir(tgt, unit->directory, &model,
1162 &firmware_revision) < 0)
1163 goto fail_remove;
1164
1165 sbp2_clamp_management_orb_timeout(tgt);
1166 sbp2_init_workarounds(tgt, model, firmware_revision);
1167
1168 /*
1169 * At S100 we can do 512 bytes per packet, at S200 1024 bytes,
1170 * and so on up to 4096 bytes. The SBP-2 max_payload field
1171 * specifies the max payload size as 2 ^ (max_payload + 2), so
1172 * if we set this to max_speed + 7, we get the right value.
1173 */
1174 tgt->max_payload = min3(device->max_speed + 7, 10U,
1175 device->card->max_receive - 1);
1176
1177 /* Do the login in a workqueue so we can easily reschedule retries. */
1178 list_for_each_entry(lu, &tgt->lu_list, link)
1179 sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
1180
1181 return 0;
1182
1183 fail_remove:
1184 sbp2_remove(unit);
1185 return -ENOMEM;
1186
1187 fail_shost_put:
1188 scsi_host_put(shost);
1189 return -ENOMEM;
1190 }
1191
1192 static void sbp2_update(struct fw_unit *unit)
1193 {
1194 struct sbp2_target *tgt = dev_get_drvdata(&unit->device);
1195 struct sbp2_logical_unit *lu;
1196
1197 fw_device_enable_phys_dma(fw_parent_device(unit));
1198
1199 /*
1200 * Fw-core serializes sbp2_update() against sbp2_remove().
1201 * Iteration over tgt->lu_list is therefore safe here.
1202 */
1203 list_for_each_entry(lu, &tgt->lu_list, link) {
1204 sbp2_conditionally_block(lu);
1205 lu->retries = 0;
1206 sbp2_queue_work(lu, 0);
1207 }
1208 }
1209
1210 static void sbp2_remove(struct fw_unit *unit)
1211 {
1212 struct fw_device *device = fw_parent_device(unit);
1213 struct sbp2_target *tgt = dev_get_drvdata(&unit->device);
1214 struct sbp2_logical_unit *lu, *next;
1215 struct Scsi_Host *shost =
1216 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
1217 struct scsi_device *sdev;
1218
1219 /* prevent deadlocks */
1220 sbp2_unblock(tgt);
1221
1222 list_for_each_entry_safe(lu, next, &tgt->lu_list, link) {
1223 cancel_delayed_work_sync(&lu->work);
1224 sdev = scsi_device_lookup(shost, 0, 0, sbp2_lun2int(lu->lun));
1225 if (sdev) {
1226 scsi_remove_device(sdev);
1227 scsi_device_put(sdev);
1228 }
1229 if (lu->login_id != INVALID_LOGIN_ID) {
1230 int generation, node_id;
1231 /*
1232 * tgt->node_id may be obsolete here if we failed
1233 * during initial login or after a bus reset where
1234 * the topology changed.
1235 */
1236 generation = device->generation;
1237 smp_rmb(); /* node_id vs. generation */
1238 node_id = device->node_id;
1239 sbp2_send_management_orb(lu, node_id, generation,
1240 SBP2_LOGOUT_REQUEST,
1241 lu->login_id, NULL);
1242 }
1243 fw_core_remove_address_handler(&lu->address_handler);
1244 list_del(&lu->link);
1245 kfree(lu);
1246 }
1247 scsi_remove_host(shost);
1248 dev_notice(&unit->device, "released target %d:0:0\n", shost->host_no);
1249
1250 scsi_host_put(shost);
1251 }
1252
1253 #define SBP2_UNIT_SPEC_ID_ENTRY 0x0000609e
1254 #define SBP2_SW_VERSION_ENTRY 0x00010483
1255
1256 static const struct ieee1394_device_id sbp2_id_table[] = {
1257 {
1258 .match_flags = IEEE1394_MATCH_SPECIFIER_ID |
1259 IEEE1394_MATCH_VERSION,
1260 .specifier_id = SBP2_UNIT_SPEC_ID_ENTRY,
1261 .version = SBP2_SW_VERSION_ENTRY,
1262 },
1263 { }
1264 };
1265
1266 static struct fw_driver sbp2_driver = {
1267 .driver = {
1268 .owner = THIS_MODULE,
1269 .name = KBUILD_MODNAME,
1270 .bus = &fw_bus_type,
1271 },
1272 .probe = sbp2_probe,
1273 .update = sbp2_update,
1274 .remove = sbp2_remove,
1275 .id_table = sbp2_id_table,
1276 };
1277
1278 static void sbp2_unmap_scatterlist(struct device *card_device,
1279 struct sbp2_command_orb *orb)
1280 {
1281 scsi_dma_unmap(orb->cmd);
1282
1283 if (orb->request.misc & cpu_to_be32(COMMAND_ORB_PAGE_TABLE_PRESENT))
1284 dma_unmap_single(card_device, orb->page_table_bus,
1285 sizeof(orb->page_table), DMA_TO_DEVICE);
1286 }
1287
1288 static unsigned int sbp2_status_to_sense_data(u8 *sbp2_status, u8 *sense_data)
1289 {
1290 int sam_status;
1291 int sfmt = (sbp2_status[0] >> 6) & 0x03;
1292
1293 if (sfmt == 2 || sfmt == 3) {
1294 /*
1295 * Reserved for future standardization (2) or
1296 * Status block format vendor-dependent (3)
1297 */
1298 return DID_ERROR << 16;
1299 }
1300
1301 sense_data[0] = 0x70 | sfmt | (sbp2_status[1] & 0x80);
1302 sense_data[1] = 0x0;
1303 sense_data[2] = ((sbp2_status[1] << 1) & 0xe0) | (sbp2_status[1] & 0x0f);
1304 sense_data[3] = sbp2_status[4];
1305 sense_data[4] = sbp2_status[5];
1306 sense_data[5] = sbp2_status[6];
1307 sense_data[6] = sbp2_status[7];
1308 sense_data[7] = 10;
1309 sense_data[8] = sbp2_status[8];
1310 sense_data[9] = sbp2_status[9];
1311 sense_data[10] = sbp2_status[10];
1312 sense_data[11] = sbp2_status[11];
1313 sense_data[12] = sbp2_status[2];
1314 sense_data[13] = sbp2_status[3];
1315 sense_data[14] = sbp2_status[12];
1316 sense_data[15] = sbp2_status[13];
1317
1318 sam_status = sbp2_status[0] & 0x3f;
1319
1320 switch (sam_status) {
1321 case SAM_STAT_GOOD:
1322 case SAM_STAT_CHECK_CONDITION:
1323 case SAM_STAT_CONDITION_MET:
1324 case SAM_STAT_BUSY:
1325 case SAM_STAT_RESERVATION_CONFLICT:
1326 case SAM_STAT_COMMAND_TERMINATED:
1327 return DID_OK << 16 | sam_status;
1328
1329 default:
1330 return DID_ERROR << 16;
1331 }
1332 }
1333
1334 static void complete_command_orb(struct sbp2_orb *base_orb,
1335 struct sbp2_status *status)
1336 {
1337 struct sbp2_command_orb *orb =
1338 container_of(base_orb, struct sbp2_command_orb, base);
1339 struct fw_device *device = target_parent_device(base_orb->lu->tgt);
1340 int result;
1341
1342 if (status != NULL) {
1343 if (STATUS_GET_DEAD(*status))
1344 sbp2_agent_reset_no_wait(base_orb->lu);
1345
1346 switch (STATUS_GET_RESPONSE(*status)) {
1347 case SBP2_STATUS_REQUEST_COMPLETE:
1348 result = DID_OK << 16;
1349 break;
1350 case SBP2_STATUS_TRANSPORT_FAILURE:
1351 result = DID_BUS_BUSY << 16;
1352 break;
1353 case SBP2_STATUS_ILLEGAL_REQUEST:
1354 case SBP2_STATUS_VENDOR_DEPENDENT:
1355 default:
1356 result = DID_ERROR << 16;
1357 break;
1358 }
1359
1360 if (result == DID_OK << 16 && STATUS_GET_LEN(*status) > 1)
1361 result = sbp2_status_to_sense_data(STATUS_GET_DATA(*status),
1362 orb->cmd->sense_buffer);
1363 } else {
1364 /*
1365 * If the orb completes with status == NULL, something
1366 * went wrong, typically a bus reset happened mid-orb
1367 * or when sending the write (less likely).
1368 */
1369 result = DID_BUS_BUSY << 16;
1370 sbp2_conditionally_block(base_orb->lu);
1371 }
1372
1373 dma_unmap_single(device->card->device, orb->base.request_bus,
1374 sizeof(orb->request), DMA_TO_DEVICE);
1375 sbp2_unmap_scatterlist(device->card->device, orb);
1376
1377 orb->cmd->result = result;
1378 orb->cmd->scsi_done(orb->cmd);
1379 }
1380
1381 static int sbp2_map_scatterlist(struct sbp2_command_orb *orb,
1382 struct fw_device *device, struct sbp2_logical_unit *lu)
1383 {
1384 struct scatterlist *sg = scsi_sglist(orb->cmd);
1385 int i, n;
1386
1387 n = scsi_dma_map(orb->cmd);
1388 if (n <= 0)
1389 goto fail;
1390
1391 /*
1392 * Handle the special case where there is only one element in
1393 * the scatter list by converting it to an immediate block
1394 * request. This is also a workaround for broken devices such
1395 * as the second generation iPod which doesn't support page
1396 * tables.
1397 */
1398 if (n == 1) {
1399 orb->request.data_descriptor.high =
1400 cpu_to_be32(lu->tgt->address_high);
1401 orb->request.data_descriptor.low =
1402 cpu_to_be32(sg_dma_address(sg));
1403 orb->request.misc |=
1404 cpu_to_be32(COMMAND_ORB_DATA_SIZE(sg_dma_len(sg)));
1405 return 0;
1406 }
1407
1408 for_each_sg(sg, sg, n, i) {
1409 orb->page_table[i].high = cpu_to_be32(sg_dma_len(sg) << 16);
1410 orb->page_table[i].low = cpu_to_be32(sg_dma_address(sg));
1411 }
1412
1413 orb->page_table_bus =
1414 dma_map_single(device->card->device, orb->page_table,
1415 sizeof(orb->page_table), DMA_TO_DEVICE);
1416 if (dma_mapping_error(device->card->device, orb->page_table_bus))
1417 goto fail_page_table;
1418
1419 /*
1420 * The data_descriptor pointer is the one case where we need
1421 * to fill in the node ID part of the address. All other
1422 * pointers assume that the data referenced reside on the
1423 * initiator (i.e. us), but data_descriptor can refer to data
1424 * on other nodes so we need to put our ID in descriptor.high.
1425 */
1426 orb->request.data_descriptor.high = cpu_to_be32(lu->tgt->address_high);
1427 orb->request.data_descriptor.low = cpu_to_be32(orb->page_table_bus);
1428 orb->request.misc |= cpu_to_be32(COMMAND_ORB_PAGE_TABLE_PRESENT |
1429 COMMAND_ORB_DATA_SIZE(n));
1430
1431 return 0;
1432
1433 fail_page_table:
1434 scsi_dma_unmap(orb->cmd);
1435 fail:
1436 return -ENOMEM;
1437 }
1438
1439 /* SCSI stack integration */
1440
1441 static int sbp2_scsi_queuecommand(struct Scsi_Host *shost,
1442 struct scsi_cmnd *cmd)
1443 {
1444 struct sbp2_logical_unit *lu = cmd->device->hostdata;
1445 struct fw_device *device = target_parent_device(lu->tgt);
1446 struct sbp2_command_orb *orb;
1447 int generation, retval = SCSI_MLQUEUE_HOST_BUSY;
1448
1449 orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
1450 if (orb == NULL)
1451 return SCSI_MLQUEUE_HOST_BUSY;
1452
1453 /* Initialize rcode to something not RCODE_COMPLETE. */
1454 orb->base.rcode = -1;
1455 kref_init(&orb->base.kref);
1456 orb->cmd = cmd;
1457 orb->request.next.high = cpu_to_be32(SBP2_ORB_NULL);
1458 orb->request.misc = cpu_to_be32(
1459 COMMAND_ORB_MAX_PAYLOAD(lu->tgt->max_payload) |
1460 COMMAND_ORB_SPEED(device->max_speed) |
1461 COMMAND_ORB_NOTIFY);
1462
1463 if (cmd->sc_data_direction == DMA_FROM_DEVICE)
1464 orb->request.misc |= cpu_to_be32(COMMAND_ORB_DIRECTION);
1465
1466 generation = device->generation;
1467 smp_rmb(); /* sbp2_map_scatterlist looks at tgt->address_high */
1468
1469 if (scsi_sg_count(cmd) && sbp2_map_scatterlist(orb, device, lu) < 0)
1470 goto out;
1471
1472 memcpy(orb->request.command_block, cmd->cmnd, cmd->cmd_len);
1473
1474 orb->base.callback = complete_command_orb;
1475 orb->base.request_bus =
1476 dma_map_single(device->card->device, &orb->request,
1477 sizeof(orb->request), DMA_TO_DEVICE);
1478 if (dma_mapping_error(device->card->device, orb->base.request_bus)) {
1479 sbp2_unmap_scatterlist(device->card->device, orb);
1480 goto out;
1481 }
1482
1483 sbp2_send_orb(&orb->base, lu, lu->tgt->node_id, generation,
1484 lu->command_block_agent_address + SBP2_ORB_POINTER);
1485 retval = 0;
1486 out:
1487 kref_put(&orb->base.kref, free_orb);
1488 return retval;
1489 }
1490
1491 static int sbp2_scsi_slave_alloc(struct scsi_device *sdev)
1492 {
1493 struct sbp2_logical_unit *lu = sdev->hostdata;
1494
1495 /* (Re-)Adding logical units via the SCSI stack is not supported. */
1496 if (!lu)
1497 return -ENOSYS;
1498
1499 sdev->allow_restart = 1;
1500
1501 /*
1502 * SBP-2 does not require any alignment, but we set it anyway
1503 * for compatibility with earlier versions of this driver.
1504 */
1505 blk_queue_update_dma_alignment(sdev->request_queue, 4 - 1);
1506
1507 if (lu->tgt->workarounds & SBP2_WORKAROUND_INQUIRY_36)
1508 sdev->inquiry_len = 36;
1509
1510 return 0;
1511 }
1512
1513 static int sbp2_scsi_slave_configure(struct scsi_device *sdev)
1514 {
1515 struct sbp2_logical_unit *lu = sdev->hostdata;
1516
1517 sdev->use_10_for_rw = 1;
1518
1519 if (sbp2_param_exclusive_login)
1520 sdev->manage_start_stop = 1;
1521
1522 if (sdev->type == TYPE_ROM)
1523 sdev->use_10_for_ms = 1;
1524
1525 if (sdev->type == TYPE_DISK &&
1526 lu->tgt->workarounds & SBP2_WORKAROUND_MODE_SENSE_8)
1527 sdev->skip_ms_page_8 = 1;
1528
1529 if (lu->tgt->workarounds & SBP2_WORKAROUND_FIX_CAPACITY)
1530 sdev->fix_capacity = 1;
1531
1532 if (lu->tgt->workarounds & SBP2_WORKAROUND_POWER_CONDITION)
1533 sdev->start_stop_pwr_cond = 1;
1534
1535 if (lu->tgt->workarounds & SBP2_WORKAROUND_128K_MAX_TRANS)
1536 blk_queue_max_hw_sectors(sdev->request_queue, 128 * 1024 / 512);
1537
1538 return 0;
1539 }
1540
1541 /*
1542 * Called by scsi stack when something has really gone wrong. Usually
1543 * called when a command has timed-out for some reason.
1544 */
1545 static int sbp2_scsi_abort(struct scsi_cmnd *cmd)
1546 {
1547 struct sbp2_logical_unit *lu = cmd->device->hostdata;
1548
1549 dev_notice(lu_dev(lu), "sbp2_scsi_abort\n");
1550 sbp2_agent_reset(lu);
1551 sbp2_cancel_orbs(lu);
1552
1553 return SUCCESS;
1554 }
1555
1556 /*
1557 * Format of /sys/bus/scsi/devices/.../ieee1394_id:
1558 * u64 EUI-64 : u24 directory_ID : u16 LUN (all printed in hexadecimal)
1559 *
1560 * This is the concatenation of target port identifier and logical unit
1561 * identifier as per SAM-2...SAM-4 annex A.
1562 */
1563 static ssize_t sbp2_sysfs_ieee1394_id_show(struct device *dev,
1564 struct device_attribute *attr, char *buf)
1565 {
1566 struct scsi_device *sdev = to_scsi_device(dev);
1567 struct sbp2_logical_unit *lu;
1568
1569 if (!sdev)
1570 return 0;
1571
1572 lu = sdev->hostdata;
1573
1574 return sprintf(buf, "%016llx:%06x:%04x\n",
1575 (unsigned long long)lu->tgt->guid,
1576 lu->tgt->directory_id, lu->lun);
1577 }
1578
1579 static DEVICE_ATTR(ieee1394_id, S_IRUGO, sbp2_sysfs_ieee1394_id_show, NULL);
1580
1581 static struct device_attribute *sbp2_scsi_sysfs_attrs[] = {
1582 &dev_attr_ieee1394_id,
1583 NULL
1584 };
1585
1586 static struct scsi_host_template scsi_driver_template = {
1587 .module = THIS_MODULE,
1588 .name = "SBP-2 IEEE-1394",
1589 .proc_name = "sbp2",
1590 .queuecommand = sbp2_scsi_queuecommand,
1591 .slave_alloc = sbp2_scsi_slave_alloc,
1592 .slave_configure = sbp2_scsi_slave_configure,
1593 .eh_abort_handler = sbp2_scsi_abort,
1594 .this_id = -1,
1595 .sg_tablesize = SG_ALL,
1596 .max_segment_size = SBP2_MAX_SEG_SIZE,
1597 .can_queue = 1,
1598 .sdev_attrs = sbp2_scsi_sysfs_attrs,
1599 };
1600
1601 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1602 MODULE_DESCRIPTION("SCSI over IEEE1394");
1603 MODULE_LICENSE("GPL");
1604 MODULE_DEVICE_TABLE(ieee1394, sbp2_id_table);
1605
1606 /* Provide a module alias so root-on-sbp2 initrds don't break. */
1607 MODULE_ALIAS("sbp2");
1608
1609 static int __init sbp2_init(void)
1610 {
1611 return driver_register(&sbp2_driver.driver);
1612 }
1613
1614 static void __exit sbp2_cleanup(void)
1615 {
1616 driver_unregister(&sbp2_driver.driver);
1617 }
1618
1619 module_init(sbp2_init);
1620 module_exit(sbp2_cleanup);