]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/firmware/dmi_scan.c
Merge remote-tracking branch 'robh/for-next' into devicetree/next
[mirror_ubuntu-bionic-kernel.git] / drivers / firmware / dmi_scan.c
1 #include <linux/types.h>
2 #include <linux/string.h>
3 #include <linux/init.h>
4 #include <linux/module.h>
5 #include <linux/ctype.h>
6 #include <linux/dmi.h>
7 #include <linux/efi.h>
8 #include <linux/bootmem.h>
9 #include <linux/random.h>
10 #include <asm/dmi.h>
11 #include <asm/unaligned.h>
12
13 /*
14 * DMI stands for "Desktop Management Interface". It is part
15 * of and an antecedent to, SMBIOS, which stands for System
16 * Management BIOS. See further: http://www.dmtf.org/standards
17 */
18 static const char dmi_empty_string[] = " ";
19
20 static u32 dmi_ver __initdata;
21 static u32 dmi_len;
22 static u16 dmi_num;
23 /*
24 * Catch too early calls to dmi_check_system():
25 */
26 static int dmi_initialized;
27
28 /* DMI system identification string used during boot */
29 static char dmi_ids_string[128] __initdata;
30
31 static struct dmi_memdev_info {
32 const char *device;
33 const char *bank;
34 u16 handle;
35 } *dmi_memdev;
36 static int dmi_memdev_nr;
37
38 static const char * __init dmi_string_nosave(const struct dmi_header *dm, u8 s)
39 {
40 const u8 *bp = ((u8 *) dm) + dm->length;
41
42 if (s) {
43 s--;
44 while (s > 0 && *bp) {
45 bp += strlen(bp) + 1;
46 s--;
47 }
48
49 if (*bp != 0) {
50 size_t len = strlen(bp)+1;
51 size_t cmp_len = len > 8 ? 8 : len;
52
53 if (!memcmp(bp, dmi_empty_string, cmp_len))
54 return dmi_empty_string;
55 return bp;
56 }
57 }
58
59 return "";
60 }
61
62 static const char * __init dmi_string(const struct dmi_header *dm, u8 s)
63 {
64 const char *bp = dmi_string_nosave(dm, s);
65 char *str;
66 size_t len;
67
68 if (bp == dmi_empty_string)
69 return dmi_empty_string;
70
71 len = strlen(bp) + 1;
72 str = dmi_alloc(len);
73 if (str != NULL)
74 strcpy(str, bp);
75
76 return str;
77 }
78
79 /*
80 * We have to be cautious here. We have seen BIOSes with DMI pointers
81 * pointing to completely the wrong place for example
82 */
83 static void dmi_table(u8 *buf,
84 void (*decode)(const struct dmi_header *, void *),
85 void *private_data)
86 {
87 u8 *data = buf;
88 int i = 0;
89
90 /*
91 * Stop when we have seen all the items the table claimed to have
92 * (SMBIOS < 3.0 only) OR we reach an end-of-table marker OR we run
93 * off the end of the table (should never happen but sometimes does
94 * on bogus implementations.)
95 */
96 while ((!dmi_num || i < dmi_num) &&
97 (data - buf + sizeof(struct dmi_header)) <= dmi_len) {
98 const struct dmi_header *dm = (const struct dmi_header *)data;
99
100 /*
101 * We want to know the total length (formatted area and
102 * strings) before decoding to make sure we won't run off the
103 * table in dmi_decode or dmi_string
104 */
105 data += dm->length;
106 while ((data - buf < dmi_len - 1) && (data[0] || data[1]))
107 data++;
108 if (data - buf < dmi_len - 1)
109 decode(dm, private_data);
110
111 /*
112 * 7.45 End-of-Table (Type 127) [SMBIOS reference spec v3.0.0]
113 */
114 if (dm->type == DMI_ENTRY_END_OF_TABLE)
115 break;
116
117 data += 2;
118 i++;
119 }
120 }
121
122 static phys_addr_t dmi_base;
123
124 static int __init dmi_walk_early(void (*decode)(const struct dmi_header *,
125 void *))
126 {
127 u8 *buf;
128
129 buf = dmi_early_remap(dmi_base, dmi_len);
130 if (buf == NULL)
131 return -1;
132
133 dmi_table(buf, decode, NULL);
134
135 add_device_randomness(buf, dmi_len);
136
137 dmi_early_unmap(buf, dmi_len);
138 return 0;
139 }
140
141 static int __init dmi_checksum(const u8 *buf, u8 len)
142 {
143 u8 sum = 0;
144 int a;
145
146 for (a = 0; a < len; a++)
147 sum += buf[a];
148
149 return sum == 0;
150 }
151
152 static const char *dmi_ident[DMI_STRING_MAX];
153 static LIST_HEAD(dmi_devices);
154 int dmi_available;
155
156 /*
157 * Save a DMI string
158 */
159 static void __init dmi_save_ident(const struct dmi_header *dm, int slot,
160 int string)
161 {
162 const char *d = (const char *) dm;
163 const char *p;
164
165 if (dmi_ident[slot])
166 return;
167
168 p = dmi_string(dm, d[string]);
169 if (p == NULL)
170 return;
171
172 dmi_ident[slot] = p;
173 }
174
175 static void __init dmi_save_uuid(const struct dmi_header *dm, int slot,
176 int index)
177 {
178 const u8 *d = (u8 *) dm + index;
179 char *s;
180 int is_ff = 1, is_00 = 1, i;
181
182 if (dmi_ident[slot])
183 return;
184
185 for (i = 0; i < 16 && (is_ff || is_00); i++) {
186 if (d[i] != 0x00)
187 is_00 = 0;
188 if (d[i] != 0xFF)
189 is_ff = 0;
190 }
191
192 if (is_ff || is_00)
193 return;
194
195 s = dmi_alloc(16*2+4+1);
196 if (!s)
197 return;
198
199 /*
200 * As of version 2.6 of the SMBIOS specification, the first 3 fields of
201 * the UUID are supposed to be little-endian encoded. The specification
202 * says that this is the defacto standard.
203 */
204 if (dmi_ver >= 0x020600)
205 sprintf(s, "%pUL", d);
206 else
207 sprintf(s, "%pUB", d);
208
209 dmi_ident[slot] = s;
210 }
211
212 static void __init dmi_save_type(const struct dmi_header *dm, int slot,
213 int index)
214 {
215 const u8 *d = (u8 *) dm + index;
216 char *s;
217
218 if (dmi_ident[slot])
219 return;
220
221 s = dmi_alloc(4);
222 if (!s)
223 return;
224
225 sprintf(s, "%u", *d & 0x7F);
226 dmi_ident[slot] = s;
227 }
228
229 static void __init dmi_save_one_device(int type, const char *name)
230 {
231 struct dmi_device *dev;
232
233 /* No duplicate device */
234 if (dmi_find_device(type, name, NULL))
235 return;
236
237 dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1);
238 if (!dev)
239 return;
240
241 dev->type = type;
242 strcpy((char *)(dev + 1), name);
243 dev->name = (char *)(dev + 1);
244 dev->device_data = NULL;
245 list_add(&dev->list, &dmi_devices);
246 }
247
248 static void __init dmi_save_devices(const struct dmi_header *dm)
249 {
250 int i, count = (dm->length - sizeof(struct dmi_header)) / 2;
251
252 for (i = 0; i < count; i++) {
253 const char *d = (char *)(dm + 1) + (i * 2);
254
255 /* Skip disabled device */
256 if ((*d & 0x80) == 0)
257 continue;
258
259 dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d + 1)));
260 }
261 }
262
263 static void __init dmi_save_oem_strings_devices(const struct dmi_header *dm)
264 {
265 int i, count = *(u8 *)(dm + 1);
266 struct dmi_device *dev;
267
268 for (i = 1; i <= count; i++) {
269 const char *devname = dmi_string(dm, i);
270
271 if (devname == dmi_empty_string)
272 continue;
273
274 dev = dmi_alloc(sizeof(*dev));
275 if (!dev)
276 break;
277
278 dev->type = DMI_DEV_TYPE_OEM_STRING;
279 dev->name = devname;
280 dev->device_data = NULL;
281
282 list_add(&dev->list, &dmi_devices);
283 }
284 }
285
286 static void __init dmi_save_ipmi_device(const struct dmi_header *dm)
287 {
288 struct dmi_device *dev;
289 void *data;
290
291 data = dmi_alloc(dm->length);
292 if (data == NULL)
293 return;
294
295 memcpy(data, dm, dm->length);
296
297 dev = dmi_alloc(sizeof(*dev));
298 if (!dev)
299 return;
300
301 dev->type = DMI_DEV_TYPE_IPMI;
302 dev->name = "IPMI controller";
303 dev->device_data = data;
304
305 list_add_tail(&dev->list, &dmi_devices);
306 }
307
308 static void __init dmi_save_dev_onboard(int instance, int segment, int bus,
309 int devfn, const char *name)
310 {
311 struct dmi_dev_onboard *onboard_dev;
312
313 onboard_dev = dmi_alloc(sizeof(*onboard_dev) + strlen(name) + 1);
314 if (!onboard_dev)
315 return;
316
317 onboard_dev->instance = instance;
318 onboard_dev->segment = segment;
319 onboard_dev->bus = bus;
320 onboard_dev->devfn = devfn;
321
322 strcpy((char *)&onboard_dev[1], name);
323 onboard_dev->dev.type = DMI_DEV_TYPE_DEV_ONBOARD;
324 onboard_dev->dev.name = (char *)&onboard_dev[1];
325 onboard_dev->dev.device_data = onboard_dev;
326
327 list_add(&onboard_dev->dev.list, &dmi_devices);
328 }
329
330 static void __init dmi_save_extended_devices(const struct dmi_header *dm)
331 {
332 const u8 *d = (u8 *) dm + 5;
333
334 /* Skip disabled device */
335 if ((*d & 0x80) == 0)
336 return;
337
338 dmi_save_dev_onboard(*(d+1), *(u16 *)(d+2), *(d+4), *(d+5),
339 dmi_string_nosave(dm, *(d-1)));
340 dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d - 1)));
341 }
342
343 static void __init count_mem_devices(const struct dmi_header *dm, void *v)
344 {
345 if (dm->type != DMI_ENTRY_MEM_DEVICE)
346 return;
347 dmi_memdev_nr++;
348 }
349
350 static void __init save_mem_devices(const struct dmi_header *dm, void *v)
351 {
352 const char *d = (const char *)dm;
353 static int nr;
354
355 if (dm->type != DMI_ENTRY_MEM_DEVICE)
356 return;
357 if (nr >= dmi_memdev_nr) {
358 pr_warn(FW_BUG "Too many DIMM entries in SMBIOS table\n");
359 return;
360 }
361 dmi_memdev[nr].handle = get_unaligned(&dm->handle);
362 dmi_memdev[nr].device = dmi_string(dm, d[0x10]);
363 dmi_memdev[nr].bank = dmi_string(dm, d[0x11]);
364 nr++;
365 }
366
367 void __init dmi_memdev_walk(void)
368 {
369 if (!dmi_available)
370 return;
371
372 if (dmi_walk_early(count_mem_devices) == 0 && dmi_memdev_nr) {
373 dmi_memdev = dmi_alloc(sizeof(*dmi_memdev) * dmi_memdev_nr);
374 if (dmi_memdev)
375 dmi_walk_early(save_mem_devices);
376 }
377 }
378
379 /*
380 * Process a DMI table entry. Right now all we care about are the BIOS
381 * and machine entries. For 2.5 we should pull the smbus controller info
382 * out of here.
383 */
384 static void __init dmi_decode(const struct dmi_header *dm, void *dummy)
385 {
386 switch (dm->type) {
387 case 0: /* BIOS Information */
388 dmi_save_ident(dm, DMI_BIOS_VENDOR, 4);
389 dmi_save_ident(dm, DMI_BIOS_VERSION, 5);
390 dmi_save_ident(dm, DMI_BIOS_DATE, 8);
391 break;
392 case 1: /* System Information */
393 dmi_save_ident(dm, DMI_SYS_VENDOR, 4);
394 dmi_save_ident(dm, DMI_PRODUCT_NAME, 5);
395 dmi_save_ident(dm, DMI_PRODUCT_VERSION, 6);
396 dmi_save_ident(dm, DMI_PRODUCT_SERIAL, 7);
397 dmi_save_uuid(dm, DMI_PRODUCT_UUID, 8);
398 break;
399 case 2: /* Base Board Information */
400 dmi_save_ident(dm, DMI_BOARD_VENDOR, 4);
401 dmi_save_ident(dm, DMI_BOARD_NAME, 5);
402 dmi_save_ident(dm, DMI_BOARD_VERSION, 6);
403 dmi_save_ident(dm, DMI_BOARD_SERIAL, 7);
404 dmi_save_ident(dm, DMI_BOARD_ASSET_TAG, 8);
405 break;
406 case 3: /* Chassis Information */
407 dmi_save_ident(dm, DMI_CHASSIS_VENDOR, 4);
408 dmi_save_type(dm, DMI_CHASSIS_TYPE, 5);
409 dmi_save_ident(dm, DMI_CHASSIS_VERSION, 6);
410 dmi_save_ident(dm, DMI_CHASSIS_SERIAL, 7);
411 dmi_save_ident(dm, DMI_CHASSIS_ASSET_TAG, 8);
412 break;
413 case 10: /* Onboard Devices Information */
414 dmi_save_devices(dm);
415 break;
416 case 11: /* OEM Strings */
417 dmi_save_oem_strings_devices(dm);
418 break;
419 case 38: /* IPMI Device Information */
420 dmi_save_ipmi_device(dm);
421 break;
422 case 41: /* Onboard Devices Extended Information */
423 dmi_save_extended_devices(dm);
424 }
425 }
426
427 static int __init print_filtered(char *buf, size_t len, const char *info)
428 {
429 int c = 0;
430 const char *p;
431
432 if (!info)
433 return c;
434
435 for (p = info; *p; p++)
436 if (isprint(*p))
437 c += scnprintf(buf + c, len - c, "%c", *p);
438 else
439 c += scnprintf(buf + c, len - c, "\\x%02x", *p & 0xff);
440 return c;
441 }
442
443 static void __init dmi_format_ids(char *buf, size_t len)
444 {
445 int c = 0;
446 const char *board; /* Board Name is optional */
447
448 c += print_filtered(buf + c, len - c,
449 dmi_get_system_info(DMI_SYS_VENDOR));
450 c += scnprintf(buf + c, len - c, " ");
451 c += print_filtered(buf + c, len - c,
452 dmi_get_system_info(DMI_PRODUCT_NAME));
453
454 board = dmi_get_system_info(DMI_BOARD_NAME);
455 if (board) {
456 c += scnprintf(buf + c, len - c, "/");
457 c += print_filtered(buf + c, len - c, board);
458 }
459 c += scnprintf(buf + c, len - c, ", BIOS ");
460 c += print_filtered(buf + c, len - c,
461 dmi_get_system_info(DMI_BIOS_VERSION));
462 c += scnprintf(buf + c, len - c, " ");
463 c += print_filtered(buf + c, len - c,
464 dmi_get_system_info(DMI_BIOS_DATE));
465 }
466
467 /*
468 * Check for DMI/SMBIOS headers in the system firmware image. Any
469 * SMBIOS header must start 16 bytes before the DMI header, so take a
470 * 32 byte buffer and check for DMI at offset 16 and SMBIOS at offset
471 * 0. If the DMI header is present, set dmi_ver accordingly (SMBIOS
472 * takes precedence) and return 0. Otherwise return 1.
473 */
474 static int __init dmi_present(const u8 *buf)
475 {
476 u32 smbios_ver;
477
478 if (memcmp(buf, "_SM_", 4) == 0 &&
479 buf[5] < 32 && dmi_checksum(buf, buf[5])) {
480 smbios_ver = get_unaligned_be16(buf + 6);
481
482 /* Some BIOS report weird SMBIOS version, fix that up */
483 switch (smbios_ver) {
484 case 0x021F:
485 case 0x0221:
486 pr_debug("SMBIOS version fixup(2.%d->2.%d)\n",
487 smbios_ver & 0xFF, 3);
488 smbios_ver = 0x0203;
489 break;
490 case 0x0233:
491 pr_debug("SMBIOS version fixup(2.%d->2.%d)\n", 51, 6);
492 smbios_ver = 0x0206;
493 break;
494 }
495 } else {
496 smbios_ver = 0;
497 }
498
499 buf += 16;
500
501 if (memcmp(buf, "_DMI_", 5) == 0 && dmi_checksum(buf, 15)) {
502 if (smbios_ver)
503 dmi_ver = smbios_ver;
504 else
505 dmi_ver = (buf[14] & 0xF0) << 4 | (buf[14] & 0x0F);
506 dmi_num = get_unaligned_le16(buf + 12);
507 dmi_len = get_unaligned_le16(buf + 6);
508 dmi_base = get_unaligned_le32(buf + 8);
509
510 if (dmi_walk_early(dmi_decode) == 0) {
511 if (smbios_ver) {
512 pr_info("SMBIOS %d.%d present.\n",
513 dmi_ver >> 8, dmi_ver & 0xFF);
514 } else {
515 pr_info("Legacy DMI %d.%d present.\n",
516 dmi_ver >> 8, dmi_ver & 0xFF);
517 }
518 dmi_ver <<= 8;
519 dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string));
520 printk(KERN_DEBUG "DMI: %s\n", dmi_ids_string);
521 return 0;
522 }
523 }
524
525 return 1;
526 }
527
528 /*
529 * Check for the SMBIOS 3.0 64-bit entry point signature. Unlike the legacy
530 * 32-bit entry point, there is no embedded DMI header (_DMI_) in here.
531 */
532 static int __init dmi_smbios3_present(const u8 *buf)
533 {
534 if (memcmp(buf, "_SM3_", 5) == 0 &&
535 buf[6] < 32 && dmi_checksum(buf, buf[6])) {
536 dmi_ver = get_unaligned_be32(buf + 6);
537 dmi_ver &= 0xFFFFFF;
538 dmi_num = 0; /* No longer specified */
539 dmi_len = get_unaligned_le32(buf + 12);
540 dmi_base = get_unaligned_le64(buf + 16);
541
542 if (dmi_walk_early(dmi_decode) == 0) {
543 pr_info("SMBIOS %d.%d.%d present.\n",
544 dmi_ver >> 16, (dmi_ver >> 8) & 0xFF,
545 dmi_ver & 0xFF);
546 dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string));
547 pr_debug("DMI: %s\n", dmi_ids_string);
548 return 0;
549 }
550 }
551 return 1;
552 }
553
554 void __init dmi_scan_machine(void)
555 {
556 char __iomem *p, *q;
557 char buf[32];
558
559 if (efi_enabled(EFI_CONFIG_TABLES)) {
560 /*
561 * According to the DMTF SMBIOS reference spec v3.0.0, it is
562 * allowed to define both the 64-bit entry point (smbios3) and
563 * the 32-bit entry point (smbios), in which case they should
564 * either both point to the same SMBIOS structure table, or the
565 * table pointed to by the 64-bit entry point should contain a
566 * superset of the table contents pointed to by the 32-bit entry
567 * point (section 5.2)
568 * This implies that the 64-bit entry point should have
569 * precedence if it is defined and supported by the OS. If we
570 * have the 64-bit entry point, but fail to decode it, fall
571 * back to the legacy one (if available)
572 */
573 if (efi.smbios3 != EFI_INVALID_TABLE_ADDR) {
574 p = dmi_early_remap(efi.smbios3, 32);
575 if (p == NULL)
576 goto error;
577 memcpy_fromio(buf, p, 32);
578 dmi_early_unmap(p, 32);
579
580 if (!dmi_smbios3_present(buf)) {
581 dmi_available = 1;
582 goto out;
583 }
584 }
585 if (efi.smbios == EFI_INVALID_TABLE_ADDR)
586 goto error;
587
588 /* This is called as a core_initcall() because it isn't
589 * needed during early boot. This also means we can
590 * iounmap the space when we're done with it.
591 */
592 p = dmi_early_remap(efi.smbios, 32);
593 if (p == NULL)
594 goto error;
595 memcpy_fromio(buf, p, 32);
596 dmi_early_unmap(p, 32);
597
598 if (!dmi_present(buf)) {
599 dmi_available = 1;
600 goto out;
601 }
602 } else if (IS_ENABLED(CONFIG_DMI_SCAN_MACHINE_NON_EFI_FALLBACK)) {
603 p = dmi_early_remap(0xF0000, 0x10000);
604 if (p == NULL)
605 goto error;
606
607 /*
608 * Iterate over all possible DMI header addresses q.
609 * Maintain the 32 bytes around q in buf. On the
610 * first iteration, substitute zero for the
611 * out-of-range bytes so there is no chance of falsely
612 * detecting an SMBIOS header.
613 */
614 memset(buf, 0, 16);
615 for (q = p; q < p + 0x10000; q += 16) {
616 memcpy_fromio(buf + 16, q, 16);
617 if (!dmi_smbios3_present(buf) || !dmi_present(buf)) {
618 dmi_available = 1;
619 dmi_early_unmap(p, 0x10000);
620 goto out;
621 }
622 memcpy(buf, buf + 16, 16);
623 }
624 dmi_early_unmap(p, 0x10000);
625 }
626 error:
627 pr_info("DMI not present or invalid.\n");
628 out:
629 dmi_initialized = 1;
630 }
631
632 /**
633 * dmi_set_dump_stack_arch_desc - set arch description for dump_stack()
634 *
635 * Invoke dump_stack_set_arch_desc() with DMI system information so that
636 * DMI identifiers are printed out on task dumps. Arch boot code should
637 * call this function after dmi_scan_machine() if it wants to print out DMI
638 * identifiers on task dumps.
639 */
640 void __init dmi_set_dump_stack_arch_desc(void)
641 {
642 dump_stack_set_arch_desc("%s", dmi_ids_string);
643 }
644
645 /**
646 * dmi_matches - check if dmi_system_id structure matches system DMI data
647 * @dmi: pointer to the dmi_system_id structure to check
648 */
649 static bool dmi_matches(const struct dmi_system_id *dmi)
650 {
651 int i;
652
653 WARN(!dmi_initialized, KERN_ERR "dmi check: not initialized yet.\n");
654
655 for (i = 0; i < ARRAY_SIZE(dmi->matches); i++) {
656 int s = dmi->matches[i].slot;
657 if (s == DMI_NONE)
658 break;
659 if (dmi_ident[s]) {
660 if (!dmi->matches[i].exact_match &&
661 strstr(dmi_ident[s], dmi->matches[i].substr))
662 continue;
663 else if (dmi->matches[i].exact_match &&
664 !strcmp(dmi_ident[s], dmi->matches[i].substr))
665 continue;
666 }
667
668 /* No match */
669 return false;
670 }
671 return true;
672 }
673
674 /**
675 * dmi_is_end_of_table - check for end-of-table marker
676 * @dmi: pointer to the dmi_system_id structure to check
677 */
678 static bool dmi_is_end_of_table(const struct dmi_system_id *dmi)
679 {
680 return dmi->matches[0].slot == DMI_NONE;
681 }
682
683 /**
684 * dmi_check_system - check system DMI data
685 * @list: array of dmi_system_id structures to match against
686 * All non-null elements of the list must match
687 * their slot's (field index's) data (i.e., each
688 * list string must be a substring of the specified
689 * DMI slot's string data) to be considered a
690 * successful match.
691 *
692 * Walk the blacklist table running matching functions until someone
693 * returns non zero or we hit the end. Callback function is called for
694 * each successful match. Returns the number of matches.
695 */
696 int dmi_check_system(const struct dmi_system_id *list)
697 {
698 int count = 0;
699 const struct dmi_system_id *d;
700
701 for (d = list; !dmi_is_end_of_table(d); d++)
702 if (dmi_matches(d)) {
703 count++;
704 if (d->callback && d->callback(d))
705 break;
706 }
707
708 return count;
709 }
710 EXPORT_SYMBOL(dmi_check_system);
711
712 /**
713 * dmi_first_match - find dmi_system_id structure matching system DMI data
714 * @list: array of dmi_system_id structures to match against
715 * All non-null elements of the list must match
716 * their slot's (field index's) data (i.e., each
717 * list string must be a substring of the specified
718 * DMI slot's string data) to be considered a
719 * successful match.
720 *
721 * Walk the blacklist table until the first match is found. Return the
722 * pointer to the matching entry or NULL if there's no match.
723 */
724 const struct dmi_system_id *dmi_first_match(const struct dmi_system_id *list)
725 {
726 const struct dmi_system_id *d;
727
728 for (d = list; !dmi_is_end_of_table(d); d++)
729 if (dmi_matches(d))
730 return d;
731
732 return NULL;
733 }
734 EXPORT_SYMBOL(dmi_first_match);
735
736 /**
737 * dmi_get_system_info - return DMI data value
738 * @field: data index (see enum dmi_field)
739 *
740 * Returns one DMI data value, can be used to perform
741 * complex DMI data checks.
742 */
743 const char *dmi_get_system_info(int field)
744 {
745 return dmi_ident[field];
746 }
747 EXPORT_SYMBOL(dmi_get_system_info);
748
749 /**
750 * dmi_name_in_serial - Check if string is in the DMI product serial information
751 * @str: string to check for
752 */
753 int dmi_name_in_serial(const char *str)
754 {
755 int f = DMI_PRODUCT_SERIAL;
756 if (dmi_ident[f] && strstr(dmi_ident[f], str))
757 return 1;
758 return 0;
759 }
760
761 /**
762 * dmi_name_in_vendors - Check if string is in the DMI system or board vendor name
763 * @str: Case sensitive Name
764 */
765 int dmi_name_in_vendors(const char *str)
766 {
767 static int fields[] = { DMI_SYS_VENDOR, DMI_BOARD_VENDOR, DMI_NONE };
768 int i;
769 for (i = 0; fields[i] != DMI_NONE; i++) {
770 int f = fields[i];
771 if (dmi_ident[f] && strstr(dmi_ident[f], str))
772 return 1;
773 }
774 return 0;
775 }
776 EXPORT_SYMBOL(dmi_name_in_vendors);
777
778 /**
779 * dmi_find_device - find onboard device by type/name
780 * @type: device type or %DMI_DEV_TYPE_ANY to match all device types
781 * @name: device name string or %NULL to match all
782 * @from: previous device found in search, or %NULL for new search.
783 *
784 * Iterates through the list of known onboard devices. If a device is
785 * found with a matching @vendor and @device, a pointer to its device
786 * structure is returned. Otherwise, %NULL is returned.
787 * A new search is initiated by passing %NULL as the @from argument.
788 * If @from is not %NULL, searches continue from next device.
789 */
790 const struct dmi_device *dmi_find_device(int type, const char *name,
791 const struct dmi_device *from)
792 {
793 const struct list_head *head = from ? &from->list : &dmi_devices;
794 struct list_head *d;
795
796 for (d = head->next; d != &dmi_devices; d = d->next) {
797 const struct dmi_device *dev =
798 list_entry(d, struct dmi_device, list);
799
800 if (((type == DMI_DEV_TYPE_ANY) || (dev->type == type)) &&
801 ((name == NULL) || (strcmp(dev->name, name) == 0)))
802 return dev;
803 }
804
805 return NULL;
806 }
807 EXPORT_SYMBOL(dmi_find_device);
808
809 /**
810 * dmi_get_date - parse a DMI date
811 * @field: data index (see enum dmi_field)
812 * @yearp: optional out parameter for the year
813 * @monthp: optional out parameter for the month
814 * @dayp: optional out parameter for the day
815 *
816 * The date field is assumed to be in the form resembling
817 * [mm[/dd]]/yy[yy] and the result is stored in the out
818 * parameters any or all of which can be omitted.
819 *
820 * If the field doesn't exist, all out parameters are set to zero
821 * and false is returned. Otherwise, true is returned with any
822 * invalid part of date set to zero.
823 *
824 * On return, year, month and day are guaranteed to be in the
825 * range of [0,9999], [0,12] and [0,31] respectively.
826 */
827 bool dmi_get_date(int field, int *yearp, int *monthp, int *dayp)
828 {
829 int year = 0, month = 0, day = 0;
830 bool exists;
831 const char *s, *y;
832 char *e;
833
834 s = dmi_get_system_info(field);
835 exists = s;
836 if (!exists)
837 goto out;
838
839 /*
840 * Determine year first. We assume the date string resembles
841 * mm/dd/yy[yy] but the original code extracted only the year
842 * from the end. Keep the behavior in the spirit of no
843 * surprises.
844 */
845 y = strrchr(s, '/');
846 if (!y)
847 goto out;
848
849 y++;
850 year = simple_strtoul(y, &e, 10);
851 if (y != e && year < 100) { /* 2-digit year */
852 year += 1900;
853 if (year < 1996) /* no dates < spec 1.0 */
854 year += 100;
855 }
856 if (year > 9999) /* year should fit in %04d */
857 year = 0;
858
859 /* parse the mm and dd */
860 month = simple_strtoul(s, &e, 10);
861 if (s == e || *e != '/' || !month || month > 12) {
862 month = 0;
863 goto out;
864 }
865
866 s = e + 1;
867 day = simple_strtoul(s, &e, 10);
868 if (s == y || s == e || *e != '/' || day > 31)
869 day = 0;
870 out:
871 if (yearp)
872 *yearp = year;
873 if (monthp)
874 *monthp = month;
875 if (dayp)
876 *dayp = day;
877 return exists;
878 }
879 EXPORT_SYMBOL(dmi_get_date);
880
881 /**
882 * dmi_walk - Walk the DMI table and get called back for every record
883 * @decode: Callback function
884 * @private_data: Private data to be passed to the callback function
885 *
886 * Returns -1 when the DMI table can't be reached, 0 on success.
887 */
888 int dmi_walk(void (*decode)(const struct dmi_header *, void *),
889 void *private_data)
890 {
891 u8 *buf;
892
893 if (!dmi_available)
894 return -1;
895
896 buf = dmi_remap(dmi_base, dmi_len);
897 if (buf == NULL)
898 return -1;
899
900 dmi_table(buf, decode, private_data);
901
902 dmi_unmap(buf);
903 return 0;
904 }
905 EXPORT_SYMBOL_GPL(dmi_walk);
906
907 /**
908 * dmi_match - compare a string to the dmi field (if exists)
909 * @f: DMI field identifier
910 * @str: string to compare the DMI field to
911 *
912 * Returns true if the requested field equals to the str (including NULL).
913 */
914 bool dmi_match(enum dmi_field f, const char *str)
915 {
916 const char *info = dmi_get_system_info(f);
917
918 if (info == NULL || str == NULL)
919 return info == str;
920
921 return !strcmp(info, str);
922 }
923 EXPORT_SYMBOL_GPL(dmi_match);
924
925 void dmi_memdev_name(u16 handle, const char **bank, const char **device)
926 {
927 int n;
928
929 if (dmi_memdev == NULL)
930 return;
931
932 for (n = 0; n < dmi_memdev_nr; n++) {
933 if (handle == dmi_memdev[n].handle) {
934 *bank = dmi_memdev[n].bank;
935 *device = dmi_memdev[n].device;
936 break;
937 }
938 }
939 }
940 EXPORT_SYMBOL_GPL(dmi_memdev_name);