]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/firmware/efi/efi.c
efi/arm: Fix boot crash with CONFIG_CPUMASK_OFFSTACK=y
[mirror_ubuntu-artful-kernel.git] / drivers / firmware / efi / efi.c
1 /*
2 * efi.c - EFI subsystem
3 *
4 * Copyright (C) 2001,2003,2004 Dell <Matt_Domsch@dell.com>
5 * Copyright (C) 2004 Intel Corporation <matthew.e.tolentino@intel.com>
6 * Copyright (C) 2013 Tom Gundersen <teg@jklm.no>
7 *
8 * This code registers /sys/firmware/efi{,/efivars} when EFI is supported,
9 * allowing the efivarfs to be mounted or the efivars module to be loaded.
10 * The existance of /sys/firmware/efi may also be used by userspace to
11 * determine that the system supports EFI.
12 *
13 * This file is released under the GPLv2.
14 */
15
16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
17
18 #include <linux/kobject.h>
19 #include <linux/module.h>
20 #include <linux/init.h>
21 #include <linux/device.h>
22 #include <linux/efi.h>
23 #include <linux/of.h>
24 #include <linux/of_fdt.h>
25 #include <linux/io.h>
26 #include <linux/kexec.h>
27 #include <linux/platform_device.h>
28 #include <linux/random.h>
29 #include <linux/reboot.h>
30 #include <linux/slab.h>
31 #include <linux/acpi.h>
32 #include <linux/ucs2_string.h>
33 #include <linux/memblock.h>
34
35 #include <asm/early_ioremap.h>
36
37 struct efi __read_mostly efi = {
38 .mps = EFI_INVALID_TABLE_ADDR,
39 .acpi = EFI_INVALID_TABLE_ADDR,
40 .acpi20 = EFI_INVALID_TABLE_ADDR,
41 .smbios = EFI_INVALID_TABLE_ADDR,
42 .smbios3 = EFI_INVALID_TABLE_ADDR,
43 .sal_systab = EFI_INVALID_TABLE_ADDR,
44 .boot_info = EFI_INVALID_TABLE_ADDR,
45 .hcdp = EFI_INVALID_TABLE_ADDR,
46 .uga = EFI_INVALID_TABLE_ADDR,
47 .uv_systab = EFI_INVALID_TABLE_ADDR,
48 .fw_vendor = EFI_INVALID_TABLE_ADDR,
49 .runtime = EFI_INVALID_TABLE_ADDR,
50 .config_table = EFI_INVALID_TABLE_ADDR,
51 .esrt = EFI_INVALID_TABLE_ADDR,
52 .properties_table = EFI_INVALID_TABLE_ADDR,
53 .mem_attr_table = EFI_INVALID_TABLE_ADDR,
54 .rng_seed = EFI_INVALID_TABLE_ADDR,
55 };
56 EXPORT_SYMBOL(efi);
57
58 static bool disable_runtime;
59 static int __init setup_noefi(char *arg)
60 {
61 disable_runtime = true;
62 return 0;
63 }
64 early_param("noefi", setup_noefi);
65
66 bool efi_runtime_disabled(void)
67 {
68 return disable_runtime;
69 }
70
71 static int __init parse_efi_cmdline(char *str)
72 {
73 if (!str) {
74 pr_warn("need at least one option\n");
75 return -EINVAL;
76 }
77
78 if (parse_option_str(str, "debug"))
79 set_bit(EFI_DBG, &efi.flags);
80
81 if (parse_option_str(str, "noruntime"))
82 disable_runtime = true;
83
84 return 0;
85 }
86 early_param("efi", parse_efi_cmdline);
87
88 struct kobject *efi_kobj;
89
90 /*
91 * Let's not leave out systab information that snuck into
92 * the efivars driver
93 */
94 static ssize_t systab_show(struct kobject *kobj,
95 struct kobj_attribute *attr, char *buf)
96 {
97 char *str = buf;
98
99 if (!kobj || !buf)
100 return -EINVAL;
101
102 if (efi.mps != EFI_INVALID_TABLE_ADDR)
103 str += sprintf(str, "MPS=0x%lx\n", efi.mps);
104 if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
105 str += sprintf(str, "ACPI20=0x%lx\n", efi.acpi20);
106 if (efi.acpi != EFI_INVALID_TABLE_ADDR)
107 str += sprintf(str, "ACPI=0x%lx\n", efi.acpi);
108 /*
109 * If both SMBIOS and SMBIOS3 entry points are implemented, the
110 * SMBIOS3 entry point shall be preferred, so we list it first to
111 * let applications stop parsing after the first match.
112 */
113 if (efi.smbios3 != EFI_INVALID_TABLE_ADDR)
114 str += sprintf(str, "SMBIOS3=0x%lx\n", efi.smbios3);
115 if (efi.smbios != EFI_INVALID_TABLE_ADDR)
116 str += sprintf(str, "SMBIOS=0x%lx\n", efi.smbios);
117 if (efi.hcdp != EFI_INVALID_TABLE_ADDR)
118 str += sprintf(str, "HCDP=0x%lx\n", efi.hcdp);
119 if (efi.boot_info != EFI_INVALID_TABLE_ADDR)
120 str += sprintf(str, "BOOTINFO=0x%lx\n", efi.boot_info);
121 if (efi.uga != EFI_INVALID_TABLE_ADDR)
122 str += sprintf(str, "UGA=0x%lx\n", efi.uga);
123
124 return str - buf;
125 }
126
127 static struct kobj_attribute efi_attr_systab =
128 __ATTR(systab, 0400, systab_show, NULL);
129
130 #define EFI_FIELD(var) efi.var
131
132 #define EFI_ATTR_SHOW(name) \
133 static ssize_t name##_show(struct kobject *kobj, \
134 struct kobj_attribute *attr, char *buf) \
135 { \
136 return sprintf(buf, "0x%lx\n", EFI_FIELD(name)); \
137 }
138
139 EFI_ATTR_SHOW(fw_vendor);
140 EFI_ATTR_SHOW(runtime);
141 EFI_ATTR_SHOW(config_table);
142
143 static ssize_t fw_platform_size_show(struct kobject *kobj,
144 struct kobj_attribute *attr, char *buf)
145 {
146 return sprintf(buf, "%d\n", efi_enabled(EFI_64BIT) ? 64 : 32);
147 }
148
149 static struct kobj_attribute efi_attr_fw_vendor = __ATTR_RO(fw_vendor);
150 static struct kobj_attribute efi_attr_runtime = __ATTR_RO(runtime);
151 static struct kobj_attribute efi_attr_config_table = __ATTR_RO(config_table);
152 static struct kobj_attribute efi_attr_fw_platform_size =
153 __ATTR_RO(fw_platform_size);
154
155 static struct attribute *efi_subsys_attrs[] = {
156 &efi_attr_systab.attr,
157 &efi_attr_fw_vendor.attr,
158 &efi_attr_runtime.attr,
159 &efi_attr_config_table.attr,
160 &efi_attr_fw_platform_size.attr,
161 NULL,
162 };
163
164 static umode_t efi_attr_is_visible(struct kobject *kobj,
165 struct attribute *attr, int n)
166 {
167 if (attr == &efi_attr_fw_vendor.attr) {
168 if (efi_enabled(EFI_PARAVIRT) ||
169 efi.fw_vendor == EFI_INVALID_TABLE_ADDR)
170 return 0;
171 } else if (attr == &efi_attr_runtime.attr) {
172 if (efi.runtime == EFI_INVALID_TABLE_ADDR)
173 return 0;
174 } else if (attr == &efi_attr_config_table.attr) {
175 if (efi.config_table == EFI_INVALID_TABLE_ADDR)
176 return 0;
177 }
178
179 return attr->mode;
180 }
181
182 static struct attribute_group efi_subsys_attr_group = {
183 .attrs = efi_subsys_attrs,
184 .is_visible = efi_attr_is_visible,
185 };
186
187 static struct efivars generic_efivars;
188 static struct efivar_operations generic_ops;
189
190 static int generic_ops_register(void)
191 {
192 generic_ops.get_variable = efi.get_variable;
193 generic_ops.set_variable = efi.set_variable;
194 generic_ops.set_variable_nonblocking = efi.set_variable_nonblocking;
195 generic_ops.get_next_variable = efi.get_next_variable;
196 generic_ops.query_variable_store = efi_query_variable_store;
197
198 return efivars_register(&generic_efivars, &generic_ops, efi_kobj);
199 }
200
201 static void generic_ops_unregister(void)
202 {
203 efivars_unregister(&generic_efivars);
204 }
205
206 #if IS_ENABLED(CONFIG_ACPI)
207 #define EFIVAR_SSDT_NAME_MAX 16
208 static char efivar_ssdt[EFIVAR_SSDT_NAME_MAX] __initdata;
209 static int __init efivar_ssdt_setup(char *str)
210 {
211 if (strlen(str) < sizeof(efivar_ssdt))
212 memcpy(efivar_ssdt, str, strlen(str));
213 else
214 pr_warn("efivar_ssdt: name too long: %s\n", str);
215 return 0;
216 }
217 __setup("efivar_ssdt=", efivar_ssdt_setup);
218
219 static __init int efivar_ssdt_iter(efi_char16_t *name, efi_guid_t vendor,
220 unsigned long name_size, void *data)
221 {
222 struct efivar_entry *entry;
223 struct list_head *list = data;
224 char utf8_name[EFIVAR_SSDT_NAME_MAX];
225 int limit = min_t(unsigned long, EFIVAR_SSDT_NAME_MAX, name_size);
226
227 ucs2_as_utf8(utf8_name, name, limit - 1);
228 if (strncmp(utf8_name, efivar_ssdt, limit) != 0)
229 return 0;
230
231 entry = kmalloc(sizeof(*entry), GFP_KERNEL);
232 if (!entry)
233 return 0;
234
235 memcpy(entry->var.VariableName, name, name_size);
236 memcpy(&entry->var.VendorGuid, &vendor, sizeof(efi_guid_t));
237
238 efivar_entry_add(entry, list);
239
240 return 0;
241 }
242
243 static __init int efivar_ssdt_load(void)
244 {
245 LIST_HEAD(entries);
246 struct efivar_entry *entry, *aux;
247 unsigned long size;
248 void *data;
249 int ret;
250
251 ret = efivar_init(efivar_ssdt_iter, &entries, true, &entries);
252
253 list_for_each_entry_safe(entry, aux, &entries, list) {
254 pr_info("loading SSDT from variable %s-%pUl\n", efivar_ssdt,
255 &entry->var.VendorGuid);
256
257 list_del(&entry->list);
258
259 ret = efivar_entry_size(entry, &size);
260 if (ret) {
261 pr_err("failed to get var size\n");
262 goto free_entry;
263 }
264
265 data = kmalloc(size, GFP_KERNEL);
266 if (!data) {
267 ret = -ENOMEM;
268 goto free_entry;
269 }
270
271 ret = efivar_entry_get(entry, NULL, &size, data);
272 if (ret) {
273 pr_err("failed to get var data\n");
274 goto free_data;
275 }
276
277 ret = acpi_load_table(data);
278 if (ret) {
279 pr_err("failed to load table: %d\n", ret);
280 goto free_data;
281 }
282
283 goto free_entry;
284
285 free_data:
286 kfree(data);
287
288 free_entry:
289 kfree(entry);
290 }
291
292 return ret;
293 }
294 #else
295 static inline int efivar_ssdt_load(void) { return 0; }
296 #endif
297
298 /*
299 * We register the efi subsystem with the firmware subsystem and the
300 * efivars subsystem with the efi subsystem, if the system was booted with
301 * EFI.
302 */
303 static int __init efisubsys_init(void)
304 {
305 int error;
306
307 if (!efi_enabled(EFI_BOOT))
308 return 0;
309
310 /* We register the efi directory at /sys/firmware/efi */
311 efi_kobj = kobject_create_and_add("efi", firmware_kobj);
312 if (!efi_kobj) {
313 pr_err("efi: Firmware registration failed.\n");
314 return -ENOMEM;
315 }
316
317 error = generic_ops_register();
318 if (error)
319 goto err_put;
320
321 if (efi_enabled(EFI_RUNTIME_SERVICES))
322 efivar_ssdt_load();
323
324 error = sysfs_create_group(efi_kobj, &efi_subsys_attr_group);
325 if (error) {
326 pr_err("efi: Sysfs attribute export failed with error %d.\n",
327 error);
328 goto err_unregister;
329 }
330
331 error = efi_runtime_map_init(efi_kobj);
332 if (error)
333 goto err_remove_group;
334
335 /* and the standard mountpoint for efivarfs */
336 error = sysfs_create_mount_point(efi_kobj, "efivars");
337 if (error) {
338 pr_err("efivars: Subsystem registration failed.\n");
339 goto err_remove_group;
340 }
341
342 return 0;
343
344 err_remove_group:
345 sysfs_remove_group(efi_kobj, &efi_subsys_attr_group);
346 err_unregister:
347 generic_ops_unregister();
348 err_put:
349 kobject_put(efi_kobj);
350 return error;
351 }
352
353 subsys_initcall(efisubsys_init);
354
355 /*
356 * Find the efi memory descriptor for a given physical address. Given a
357 * physical address, determine if it exists within an EFI Memory Map entry,
358 * and if so, populate the supplied memory descriptor with the appropriate
359 * data.
360 */
361 int __init efi_mem_desc_lookup(u64 phys_addr, efi_memory_desc_t *out_md)
362 {
363 efi_memory_desc_t *md;
364
365 if (!efi_enabled(EFI_MEMMAP)) {
366 pr_err_once("EFI_MEMMAP is not enabled.\n");
367 return -EINVAL;
368 }
369
370 if (!out_md) {
371 pr_err_once("out_md is null.\n");
372 return -EINVAL;
373 }
374
375 for_each_efi_memory_desc(md) {
376 u64 size;
377 u64 end;
378
379 if (!(md->attribute & EFI_MEMORY_RUNTIME) &&
380 md->type != EFI_BOOT_SERVICES_DATA &&
381 md->type != EFI_RUNTIME_SERVICES_DATA) {
382 continue;
383 }
384
385 size = md->num_pages << EFI_PAGE_SHIFT;
386 end = md->phys_addr + size;
387 if (phys_addr >= md->phys_addr && phys_addr < end) {
388 memcpy(out_md, md, sizeof(*out_md));
389 return 0;
390 }
391 }
392 pr_err_once("requested map not found.\n");
393 return -ENOENT;
394 }
395
396 /*
397 * Calculate the highest address of an efi memory descriptor.
398 */
399 u64 __init efi_mem_desc_end(efi_memory_desc_t *md)
400 {
401 u64 size = md->num_pages << EFI_PAGE_SHIFT;
402 u64 end = md->phys_addr + size;
403 return end;
404 }
405
406 void __init __weak efi_arch_mem_reserve(phys_addr_t addr, u64 size) {}
407
408 /**
409 * efi_mem_reserve - Reserve an EFI memory region
410 * @addr: Physical address to reserve
411 * @size: Size of reservation
412 *
413 * Mark a region as reserved from general kernel allocation and
414 * prevent it being released by efi_free_boot_services().
415 *
416 * This function should be called drivers once they've parsed EFI
417 * configuration tables to figure out where their data lives, e.g.
418 * efi_esrt_init().
419 */
420 void __init efi_mem_reserve(phys_addr_t addr, u64 size)
421 {
422 if (!memblock_is_region_reserved(addr, size))
423 memblock_reserve(addr, size);
424
425 /*
426 * Some architectures (x86) reserve all boot services ranges
427 * until efi_free_boot_services() because of buggy firmware
428 * implementations. This means the above memblock_reserve() is
429 * superfluous on x86 and instead what it needs to do is
430 * ensure the @start, @size is not freed.
431 */
432 efi_arch_mem_reserve(addr, size);
433 }
434
435 static __initdata efi_config_table_type_t common_tables[] = {
436 {ACPI_20_TABLE_GUID, "ACPI 2.0", &efi.acpi20},
437 {ACPI_TABLE_GUID, "ACPI", &efi.acpi},
438 {HCDP_TABLE_GUID, "HCDP", &efi.hcdp},
439 {MPS_TABLE_GUID, "MPS", &efi.mps},
440 {SAL_SYSTEM_TABLE_GUID, "SALsystab", &efi.sal_systab},
441 {SMBIOS_TABLE_GUID, "SMBIOS", &efi.smbios},
442 {SMBIOS3_TABLE_GUID, "SMBIOS 3.0", &efi.smbios3},
443 {UGA_IO_PROTOCOL_GUID, "UGA", &efi.uga},
444 {EFI_SYSTEM_RESOURCE_TABLE_GUID, "ESRT", &efi.esrt},
445 {EFI_PROPERTIES_TABLE_GUID, "PROP", &efi.properties_table},
446 {EFI_MEMORY_ATTRIBUTES_TABLE_GUID, "MEMATTR", &efi.mem_attr_table},
447 {LINUX_EFI_RANDOM_SEED_TABLE_GUID, "RNG", &efi.rng_seed},
448 {NULL_GUID, NULL, NULL},
449 };
450
451 static __init int match_config_table(efi_guid_t *guid,
452 unsigned long table,
453 efi_config_table_type_t *table_types)
454 {
455 int i;
456
457 if (table_types) {
458 for (i = 0; efi_guidcmp(table_types[i].guid, NULL_GUID); i++) {
459 if (!efi_guidcmp(*guid, table_types[i].guid)) {
460 *(table_types[i].ptr) = table;
461 if (table_types[i].name)
462 pr_cont(" %s=0x%lx ",
463 table_types[i].name, table);
464 return 1;
465 }
466 }
467 }
468
469 return 0;
470 }
471
472 int __init efi_config_parse_tables(void *config_tables, int count, int sz,
473 efi_config_table_type_t *arch_tables)
474 {
475 void *tablep;
476 int i;
477
478 tablep = config_tables;
479 pr_info("");
480 for (i = 0; i < count; i++) {
481 efi_guid_t guid;
482 unsigned long table;
483
484 if (efi_enabled(EFI_64BIT)) {
485 u64 table64;
486 guid = ((efi_config_table_64_t *)tablep)->guid;
487 table64 = ((efi_config_table_64_t *)tablep)->table;
488 table = table64;
489 #ifndef CONFIG_64BIT
490 if (table64 >> 32) {
491 pr_cont("\n");
492 pr_err("Table located above 4GB, disabling EFI.\n");
493 return -EINVAL;
494 }
495 #endif
496 } else {
497 guid = ((efi_config_table_32_t *)tablep)->guid;
498 table = ((efi_config_table_32_t *)tablep)->table;
499 }
500
501 if (!match_config_table(&guid, table, common_tables))
502 match_config_table(&guid, table, arch_tables);
503
504 tablep += sz;
505 }
506 pr_cont("\n");
507 set_bit(EFI_CONFIG_TABLES, &efi.flags);
508
509 if (efi.rng_seed != EFI_INVALID_TABLE_ADDR) {
510 struct linux_efi_random_seed *seed;
511 u32 size = 0;
512
513 seed = early_memremap(efi.rng_seed, sizeof(*seed));
514 if (seed != NULL) {
515 size = seed->size;
516 early_memunmap(seed, sizeof(*seed));
517 } else {
518 pr_err("Could not map UEFI random seed!\n");
519 }
520 if (size > 0) {
521 seed = early_memremap(efi.rng_seed,
522 sizeof(*seed) + size);
523 if (seed != NULL) {
524 add_device_randomness(seed->bits, seed->size);
525 early_memunmap(seed, sizeof(*seed) + size);
526 } else {
527 pr_err("Could not map UEFI random seed!\n");
528 }
529 }
530 }
531
532 efi_memattr_init();
533
534 /* Parse the EFI Properties table if it exists */
535 if (efi.properties_table != EFI_INVALID_TABLE_ADDR) {
536 efi_properties_table_t *tbl;
537
538 tbl = early_memremap(efi.properties_table, sizeof(*tbl));
539 if (tbl == NULL) {
540 pr_err("Could not map Properties table!\n");
541 return -ENOMEM;
542 }
543
544 if (tbl->memory_protection_attribute &
545 EFI_PROPERTIES_RUNTIME_MEMORY_PROTECTION_NON_EXECUTABLE_PE_DATA)
546 set_bit(EFI_NX_PE_DATA, &efi.flags);
547
548 early_memunmap(tbl, sizeof(*tbl));
549 }
550
551 return 0;
552 }
553
554 int __init efi_config_init(efi_config_table_type_t *arch_tables)
555 {
556 void *config_tables;
557 int sz, ret;
558
559 if (efi_enabled(EFI_64BIT))
560 sz = sizeof(efi_config_table_64_t);
561 else
562 sz = sizeof(efi_config_table_32_t);
563
564 /*
565 * Let's see what config tables the firmware passed to us.
566 */
567 config_tables = early_memremap(efi.systab->tables,
568 efi.systab->nr_tables * sz);
569 if (config_tables == NULL) {
570 pr_err("Could not map Configuration table!\n");
571 return -ENOMEM;
572 }
573
574 ret = efi_config_parse_tables(config_tables, efi.systab->nr_tables, sz,
575 arch_tables);
576
577 early_memunmap(config_tables, efi.systab->nr_tables * sz);
578 return ret;
579 }
580
581 #ifdef CONFIG_EFI_VARS_MODULE
582 static int __init efi_load_efivars(void)
583 {
584 struct platform_device *pdev;
585
586 if (!efi_enabled(EFI_RUNTIME_SERVICES))
587 return 0;
588
589 pdev = platform_device_register_simple("efivars", 0, NULL, 0);
590 return IS_ERR(pdev) ? PTR_ERR(pdev) : 0;
591 }
592 device_initcall(efi_load_efivars);
593 #endif
594
595 #ifdef CONFIG_EFI_PARAMS_FROM_FDT
596
597 #define UEFI_PARAM(name, prop, field) \
598 { \
599 { name }, \
600 { prop }, \
601 offsetof(struct efi_fdt_params, field), \
602 FIELD_SIZEOF(struct efi_fdt_params, field) \
603 }
604
605 struct params {
606 const char name[32];
607 const char propname[32];
608 int offset;
609 int size;
610 };
611
612 static __initdata struct params fdt_params[] = {
613 UEFI_PARAM("System Table", "linux,uefi-system-table", system_table),
614 UEFI_PARAM("MemMap Address", "linux,uefi-mmap-start", mmap),
615 UEFI_PARAM("MemMap Size", "linux,uefi-mmap-size", mmap_size),
616 UEFI_PARAM("MemMap Desc. Size", "linux,uefi-mmap-desc-size", desc_size),
617 UEFI_PARAM("MemMap Desc. Version", "linux,uefi-mmap-desc-ver", desc_ver)
618 };
619
620 static __initdata struct params xen_fdt_params[] = {
621 UEFI_PARAM("System Table", "xen,uefi-system-table", system_table),
622 UEFI_PARAM("MemMap Address", "xen,uefi-mmap-start", mmap),
623 UEFI_PARAM("MemMap Size", "xen,uefi-mmap-size", mmap_size),
624 UEFI_PARAM("MemMap Desc. Size", "xen,uefi-mmap-desc-size", desc_size),
625 UEFI_PARAM("MemMap Desc. Version", "xen,uefi-mmap-desc-ver", desc_ver)
626 };
627
628 #define EFI_FDT_PARAMS_SIZE ARRAY_SIZE(fdt_params)
629
630 static __initdata struct {
631 const char *uname;
632 const char *subnode;
633 struct params *params;
634 } dt_params[] = {
635 { "hypervisor", "uefi", xen_fdt_params },
636 { "chosen", NULL, fdt_params },
637 };
638
639 struct param_info {
640 int found;
641 void *params;
642 const char *missing;
643 };
644
645 static int __init __find_uefi_params(unsigned long node,
646 struct param_info *info,
647 struct params *params)
648 {
649 const void *prop;
650 void *dest;
651 u64 val;
652 int i, len;
653
654 for (i = 0; i < EFI_FDT_PARAMS_SIZE; i++) {
655 prop = of_get_flat_dt_prop(node, params[i].propname, &len);
656 if (!prop) {
657 info->missing = params[i].name;
658 return 0;
659 }
660
661 dest = info->params + params[i].offset;
662 info->found++;
663
664 val = of_read_number(prop, len / sizeof(u32));
665
666 if (params[i].size == sizeof(u32))
667 *(u32 *)dest = val;
668 else
669 *(u64 *)dest = val;
670
671 if (efi_enabled(EFI_DBG))
672 pr_info(" %s: 0x%0*llx\n", params[i].name,
673 params[i].size * 2, val);
674 }
675
676 return 1;
677 }
678
679 static int __init fdt_find_uefi_params(unsigned long node, const char *uname,
680 int depth, void *data)
681 {
682 struct param_info *info = data;
683 int i;
684
685 for (i = 0; i < ARRAY_SIZE(dt_params); i++) {
686 const char *subnode = dt_params[i].subnode;
687
688 if (depth != 1 || strcmp(uname, dt_params[i].uname) != 0) {
689 info->missing = dt_params[i].params[0].name;
690 continue;
691 }
692
693 if (subnode) {
694 int err = of_get_flat_dt_subnode_by_name(node, subnode);
695
696 if (err < 0)
697 return 0;
698
699 node = err;
700 }
701
702 return __find_uefi_params(node, info, dt_params[i].params);
703 }
704
705 return 0;
706 }
707
708 int __init efi_get_fdt_params(struct efi_fdt_params *params)
709 {
710 struct param_info info;
711 int ret;
712
713 pr_info("Getting EFI parameters from FDT:\n");
714
715 info.found = 0;
716 info.params = params;
717
718 ret = of_scan_flat_dt(fdt_find_uefi_params, &info);
719 if (!info.found)
720 pr_info("UEFI not found.\n");
721 else if (!ret)
722 pr_err("Can't find '%s' in device tree!\n",
723 info.missing);
724
725 return ret;
726 }
727 #endif /* CONFIG_EFI_PARAMS_FROM_FDT */
728
729 static __initdata char memory_type_name[][20] = {
730 "Reserved",
731 "Loader Code",
732 "Loader Data",
733 "Boot Code",
734 "Boot Data",
735 "Runtime Code",
736 "Runtime Data",
737 "Conventional Memory",
738 "Unusable Memory",
739 "ACPI Reclaim Memory",
740 "ACPI Memory NVS",
741 "Memory Mapped I/O",
742 "MMIO Port Space",
743 "PAL Code",
744 "Persistent Memory",
745 };
746
747 char * __init efi_md_typeattr_format(char *buf, size_t size,
748 const efi_memory_desc_t *md)
749 {
750 char *pos;
751 int type_len;
752 u64 attr;
753
754 pos = buf;
755 if (md->type >= ARRAY_SIZE(memory_type_name))
756 type_len = snprintf(pos, size, "[type=%u", md->type);
757 else
758 type_len = snprintf(pos, size, "[%-*s",
759 (int)(sizeof(memory_type_name[0]) - 1),
760 memory_type_name[md->type]);
761 if (type_len >= size)
762 return buf;
763
764 pos += type_len;
765 size -= type_len;
766
767 attr = md->attribute;
768 if (attr & ~(EFI_MEMORY_UC | EFI_MEMORY_WC | EFI_MEMORY_WT |
769 EFI_MEMORY_WB | EFI_MEMORY_UCE | EFI_MEMORY_RO |
770 EFI_MEMORY_WP | EFI_MEMORY_RP | EFI_MEMORY_XP |
771 EFI_MEMORY_NV |
772 EFI_MEMORY_RUNTIME | EFI_MEMORY_MORE_RELIABLE))
773 snprintf(pos, size, "|attr=0x%016llx]",
774 (unsigned long long)attr);
775 else
776 snprintf(pos, size,
777 "|%3s|%2s|%2s|%2s|%2s|%2s|%2s|%3s|%2s|%2s|%2s|%2s]",
778 attr & EFI_MEMORY_RUNTIME ? "RUN" : "",
779 attr & EFI_MEMORY_MORE_RELIABLE ? "MR" : "",
780 attr & EFI_MEMORY_NV ? "NV" : "",
781 attr & EFI_MEMORY_XP ? "XP" : "",
782 attr & EFI_MEMORY_RP ? "RP" : "",
783 attr & EFI_MEMORY_WP ? "WP" : "",
784 attr & EFI_MEMORY_RO ? "RO" : "",
785 attr & EFI_MEMORY_UCE ? "UCE" : "",
786 attr & EFI_MEMORY_WB ? "WB" : "",
787 attr & EFI_MEMORY_WT ? "WT" : "",
788 attr & EFI_MEMORY_WC ? "WC" : "",
789 attr & EFI_MEMORY_UC ? "UC" : "");
790 return buf;
791 }
792
793 /*
794 * efi_mem_attributes - lookup memmap attributes for physical address
795 * @phys_addr: the physical address to lookup
796 *
797 * Search in the EFI memory map for the region covering
798 * @phys_addr. Returns the EFI memory attributes if the region
799 * was found in the memory map, 0 otherwise.
800 *
801 * Despite being marked __weak, most architectures should *not*
802 * override this function. It is __weak solely for the benefit
803 * of ia64 which has a funky EFI memory map that doesn't work
804 * the same way as other architectures.
805 */
806 u64 __weak efi_mem_attributes(unsigned long phys_addr)
807 {
808 efi_memory_desc_t *md;
809
810 if (!efi_enabled(EFI_MEMMAP))
811 return 0;
812
813 for_each_efi_memory_desc(md) {
814 if ((md->phys_addr <= phys_addr) &&
815 (phys_addr < (md->phys_addr +
816 (md->num_pages << EFI_PAGE_SHIFT))))
817 return md->attribute;
818 }
819 return 0;
820 }
821
822 int efi_status_to_err(efi_status_t status)
823 {
824 int err;
825
826 switch (status) {
827 case EFI_SUCCESS:
828 err = 0;
829 break;
830 case EFI_INVALID_PARAMETER:
831 err = -EINVAL;
832 break;
833 case EFI_OUT_OF_RESOURCES:
834 err = -ENOSPC;
835 break;
836 case EFI_DEVICE_ERROR:
837 err = -EIO;
838 break;
839 case EFI_WRITE_PROTECTED:
840 err = -EROFS;
841 break;
842 case EFI_SECURITY_VIOLATION:
843 err = -EACCES;
844 break;
845 case EFI_NOT_FOUND:
846 err = -ENOENT;
847 break;
848 case EFI_ABORTED:
849 err = -EINTR;
850 break;
851 default:
852 err = -EINVAL;
853 }
854
855 return err;
856 }
857
858 #ifdef CONFIG_KEXEC
859 static int update_efi_random_seed(struct notifier_block *nb,
860 unsigned long code, void *unused)
861 {
862 struct linux_efi_random_seed *seed;
863 u32 size = 0;
864
865 if (!kexec_in_progress)
866 return NOTIFY_DONE;
867
868 seed = memremap(efi.rng_seed, sizeof(*seed), MEMREMAP_WB);
869 if (seed != NULL) {
870 size = min(seed->size, 32U);
871 memunmap(seed);
872 } else {
873 pr_err("Could not map UEFI random seed!\n");
874 }
875 if (size > 0) {
876 seed = memremap(efi.rng_seed, sizeof(*seed) + size,
877 MEMREMAP_WB);
878 if (seed != NULL) {
879 seed->size = size;
880 get_random_bytes(seed->bits, seed->size);
881 memunmap(seed);
882 } else {
883 pr_err("Could not map UEFI random seed!\n");
884 }
885 }
886 return NOTIFY_DONE;
887 }
888
889 static struct notifier_block efi_random_seed_nb = {
890 .notifier_call = update_efi_random_seed,
891 };
892
893 static int register_update_efi_random_seed(void)
894 {
895 if (efi.rng_seed == EFI_INVALID_TABLE_ADDR)
896 return 0;
897 return register_reboot_notifier(&efi_random_seed_nb);
898 }
899 late_initcall(register_update_efi_random_seed);
900 #endif