]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/firmware/efi/libstub/fdt.c
Merge branch 'for-4.13-part2' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave...
[mirror_ubuntu-artful-kernel.git] / drivers / firmware / efi / libstub / fdt.c
1 /*
2 * FDT related Helper functions used by the EFI stub on multiple
3 * architectures. This should be #included by the EFI stub
4 * implementation files.
5 *
6 * Copyright 2013 Linaro Limited; author Roy Franz
7 *
8 * This file is part of the Linux kernel, and is made available
9 * under the terms of the GNU General Public License version 2.
10 *
11 */
12
13 #include <linux/efi.h>
14 #include <linux/libfdt.h>
15 #include <asm/efi.h>
16
17 #include "efistub.h"
18
19 #define EFI_DT_ADDR_CELLS_DEFAULT 2
20 #define EFI_DT_SIZE_CELLS_DEFAULT 2
21
22 static void fdt_update_cell_size(efi_system_table_t *sys_table, void *fdt)
23 {
24 int offset;
25
26 offset = fdt_path_offset(fdt, "/");
27 /* Set the #address-cells and #size-cells values for an empty tree */
28
29 fdt_setprop_u32(fdt, offset, "#address-cells",
30 EFI_DT_ADDR_CELLS_DEFAULT);
31
32 fdt_setprop_u32(fdt, offset, "#size-cells", EFI_DT_SIZE_CELLS_DEFAULT);
33 }
34
35 static efi_status_t update_fdt(efi_system_table_t *sys_table, void *orig_fdt,
36 unsigned long orig_fdt_size,
37 void *fdt, int new_fdt_size, char *cmdline_ptr,
38 u64 initrd_addr, u64 initrd_size)
39 {
40 int node, num_rsv;
41 int status;
42 u32 fdt_val32;
43 u64 fdt_val64;
44
45 /* Do some checks on provided FDT, if it exists*/
46 if (orig_fdt) {
47 if (fdt_check_header(orig_fdt)) {
48 pr_efi_err(sys_table, "Device Tree header not valid!\n");
49 return EFI_LOAD_ERROR;
50 }
51 /*
52 * We don't get the size of the FDT if we get if from a
53 * configuration table.
54 */
55 if (orig_fdt_size && fdt_totalsize(orig_fdt) > orig_fdt_size) {
56 pr_efi_err(sys_table, "Truncated device tree! foo!\n");
57 return EFI_LOAD_ERROR;
58 }
59 }
60
61 if (orig_fdt) {
62 status = fdt_open_into(orig_fdt, fdt, new_fdt_size);
63 } else {
64 status = fdt_create_empty_tree(fdt, new_fdt_size);
65 if (status == 0) {
66 /*
67 * Any failure from the following function is non
68 * critical
69 */
70 fdt_update_cell_size(sys_table, fdt);
71 }
72 }
73
74 if (status != 0)
75 goto fdt_set_fail;
76
77 /*
78 * Delete all memory reserve map entries. When booting via UEFI,
79 * kernel will use the UEFI memory map to find reserved regions.
80 */
81 num_rsv = fdt_num_mem_rsv(fdt);
82 while (num_rsv-- > 0)
83 fdt_del_mem_rsv(fdt, num_rsv);
84
85 node = fdt_subnode_offset(fdt, 0, "chosen");
86 if (node < 0) {
87 node = fdt_add_subnode(fdt, 0, "chosen");
88 if (node < 0) {
89 status = node; /* node is error code when negative */
90 goto fdt_set_fail;
91 }
92 }
93
94 if ((cmdline_ptr != NULL) && (strlen(cmdline_ptr) > 0)) {
95 status = fdt_setprop(fdt, node, "bootargs", cmdline_ptr,
96 strlen(cmdline_ptr) + 1);
97 if (status)
98 goto fdt_set_fail;
99 }
100
101 /* Set initrd address/end in device tree, if present */
102 if (initrd_size != 0) {
103 u64 initrd_image_end;
104 u64 initrd_image_start = cpu_to_fdt64(initrd_addr);
105
106 status = fdt_setprop(fdt, node, "linux,initrd-start",
107 &initrd_image_start, sizeof(u64));
108 if (status)
109 goto fdt_set_fail;
110 initrd_image_end = cpu_to_fdt64(initrd_addr + initrd_size);
111 status = fdt_setprop(fdt, node, "linux,initrd-end",
112 &initrd_image_end, sizeof(u64));
113 if (status)
114 goto fdt_set_fail;
115 }
116
117 /* Add FDT entries for EFI runtime services in chosen node. */
118 node = fdt_subnode_offset(fdt, 0, "chosen");
119 fdt_val64 = cpu_to_fdt64((u64)(unsigned long)sys_table);
120 status = fdt_setprop(fdt, node, "linux,uefi-system-table",
121 &fdt_val64, sizeof(fdt_val64));
122 if (status)
123 goto fdt_set_fail;
124
125 fdt_val64 = U64_MAX; /* placeholder */
126 status = fdt_setprop(fdt, node, "linux,uefi-mmap-start",
127 &fdt_val64, sizeof(fdt_val64));
128 if (status)
129 goto fdt_set_fail;
130
131 fdt_val32 = U32_MAX; /* placeholder */
132 status = fdt_setprop(fdt, node, "linux,uefi-mmap-size",
133 &fdt_val32, sizeof(fdt_val32));
134 if (status)
135 goto fdt_set_fail;
136
137 status = fdt_setprop(fdt, node, "linux,uefi-mmap-desc-size",
138 &fdt_val32, sizeof(fdt_val32));
139 if (status)
140 goto fdt_set_fail;
141
142 status = fdt_setprop(fdt, node, "linux,uefi-mmap-desc-ver",
143 &fdt_val32, sizeof(fdt_val32));
144 if (status)
145 goto fdt_set_fail;
146
147 if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) {
148 efi_status_t efi_status;
149
150 efi_status = efi_get_random_bytes(sys_table, sizeof(fdt_val64),
151 (u8 *)&fdt_val64);
152 if (efi_status == EFI_SUCCESS) {
153 status = fdt_setprop(fdt, node, "kaslr-seed",
154 &fdt_val64, sizeof(fdt_val64));
155 if (status)
156 goto fdt_set_fail;
157 } else if (efi_status != EFI_NOT_FOUND) {
158 return efi_status;
159 }
160 }
161 return EFI_SUCCESS;
162
163 fdt_set_fail:
164 if (status == -FDT_ERR_NOSPACE)
165 return EFI_BUFFER_TOO_SMALL;
166
167 return EFI_LOAD_ERROR;
168 }
169
170 static efi_status_t update_fdt_memmap(void *fdt, struct efi_boot_memmap *map)
171 {
172 int node = fdt_path_offset(fdt, "/chosen");
173 u64 fdt_val64;
174 u32 fdt_val32;
175 int err;
176
177 if (node < 0)
178 return EFI_LOAD_ERROR;
179
180 fdt_val64 = cpu_to_fdt64((unsigned long)*map->map);
181 err = fdt_setprop_inplace(fdt, node, "linux,uefi-mmap-start",
182 &fdt_val64, sizeof(fdt_val64));
183 if (err)
184 return EFI_LOAD_ERROR;
185
186 fdt_val32 = cpu_to_fdt32(*map->map_size);
187 err = fdt_setprop_inplace(fdt, node, "linux,uefi-mmap-size",
188 &fdt_val32, sizeof(fdt_val32));
189 if (err)
190 return EFI_LOAD_ERROR;
191
192 fdt_val32 = cpu_to_fdt32(*map->desc_size);
193 err = fdt_setprop_inplace(fdt, node, "linux,uefi-mmap-desc-size",
194 &fdt_val32, sizeof(fdt_val32));
195 if (err)
196 return EFI_LOAD_ERROR;
197
198 fdt_val32 = cpu_to_fdt32(*map->desc_ver);
199 err = fdt_setprop_inplace(fdt, node, "linux,uefi-mmap-desc-ver",
200 &fdt_val32, sizeof(fdt_val32));
201 if (err)
202 return EFI_LOAD_ERROR;
203
204 return EFI_SUCCESS;
205 }
206
207 #ifndef EFI_FDT_ALIGN
208 #define EFI_FDT_ALIGN EFI_PAGE_SIZE
209 #endif
210
211 struct exit_boot_struct {
212 efi_memory_desc_t *runtime_map;
213 int *runtime_entry_count;
214 void *new_fdt_addr;
215 };
216
217 static efi_status_t exit_boot_func(efi_system_table_t *sys_table_arg,
218 struct efi_boot_memmap *map,
219 void *priv)
220 {
221 struct exit_boot_struct *p = priv;
222 /*
223 * Update the memory map with virtual addresses. The function will also
224 * populate @runtime_map with copies of just the EFI_MEMORY_RUNTIME
225 * entries so that we can pass it straight to SetVirtualAddressMap()
226 */
227 efi_get_virtmap(*map->map, *map->map_size, *map->desc_size,
228 p->runtime_map, p->runtime_entry_count);
229
230 return update_fdt_memmap(p->new_fdt_addr, map);
231 }
232
233 #ifndef MAX_FDT_SIZE
234 #define MAX_FDT_SIZE SZ_2M
235 #endif
236
237 /*
238 * Allocate memory for a new FDT, then add EFI, commandline, and
239 * initrd related fields to the FDT. This routine increases the
240 * FDT allocation size until the allocated memory is large
241 * enough. EFI allocations are in EFI_PAGE_SIZE granules,
242 * which are fixed at 4K bytes, so in most cases the first
243 * allocation should succeed.
244 * EFI boot services are exited at the end of this function.
245 * There must be no allocations between the get_memory_map()
246 * call and the exit_boot_services() call, so the exiting of
247 * boot services is very tightly tied to the creation of the FDT
248 * with the final memory map in it.
249 */
250
251 efi_status_t allocate_new_fdt_and_exit_boot(efi_system_table_t *sys_table,
252 void *handle,
253 unsigned long *new_fdt_addr,
254 unsigned long max_addr,
255 u64 initrd_addr, u64 initrd_size,
256 char *cmdline_ptr,
257 unsigned long fdt_addr,
258 unsigned long fdt_size)
259 {
260 unsigned long map_size, desc_size, buff_size;
261 u32 desc_ver;
262 unsigned long mmap_key;
263 efi_memory_desc_t *memory_map, *runtime_map;
264 efi_status_t status;
265 int runtime_entry_count = 0;
266 struct efi_boot_memmap map;
267 struct exit_boot_struct priv;
268
269 map.map = &runtime_map;
270 map.map_size = &map_size;
271 map.desc_size = &desc_size;
272 map.desc_ver = &desc_ver;
273 map.key_ptr = &mmap_key;
274 map.buff_size = &buff_size;
275
276 /*
277 * Get a copy of the current memory map that we will use to prepare
278 * the input for SetVirtualAddressMap(). We don't have to worry about
279 * subsequent allocations adding entries, since they could not affect
280 * the number of EFI_MEMORY_RUNTIME regions.
281 */
282 status = efi_get_memory_map(sys_table, &map);
283 if (status != EFI_SUCCESS) {
284 pr_efi_err(sys_table, "Unable to retrieve UEFI memory map.\n");
285 return status;
286 }
287
288 pr_efi(sys_table,
289 "Exiting boot services and installing virtual address map...\n");
290
291 map.map = &memory_map;
292 status = efi_high_alloc(sys_table, MAX_FDT_SIZE, EFI_FDT_ALIGN,
293 new_fdt_addr, max_addr);
294 if (status != EFI_SUCCESS) {
295 pr_efi_err(sys_table,
296 "Unable to allocate memory for new device tree.\n");
297 goto fail;
298 }
299
300 /*
301 * Now that we have done our final memory allocation (and free)
302 * we can get the memory map key needed for exit_boot_services().
303 */
304 status = efi_get_memory_map(sys_table, &map);
305 if (status != EFI_SUCCESS)
306 goto fail_free_new_fdt;
307
308 status = update_fdt(sys_table, (void *)fdt_addr, fdt_size,
309 (void *)*new_fdt_addr, MAX_FDT_SIZE, cmdline_ptr,
310 initrd_addr, initrd_size);
311
312 if (status != EFI_SUCCESS) {
313 pr_efi_err(sys_table, "Unable to construct new device tree.\n");
314 goto fail_free_new_fdt;
315 }
316
317 priv.runtime_map = runtime_map;
318 priv.runtime_entry_count = &runtime_entry_count;
319 priv.new_fdt_addr = (void *)*new_fdt_addr;
320 status = efi_exit_boot_services(sys_table, handle, &map, &priv,
321 exit_boot_func);
322
323 if (status == EFI_SUCCESS) {
324 efi_set_virtual_address_map_t *svam;
325
326 /* Install the new virtual address map */
327 svam = sys_table->runtime->set_virtual_address_map;
328 status = svam(runtime_entry_count * desc_size, desc_size,
329 desc_ver, runtime_map);
330
331 /*
332 * We are beyond the point of no return here, so if the call to
333 * SetVirtualAddressMap() failed, we need to signal that to the
334 * incoming kernel but proceed normally otherwise.
335 */
336 if (status != EFI_SUCCESS) {
337 int l;
338
339 /*
340 * Set the virtual address field of all
341 * EFI_MEMORY_RUNTIME entries to 0. This will signal
342 * the incoming kernel that no virtual translation has
343 * been installed.
344 */
345 for (l = 0; l < map_size; l += desc_size) {
346 efi_memory_desc_t *p = (void *)memory_map + l;
347
348 if (p->attribute & EFI_MEMORY_RUNTIME)
349 p->virt_addr = 0;
350 }
351 }
352 return EFI_SUCCESS;
353 }
354
355 pr_efi_err(sys_table, "Exit boot services failed.\n");
356
357 fail_free_new_fdt:
358 efi_free(sys_table, MAX_FDT_SIZE, *new_fdt_addr);
359
360 fail:
361 sys_table->boottime->free_pool(runtime_map);
362 return EFI_LOAD_ERROR;
363 }
364
365 void *get_fdt(efi_system_table_t *sys_table, unsigned long *fdt_size)
366 {
367 efi_guid_t fdt_guid = DEVICE_TREE_GUID;
368 efi_config_table_t *tables;
369 void *fdt;
370 int i;
371
372 tables = (efi_config_table_t *) sys_table->tables;
373 fdt = NULL;
374
375 for (i = 0; i < sys_table->nr_tables; i++)
376 if (efi_guidcmp(tables[i].guid, fdt_guid) == 0) {
377 fdt = (void *) tables[i].table;
378 if (fdt_check_header(fdt) != 0) {
379 pr_efi_err(sys_table, "Invalid header detected on UEFI supplied FDT, ignoring ...\n");
380 return NULL;
381 }
382 *fdt_size = fdt_totalsize(fdt);
383 break;
384 }
385
386 return fdt;
387 }