]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/firmware/qcom_scm.c
Merge tag 'drm-intel-next-queued-2020-11-03' of git://anongit.freedesktop.org/drm...
[mirror_ubuntu-hirsute-kernel.git] / drivers / firmware / qcom_scm.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2010,2015,2019 The Linux Foundation. All rights reserved.
3 * Copyright (C) 2015 Linaro Ltd.
4 */
5 #include <linux/platform_device.h>
6 #include <linux/init.h>
7 #include <linux/cpumask.h>
8 #include <linux/export.h>
9 #include <linux/dma-mapping.h>
10 #include <linux/module.h>
11 #include <linux/types.h>
12 #include <linux/qcom_scm.h>
13 #include <linux/of.h>
14 #include <linux/of_address.h>
15 #include <linux/of_platform.h>
16 #include <linux/clk.h>
17 #include <linux/reset-controller.h>
18 #include <linux/arm-smccc.h>
19
20 #include "qcom_scm.h"
21
22 static bool download_mode = IS_ENABLED(CONFIG_QCOM_SCM_DOWNLOAD_MODE_DEFAULT);
23 module_param(download_mode, bool, 0);
24
25 #define SCM_HAS_CORE_CLK BIT(0)
26 #define SCM_HAS_IFACE_CLK BIT(1)
27 #define SCM_HAS_BUS_CLK BIT(2)
28
29 struct qcom_scm {
30 struct device *dev;
31 struct clk *core_clk;
32 struct clk *iface_clk;
33 struct clk *bus_clk;
34 struct reset_controller_dev reset;
35
36 u64 dload_mode_addr;
37 };
38
39 struct qcom_scm_current_perm_info {
40 __le32 vmid;
41 __le32 perm;
42 __le64 ctx;
43 __le32 ctx_size;
44 __le32 unused;
45 };
46
47 struct qcom_scm_mem_map_info {
48 __le64 mem_addr;
49 __le64 mem_size;
50 };
51
52 #define QCOM_SCM_FLAG_COLDBOOT_CPU0 0x00
53 #define QCOM_SCM_FLAG_COLDBOOT_CPU1 0x01
54 #define QCOM_SCM_FLAG_COLDBOOT_CPU2 0x08
55 #define QCOM_SCM_FLAG_COLDBOOT_CPU3 0x20
56
57 #define QCOM_SCM_FLAG_WARMBOOT_CPU0 0x04
58 #define QCOM_SCM_FLAG_WARMBOOT_CPU1 0x02
59 #define QCOM_SCM_FLAG_WARMBOOT_CPU2 0x10
60 #define QCOM_SCM_FLAG_WARMBOOT_CPU3 0x40
61
62 struct qcom_scm_wb_entry {
63 int flag;
64 void *entry;
65 };
66
67 static struct qcom_scm_wb_entry qcom_scm_wb[] = {
68 { .flag = QCOM_SCM_FLAG_WARMBOOT_CPU0 },
69 { .flag = QCOM_SCM_FLAG_WARMBOOT_CPU1 },
70 { .flag = QCOM_SCM_FLAG_WARMBOOT_CPU2 },
71 { .flag = QCOM_SCM_FLAG_WARMBOOT_CPU3 },
72 };
73
74 static const char *qcom_scm_convention_names[] = {
75 [SMC_CONVENTION_UNKNOWN] = "unknown",
76 [SMC_CONVENTION_ARM_32] = "smc arm 32",
77 [SMC_CONVENTION_ARM_64] = "smc arm 64",
78 [SMC_CONVENTION_LEGACY] = "smc legacy",
79 };
80
81 static struct qcom_scm *__scm;
82
83 static int qcom_scm_clk_enable(void)
84 {
85 int ret;
86
87 ret = clk_prepare_enable(__scm->core_clk);
88 if (ret)
89 goto bail;
90
91 ret = clk_prepare_enable(__scm->iface_clk);
92 if (ret)
93 goto disable_core;
94
95 ret = clk_prepare_enable(__scm->bus_clk);
96 if (ret)
97 goto disable_iface;
98
99 return 0;
100
101 disable_iface:
102 clk_disable_unprepare(__scm->iface_clk);
103 disable_core:
104 clk_disable_unprepare(__scm->core_clk);
105 bail:
106 return ret;
107 }
108
109 static void qcom_scm_clk_disable(void)
110 {
111 clk_disable_unprepare(__scm->core_clk);
112 clk_disable_unprepare(__scm->iface_clk);
113 clk_disable_unprepare(__scm->bus_clk);
114 }
115
116 static int __qcom_scm_is_call_available(struct device *dev, u32 svc_id,
117 u32 cmd_id);
118
119 enum qcom_scm_convention qcom_scm_convention;
120 static bool has_queried __read_mostly;
121 static DEFINE_SPINLOCK(query_lock);
122
123 static void __query_convention(void)
124 {
125 unsigned long flags;
126 struct qcom_scm_desc desc = {
127 .svc = QCOM_SCM_SVC_INFO,
128 .cmd = QCOM_SCM_INFO_IS_CALL_AVAIL,
129 .args[0] = SCM_SMC_FNID(QCOM_SCM_SVC_INFO,
130 QCOM_SCM_INFO_IS_CALL_AVAIL) |
131 (ARM_SMCCC_OWNER_SIP << ARM_SMCCC_OWNER_SHIFT),
132 .arginfo = QCOM_SCM_ARGS(1),
133 .owner = ARM_SMCCC_OWNER_SIP,
134 };
135 struct qcom_scm_res res;
136 int ret;
137
138 spin_lock_irqsave(&query_lock, flags);
139 if (has_queried)
140 goto out;
141
142 qcom_scm_convention = SMC_CONVENTION_ARM_64;
143 // Device isn't required as there is only one argument - no device
144 // needed to dma_map_single to secure world
145 ret = scm_smc_call(NULL, &desc, &res, true);
146 if (!ret && res.result[0] == 1)
147 goto out;
148
149 qcom_scm_convention = SMC_CONVENTION_ARM_32;
150 ret = scm_smc_call(NULL, &desc, &res, true);
151 if (!ret && res.result[0] == 1)
152 goto out;
153
154 qcom_scm_convention = SMC_CONVENTION_LEGACY;
155 out:
156 has_queried = true;
157 spin_unlock_irqrestore(&query_lock, flags);
158 pr_info("qcom_scm: convention: %s\n",
159 qcom_scm_convention_names[qcom_scm_convention]);
160 }
161
162 static inline enum qcom_scm_convention __get_convention(void)
163 {
164 if (unlikely(!has_queried))
165 __query_convention();
166 return qcom_scm_convention;
167 }
168
169 /**
170 * qcom_scm_call() - Invoke a syscall in the secure world
171 * @dev: device
172 * @svc_id: service identifier
173 * @cmd_id: command identifier
174 * @desc: Descriptor structure containing arguments and return values
175 *
176 * Sends a command to the SCM and waits for the command to finish processing.
177 * This should *only* be called in pre-emptible context.
178 */
179 static int qcom_scm_call(struct device *dev, const struct qcom_scm_desc *desc,
180 struct qcom_scm_res *res)
181 {
182 might_sleep();
183 switch (__get_convention()) {
184 case SMC_CONVENTION_ARM_32:
185 case SMC_CONVENTION_ARM_64:
186 return scm_smc_call(dev, desc, res, false);
187 case SMC_CONVENTION_LEGACY:
188 return scm_legacy_call(dev, desc, res);
189 default:
190 pr_err("Unknown current SCM calling convention.\n");
191 return -EINVAL;
192 }
193 }
194
195 /**
196 * qcom_scm_call_atomic() - atomic variation of qcom_scm_call()
197 * @dev: device
198 * @svc_id: service identifier
199 * @cmd_id: command identifier
200 * @desc: Descriptor structure containing arguments and return values
201 * @res: Structure containing results from SMC/HVC call
202 *
203 * Sends a command to the SCM and waits for the command to finish processing.
204 * This can be called in atomic context.
205 */
206 static int qcom_scm_call_atomic(struct device *dev,
207 const struct qcom_scm_desc *desc,
208 struct qcom_scm_res *res)
209 {
210 switch (__get_convention()) {
211 case SMC_CONVENTION_ARM_32:
212 case SMC_CONVENTION_ARM_64:
213 return scm_smc_call(dev, desc, res, true);
214 case SMC_CONVENTION_LEGACY:
215 return scm_legacy_call_atomic(dev, desc, res);
216 default:
217 pr_err("Unknown current SCM calling convention.\n");
218 return -EINVAL;
219 }
220 }
221
222 static int __qcom_scm_is_call_available(struct device *dev, u32 svc_id,
223 u32 cmd_id)
224 {
225 int ret;
226 struct qcom_scm_desc desc = {
227 .svc = QCOM_SCM_SVC_INFO,
228 .cmd = QCOM_SCM_INFO_IS_CALL_AVAIL,
229 .owner = ARM_SMCCC_OWNER_SIP,
230 };
231 struct qcom_scm_res res;
232
233 desc.arginfo = QCOM_SCM_ARGS(1);
234 switch (__get_convention()) {
235 case SMC_CONVENTION_ARM_32:
236 case SMC_CONVENTION_ARM_64:
237 desc.args[0] = SCM_SMC_FNID(svc_id, cmd_id) |
238 (ARM_SMCCC_OWNER_SIP << ARM_SMCCC_OWNER_SHIFT);
239 break;
240 case SMC_CONVENTION_LEGACY:
241 desc.args[0] = SCM_LEGACY_FNID(svc_id, cmd_id);
242 break;
243 default:
244 pr_err("Unknown SMC convention being used\n");
245 return -EINVAL;
246 }
247
248 ret = qcom_scm_call(dev, &desc, &res);
249
250 return ret ? : res.result[0];
251 }
252
253 /**
254 * qcom_scm_set_warm_boot_addr() - Set the warm boot address for cpus
255 * @entry: Entry point function for the cpus
256 * @cpus: The cpumask of cpus that will use the entry point
257 *
258 * Set the Linux entry point for the SCM to transfer control to when coming
259 * out of a power down. CPU power down may be executed on cpuidle or hotplug.
260 */
261 int qcom_scm_set_warm_boot_addr(void *entry, const cpumask_t *cpus)
262 {
263 int ret;
264 int flags = 0;
265 int cpu;
266 struct qcom_scm_desc desc = {
267 .svc = QCOM_SCM_SVC_BOOT,
268 .cmd = QCOM_SCM_BOOT_SET_ADDR,
269 .arginfo = QCOM_SCM_ARGS(2),
270 };
271
272 /*
273 * Reassign only if we are switching from hotplug entry point
274 * to cpuidle entry point or vice versa.
275 */
276 for_each_cpu(cpu, cpus) {
277 if (entry == qcom_scm_wb[cpu].entry)
278 continue;
279 flags |= qcom_scm_wb[cpu].flag;
280 }
281
282 /* No change in entry function */
283 if (!flags)
284 return 0;
285
286 desc.args[0] = flags;
287 desc.args[1] = virt_to_phys(entry);
288
289 ret = qcom_scm_call(__scm->dev, &desc, NULL);
290 if (!ret) {
291 for_each_cpu(cpu, cpus)
292 qcom_scm_wb[cpu].entry = entry;
293 }
294
295 return ret;
296 }
297 EXPORT_SYMBOL(qcom_scm_set_warm_boot_addr);
298
299 /**
300 * qcom_scm_set_cold_boot_addr() - Set the cold boot address for cpus
301 * @entry: Entry point function for the cpus
302 * @cpus: The cpumask of cpus that will use the entry point
303 *
304 * Set the cold boot address of the cpus. Any cpu outside the supported
305 * range would be removed from the cpu present mask.
306 */
307 int qcom_scm_set_cold_boot_addr(void *entry, const cpumask_t *cpus)
308 {
309 int flags = 0;
310 int cpu;
311 int scm_cb_flags[] = {
312 QCOM_SCM_FLAG_COLDBOOT_CPU0,
313 QCOM_SCM_FLAG_COLDBOOT_CPU1,
314 QCOM_SCM_FLAG_COLDBOOT_CPU2,
315 QCOM_SCM_FLAG_COLDBOOT_CPU3,
316 };
317 struct qcom_scm_desc desc = {
318 .svc = QCOM_SCM_SVC_BOOT,
319 .cmd = QCOM_SCM_BOOT_SET_ADDR,
320 .arginfo = QCOM_SCM_ARGS(2),
321 .owner = ARM_SMCCC_OWNER_SIP,
322 };
323
324 if (!cpus || (cpus && cpumask_empty(cpus)))
325 return -EINVAL;
326
327 for_each_cpu(cpu, cpus) {
328 if (cpu < ARRAY_SIZE(scm_cb_flags))
329 flags |= scm_cb_flags[cpu];
330 else
331 set_cpu_present(cpu, false);
332 }
333
334 desc.args[0] = flags;
335 desc.args[1] = virt_to_phys(entry);
336
337 return qcom_scm_call_atomic(__scm ? __scm->dev : NULL, &desc, NULL);
338 }
339 EXPORT_SYMBOL(qcom_scm_set_cold_boot_addr);
340
341 /**
342 * qcom_scm_cpu_power_down() - Power down the cpu
343 * @flags - Flags to flush cache
344 *
345 * This is an end point to power down cpu. If there was a pending interrupt,
346 * the control would return from this function, otherwise, the cpu jumps to the
347 * warm boot entry point set for this cpu upon reset.
348 */
349 void qcom_scm_cpu_power_down(u32 flags)
350 {
351 struct qcom_scm_desc desc = {
352 .svc = QCOM_SCM_SVC_BOOT,
353 .cmd = QCOM_SCM_BOOT_TERMINATE_PC,
354 .args[0] = flags & QCOM_SCM_FLUSH_FLAG_MASK,
355 .arginfo = QCOM_SCM_ARGS(1),
356 .owner = ARM_SMCCC_OWNER_SIP,
357 };
358
359 qcom_scm_call_atomic(__scm ? __scm->dev : NULL, &desc, NULL);
360 }
361 EXPORT_SYMBOL(qcom_scm_cpu_power_down);
362
363 int qcom_scm_set_remote_state(u32 state, u32 id)
364 {
365 struct qcom_scm_desc desc = {
366 .svc = QCOM_SCM_SVC_BOOT,
367 .cmd = QCOM_SCM_BOOT_SET_REMOTE_STATE,
368 .arginfo = QCOM_SCM_ARGS(2),
369 .args[0] = state,
370 .args[1] = id,
371 .owner = ARM_SMCCC_OWNER_SIP,
372 };
373 struct qcom_scm_res res;
374 int ret;
375
376 ret = qcom_scm_call(__scm->dev, &desc, &res);
377
378 return ret ? : res.result[0];
379 }
380 EXPORT_SYMBOL(qcom_scm_set_remote_state);
381
382 static int __qcom_scm_set_dload_mode(struct device *dev, bool enable)
383 {
384 struct qcom_scm_desc desc = {
385 .svc = QCOM_SCM_SVC_BOOT,
386 .cmd = QCOM_SCM_BOOT_SET_DLOAD_MODE,
387 .arginfo = QCOM_SCM_ARGS(2),
388 .args[0] = QCOM_SCM_BOOT_SET_DLOAD_MODE,
389 .owner = ARM_SMCCC_OWNER_SIP,
390 };
391
392 desc.args[1] = enable ? QCOM_SCM_BOOT_SET_DLOAD_MODE : 0;
393
394 return qcom_scm_call_atomic(__scm->dev, &desc, NULL);
395 }
396
397 static void qcom_scm_set_download_mode(bool enable)
398 {
399 bool avail;
400 int ret = 0;
401
402 avail = __qcom_scm_is_call_available(__scm->dev,
403 QCOM_SCM_SVC_BOOT,
404 QCOM_SCM_BOOT_SET_DLOAD_MODE);
405 if (avail) {
406 ret = __qcom_scm_set_dload_mode(__scm->dev, enable);
407 } else if (__scm->dload_mode_addr) {
408 ret = qcom_scm_io_writel(__scm->dload_mode_addr,
409 enable ? QCOM_SCM_BOOT_SET_DLOAD_MODE : 0);
410 } else {
411 dev_err(__scm->dev,
412 "No available mechanism for setting download mode\n");
413 }
414
415 if (ret)
416 dev_err(__scm->dev, "failed to set download mode: %d\n", ret);
417 }
418
419 /**
420 * qcom_scm_pas_init_image() - Initialize peripheral authentication service
421 * state machine for a given peripheral, using the
422 * metadata
423 * @peripheral: peripheral id
424 * @metadata: pointer to memory containing ELF header, program header table
425 * and optional blob of data used for authenticating the metadata
426 * and the rest of the firmware
427 * @size: size of the metadata
428 *
429 * Returns 0 on success.
430 */
431 int qcom_scm_pas_init_image(u32 peripheral, const void *metadata, size_t size)
432 {
433 dma_addr_t mdata_phys;
434 void *mdata_buf;
435 int ret;
436 struct qcom_scm_desc desc = {
437 .svc = QCOM_SCM_SVC_PIL,
438 .cmd = QCOM_SCM_PIL_PAS_INIT_IMAGE,
439 .arginfo = QCOM_SCM_ARGS(2, QCOM_SCM_VAL, QCOM_SCM_RW),
440 .args[0] = peripheral,
441 .owner = ARM_SMCCC_OWNER_SIP,
442 };
443 struct qcom_scm_res res;
444
445 /*
446 * During the scm call memory protection will be enabled for the meta
447 * data blob, so make sure it's physically contiguous, 4K aligned and
448 * non-cachable to avoid XPU violations.
449 */
450 mdata_buf = dma_alloc_coherent(__scm->dev, size, &mdata_phys,
451 GFP_KERNEL);
452 if (!mdata_buf) {
453 dev_err(__scm->dev, "Allocation of metadata buffer failed.\n");
454 return -ENOMEM;
455 }
456 memcpy(mdata_buf, metadata, size);
457
458 ret = qcom_scm_clk_enable();
459 if (ret)
460 goto free_metadata;
461
462 desc.args[1] = mdata_phys;
463
464 ret = qcom_scm_call(__scm->dev, &desc, &res);
465
466 qcom_scm_clk_disable();
467
468 free_metadata:
469 dma_free_coherent(__scm->dev, size, mdata_buf, mdata_phys);
470
471 return ret ? : res.result[0];
472 }
473 EXPORT_SYMBOL(qcom_scm_pas_init_image);
474
475 /**
476 * qcom_scm_pas_mem_setup() - Prepare the memory related to a given peripheral
477 * for firmware loading
478 * @peripheral: peripheral id
479 * @addr: start address of memory area to prepare
480 * @size: size of the memory area to prepare
481 *
482 * Returns 0 on success.
483 */
484 int qcom_scm_pas_mem_setup(u32 peripheral, phys_addr_t addr, phys_addr_t size)
485 {
486 int ret;
487 struct qcom_scm_desc desc = {
488 .svc = QCOM_SCM_SVC_PIL,
489 .cmd = QCOM_SCM_PIL_PAS_MEM_SETUP,
490 .arginfo = QCOM_SCM_ARGS(3),
491 .args[0] = peripheral,
492 .args[1] = addr,
493 .args[2] = size,
494 .owner = ARM_SMCCC_OWNER_SIP,
495 };
496 struct qcom_scm_res res;
497
498 ret = qcom_scm_clk_enable();
499 if (ret)
500 return ret;
501
502 ret = qcom_scm_call(__scm->dev, &desc, &res);
503 qcom_scm_clk_disable();
504
505 return ret ? : res.result[0];
506 }
507 EXPORT_SYMBOL(qcom_scm_pas_mem_setup);
508
509 /**
510 * qcom_scm_pas_auth_and_reset() - Authenticate the given peripheral firmware
511 * and reset the remote processor
512 * @peripheral: peripheral id
513 *
514 * Return 0 on success.
515 */
516 int qcom_scm_pas_auth_and_reset(u32 peripheral)
517 {
518 int ret;
519 struct qcom_scm_desc desc = {
520 .svc = QCOM_SCM_SVC_PIL,
521 .cmd = QCOM_SCM_PIL_PAS_AUTH_AND_RESET,
522 .arginfo = QCOM_SCM_ARGS(1),
523 .args[0] = peripheral,
524 .owner = ARM_SMCCC_OWNER_SIP,
525 };
526 struct qcom_scm_res res;
527
528 ret = qcom_scm_clk_enable();
529 if (ret)
530 return ret;
531
532 ret = qcom_scm_call(__scm->dev, &desc, &res);
533 qcom_scm_clk_disable();
534
535 return ret ? : res.result[0];
536 }
537 EXPORT_SYMBOL(qcom_scm_pas_auth_and_reset);
538
539 /**
540 * qcom_scm_pas_shutdown() - Shut down the remote processor
541 * @peripheral: peripheral id
542 *
543 * Returns 0 on success.
544 */
545 int qcom_scm_pas_shutdown(u32 peripheral)
546 {
547 int ret;
548 struct qcom_scm_desc desc = {
549 .svc = QCOM_SCM_SVC_PIL,
550 .cmd = QCOM_SCM_PIL_PAS_SHUTDOWN,
551 .arginfo = QCOM_SCM_ARGS(1),
552 .args[0] = peripheral,
553 .owner = ARM_SMCCC_OWNER_SIP,
554 };
555 struct qcom_scm_res res;
556
557 ret = qcom_scm_clk_enable();
558 if (ret)
559 return ret;
560
561 ret = qcom_scm_call(__scm->dev, &desc, &res);
562
563 qcom_scm_clk_disable();
564
565 return ret ? : res.result[0];
566 }
567 EXPORT_SYMBOL(qcom_scm_pas_shutdown);
568
569 /**
570 * qcom_scm_pas_supported() - Check if the peripheral authentication service is
571 * available for the given peripherial
572 * @peripheral: peripheral id
573 *
574 * Returns true if PAS is supported for this peripheral, otherwise false.
575 */
576 bool qcom_scm_pas_supported(u32 peripheral)
577 {
578 int ret;
579 struct qcom_scm_desc desc = {
580 .svc = QCOM_SCM_SVC_PIL,
581 .cmd = QCOM_SCM_PIL_PAS_IS_SUPPORTED,
582 .arginfo = QCOM_SCM_ARGS(1),
583 .args[0] = peripheral,
584 .owner = ARM_SMCCC_OWNER_SIP,
585 };
586 struct qcom_scm_res res;
587
588 ret = __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_PIL,
589 QCOM_SCM_PIL_PAS_IS_SUPPORTED);
590 if (ret <= 0)
591 return false;
592
593 ret = qcom_scm_call(__scm->dev, &desc, &res);
594
595 return ret ? false : !!res.result[0];
596 }
597 EXPORT_SYMBOL(qcom_scm_pas_supported);
598
599 static int __qcom_scm_pas_mss_reset(struct device *dev, bool reset)
600 {
601 struct qcom_scm_desc desc = {
602 .svc = QCOM_SCM_SVC_PIL,
603 .cmd = QCOM_SCM_PIL_PAS_MSS_RESET,
604 .arginfo = QCOM_SCM_ARGS(2),
605 .args[0] = reset,
606 .args[1] = 0,
607 .owner = ARM_SMCCC_OWNER_SIP,
608 };
609 struct qcom_scm_res res;
610 int ret;
611
612 ret = qcom_scm_call(__scm->dev, &desc, &res);
613
614 return ret ? : res.result[0];
615 }
616
617 static int qcom_scm_pas_reset_assert(struct reset_controller_dev *rcdev,
618 unsigned long idx)
619 {
620 if (idx != 0)
621 return -EINVAL;
622
623 return __qcom_scm_pas_mss_reset(__scm->dev, 1);
624 }
625
626 static int qcom_scm_pas_reset_deassert(struct reset_controller_dev *rcdev,
627 unsigned long idx)
628 {
629 if (idx != 0)
630 return -EINVAL;
631
632 return __qcom_scm_pas_mss_reset(__scm->dev, 0);
633 }
634
635 static const struct reset_control_ops qcom_scm_pas_reset_ops = {
636 .assert = qcom_scm_pas_reset_assert,
637 .deassert = qcom_scm_pas_reset_deassert,
638 };
639
640 int qcom_scm_io_readl(phys_addr_t addr, unsigned int *val)
641 {
642 struct qcom_scm_desc desc = {
643 .svc = QCOM_SCM_SVC_IO,
644 .cmd = QCOM_SCM_IO_READ,
645 .arginfo = QCOM_SCM_ARGS(1),
646 .args[0] = addr,
647 .owner = ARM_SMCCC_OWNER_SIP,
648 };
649 struct qcom_scm_res res;
650 int ret;
651
652
653 ret = qcom_scm_call_atomic(__scm->dev, &desc, &res);
654 if (ret >= 0)
655 *val = res.result[0];
656
657 return ret < 0 ? ret : 0;
658 }
659 EXPORT_SYMBOL(qcom_scm_io_readl);
660
661 int qcom_scm_io_writel(phys_addr_t addr, unsigned int val)
662 {
663 struct qcom_scm_desc desc = {
664 .svc = QCOM_SCM_SVC_IO,
665 .cmd = QCOM_SCM_IO_WRITE,
666 .arginfo = QCOM_SCM_ARGS(2),
667 .args[0] = addr,
668 .args[1] = val,
669 .owner = ARM_SMCCC_OWNER_SIP,
670 };
671
672 return qcom_scm_call_atomic(__scm->dev, &desc, NULL);
673 }
674 EXPORT_SYMBOL(qcom_scm_io_writel);
675
676 /**
677 * qcom_scm_restore_sec_cfg_available() - Check if secure environment
678 * supports restore security config interface.
679 *
680 * Return true if restore-cfg interface is supported, false if not.
681 */
682 bool qcom_scm_restore_sec_cfg_available(void)
683 {
684 return __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_MP,
685 QCOM_SCM_MP_RESTORE_SEC_CFG);
686 }
687 EXPORT_SYMBOL(qcom_scm_restore_sec_cfg_available);
688
689 int qcom_scm_restore_sec_cfg(u32 device_id, u32 spare)
690 {
691 struct qcom_scm_desc desc = {
692 .svc = QCOM_SCM_SVC_MP,
693 .cmd = QCOM_SCM_MP_RESTORE_SEC_CFG,
694 .arginfo = QCOM_SCM_ARGS(2),
695 .args[0] = device_id,
696 .args[1] = spare,
697 .owner = ARM_SMCCC_OWNER_SIP,
698 };
699 struct qcom_scm_res res;
700 int ret;
701
702 ret = qcom_scm_call(__scm->dev, &desc, &res);
703
704 return ret ? : res.result[0];
705 }
706 EXPORT_SYMBOL(qcom_scm_restore_sec_cfg);
707
708 int qcom_scm_iommu_secure_ptbl_size(u32 spare, size_t *size)
709 {
710 struct qcom_scm_desc desc = {
711 .svc = QCOM_SCM_SVC_MP,
712 .cmd = QCOM_SCM_MP_IOMMU_SECURE_PTBL_SIZE,
713 .arginfo = QCOM_SCM_ARGS(1),
714 .args[0] = spare,
715 .owner = ARM_SMCCC_OWNER_SIP,
716 };
717 struct qcom_scm_res res;
718 int ret;
719
720 ret = qcom_scm_call(__scm->dev, &desc, &res);
721
722 if (size)
723 *size = res.result[0];
724
725 return ret ? : res.result[1];
726 }
727 EXPORT_SYMBOL(qcom_scm_iommu_secure_ptbl_size);
728
729 int qcom_scm_iommu_secure_ptbl_init(u64 addr, u32 size, u32 spare)
730 {
731 struct qcom_scm_desc desc = {
732 .svc = QCOM_SCM_SVC_MP,
733 .cmd = QCOM_SCM_MP_IOMMU_SECURE_PTBL_INIT,
734 .arginfo = QCOM_SCM_ARGS(3, QCOM_SCM_RW, QCOM_SCM_VAL,
735 QCOM_SCM_VAL),
736 .args[0] = addr,
737 .args[1] = size,
738 .args[2] = spare,
739 .owner = ARM_SMCCC_OWNER_SIP,
740 };
741 int ret;
742
743 desc.args[0] = addr;
744 desc.args[1] = size;
745 desc.args[2] = spare;
746 desc.arginfo = QCOM_SCM_ARGS(3, QCOM_SCM_RW, QCOM_SCM_VAL,
747 QCOM_SCM_VAL);
748
749 ret = qcom_scm_call(__scm->dev, &desc, NULL);
750
751 /* the pg table has been initialized already, ignore the error */
752 if (ret == -EPERM)
753 ret = 0;
754
755 return ret;
756 }
757 EXPORT_SYMBOL(qcom_scm_iommu_secure_ptbl_init);
758
759 int qcom_scm_mem_protect_video_var(u32 cp_start, u32 cp_size,
760 u32 cp_nonpixel_start,
761 u32 cp_nonpixel_size)
762 {
763 int ret;
764 struct qcom_scm_desc desc = {
765 .svc = QCOM_SCM_SVC_MP,
766 .cmd = QCOM_SCM_MP_VIDEO_VAR,
767 .arginfo = QCOM_SCM_ARGS(4, QCOM_SCM_VAL, QCOM_SCM_VAL,
768 QCOM_SCM_VAL, QCOM_SCM_VAL),
769 .args[0] = cp_start,
770 .args[1] = cp_size,
771 .args[2] = cp_nonpixel_start,
772 .args[3] = cp_nonpixel_size,
773 .owner = ARM_SMCCC_OWNER_SIP,
774 };
775 struct qcom_scm_res res;
776
777 ret = qcom_scm_call(__scm->dev, &desc, &res);
778
779 return ret ? : res.result[0];
780 }
781 EXPORT_SYMBOL(qcom_scm_mem_protect_video_var);
782
783 static int __qcom_scm_assign_mem(struct device *dev, phys_addr_t mem_region,
784 size_t mem_sz, phys_addr_t src, size_t src_sz,
785 phys_addr_t dest, size_t dest_sz)
786 {
787 int ret;
788 struct qcom_scm_desc desc = {
789 .svc = QCOM_SCM_SVC_MP,
790 .cmd = QCOM_SCM_MP_ASSIGN,
791 .arginfo = QCOM_SCM_ARGS(7, QCOM_SCM_RO, QCOM_SCM_VAL,
792 QCOM_SCM_RO, QCOM_SCM_VAL, QCOM_SCM_RO,
793 QCOM_SCM_VAL, QCOM_SCM_VAL),
794 .args[0] = mem_region,
795 .args[1] = mem_sz,
796 .args[2] = src,
797 .args[3] = src_sz,
798 .args[4] = dest,
799 .args[5] = dest_sz,
800 .args[6] = 0,
801 .owner = ARM_SMCCC_OWNER_SIP,
802 };
803 struct qcom_scm_res res;
804
805 ret = qcom_scm_call(dev, &desc, &res);
806
807 return ret ? : res.result[0];
808 }
809
810 /**
811 * qcom_scm_assign_mem() - Make a secure call to reassign memory ownership
812 * @mem_addr: mem region whose ownership need to be reassigned
813 * @mem_sz: size of the region.
814 * @srcvm: vmid for current set of owners, each set bit in
815 * flag indicate a unique owner
816 * @newvm: array having new owners and corresponding permission
817 * flags
818 * @dest_cnt: number of owners in next set.
819 *
820 * Return negative errno on failure or 0 on success with @srcvm updated.
821 */
822 int qcom_scm_assign_mem(phys_addr_t mem_addr, size_t mem_sz,
823 unsigned int *srcvm,
824 const struct qcom_scm_vmperm *newvm,
825 unsigned int dest_cnt)
826 {
827 struct qcom_scm_current_perm_info *destvm;
828 struct qcom_scm_mem_map_info *mem_to_map;
829 phys_addr_t mem_to_map_phys;
830 phys_addr_t dest_phys;
831 dma_addr_t ptr_phys;
832 size_t mem_to_map_sz;
833 size_t dest_sz;
834 size_t src_sz;
835 size_t ptr_sz;
836 int next_vm;
837 __le32 *src;
838 void *ptr;
839 int ret, i, b;
840 unsigned long srcvm_bits = *srcvm;
841
842 src_sz = hweight_long(srcvm_bits) * sizeof(*src);
843 mem_to_map_sz = sizeof(*mem_to_map);
844 dest_sz = dest_cnt * sizeof(*destvm);
845 ptr_sz = ALIGN(src_sz, SZ_64) + ALIGN(mem_to_map_sz, SZ_64) +
846 ALIGN(dest_sz, SZ_64);
847
848 ptr = dma_alloc_coherent(__scm->dev, ptr_sz, &ptr_phys, GFP_KERNEL);
849 if (!ptr)
850 return -ENOMEM;
851
852 /* Fill source vmid detail */
853 src = ptr;
854 i = 0;
855 for_each_set_bit(b, &srcvm_bits, BITS_PER_LONG)
856 src[i++] = cpu_to_le32(b);
857
858 /* Fill details of mem buff to map */
859 mem_to_map = ptr + ALIGN(src_sz, SZ_64);
860 mem_to_map_phys = ptr_phys + ALIGN(src_sz, SZ_64);
861 mem_to_map->mem_addr = cpu_to_le64(mem_addr);
862 mem_to_map->mem_size = cpu_to_le64(mem_sz);
863
864 next_vm = 0;
865 /* Fill details of next vmid detail */
866 destvm = ptr + ALIGN(mem_to_map_sz, SZ_64) + ALIGN(src_sz, SZ_64);
867 dest_phys = ptr_phys + ALIGN(mem_to_map_sz, SZ_64) + ALIGN(src_sz, SZ_64);
868 for (i = 0; i < dest_cnt; i++, destvm++, newvm++) {
869 destvm->vmid = cpu_to_le32(newvm->vmid);
870 destvm->perm = cpu_to_le32(newvm->perm);
871 destvm->ctx = 0;
872 destvm->ctx_size = 0;
873 next_vm |= BIT(newvm->vmid);
874 }
875
876 ret = __qcom_scm_assign_mem(__scm->dev, mem_to_map_phys, mem_to_map_sz,
877 ptr_phys, src_sz, dest_phys, dest_sz);
878 dma_free_coherent(__scm->dev, ptr_sz, ptr, ptr_phys);
879 if (ret) {
880 dev_err(__scm->dev,
881 "Assign memory protection call failed %d\n", ret);
882 return -EINVAL;
883 }
884
885 *srcvm = next_vm;
886 return 0;
887 }
888 EXPORT_SYMBOL(qcom_scm_assign_mem);
889
890 /**
891 * qcom_scm_ocmem_lock_available() - is OCMEM lock/unlock interface available
892 */
893 bool qcom_scm_ocmem_lock_available(void)
894 {
895 return __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_OCMEM,
896 QCOM_SCM_OCMEM_LOCK_CMD);
897 }
898 EXPORT_SYMBOL(qcom_scm_ocmem_lock_available);
899
900 /**
901 * qcom_scm_ocmem_lock() - call OCMEM lock interface to assign an OCMEM
902 * region to the specified initiator
903 *
904 * @id: tz initiator id
905 * @offset: OCMEM offset
906 * @size: OCMEM size
907 * @mode: access mode (WIDE/NARROW)
908 */
909 int qcom_scm_ocmem_lock(enum qcom_scm_ocmem_client id, u32 offset, u32 size,
910 u32 mode)
911 {
912 struct qcom_scm_desc desc = {
913 .svc = QCOM_SCM_SVC_OCMEM,
914 .cmd = QCOM_SCM_OCMEM_LOCK_CMD,
915 .args[0] = id,
916 .args[1] = offset,
917 .args[2] = size,
918 .args[3] = mode,
919 .arginfo = QCOM_SCM_ARGS(4),
920 };
921
922 return qcom_scm_call(__scm->dev, &desc, NULL);
923 }
924 EXPORT_SYMBOL(qcom_scm_ocmem_lock);
925
926 /**
927 * qcom_scm_ocmem_unlock() - call OCMEM unlock interface to release an OCMEM
928 * region from the specified initiator
929 *
930 * @id: tz initiator id
931 * @offset: OCMEM offset
932 * @size: OCMEM size
933 */
934 int qcom_scm_ocmem_unlock(enum qcom_scm_ocmem_client id, u32 offset, u32 size)
935 {
936 struct qcom_scm_desc desc = {
937 .svc = QCOM_SCM_SVC_OCMEM,
938 .cmd = QCOM_SCM_OCMEM_UNLOCK_CMD,
939 .args[0] = id,
940 .args[1] = offset,
941 .args[2] = size,
942 .arginfo = QCOM_SCM_ARGS(3),
943 };
944
945 return qcom_scm_call(__scm->dev, &desc, NULL);
946 }
947 EXPORT_SYMBOL(qcom_scm_ocmem_unlock);
948
949 /**
950 * qcom_scm_ice_available() - Is the ICE key programming interface available?
951 *
952 * Return: true iff the SCM calls wrapped by qcom_scm_ice_invalidate_key() and
953 * qcom_scm_ice_set_key() are available.
954 */
955 bool qcom_scm_ice_available(void)
956 {
957 return __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_ES,
958 QCOM_SCM_ES_INVALIDATE_ICE_KEY) &&
959 __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_ES,
960 QCOM_SCM_ES_CONFIG_SET_ICE_KEY);
961 }
962 EXPORT_SYMBOL(qcom_scm_ice_available);
963
964 /**
965 * qcom_scm_ice_invalidate_key() - Invalidate an inline encryption key
966 * @index: the keyslot to invalidate
967 *
968 * The UFSHCI standard defines a standard way to do this, but it doesn't work on
969 * these SoCs; only this SCM call does.
970 *
971 * Return: 0 on success; -errno on failure.
972 */
973 int qcom_scm_ice_invalidate_key(u32 index)
974 {
975 struct qcom_scm_desc desc = {
976 .svc = QCOM_SCM_SVC_ES,
977 .cmd = QCOM_SCM_ES_INVALIDATE_ICE_KEY,
978 .arginfo = QCOM_SCM_ARGS(1),
979 .args[0] = index,
980 .owner = ARM_SMCCC_OWNER_SIP,
981 };
982
983 return qcom_scm_call(__scm->dev, &desc, NULL);
984 }
985 EXPORT_SYMBOL(qcom_scm_ice_invalidate_key);
986
987 /**
988 * qcom_scm_ice_set_key() - Set an inline encryption key
989 * @index: the keyslot into which to set the key
990 * @key: the key to program
991 * @key_size: the size of the key in bytes
992 * @cipher: the encryption algorithm the key is for
993 * @data_unit_size: the encryption data unit size, i.e. the size of each
994 * individual plaintext and ciphertext. Given in 512-byte
995 * units, e.g. 1 = 512 bytes, 8 = 4096 bytes, etc.
996 *
997 * Program a key into a keyslot of Qualcomm ICE (Inline Crypto Engine), where it
998 * can then be used to encrypt/decrypt UFS I/O requests inline.
999 *
1000 * The UFSHCI standard defines a standard way to do this, but it doesn't work on
1001 * these SoCs; only this SCM call does.
1002 *
1003 * Return: 0 on success; -errno on failure.
1004 */
1005 int qcom_scm_ice_set_key(u32 index, const u8 *key, u32 key_size,
1006 enum qcom_scm_ice_cipher cipher, u32 data_unit_size)
1007 {
1008 struct qcom_scm_desc desc = {
1009 .svc = QCOM_SCM_SVC_ES,
1010 .cmd = QCOM_SCM_ES_CONFIG_SET_ICE_KEY,
1011 .arginfo = QCOM_SCM_ARGS(5, QCOM_SCM_VAL, QCOM_SCM_RW,
1012 QCOM_SCM_VAL, QCOM_SCM_VAL,
1013 QCOM_SCM_VAL),
1014 .args[0] = index,
1015 .args[2] = key_size,
1016 .args[3] = cipher,
1017 .args[4] = data_unit_size,
1018 .owner = ARM_SMCCC_OWNER_SIP,
1019 };
1020 void *keybuf;
1021 dma_addr_t key_phys;
1022 int ret;
1023
1024 /*
1025 * 'key' may point to vmalloc()'ed memory, but we need to pass a
1026 * physical address that's been properly flushed. The sanctioned way to
1027 * do this is by using the DMA API. But as is best practice for crypto
1028 * keys, we also must wipe the key after use. This makes kmemdup() +
1029 * dma_map_single() not clearly correct, since the DMA API can use
1030 * bounce buffers. Instead, just use dma_alloc_coherent(). Programming
1031 * keys is normally rare and thus not performance-critical.
1032 */
1033
1034 keybuf = dma_alloc_coherent(__scm->dev, key_size, &key_phys,
1035 GFP_KERNEL);
1036 if (!keybuf)
1037 return -ENOMEM;
1038 memcpy(keybuf, key, key_size);
1039 desc.args[1] = key_phys;
1040
1041 ret = qcom_scm_call(__scm->dev, &desc, NULL);
1042
1043 memzero_explicit(keybuf, key_size);
1044
1045 dma_free_coherent(__scm->dev, key_size, keybuf, key_phys);
1046 return ret;
1047 }
1048 EXPORT_SYMBOL(qcom_scm_ice_set_key);
1049
1050 /**
1051 * qcom_scm_hdcp_available() - Check if secure environment supports HDCP.
1052 *
1053 * Return true if HDCP is supported, false if not.
1054 */
1055 bool qcom_scm_hdcp_available(void)
1056 {
1057 int ret = qcom_scm_clk_enable();
1058
1059 if (ret)
1060 return ret;
1061
1062 ret = __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_HDCP,
1063 QCOM_SCM_HDCP_INVOKE);
1064
1065 qcom_scm_clk_disable();
1066
1067 return ret > 0;
1068 }
1069 EXPORT_SYMBOL(qcom_scm_hdcp_available);
1070
1071 /**
1072 * qcom_scm_hdcp_req() - Send HDCP request.
1073 * @req: HDCP request array
1074 * @req_cnt: HDCP request array count
1075 * @resp: response buffer passed to SCM
1076 *
1077 * Write HDCP register(s) through SCM.
1078 */
1079 int qcom_scm_hdcp_req(struct qcom_scm_hdcp_req *req, u32 req_cnt, u32 *resp)
1080 {
1081 int ret;
1082 struct qcom_scm_desc desc = {
1083 .svc = QCOM_SCM_SVC_HDCP,
1084 .cmd = QCOM_SCM_HDCP_INVOKE,
1085 .arginfo = QCOM_SCM_ARGS(10),
1086 .args = {
1087 req[0].addr,
1088 req[0].val,
1089 req[1].addr,
1090 req[1].val,
1091 req[2].addr,
1092 req[2].val,
1093 req[3].addr,
1094 req[3].val,
1095 req[4].addr,
1096 req[4].val
1097 },
1098 .owner = ARM_SMCCC_OWNER_SIP,
1099 };
1100 struct qcom_scm_res res;
1101
1102 if (req_cnt > QCOM_SCM_HDCP_MAX_REQ_CNT)
1103 return -ERANGE;
1104
1105 ret = qcom_scm_clk_enable();
1106 if (ret)
1107 return ret;
1108
1109 ret = qcom_scm_call(__scm->dev, &desc, &res);
1110 *resp = res.result[0];
1111
1112 qcom_scm_clk_disable();
1113
1114 return ret;
1115 }
1116 EXPORT_SYMBOL(qcom_scm_hdcp_req);
1117
1118 int qcom_scm_qsmmu500_wait_safe_toggle(bool en)
1119 {
1120 struct qcom_scm_desc desc = {
1121 .svc = QCOM_SCM_SVC_SMMU_PROGRAM,
1122 .cmd = QCOM_SCM_SMMU_CONFIG_ERRATA1,
1123 .arginfo = QCOM_SCM_ARGS(2),
1124 .args[0] = QCOM_SCM_SMMU_CONFIG_ERRATA1_CLIENT_ALL,
1125 .args[1] = en,
1126 .owner = ARM_SMCCC_OWNER_SIP,
1127 };
1128
1129
1130 return qcom_scm_call_atomic(__scm->dev, &desc, NULL);
1131 }
1132 EXPORT_SYMBOL(qcom_scm_qsmmu500_wait_safe_toggle);
1133
1134 static int qcom_scm_find_dload_address(struct device *dev, u64 *addr)
1135 {
1136 struct device_node *tcsr;
1137 struct device_node *np = dev->of_node;
1138 struct resource res;
1139 u32 offset;
1140 int ret;
1141
1142 tcsr = of_parse_phandle(np, "qcom,dload-mode", 0);
1143 if (!tcsr)
1144 return 0;
1145
1146 ret = of_address_to_resource(tcsr, 0, &res);
1147 of_node_put(tcsr);
1148 if (ret)
1149 return ret;
1150
1151 ret = of_property_read_u32_index(np, "qcom,dload-mode", 1, &offset);
1152 if (ret < 0)
1153 return ret;
1154
1155 *addr = res.start + offset;
1156
1157 return 0;
1158 }
1159
1160 /**
1161 * qcom_scm_is_available() - Checks if SCM is available
1162 */
1163 bool qcom_scm_is_available(void)
1164 {
1165 return !!__scm;
1166 }
1167 EXPORT_SYMBOL(qcom_scm_is_available);
1168
1169 static int qcom_scm_probe(struct platform_device *pdev)
1170 {
1171 struct qcom_scm *scm;
1172 unsigned long clks;
1173 int ret;
1174
1175 scm = devm_kzalloc(&pdev->dev, sizeof(*scm), GFP_KERNEL);
1176 if (!scm)
1177 return -ENOMEM;
1178
1179 ret = qcom_scm_find_dload_address(&pdev->dev, &scm->dload_mode_addr);
1180 if (ret < 0)
1181 return ret;
1182
1183 clks = (unsigned long)of_device_get_match_data(&pdev->dev);
1184
1185 scm->core_clk = devm_clk_get(&pdev->dev, "core");
1186 if (IS_ERR(scm->core_clk)) {
1187 if (PTR_ERR(scm->core_clk) == -EPROBE_DEFER)
1188 return PTR_ERR(scm->core_clk);
1189
1190 if (clks & SCM_HAS_CORE_CLK) {
1191 dev_err(&pdev->dev, "failed to acquire core clk\n");
1192 return PTR_ERR(scm->core_clk);
1193 }
1194
1195 scm->core_clk = NULL;
1196 }
1197
1198 scm->iface_clk = devm_clk_get(&pdev->dev, "iface");
1199 if (IS_ERR(scm->iface_clk)) {
1200 if (PTR_ERR(scm->iface_clk) == -EPROBE_DEFER)
1201 return PTR_ERR(scm->iface_clk);
1202
1203 if (clks & SCM_HAS_IFACE_CLK) {
1204 dev_err(&pdev->dev, "failed to acquire iface clk\n");
1205 return PTR_ERR(scm->iface_clk);
1206 }
1207
1208 scm->iface_clk = NULL;
1209 }
1210
1211 scm->bus_clk = devm_clk_get(&pdev->dev, "bus");
1212 if (IS_ERR(scm->bus_clk)) {
1213 if (PTR_ERR(scm->bus_clk) == -EPROBE_DEFER)
1214 return PTR_ERR(scm->bus_clk);
1215
1216 if (clks & SCM_HAS_BUS_CLK) {
1217 dev_err(&pdev->dev, "failed to acquire bus clk\n");
1218 return PTR_ERR(scm->bus_clk);
1219 }
1220
1221 scm->bus_clk = NULL;
1222 }
1223
1224 scm->reset.ops = &qcom_scm_pas_reset_ops;
1225 scm->reset.nr_resets = 1;
1226 scm->reset.of_node = pdev->dev.of_node;
1227 ret = devm_reset_controller_register(&pdev->dev, &scm->reset);
1228 if (ret)
1229 return ret;
1230
1231 /* vote for max clk rate for highest performance */
1232 ret = clk_set_rate(scm->core_clk, INT_MAX);
1233 if (ret)
1234 return ret;
1235
1236 __scm = scm;
1237 __scm->dev = &pdev->dev;
1238
1239 __query_convention();
1240
1241 /*
1242 * If requested enable "download mode", from this point on warmboot
1243 * will cause the the boot stages to enter download mode, unless
1244 * disabled below by a clean shutdown/reboot.
1245 */
1246 if (download_mode)
1247 qcom_scm_set_download_mode(true);
1248
1249 return 0;
1250 }
1251
1252 static void qcom_scm_shutdown(struct platform_device *pdev)
1253 {
1254 /* Clean shutdown, disable download mode to allow normal restart */
1255 if (download_mode)
1256 qcom_scm_set_download_mode(false);
1257 }
1258
1259 static const struct of_device_id qcom_scm_dt_match[] = {
1260 { .compatible = "qcom,scm-apq8064",
1261 /* FIXME: This should have .data = (void *) SCM_HAS_CORE_CLK */
1262 },
1263 { .compatible = "qcom,scm-apq8084", .data = (void *)(SCM_HAS_CORE_CLK |
1264 SCM_HAS_IFACE_CLK |
1265 SCM_HAS_BUS_CLK)
1266 },
1267 { .compatible = "qcom,scm-ipq4019" },
1268 { .compatible = "qcom,scm-msm8660", .data = (void *) SCM_HAS_CORE_CLK },
1269 { .compatible = "qcom,scm-msm8960", .data = (void *) SCM_HAS_CORE_CLK },
1270 { .compatible = "qcom,scm-msm8916", .data = (void *)(SCM_HAS_CORE_CLK |
1271 SCM_HAS_IFACE_CLK |
1272 SCM_HAS_BUS_CLK)
1273 },
1274 { .compatible = "qcom,scm-msm8974", .data = (void *)(SCM_HAS_CORE_CLK |
1275 SCM_HAS_IFACE_CLK |
1276 SCM_HAS_BUS_CLK)
1277 },
1278 { .compatible = "qcom,scm-msm8994" },
1279 { .compatible = "qcom,scm-msm8996" },
1280 { .compatible = "qcom,scm" },
1281 {}
1282 };
1283
1284 static struct platform_driver qcom_scm_driver = {
1285 .driver = {
1286 .name = "qcom_scm",
1287 .of_match_table = qcom_scm_dt_match,
1288 },
1289 .probe = qcom_scm_probe,
1290 .shutdown = qcom_scm_shutdown,
1291 };
1292
1293 static int __init qcom_scm_init(void)
1294 {
1295 return platform_driver_register(&qcom_scm_driver);
1296 }
1297 subsys_initcall(qcom_scm_init);