]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/gpu/drm/amd/amdgpu/amdgpu_amdkfd_gfx_v7.c
mmap locking API: convert mmap_sem comments
[mirror_ubuntu-hirsute-kernel.git] / drivers / gpu / drm / amd / amdgpu / amdgpu_amdkfd_gfx_v7.c
1 /*
2 * Copyright 2014 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 */
22
23 #include <linux/mmu_context.h>
24
25 #include "amdgpu.h"
26 #include "amdgpu_amdkfd.h"
27 #include "cikd.h"
28 #include "cik_sdma.h"
29 #include "gfx_v7_0.h"
30 #include "gca/gfx_7_2_d.h"
31 #include "gca/gfx_7_2_enum.h"
32 #include "gca/gfx_7_2_sh_mask.h"
33 #include "oss/oss_2_0_d.h"
34 #include "oss/oss_2_0_sh_mask.h"
35 #include "gmc/gmc_7_1_d.h"
36 #include "gmc/gmc_7_1_sh_mask.h"
37 #include "cik_structs.h"
38
39 enum hqd_dequeue_request_type {
40 NO_ACTION = 0,
41 DRAIN_PIPE,
42 RESET_WAVES
43 };
44
45 enum {
46 MAX_TRAPID = 8, /* 3 bits in the bitfield. */
47 MAX_WATCH_ADDRESSES = 4
48 };
49
50 enum {
51 ADDRESS_WATCH_REG_ADDR_HI = 0,
52 ADDRESS_WATCH_REG_ADDR_LO,
53 ADDRESS_WATCH_REG_CNTL,
54 ADDRESS_WATCH_REG_MAX
55 };
56
57 /* not defined in the CI/KV reg file */
58 enum {
59 ADDRESS_WATCH_REG_CNTL_ATC_BIT = 0x10000000UL,
60 ADDRESS_WATCH_REG_CNTL_DEFAULT_MASK = 0x00FFFFFF,
61 ADDRESS_WATCH_REG_ADDLOW_MASK_EXTENSION = 0x03000000,
62 /* extend the mask to 26 bits to match the low address field */
63 ADDRESS_WATCH_REG_ADDLOW_SHIFT = 6,
64 ADDRESS_WATCH_REG_ADDHIGH_MASK = 0xFFFF
65 };
66
67 static const uint32_t watchRegs[MAX_WATCH_ADDRESSES * ADDRESS_WATCH_REG_MAX] = {
68 mmTCP_WATCH0_ADDR_H, mmTCP_WATCH0_ADDR_L, mmTCP_WATCH0_CNTL,
69 mmTCP_WATCH1_ADDR_H, mmTCP_WATCH1_ADDR_L, mmTCP_WATCH1_CNTL,
70 mmTCP_WATCH2_ADDR_H, mmTCP_WATCH2_ADDR_L, mmTCP_WATCH2_CNTL,
71 mmTCP_WATCH3_ADDR_H, mmTCP_WATCH3_ADDR_L, mmTCP_WATCH3_CNTL
72 };
73
74 union TCP_WATCH_CNTL_BITS {
75 struct {
76 uint32_t mask:24;
77 uint32_t vmid:4;
78 uint32_t atc:1;
79 uint32_t mode:2;
80 uint32_t valid:1;
81 } bitfields, bits;
82 uint32_t u32All;
83 signed int i32All;
84 float f32All;
85 };
86
87 static inline struct amdgpu_device *get_amdgpu_device(struct kgd_dev *kgd)
88 {
89 return (struct amdgpu_device *)kgd;
90 }
91
92 static void lock_srbm(struct kgd_dev *kgd, uint32_t mec, uint32_t pipe,
93 uint32_t queue, uint32_t vmid)
94 {
95 struct amdgpu_device *adev = get_amdgpu_device(kgd);
96 uint32_t value = PIPEID(pipe) | MEID(mec) | VMID(vmid) | QUEUEID(queue);
97
98 mutex_lock(&adev->srbm_mutex);
99 WREG32(mmSRBM_GFX_CNTL, value);
100 }
101
102 static void unlock_srbm(struct kgd_dev *kgd)
103 {
104 struct amdgpu_device *adev = get_amdgpu_device(kgd);
105
106 WREG32(mmSRBM_GFX_CNTL, 0);
107 mutex_unlock(&adev->srbm_mutex);
108 }
109
110 static void acquire_queue(struct kgd_dev *kgd, uint32_t pipe_id,
111 uint32_t queue_id)
112 {
113 struct amdgpu_device *adev = get_amdgpu_device(kgd);
114
115 uint32_t mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
116 uint32_t pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
117
118 lock_srbm(kgd, mec, pipe, queue_id, 0);
119 }
120
121 static void release_queue(struct kgd_dev *kgd)
122 {
123 unlock_srbm(kgd);
124 }
125
126 static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid,
127 uint32_t sh_mem_config,
128 uint32_t sh_mem_ape1_base,
129 uint32_t sh_mem_ape1_limit,
130 uint32_t sh_mem_bases)
131 {
132 struct amdgpu_device *adev = get_amdgpu_device(kgd);
133
134 lock_srbm(kgd, 0, 0, 0, vmid);
135
136 WREG32(mmSH_MEM_CONFIG, sh_mem_config);
137 WREG32(mmSH_MEM_APE1_BASE, sh_mem_ape1_base);
138 WREG32(mmSH_MEM_APE1_LIMIT, sh_mem_ape1_limit);
139 WREG32(mmSH_MEM_BASES, sh_mem_bases);
140
141 unlock_srbm(kgd);
142 }
143
144 static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, unsigned int pasid,
145 unsigned int vmid)
146 {
147 struct amdgpu_device *adev = get_amdgpu_device(kgd);
148
149 /*
150 * We have to assume that there is no outstanding mapping.
151 * The ATC_VMID_PASID_MAPPING_UPDATE_STATUS bit could be 0 because
152 * a mapping is in progress or because a mapping finished and the
153 * SW cleared it. So the protocol is to always wait & clear.
154 */
155 uint32_t pasid_mapping = (pasid == 0) ? 0 : (uint32_t)pasid |
156 ATC_VMID0_PASID_MAPPING__VALID_MASK;
157
158 WREG32(mmATC_VMID0_PASID_MAPPING + vmid, pasid_mapping);
159
160 while (!(RREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS) & (1U << vmid)))
161 cpu_relax();
162 WREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS, 1U << vmid);
163
164 /* Mapping vmid to pasid also for IH block */
165 WREG32(mmIH_VMID_0_LUT + vmid, pasid_mapping);
166
167 return 0;
168 }
169
170 static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id)
171 {
172 struct amdgpu_device *adev = get_amdgpu_device(kgd);
173 uint32_t mec;
174 uint32_t pipe;
175
176 mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
177 pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
178
179 lock_srbm(kgd, mec, pipe, 0, 0);
180
181 WREG32(mmCPC_INT_CNTL, CP_INT_CNTL_RING0__TIME_STAMP_INT_ENABLE_MASK |
182 CP_INT_CNTL_RING0__OPCODE_ERROR_INT_ENABLE_MASK);
183
184 unlock_srbm(kgd);
185
186 return 0;
187 }
188
189 static inline uint32_t get_sdma_rlc_reg_offset(struct cik_sdma_rlc_registers *m)
190 {
191 uint32_t retval;
192
193 retval = m->sdma_engine_id * SDMA1_REGISTER_OFFSET +
194 m->sdma_queue_id * KFD_CIK_SDMA_QUEUE_OFFSET;
195
196 pr_debug("RLC register offset for SDMA%d RLC%d: 0x%x\n",
197 m->sdma_engine_id, m->sdma_queue_id, retval);
198
199 return retval;
200 }
201
202 static inline struct cik_mqd *get_mqd(void *mqd)
203 {
204 return (struct cik_mqd *)mqd;
205 }
206
207 static inline struct cik_sdma_rlc_registers *get_sdma_mqd(void *mqd)
208 {
209 return (struct cik_sdma_rlc_registers *)mqd;
210 }
211
212 static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
213 uint32_t queue_id, uint32_t __user *wptr,
214 uint32_t wptr_shift, uint32_t wptr_mask,
215 struct mm_struct *mm)
216 {
217 struct amdgpu_device *adev = get_amdgpu_device(kgd);
218 struct cik_mqd *m;
219 uint32_t *mqd_hqd;
220 uint32_t reg, wptr_val, data;
221 bool valid_wptr = false;
222
223 m = get_mqd(mqd);
224
225 acquire_queue(kgd, pipe_id, queue_id);
226
227 /* HQD registers extend from CP_MQD_BASE_ADDR to CP_MQD_CONTROL. */
228 mqd_hqd = &m->cp_mqd_base_addr_lo;
229
230 for (reg = mmCP_MQD_BASE_ADDR; reg <= mmCP_MQD_CONTROL; reg++)
231 WREG32(reg, mqd_hqd[reg - mmCP_MQD_BASE_ADDR]);
232
233 /* Copy userspace write pointer value to register.
234 * Activate doorbell logic to monitor subsequent changes.
235 */
236 data = REG_SET_FIELD(m->cp_hqd_pq_doorbell_control,
237 CP_HQD_PQ_DOORBELL_CONTROL, DOORBELL_EN, 1);
238 WREG32(mmCP_HQD_PQ_DOORBELL_CONTROL, data);
239
240 /* read_user_ptr may take the mm->mmap_lock.
241 * release srbm_mutex to avoid circular dependency between
242 * srbm_mutex->mm_sem->reservation_ww_class_mutex->srbm_mutex.
243 */
244 release_queue(kgd);
245 valid_wptr = read_user_wptr(mm, wptr, wptr_val);
246 acquire_queue(kgd, pipe_id, queue_id);
247 if (valid_wptr)
248 WREG32(mmCP_HQD_PQ_WPTR, (wptr_val << wptr_shift) & wptr_mask);
249
250 data = REG_SET_FIELD(m->cp_hqd_active, CP_HQD_ACTIVE, ACTIVE, 1);
251 WREG32(mmCP_HQD_ACTIVE, data);
252
253 release_queue(kgd);
254
255 return 0;
256 }
257
258 static int kgd_hqd_dump(struct kgd_dev *kgd,
259 uint32_t pipe_id, uint32_t queue_id,
260 uint32_t (**dump)[2], uint32_t *n_regs)
261 {
262 struct amdgpu_device *adev = get_amdgpu_device(kgd);
263 uint32_t i = 0, reg;
264 #define HQD_N_REGS (35+4)
265 #define DUMP_REG(addr) do { \
266 if (WARN_ON_ONCE(i >= HQD_N_REGS)) \
267 break; \
268 (*dump)[i][0] = (addr) << 2; \
269 (*dump)[i++][1] = RREG32(addr); \
270 } while (0)
271
272 *dump = kmalloc_array(HQD_N_REGS * 2, sizeof(uint32_t), GFP_KERNEL);
273 if (*dump == NULL)
274 return -ENOMEM;
275
276 acquire_queue(kgd, pipe_id, queue_id);
277
278 DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE0);
279 DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE1);
280 DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE2);
281 DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE3);
282
283 for (reg = mmCP_MQD_BASE_ADDR; reg <= mmCP_MQD_CONTROL; reg++)
284 DUMP_REG(reg);
285
286 release_queue(kgd);
287
288 WARN_ON_ONCE(i != HQD_N_REGS);
289 *n_regs = i;
290
291 return 0;
292 }
293
294 static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd,
295 uint32_t __user *wptr, struct mm_struct *mm)
296 {
297 struct amdgpu_device *adev = get_amdgpu_device(kgd);
298 struct cik_sdma_rlc_registers *m;
299 unsigned long end_jiffies;
300 uint32_t sdma_rlc_reg_offset;
301 uint32_t data;
302
303 m = get_sdma_mqd(mqd);
304 sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(m);
305
306 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL,
307 m->sdma_rlc_rb_cntl & (~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK));
308
309 end_jiffies = msecs_to_jiffies(2000) + jiffies;
310 while (true) {
311 data = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_CONTEXT_STATUS);
312 if (data & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
313 break;
314 if (time_after(jiffies, end_jiffies)) {
315 pr_err("SDMA RLC not idle in %s\n", __func__);
316 return -ETIME;
317 }
318 usleep_range(500, 1000);
319 }
320
321 data = REG_SET_FIELD(m->sdma_rlc_doorbell, SDMA0_RLC0_DOORBELL,
322 ENABLE, 1);
323 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_DOORBELL, data);
324 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR,
325 m->sdma_rlc_rb_rptr);
326
327 if (read_user_wptr(mm, wptr, data))
328 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR, data);
329 else
330 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR,
331 m->sdma_rlc_rb_rptr);
332
333 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_VIRTUAL_ADDR,
334 m->sdma_rlc_virtual_addr);
335 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_BASE, m->sdma_rlc_rb_base);
336 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_BASE_HI,
337 m->sdma_rlc_rb_base_hi);
338 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_ADDR_LO,
339 m->sdma_rlc_rb_rptr_addr_lo);
340 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_ADDR_HI,
341 m->sdma_rlc_rb_rptr_addr_hi);
342
343 data = REG_SET_FIELD(m->sdma_rlc_rb_cntl, SDMA0_RLC0_RB_CNTL,
344 RB_ENABLE, 1);
345 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL, data);
346
347 return 0;
348 }
349
350 static int kgd_hqd_sdma_dump(struct kgd_dev *kgd,
351 uint32_t engine_id, uint32_t queue_id,
352 uint32_t (**dump)[2], uint32_t *n_regs)
353 {
354 struct amdgpu_device *adev = get_amdgpu_device(kgd);
355 uint32_t sdma_offset = engine_id * SDMA1_REGISTER_OFFSET +
356 queue_id * KFD_CIK_SDMA_QUEUE_OFFSET;
357 uint32_t i = 0, reg;
358 #undef HQD_N_REGS
359 #define HQD_N_REGS (19+4)
360
361 *dump = kmalloc_array(HQD_N_REGS * 2, sizeof(uint32_t), GFP_KERNEL);
362 if (*dump == NULL)
363 return -ENOMEM;
364
365 for (reg = mmSDMA0_RLC0_RB_CNTL; reg <= mmSDMA0_RLC0_DOORBELL; reg++)
366 DUMP_REG(sdma_offset + reg);
367 for (reg = mmSDMA0_RLC0_VIRTUAL_ADDR; reg <= mmSDMA0_RLC0_WATERMARK;
368 reg++)
369 DUMP_REG(sdma_offset + reg);
370
371 WARN_ON_ONCE(i != HQD_N_REGS);
372 *n_regs = i;
373
374 return 0;
375 }
376
377 static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address,
378 uint32_t pipe_id, uint32_t queue_id)
379 {
380 struct amdgpu_device *adev = get_amdgpu_device(kgd);
381 uint32_t act;
382 bool retval = false;
383 uint32_t low, high;
384
385 acquire_queue(kgd, pipe_id, queue_id);
386 act = RREG32(mmCP_HQD_ACTIVE);
387 if (act) {
388 low = lower_32_bits(queue_address >> 8);
389 high = upper_32_bits(queue_address >> 8);
390
391 if (low == RREG32(mmCP_HQD_PQ_BASE) &&
392 high == RREG32(mmCP_HQD_PQ_BASE_HI))
393 retval = true;
394 }
395 release_queue(kgd);
396 return retval;
397 }
398
399 static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd)
400 {
401 struct amdgpu_device *adev = get_amdgpu_device(kgd);
402 struct cik_sdma_rlc_registers *m;
403 uint32_t sdma_rlc_reg_offset;
404 uint32_t sdma_rlc_rb_cntl;
405
406 m = get_sdma_mqd(mqd);
407 sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(m);
408
409 sdma_rlc_rb_cntl = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL);
410
411 if (sdma_rlc_rb_cntl & SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK)
412 return true;
413
414 return false;
415 }
416
417 static int kgd_hqd_destroy(struct kgd_dev *kgd, void *mqd,
418 enum kfd_preempt_type reset_type,
419 unsigned int utimeout, uint32_t pipe_id,
420 uint32_t queue_id)
421 {
422 struct amdgpu_device *adev = get_amdgpu_device(kgd);
423 uint32_t temp;
424 enum hqd_dequeue_request_type type;
425 unsigned long flags, end_jiffies;
426 int retry;
427
428 if (adev->in_gpu_reset)
429 return -EIO;
430
431 acquire_queue(kgd, pipe_id, queue_id);
432 WREG32(mmCP_HQD_PQ_DOORBELL_CONTROL, 0);
433
434 switch (reset_type) {
435 case KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN:
436 type = DRAIN_PIPE;
437 break;
438 case KFD_PREEMPT_TYPE_WAVEFRONT_RESET:
439 type = RESET_WAVES;
440 break;
441 default:
442 type = DRAIN_PIPE;
443 break;
444 }
445
446 /* Workaround: If IQ timer is active and the wait time is close to or
447 * equal to 0, dequeueing is not safe. Wait until either the wait time
448 * is larger or timer is cleared. Also, ensure that IQ_REQ_PEND is
449 * cleared before continuing. Also, ensure wait times are set to at
450 * least 0x3.
451 */
452 local_irq_save(flags);
453 preempt_disable();
454 retry = 5000; /* wait for 500 usecs at maximum */
455 while (true) {
456 temp = RREG32(mmCP_HQD_IQ_TIMER);
457 if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, PROCESSING_IQ)) {
458 pr_debug("HW is processing IQ\n");
459 goto loop;
460 }
461 if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, ACTIVE)) {
462 if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, RETRY_TYPE)
463 == 3) /* SEM-rearm is safe */
464 break;
465 /* Wait time 3 is safe for CP, but our MMIO read/write
466 * time is close to 1 microsecond, so check for 10 to
467 * leave more buffer room
468 */
469 if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, WAIT_TIME)
470 >= 10)
471 break;
472 pr_debug("IQ timer is active\n");
473 } else
474 break;
475 loop:
476 if (!retry) {
477 pr_err("CP HQD IQ timer status time out\n");
478 break;
479 }
480 ndelay(100);
481 --retry;
482 }
483 retry = 1000;
484 while (true) {
485 temp = RREG32(mmCP_HQD_DEQUEUE_REQUEST);
486 if (!(temp & CP_HQD_DEQUEUE_REQUEST__IQ_REQ_PEND_MASK))
487 break;
488 pr_debug("Dequeue request is pending\n");
489
490 if (!retry) {
491 pr_err("CP HQD dequeue request time out\n");
492 break;
493 }
494 ndelay(100);
495 --retry;
496 }
497 local_irq_restore(flags);
498 preempt_enable();
499
500 WREG32(mmCP_HQD_DEQUEUE_REQUEST, type);
501
502 end_jiffies = (utimeout * HZ / 1000) + jiffies;
503 while (true) {
504 temp = RREG32(mmCP_HQD_ACTIVE);
505 if (!(temp & CP_HQD_ACTIVE__ACTIVE_MASK))
506 break;
507 if (time_after(jiffies, end_jiffies)) {
508 pr_err("cp queue preemption time out\n");
509 release_queue(kgd);
510 return -ETIME;
511 }
512 usleep_range(500, 1000);
513 }
514
515 release_queue(kgd);
516 return 0;
517 }
518
519 static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd,
520 unsigned int utimeout)
521 {
522 struct amdgpu_device *adev = get_amdgpu_device(kgd);
523 struct cik_sdma_rlc_registers *m;
524 uint32_t sdma_rlc_reg_offset;
525 uint32_t temp;
526 unsigned long end_jiffies = (utimeout * HZ / 1000) + jiffies;
527
528 m = get_sdma_mqd(mqd);
529 sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(m);
530
531 temp = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL);
532 temp = temp & ~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK;
533 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL, temp);
534
535 while (true) {
536 temp = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_CONTEXT_STATUS);
537 if (temp & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
538 break;
539 if (time_after(jiffies, end_jiffies)) {
540 pr_err("SDMA RLC not idle in %s\n", __func__);
541 return -ETIME;
542 }
543 usleep_range(500, 1000);
544 }
545
546 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_DOORBELL, 0);
547 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL,
548 RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL) |
549 SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK);
550
551 m->sdma_rlc_rb_rptr = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR);
552
553 return 0;
554 }
555
556 static int kgd_address_watch_disable(struct kgd_dev *kgd)
557 {
558 struct amdgpu_device *adev = get_amdgpu_device(kgd);
559 union TCP_WATCH_CNTL_BITS cntl;
560 unsigned int i;
561
562 cntl.u32All = 0;
563
564 cntl.bitfields.valid = 0;
565 cntl.bitfields.mask = ADDRESS_WATCH_REG_CNTL_DEFAULT_MASK;
566 cntl.bitfields.atc = 1;
567
568 /* Turning off this address until we set all the registers */
569 for (i = 0; i < MAX_WATCH_ADDRESSES; i++)
570 WREG32(watchRegs[i * ADDRESS_WATCH_REG_MAX +
571 ADDRESS_WATCH_REG_CNTL], cntl.u32All);
572
573 return 0;
574 }
575
576 static int kgd_address_watch_execute(struct kgd_dev *kgd,
577 unsigned int watch_point_id,
578 uint32_t cntl_val,
579 uint32_t addr_hi,
580 uint32_t addr_lo)
581 {
582 struct amdgpu_device *adev = get_amdgpu_device(kgd);
583 union TCP_WATCH_CNTL_BITS cntl;
584
585 cntl.u32All = cntl_val;
586
587 /* Turning off this watch point until we set all the registers */
588 cntl.bitfields.valid = 0;
589 WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
590 ADDRESS_WATCH_REG_CNTL], cntl.u32All);
591
592 WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
593 ADDRESS_WATCH_REG_ADDR_HI], addr_hi);
594
595 WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
596 ADDRESS_WATCH_REG_ADDR_LO], addr_lo);
597
598 /* Enable the watch point */
599 cntl.bitfields.valid = 1;
600
601 WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
602 ADDRESS_WATCH_REG_CNTL], cntl.u32All);
603
604 return 0;
605 }
606
607 static int kgd_wave_control_execute(struct kgd_dev *kgd,
608 uint32_t gfx_index_val,
609 uint32_t sq_cmd)
610 {
611 struct amdgpu_device *adev = get_amdgpu_device(kgd);
612 uint32_t data;
613
614 mutex_lock(&adev->grbm_idx_mutex);
615
616 WREG32(mmGRBM_GFX_INDEX, gfx_index_val);
617 WREG32(mmSQ_CMD, sq_cmd);
618
619 /* Restore the GRBM_GFX_INDEX register */
620
621 data = GRBM_GFX_INDEX__INSTANCE_BROADCAST_WRITES_MASK |
622 GRBM_GFX_INDEX__SH_BROADCAST_WRITES_MASK |
623 GRBM_GFX_INDEX__SE_BROADCAST_WRITES_MASK;
624
625 WREG32(mmGRBM_GFX_INDEX, data);
626
627 mutex_unlock(&adev->grbm_idx_mutex);
628
629 return 0;
630 }
631
632 static uint32_t kgd_address_watch_get_offset(struct kgd_dev *kgd,
633 unsigned int watch_point_id,
634 unsigned int reg_offset)
635 {
636 return watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX + reg_offset];
637 }
638
639 static bool get_atc_vmid_pasid_mapping_info(struct kgd_dev *kgd,
640 uint8_t vmid, uint16_t *p_pasid)
641 {
642 uint32_t value;
643 struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
644
645 value = RREG32(mmATC_VMID0_PASID_MAPPING + vmid);
646 *p_pasid = value & ATC_VMID0_PASID_MAPPING__PASID_MASK;
647
648 return !!(value & ATC_VMID0_PASID_MAPPING__VALID_MASK);
649 }
650
651 static void set_scratch_backing_va(struct kgd_dev *kgd,
652 uint64_t va, uint32_t vmid)
653 {
654 struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
655
656 lock_srbm(kgd, 0, 0, 0, vmid);
657 WREG32(mmSH_HIDDEN_PRIVATE_BASE_VMID, va);
658 unlock_srbm(kgd);
659 }
660
661 static void set_vm_context_page_table_base(struct kgd_dev *kgd, uint32_t vmid,
662 uint64_t page_table_base)
663 {
664 struct amdgpu_device *adev = get_amdgpu_device(kgd);
665
666 if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid)) {
667 pr_err("trying to set page table base for wrong VMID\n");
668 return;
669 }
670 WREG32(mmVM_CONTEXT8_PAGE_TABLE_BASE_ADDR + vmid - 8,
671 lower_32_bits(page_table_base));
672 }
673
674 /**
675 * read_vmid_from_vmfault_reg - read vmid from register
676 *
677 * adev: amdgpu_device pointer
678 * @vmid: vmid pointer
679 * read vmid from register (CIK).
680 */
681 static uint32_t read_vmid_from_vmfault_reg(struct kgd_dev *kgd)
682 {
683 struct amdgpu_device *adev = get_amdgpu_device(kgd);
684
685 uint32_t status = RREG32(mmVM_CONTEXT1_PROTECTION_FAULT_STATUS);
686
687 return REG_GET_FIELD(status, VM_CONTEXT1_PROTECTION_FAULT_STATUS, VMID);
688 }
689
690 const struct kfd2kgd_calls gfx_v7_kfd2kgd = {
691 .program_sh_mem_settings = kgd_program_sh_mem_settings,
692 .set_pasid_vmid_mapping = kgd_set_pasid_vmid_mapping,
693 .init_interrupts = kgd_init_interrupts,
694 .hqd_load = kgd_hqd_load,
695 .hqd_sdma_load = kgd_hqd_sdma_load,
696 .hqd_dump = kgd_hqd_dump,
697 .hqd_sdma_dump = kgd_hqd_sdma_dump,
698 .hqd_is_occupied = kgd_hqd_is_occupied,
699 .hqd_sdma_is_occupied = kgd_hqd_sdma_is_occupied,
700 .hqd_destroy = kgd_hqd_destroy,
701 .hqd_sdma_destroy = kgd_hqd_sdma_destroy,
702 .address_watch_disable = kgd_address_watch_disable,
703 .address_watch_execute = kgd_address_watch_execute,
704 .wave_control_execute = kgd_wave_control_execute,
705 .address_watch_get_offset = kgd_address_watch_get_offset,
706 .get_atc_vmid_pasid_mapping_info = get_atc_vmid_pasid_mapping_info,
707 .set_scratch_backing_va = set_scratch_backing_va,
708 .set_vm_context_page_table_base = set_vm_context_page_table_base,
709 .read_vmid_from_vmfault_reg = read_vmid_from_vmfault_reg,
710 };