]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/gpu/drm/amd/amdgpu/amdgpu_amdkfd_gfx_v8.c
drm/amdgpu: add amdgpu_vm_entries_mask v2
[mirror_ubuntu-jammy-kernel.git] / drivers / gpu / drm / amd / amdgpu / amdgpu_amdkfd_gfx_v8.c
1 /*
2 * Copyright 2014 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 */
22
23 #include <linux/module.h>
24 #include <linux/fdtable.h>
25 #include <linux/uaccess.h>
26 #include <linux/firmware.h>
27 #include <drm/drmP.h>
28 #include "amdgpu.h"
29 #include "amdgpu_amdkfd.h"
30 #include "amdgpu_ucode.h"
31 #include "gfx_v8_0.h"
32 #include "gca/gfx_8_0_sh_mask.h"
33 #include "gca/gfx_8_0_d.h"
34 #include "gca/gfx_8_0_enum.h"
35 #include "oss/oss_3_0_sh_mask.h"
36 #include "oss/oss_3_0_d.h"
37 #include "gmc/gmc_8_1_sh_mask.h"
38 #include "gmc/gmc_8_1_d.h"
39 #include "vi_structs.h"
40 #include "vid.h"
41
42 enum hqd_dequeue_request_type {
43 NO_ACTION = 0,
44 DRAIN_PIPE,
45 RESET_WAVES
46 };
47
48 struct vi_sdma_mqd;
49
50 /*
51 * Register access functions
52 */
53
54 static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid,
55 uint32_t sh_mem_config,
56 uint32_t sh_mem_ape1_base, uint32_t sh_mem_ape1_limit,
57 uint32_t sh_mem_bases);
58 static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, unsigned int pasid,
59 unsigned int vmid);
60 static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id);
61 static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
62 uint32_t queue_id, uint32_t __user *wptr,
63 uint32_t wptr_shift, uint32_t wptr_mask,
64 struct mm_struct *mm);
65 static int kgd_hqd_dump(struct kgd_dev *kgd,
66 uint32_t pipe_id, uint32_t queue_id,
67 uint32_t (**dump)[2], uint32_t *n_regs);
68 static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd,
69 uint32_t __user *wptr, struct mm_struct *mm);
70 static int kgd_hqd_sdma_dump(struct kgd_dev *kgd,
71 uint32_t engine_id, uint32_t queue_id,
72 uint32_t (**dump)[2], uint32_t *n_regs);
73 static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address,
74 uint32_t pipe_id, uint32_t queue_id);
75 static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd);
76 static int kgd_hqd_destroy(struct kgd_dev *kgd, void *mqd,
77 enum kfd_preempt_type reset_type,
78 unsigned int utimeout, uint32_t pipe_id,
79 uint32_t queue_id);
80 static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd,
81 unsigned int utimeout);
82 static int kgd_address_watch_disable(struct kgd_dev *kgd);
83 static int kgd_address_watch_execute(struct kgd_dev *kgd,
84 unsigned int watch_point_id,
85 uint32_t cntl_val,
86 uint32_t addr_hi,
87 uint32_t addr_lo);
88 static int kgd_wave_control_execute(struct kgd_dev *kgd,
89 uint32_t gfx_index_val,
90 uint32_t sq_cmd);
91 static uint32_t kgd_address_watch_get_offset(struct kgd_dev *kgd,
92 unsigned int watch_point_id,
93 unsigned int reg_offset);
94
95 static bool get_atc_vmid_pasid_mapping_valid(struct kgd_dev *kgd,
96 uint8_t vmid);
97 static uint16_t get_atc_vmid_pasid_mapping_pasid(struct kgd_dev *kgd,
98 uint8_t vmid);
99 static uint16_t get_fw_version(struct kgd_dev *kgd, enum kgd_engine_type type);
100 static void set_scratch_backing_va(struct kgd_dev *kgd,
101 uint64_t va, uint32_t vmid);
102 static void set_vm_context_page_table_base(struct kgd_dev *kgd, uint32_t vmid,
103 uint32_t page_table_base);
104 static int invalidate_tlbs(struct kgd_dev *kgd, uint16_t pasid);
105 static int invalidate_tlbs_vmid(struct kgd_dev *kgd, uint16_t vmid);
106
107 /* Because of REG_GET_FIELD() being used, we put this function in the
108 * asic specific file.
109 */
110 static int get_tile_config(struct kgd_dev *kgd,
111 struct tile_config *config)
112 {
113 struct amdgpu_device *adev = (struct amdgpu_device *)kgd;
114
115 config->gb_addr_config = adev->gfx.config.gb_addr_config;
116 config->num_banks = REG_GET_FIELD(adev->gfx.config.mc_arb_ramcfg,
117 MC_ARB_RAMCFG, NOOFBANK);
118 config->num_ranks = REG_GET_FIELD(adev->gfx.config.mc_arb_ramcfg,
119 MC_ARB_RAMCFG, NOOFRANKS);
120
121 config->tile_config_ptr = adev->gfx.config.tile_mode_array;
122 config->num_tile_configs =
123 ARRAY_SIZE(adev->gfx.config.tile_mode_array);
124 config->macro_tile_config_ptr =
125 adev->gfx.config.macrotile_mode_array;
126 config->num_macro_tile_configs =
127 ARRAY_SIZE(adev->gfx.config.macrotile_mode_array);
128
129 return 0;
130 }
131
132 static const struct kfd2kgd_calls kfd2kgd = {
133 .init_gtt_mem_allocation = alloc_gtt_mem,
134 .free_gtt_mem = free_gtt_mem,
135 .get_local_mem_info = get_local_mem_info,
136 .get_gpu_clock_counter = get_gpu_clock_counter,
137 .get_max_engine_clock_in_mhz = get_max_engine_clock_in_mhz,
138 .alloc_pasid = amdgpu_pasid_alloc,
139 .free_pasid = amdgpu_pasid_free,
140 .program_sh_mem_settings = kgd_program_sh_mem_settings,
141 .set_pasid_vmid_mapping = kgd_set_pasid_vmid_mapping,
142 .init_interrupts = kgd_init_interrupts,
143 .hqd_load = kgd_hqd_load,
144 .hqd_sdma_load = kgd_hqd_sdma_load,
145 .hqd_dump = kgd_hqd_dump,
146 .hqd_sdma_dump = kgd_hqd_sdma_dump,
147 .hqd_is_occupied = kgd_hqd_is_occupied,
148 .hqd_sdma_is_occupied = kgd_hqd_sdma_is_occupied,
149 .hqd_destroy = kgd_hqd_destroy,
150 .hqd_sdma_destroy = kgd_hqd_sdma_destroy,
151 .address_watch_disable = kgd_address_watch_disable,
152 .address_watch_execute = kgd_address_watch_execute,
153 .wave_control_execute = kgd_wave_control_execute,
154 .address_watch_get_offset = kgd_address_watch_get_offset,
155 .get_atc_vmid_pasid_mapping_pasid =
156 get_atc_vmid_pasid_mapping_pasid,
157 .get_atc_vmid_pasid_mapping_valid =
158 get_atc_vmid_pasid_mapping_valid,
159 .get_fw_version = get_fw_version,
160 .set_scratch_backing_va = set_scratch_backing_va,
161 .get_tile_config = get_tile_config,
162 .get_cu_info = get_cu_info,
163 .get_vram_usage = amdgpu_amdkfd_get_vram_usage,
164 .create_process_vm = amdgpu_amdkfd_gpuvm_create_process_vm,
165 .acquire_process_vm = amdgpu_amdkfd_gpuvm_acquire_process_vm,
166 .destroy_process_vm = amdgpu_amdkfd_gpuvm_destroy_process_vm,
167 .release_process_vm = amdgpu_amdkfd_gpuvm_release_process_vm,
168 .get_process_page_dir = amdgpu_amdkfd_gpuvm_get_process_page_dir,
169 .set_vm_context_page_table_base = set_vm_context_page_table_base,
170 .alloc_memory_of_gpu = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu,
171 .free_memory_of_gpu = amdgpu_amdkfd_gpuvm_free_memory_of_gpu,
172 .map_memory_to_gpu = amdgpu_amdkfd_gpuvm_map_memory_to_gpu,
173 .unmap_memory_to_gpu = amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu,
174 .sync_memory = amdgpu_amdkfd_gpuvm_sync_memory,
175 .map_gtt_bo_to_kernel = amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel,
176 .restore_process_bos = amdgpu_amdkfd_gpuvm_restore_process_bos,
177 .invalidate_tlbs = invalidate_tlbs,
178 .invalidate_tlbs_vmid = invalidate_tlbs_vmid,
179 .submit_ib = amdgpu_amdkfd_submit_ib,
180 .get_vm_fault_info = amdgpu_amdkfd_gpuvm_get_vm_fault_info,
181 .gpu_recover = amdgpu_amdkfd_gpu_reset,
182 .set_compute_idle = amdgpu_amdkfd_set_compute_idle
183 };
184
185 struct kfd2kgd_calls *amdgpu_amdkfd_gfx_8_0_get_functions(void)
186 {
187 return (struct kfd2kgd_calls *)&kfd2kgd;
188 }
189
190 static inline struct amdgpu_device *get_amdgpu_device(struct kgd_dev *kgd)
191 {
192 return (struct amdgpu_device *)kgd;
193 }
194
195 static void lock_srbm(struct kgd_dev *kgd, uint32_t mec, uint32_t pipe,
196 uint32_t queue, uint32_t vmid)
197 {
198 struct amdgpu_device *adev = get_amdgpu_device(kgd);
199 uint32_t value = PIPEID(pipe) | MEID(mec) | VMID(vmid) | QUEUEID(queue);
200
201 mutex_lock(&adev->srbm_mutex);
202 WREG32(mmSRBM_GFX_CNTL, value);
203 }
204
205 static void unlock_srbm(struct kgd_dev *kgd)
206 {
207 struct amdgpu_device *adev = get_amdgpu_device(kgd);
208
209 WREG32(mmSRBM_GFX_CNTL, 0);
210 mutex_unlock(&adev->srbm_mutex);
211 }
212
213 static void acquire_queue(struct kgd_dev *kgd, uint32_t pipe_id,
214 uint32_t queue_id)
215 {
216 struct amdgpu_device *adev = get_amdgpu_device(kgd);
217
218 uint32_t mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
219 uint32_t pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
220
221 lock_srbm(kgd, mec, pipe, queue_id, 0);
222 }
223
224 static void release_queue(struct kgd_dev *kgd)
225 {
226 unlock_srbm(kgd);
227 }
228
229 static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid,
230 uint32_t sh_mem_config,
231 uint32_t sh_mem_ape1_base,
232 uint32_t sh_mem_ape1_limit,
233 uint32_t sh_mem_bases)
234 {
235 struct amdgpu_device *adev = get_amdgpu_device(kgd);
236
237 lock_srbm(kgd, 0, 0, 0, vmid);
238
239 WREG32(mmSH_MEM_CONFIG, sh_mem_config);
240 WREG32(mmSH_MEM_APE1_BASE, sh_mem_ape1_base);
241 WREG32(mmSH_MEM_APE1_LIMIT, sh_mem_ape1_limit);
242 WREG32(mmSH_MEM_BASES, sh_mem_bases);
243
244 unlock_srbm(kgd);
245 }
246
247 static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, unsigned int pasid,
248 unsigned int vmid)
249 {
250 struct amdgpu_device *adev = get_amdgpu_device(kgd);
251
252 /*
253 * We have to assume that there is no outstanding mapping.
254 * The ATC_VMID_PASID_MAPPING_UPDATE_STATUS bit could be 0 because
255 * a mapping is in progress or because a mapping finished
256 * and the SW cleared it.
257 * So the protocol is to always wait & clear.
258 */
259 uint32_t pasid_mapping = (pasid == 0) ? 0 : (uint32_t)pasid |
260 ATC_VMID0_PASID_MAPPING__VALID_MASK;
261
262 WREG32(mmATC_VMID0_PASID_MAPPING + vmid, pasid_mapping);
263
264 while (!(RREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS) & (1U << vmid)))
265 cpu_relax();
266 WREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS, 1U << vmid);
267
268 /* Mapping vmid to pasid also for IH block */
269 WREG32(mmIH_VMID_0_LUT + vmid, pasid_mapping);
270
271 return 0;
272 }
273
274 static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id)
275 {
276 struct amdgpu_device *adev = get_amdgpu_device(kgd);
277 uint32_t mec;
278 uint32_t pipe;
279
280 mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
281 pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
282
283 lock_srbm(kgd, mec, pipe, 0, 0);
284
285 WREG32(mmCPC_INT_CNTL, CP_INT_CNTL_RING0__TIME_STAMP_INT_ENABLE_MASK);
286
287 unlock_srbm(kgd);
288
289 return 0;
290 }
291
292 static inline uint32_t get_sdma_base_addr(struct vi_sdma_mqd *m)
293 {
294 uint32_t retval;
295
296 retval = m->sdma_engine_id * SDMA1_REGISTER_OFFSET +
297 m->sdma_queue_id * KFD_VI_SDMA_QUEUE_OFFSET;
298 pr_debug("kfd: sdma base address: 0x%x\n", retval);
299
300 return retval;
301 }
302
303 static inline struct vi_mqd *get_mqd(void *mqd)
304 {
305 return (struct vi_mqd *)mqd;
306 }
307
308 static inline struct vi_sdma_mqd *get_sdma_mqd(void *mqd)
309 {
310 return (struct vi_sdma_mqd *)mqd;
311 }
312
313 static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
314 uint32_t queue_id, uint32_t __user *wptr,
315 uint32_t wptr_shift, uint32_t wptr_mask,
316 struct mm_struct *mm)
317 {
318 struct amdgpu_device *adev = get_amdgpu_device(kgd);
319 struct vi_mqd *m;
320 uint32_t *mqd_hqd;
321 uint32_t reg, wptr_val, data;
322 bool valid_wptr = false;
323
324 m = get_mqd(mqd);
325
326 acquire_queue(kgd, pipe_id, queue_id);
327
328 /* HIQ is set during driver init period with vmid set to 0*/
329 if (m->cp_hqd_vmid == 0) {
330 uint32_t value, mec, pipe;
331
332 mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
333 pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
334
335 pr_debug("kfd: set HIQ, mec:%d, pipe:%d, queue:%d.\n",
336 mec, pipe, queue_id);
337 value = RREG32(mmRLC_CP_SCHEDULERS);
338 value = REG_SET_FIELD(value, RLC_CP_SCHEDULERS, scheduler1,
339 ((mec << 5) | (pipe << 3) | queue_id | 0x80));
340 WREG32(mmRLC_CP_SCHEDULERS, value);
341 }
342
343 /* HQD registers extend from CP_MQD_BASE_ADDR to CP_HQD_EOP_WPTR_MEM. */
344 mqd_hqd = &m->cp_mqd_base_addr_lo;
345
346 for (reg = mmCP_MQD_BASE_ADDR; reg <= mmCP_HQD_EOP_CONTROL; reg++)
347 WREG32(reg, mqd_hqd[reg - mmCP_MQD_BASE_ADDR]);
348
349 /* Tonga errata: EOP RPTR/WPTR should be left unmodified.
350 * This is safe since EOP RPTR==WPTR for any inactive HQD
351 * on ASICs that do not support context-save.
352 * EOP writes/reads can start anywhere in the ring.
353 */
354 if (get_amdgpu_device(kgd)->asic_type != CHIP_TONGA) {
355 WREG32(mmCP_HQD_EOP_RPTR, m->cp_hqd_eop_rptr);
356 WREG32(mmCP_HQD_EOP_WPTR, m->cp_hqd_eop_wptr);
357 WREG32(mmCP_HQD_EOP_WPTR_MEM, m->cp_hqd_eop_wptr_mem);
358 }
359
360 for (reg = mmCP_HQD_EOP_EVENTS; reg <= mmCP_HQD_ERROR; reg++)
361 WREG32(reg, mqd_hqd[reg - mmCP_MQD_BASE_ADDR]);
362
363 /* Copy userspace write pointer value to register.
364 * Activate doorbell logic to monitor subsequent changes.
365 */
366 data = REG_SET_FIELD(m->cp_hqd_pq_doorbell_control,
367 CP_HQD_PQ_DOORBELL_CONTROL, DOORBELL_EN, 1);
368 WREG32(mmCP_HQD_PQ_DOORBELL_CONTROL, data);
369
370 /* read_user_ptr may take the mm->mmap_sem.
371 * release srbm_mutex to avoid circular dependency between
372 * srbm_mutex->mm_sem->reservation_ww_class_mutex->srbm_mutex.
373 */
374 release_queue(kgd);
375 valid_wptr = read_user_wptr(mm, wptr, wptr_val);
376 acquire_queue(kgd, pipe_id, queue_id);
377 if (valid_wptr)
378 WREG32(mmCP_HQD_PQ_WPTR, (wptr_val << wptr_shift) & wptr_mask);
379
380 data = REG_SET_FIELD(m->cp_hqd_active, CP_HQD_ACTIVE, ACTIVE, 1);
381 WREG32(mmCP_HQD_ACTIVE, data);
382
383 release_queue(kgd);
384
385 return 0;
386 }
387
388 static int kgd_hqd_dump(struct kgd_dev *kgd,
389 uint32_t pipe_id, uint32_t queue_id,
390 uint32_t (**dump)[2], uint32_t *n_regs)
391 {
392 struct amdgpu_device *adev = get_amdgpu_device(kgd);
393 uint32_t i = 0, reg;
394 #define HQD_N_REGS (54+4)
395 #define DUMP_REG(addr) do { \
396 if (WARN_ON_ONCE(i >= HQD_N_REGS)) \
397 break; \
398 (*dump)[i][0] = (addr) << 2; \
399 (*dump)[i++][1] = RREG32(addr); \
400 } while (0)
401
402 *dump = kmalloc_array(HQD_N_REGS * 2, sizeof(uint32_t), GFP_KERNEL);
403 if (*dump == NULL)
404 return -ENOMEM;
405
406 acquire_queue(kgd, pipe_id, queue_id);
407
408 DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE0);
409 DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE1);
410 DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE2);
411 DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE3);
412
413 for (reg = mmCP_MQD_BASE_ADDR; reg <= mmCP_HQD_EOP_DONES; reg++)
414 DUMP_REG(reg);
415
416 release_queue(kgd);
417
418 WARN_ON_ONCE(i != HQD_N_REGS);
419 *n_regs = i;
420
421 return 0;
422 }
423
424 static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd,
425 uint32_t __user *wptr, struct mm_struct *mm)
426 {
427 struct amdgpu_device *adev = get_amdgpu_device(kgd);
428 struct vi_sdma_mqd *m;
429 unsigned long end_jiffies;
430 uint32_t sdma_base_addr;
431 uint32_t data;
432
433 m = get_sdma_mqd(mqd);
434 sdma_base_addr = get_sdma_base_addr(m);
435 WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL,
436 m->sdmax_rlcx_rb_cntl & (~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK));
437
438 end_jiffies = msecs_to_jiffies(2000) + jiffies;
439 while (true) {
440 data = RREG32(sdma_base_addr + mmSDMA0_RLC0_CONTEXT_STATUS);
441 if (data & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
442 break;
443 if (time_after(jiffies, end_jiffies))
444 return -ETIME;
445 usleep_range(500, 1000);
446 }
447 if (m->sdma_engine_id) {
448 data = RREG32(mmSDMA1_GFX_CONTEXT_CNTL);
449 data = REG_SET_FIELD(data, SDMA1_GFX_CONTEXT_CNTL,
450 RESUME_CTX, 0);
451 WREG32(mmSDMA1_GFX_CONTEXT_CNTL, data);
452 } else {
453 data = RREG32(mmSDMA0_GFX_CONTEXT_CNTL);
454 data = REG_SET_FIELD(data, SDMA0_GFX_CONTEXT_CNTL,
455 RESUME_CTX, 0);
456 WREG32(mmSDMA0_GFX_CONTEXT_CNTL, data);
457 }
458
459 data = REG_SET_FIELD(m->sdmax_rlcx_doorbell, SDMA0_RLC0_DOORBELL,
460 ENABLE, 1);
461 WREG32(sdma_base_addr + mmSDMA0_RLC0_DOORBELL, data);
462 WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR, m->sdmax_rlcx_rb_rptr);
463
464 if (read_user_wptr(mm, wptr, data))
465 WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_WPTR, data);
466 else
467 WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_WPTR,
468 m->sdmax_rlcx_rb_rptr);
469
470 WREG32(sdma_base_addr + mmSDMA0_RLC0_VIRTUAL_ADDR,
471 m->sdmax_rlcx_virtual_addr);
472 WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_BASE, m->sdmax_rlcx_rb_base);
473 WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_BASE_HI,
474 m->sdmax_rlcx_rb_base_hi);
475 WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR_ADDR_LO,
476 m->sdmax_rlcx_rb_rptr_addr_lo);
477 WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR_ADDR_HI,
478 m->sdmax_rlcx_rb_rptr_addr_hi);
479
480 data = REG_SET_FIELD(m->sdmax_rlcx_rb_cntl, SDMA0_RLC0_RB_CNTL,
481 RB_ENABLE, 1);
482 WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL, data);
483
484 return 0;
485 }
486
487 static int kgd_hqd_sdma_dump(struct kgd_dev *kgd,
488 uint32_t engine_id, uint32_t queue_id,
489 uint32_t (**dump)[2], uint32_t *n_regs)
490 {
491 struct amdgpu_device *adev = get_amdgpu_device(kgd);
492 uint32_t sdma_offset = engine_id * SDMA1_REGISTER_OFFSET +
493 queue_id * KFD_VI_SDMA_QUEUE_OFFSET;
494 uint32_t i = 0, reg;
495 #undef HQD_N_REGS
496 #define HQD_N_REGS (19+4+2+3+7)
497
498 *dump = kmalloc_array(HQD_N_REGS * 2, sizeof(uint32_t), GFP_KERNEL);
499 if (*dump == NULL)
500 return -ENOMEM;
501
502 for (reg = mmSDMA0_RLC0_RB_CNTL; reg <= mmSDMA0_RLC0_DOORBELL; reg++)
503 DUMP_REG(sdma_offset + reg);
504 for (reg = mmSDMA0_RLC0_VIRTUAL_ADDR; reg <= mmSDMA0_RLC0_WATERMARK;
505 reg++)
506 DUMP_REG(sdma_offset + reg);
507 for (reg = mmSDMA0_RLC0_CSA_ADDR_LO; reg <= mmSDMA0_RLC0_CSA_ADDR_HI;
508 reg++)
509 DUMP_REG(sdma_offset + reg);
510 for (reg = mmSDMA0_RLC0_IB_SUB_REMAIN; reg <= mmSDMA0_RLC0_DUMMY_REG;
511 reg++)
512 DUMP_REG(sdma_offset + reg);
513 for (reg = mmSDMA0_RLC0_MIDCMD_DATA0; reg <= mmSDMA0_RLC0_MIDCMD_CNTL;
514 reg++)
515 DUMP_REG(sdma_offset + reg);
516
517 WARN_ON_ONCE(i != HQD_N_REGS);
518 *n_regs = i;
519
520 return 0;
521 }
522
523 static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address,
524 uint32_t pipe_id, uint32_t queue_id)
525 {
526 struct amdgpu_device *adev = get_amdgpu_device(kgd);
527 uint32_t act;
528 bool retval = false;
529 uint32_t low, high;
530
531 acquire_queue(kgd, pipe_id, queue_id);
532 act = RREG32(mmCP_HQD_ACTIVE);
533 if (act) {
534 low = lower_32_bits(queue_address >> 8);
535 high = upper_32_bits(queue_address >> 8);
536
537 if (low == RREG32(mmCP_HQD_PQ_BASE) &&
538 high == RREG32(mmCP_HQD_PQ_BASE_HI))
539 retval = true;
540 }
541 release_queue(kgd);
542 return retval;
543 }
544
545 static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd)
546 {
547 struct amdgpu_device *adev = get_amdgpu_device(kgd);
548 struct vi_sdma_mqd *m;
549 uint32_t sdma_base_addr;
550 uint32_t sdma_rlc_rb_cntl;
551
552 m = get_sdma_mqd(mqd);
553 sdma_base_addr = get_sdma_base_addr(m);
554
555 sdma_rlc_rb_cntl = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL);
556
557 if (sdma_rlc_rb_cntl & SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK)
558 return true;
559
560 return false;
561 }
562
563 static int kgd_hqd_destroy(struct kgd_dev *kgd, void *mqd,
564 enum kfd_preempt_type reset_type,
565 unsigned int utimeout, uint32_t pipe_id,
566 uint32_t queue_id)
567 {
568 struct amdgpu_device *adev = get_amdgpu_device(kgd);
569 uint32_t temp;
570 enum hqd_dequeue_request_type type;
571 unsigned long flags, end_jiffies;
572 int retry;
573 struct vi_mqd *m = get_mqd(mqd);
574
575 if (adev->in_gpu_reset)
576 return -EIO;
577
578 acquire_queue(kgd, pipe_id, queue_id);
579
580 if (m->cp_hqd_vmid == 0)
581 WREG32_FIELD(RLC_CP_SCHEDULERS, scheduler1, 0);
582
583 switch (reset_type) {
584 case KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN:
585 type = DRAIN_PIPE;
586 break;
587 case KFD_PREEMPT_TYPE_WAVEFRONT_RESET:
588 type = RESET_WAVES;
589 break;
590 default:
591 type = DRAIN_PIPE;
592 break;
593 }
594
595 /* Workaround: If IQ timer is active and the wait time is close to or
596 * equal to 0, dequeueing is not safe. Wait until either the wait time
597 * is larger or timer is cleared. Also, ensure that IQ_REQ_PEND is
598 * cleared before continuing. Also, ensure wait times are set to at
599 * least 0x3.
600 */
601 local_irq_save(flags);
602 preempt_disable();
603 retry = 5000; /* wait for 500 usecs at maximum */
604 while (true) {
605 temp = RREG32(mmCP_HQD_IQ_TIMER);
606 if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, PROCESSING_IQ)) {
607 pr_debug("HW is processing IQ\n");
608 goto loop;
609 }
610 if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, ACTIVE)) {
611 if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, RETRY_TYPE)
612 == 3) /* SEM-rearm is safe */
613 break;
614 /* Wait time 3 is safe for CP, but our MMIO read/write
615 * time is close to 1 microsecond, so check for 10 to
616 * leave more buffer room
617 */
618 if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, WAIT_TIME)
619 >= 10)
620 break;
621 pr_debug("IQ timer is active\n");
622 } else
623 break;
624 loop:
625 if (!retry) {
626 pr_err("CP HQD IQ timer status time out\n");
627 break;
628 }
629 ndelay(100);
630 --retry;
631 }
632 retry = 1000;
633 while (true) {
634 temp = RREG32(mmCP_HQD_DEQUEUE_REQUEST);
635 if (!(temp & CP_HQD_DEQUEUE_REQUEST__IQ_REQ_PEND_MASK))
636 break;
637 pr_debug("Dequeue request is pending\n");
638
639 if (!retry) {
640 pr_err("CP HQD dequeue request time out\n");
641 break;
642 }
643 ndelay(100);
644 --retry;
645 }
646 local_irq_restore(flags);
647 preempt_enable();
648
649 WREG32(mmCP_HQD_DEQUEUE_REQUEST, type);
650
651 end_jiffies = (utimeout * HZ / 1000) + jiffies;
652 while (true) {
653 temp = RREG32(mmCP_HQD_ACTIVE);
654 if (!(temp & CP_HQD_ACTIVE__ACTIVE_MASK))
655 break;
656 if (time_after(jiffies, end_jiffies)) {
657 pr_err("cp queue preemption time out.\n");
658 release_queue(kgd);
659 return -ETIME;
660 }
661 usleep_range(500, 1000);
662 }
663
664 release_queue(kgd);
665 return 0;
666 }
667
668 static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd,
669 unsigned int utimeout)
670 {
671 struct amdgpu_device *adev = get_amdgpu_device(kgd);
672 struct vi_sdma_mqd *m;
673 uint32_t sdma_base_addr;
674 uint32_t temp;
675 unsigned long end_jiffies = (utimeout * HZ / 1000) + jiffies;
676
677 m = get_sdma_mqd(mqd);
678 sdma_base_addr = get_sdma_base_addr(m);
679
680 temp = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL);
681 temp = temp & ~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK;
682 WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL, temp);
683
684 while (true) {
685 temp = RREG32(sdma_base_addr + mmSDMA0_RLC0_CONTEXT_STATUS);
686 if (temp & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
687 break;
688 if (time_after(jiffies, end_jiffies))
689 return -ETIME;
690 usleep_range(500, 1000);
691 }
692
693 WREG32(sdma_base_addr + mmSDMA0_RLC0_DOORBELL, 0);
694 WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL,
695 RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL) |
696 SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK);
697
698 m->sdmax_rlcx_rb_rptr = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR);
699
700 return 0;
701 }
702
703 static bool get_atc_vmid_pasid_mapping_valid(struct kgd_dev *kgd,
704 uint8_t vmid)
705 {
706 uint32_t reg;
707 struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
708
709 reg = RREG32(mmATC_VMID0_PASID_MAPPING + vmid);
710 return reg & ATC_VMID0_PASID_MAPPING__VALID_MASK;
711 }
712
713 static uint16_t get_atc_vmid_pasid_mapping_pasid(struct kgd_dev *kgd,
714 uint8_t vmid)
715 {
716 uint32_t reg;
717 struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
718
719 reg = RREG32(mmATC_VMID0_PASID_MAPPING + vmid);
720 return reg & ATC_VMID0_PASID_MAPPING__PASID_MASK;
721 }
722
723 static int kgd_address_watch_disable(struct kgd_dev *kgd)
724 {
725 return 0;
726 }
727
728 static int kgd_address_watch_execute(struct kgd_dev *kgd,
729 unsigned int watch_point_id,
730 uint32_t cntl_val,
731 uint32_t addr_hi,
732 uint32_t addr_lo)
733 {
734 return 0;
735 }
736
737 static int kgd_wave_control_execute(struct kgd_dev *kgd,
738 uint32_t gfx_index_val,
739 uint32_t sq_cmd)
740 {
741 struct amdgpu_device *adev = get_amdgpu_device(kgd);
742 uint32_t data = 0;
743
744 mutex_lock(&adev->grbm_idx_mutex);
745
746 WREG32(mmGRBM_GFX_INDEX, gfx_index_val);
747 WREG32(mmSQ_CMD, sq_cmd);
748
749 data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
750 INSTANCE_BROADCAST_WRITES, 1);
751 data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
752 SH_BROADCAST_WRITES, 1);
753 data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
754 SE_BROADCAST_WRITES, 1);
755
756 WREG32(mmGRBM_GFX_INDEX, data);
757 mutex_unlock(&adev->grbm_idx_mutex);
758
759 return 0;
760 }
761
762 static uint32_t kgd_address_watch_get_offset(struct kgd_dev *kgd,
763 unsigned int watch_point_id,
764 unsigned int reg_offset)
765 {
766 return 0;
767 }
768
769 static void set_scratch_backing_va(struct kgd_dev *kgd,
770 uint64_t va, uint32_t vmid)
771 {
772 struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
773
774 lock_srbm(kgd, 0, 0, 0, vmid);
775 WREG32(mmSH_HIDDEN_PRIVATE_BASE_VMID, va);
776 unlock_srbm(kgd);
777 }
778
779 static uint16_t get_fw_version(struct kgd_dev *kgd, enum kgd_engine_type type)
780 {
781 struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
782 const union amdgpu_firmware_header *hdr;
783
784 switch (type) {
785 case KGD_ENGINE_PFP:
786 hdr = (const union amdgpu_firmware_header *)
787 adev->gfx.pfp_fw->data;
788 break;
789
790 case KGD_ENGINE_ME:
791 hdr = (const union amdgpu_firmware_header *)
792 adev->gfx.me_fw->data;
793 break;
794
795 case KGD_ENGINE_CE:
796 hdr = (const union amdgpu_firmware_header *)
797 adev->gfx.ce_fw->data;
798 break;
799
800 case KGD_ENGINE_MEC1:
801 hdr = (const union amdgpu_firmware_header *)
802 adev->gfx.mec_fw->data;
803 break;
804
805 case KGD_ENGINE_MEC2:
806 hdr = (const union amdgpu_firmware_header *)
807 adev->gfx.mec2_fw->data;
808 break;
809
810 case KGD_ENGINE_RLC:
811 hdr = (const union amdgpu_firmware_header *)
812 adev->gfx.rlc_fw->data;
813 break;
814
815 case KGD_ENGINE_SDMA1:
816 hdr = (const union amdgpu_firmware_header *)
817 adev->sdma.instance[0].fw->data;
818 break;
819
820 case KGD_ENGINE_SDMA2:
821 hdr = (const union amdgpu_firmware_header *)
822 adev->sdma.instance[1].fw->data;
823 break;
824
825 default:
826 return 0;
827 }
828
829 if (hdr == NULL)
830 return 0;
831
832 /* Only 12 bit in use*/
833 return hdr->common.ucode_version;
834 }
835
836 static void set_vm_context_page_table_base(struct kgd_dev *kgd, uint32_t vmid,
837 uint32_t page_table_base)
838 {
839 struct amdgpu_device *adev = get_amdgpu_device(kgd);
840
841 if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid)) {
842 pr_err("trying to set page table base for wrong VMID\n");
843 return;
844 }
845 WREG32(mmVM_CONTEXT8_PAGE_TABLE_BASE_ADDR + vmid - 8, page_table_base);
846 }
847
848 static int invalidate_tlbs(struct kgd_dev *kgd, uint16_t pasid)
849 {
850 struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
851 int vmid;
852 unsigned int tmp;
853
854 if (adev->in_gpu_reset)
855 return -EIO;
856
857 for (vmid = 0; vmid < 16; vmid++) {
858 if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid))
859 continue;
860
861 tmp = RREG32(mmATC_VMID0_PASID_MAPPING + vmid);
862 if ((tmp & ATC_VMID0_PASID_MAPPING__VALID_MASK) &&
863 (tmp & ATC_VMID0_PASID_MAPPING__PASID_MASK) == pasid) {
864 WREG32(mmVM_INVALIDATE_REQUEST, 1 << vmid);
865 RREG32(mmVM_INVALIDATE_RESPONSE);
866 break;
867 }
868 }
869
870 return 0;
871 }
872
873 static int invalidate_tlbs_vmid(struct kgd_dev *kgd, uint16_t vmid)
874 {
875 struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
876
877 if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid)) {
878 pr_err("non kfd vmid %d\n", vmid);
879 return -EINVAL;
880 }
881
882 WREG32(mmVM_INVALIDATE_REQUEST, 1 << vmid);
883 RREG32(mmVM_INVALIDATE_RESPONSE);
884 return 0;
885 }