]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/gpu/drm/amd/amdgpu/amdgpu_cs.c
Merge remote-tracking branches 'asoc/topic/atmel', 'asoc/topic/bcm2835' and 'asoc...
[mirror_ubuntu-zesty-kernel.git] / drivers / gpu / drm / amd / amdgpu / amdgpu_cs.c
1 /*
2 * Copyright 2008 Jerome Glisse.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * PRECISION INSIGHT AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22 * DEALINGS IN THE SOFTWARE.
23 *
24 * Authors:
25 * Jerome Glisse <glisse@freedesktop.org>
26 */
27 #include <linux/list_sort.h>
28 #include <drm/drmP.h>
29 #include <drm/amdgpu_drm.h>
30 #include "amdgpu.h"
31 #include "amdgpu_trace.h"
32
33 #define AMDGPU_CS_MAX_PRIORITY 32u
34 #define AMDGPU_CS_NUM_BUCKETS (AMDGPU_CS_MAX_PRIORITY + 1)
35
36 /* This is based on the bucket sort with O(n) time complexity.
37 * An item with priority "i" is added to bucket[i]. The lists are then
38 * concatenated in descending order.
39 */
40 struct amdgpu_cs_buckets {
41 struct list_head bucket[AMDGPU_CS_NUM_BUCKETS];
42 };
43
44 static void amdgpu_cs_buckets_init(struct amdgpu_cs_buckets *b)
45 {
46 unsigned i;
47
48 for (i = 0; i < AMDGPU_CS_NUM_BUCKETS; i++)
49 INIT_LIST_HEAD(&b->bucket[i]);
50 }
51
52 static void amdgpu_cs_buckets_add(struct amdgpu_cs_buckets *b,
53 struct list_head *item, unsigned priority)
54 {
55 /* Since buffers which appear sooner in the relocation list are
56 * likely to be used more often than buffers which appear later
57 * in the list, the sort mustn't change the ordering of buffers
58 * with the same priority, i.e. it must be stable.
59 */
60 list_add_tail(item, &b->bucket[min(priority, AMDGPU_CS_MAX_PRIORITY)]);
61 }
62
63 static void amdgpu_cs_buckets_get_list(struct amdgpu_cs_buckets *b,
64 struct list_head *out_list)
65 {
66 unsigned i;
67
68 /* Connect the sorted buckets in the output list. */
69 for (i = 0; i < AMDGPU_CS_NUM_BUCKETS; i++) {
70 list_splice(&b->bucket[i], out_list);
71 }
72 }
73
74 int amdgpu_cs_get_ring(struct amdgpu_device *adev, u32 ip_type,
75 u32 ip_instance, u32 ring,
76 struct amdgpu_ring **out_ring)
77 {
78 /* Right now all IPs have only one instance - multiple rings. */
79 if (ip_instance != 0) {
80 DRM_ERROR("invalid ip instance: %d\n", ip_instance);
81 return -EINVAL;
82 }
83
84 switch (ip_type) {
85 default:
86 DRM_ERROR("unknown ip type: %d\n", ip_type);
87 return -EINVAL;
88 case AMDGPU_HW_IP_GFX:
89 if (ring < adev->gfx.num_gfx_rings) {
90 *out_ring = &adev->gfx.gfx_ring[ring];
91 } else {
92 DRM_ERROR("only %d gfx rings are supported now\n",
93 adev->gfx.num_gfx_rings);
94 return -EINVAL;
95 }
96 break;
97 case AMDGPU_HW_IP_COMPUTE:
98 if (ring < adev->gfx.num_compute_rings) {
99 *out_ring = &adev->gfx.compute_ring[ring];
100 } else {
101 DRM_ERROR("only %d compute rings are supported now\n",
102 adev->gfx.num_compute_rings);
103 return -EINVAL;
104 }
105 break;
106 case AMDGPU_HW_IP_DMA:
107 if (ring < adev->sdma.num_instances) {
108 *out_ring = &adev->sdma.instance[ring].ring;
109 } else {
110 DRM_ERROR("only %d SDMA rings are supported\n",
111 adev->sdma.num_instances);
112 return -EINVAL;
113 }
114 break;
115 case AMDGPU_HW_IP_UVD:
116 *out_ring = &adev->uvd.ring;
117 break;
118 case AMDGPU_HW_IP_VCE:
119 if (ring < 2){
120 *out_ring = &adev->vce.ring[ring];
121 } else {
122 DRM_ERROR("only two VCE rings are supported\n");
123 return -EINVAL;
124 }
125 break;
126 }
127 return 0;
128 }
129
130 static int amdgpu_cs_user_fence_chunk(struct amdgpu_cs_parser *p,
131 struct drm_amdgpu_cs_chunk_fence *fence_data)
132 {
133 struct drm_gem_object *gobj;
134 uint32_t handle;
135
136 handle = fence_data->handle;
137 gobj = drm_gem_object_lookup(p->adev->ddev, p->filp,
138 fence_data->handle);
139 if (gobj == NULL)
140 return -EINVAL;
141
142 p->uf.bo = amdgpu_bo_ref(gem_to_amdgpu_bo(gobj));
143 p->uf.offset = fence_data->offset;
144
145 if (amdgpu_ttm_tt_has_userptr(p->uf.bo->tbo.ttm)) {
146 drm_gem_object_unreference_unlocked(gobj);
147 return -EINVAL;
148 }
149
150 p->uf_entry.robj = amdgpu_bo_ref(p->uf.bo);
151 p->uf_entry.prefered_domains = AMDGPU_GEM_DOMAIN_GTT;
152 p->uf_entry.allowed_domains = AMDGPU_GEM_DOMAIN_GTT;
153 p->uf_entry.priority = 0;
154 p->uf_entry.tv.bo = &p->uf_entry.robj->tbo;
155 p->uf_entry.tv.shared = true;
156
157 drm_gem_object_unreference_unlocked(gobj);
158 return 0;
159 }
160
161 int amdgpu_cs_parser_init(struct amdgpu_cs_parser *p, void *data)
162 {
163 union drm_amdgpu_cs *cs = data;
164 uint64_t *chunk_array_user;
165 uint64_t *chunk_array;
166 struct amdgpu_fpriv *fpriv = p->filp->driver_priv;
167 unsigned size;
168 int i;
169 int ret;
170
171 if (cs->in.num_chunks == 0)
172 return 0;
173
174 chunk_array = kmalloc_array(cs->in.num_chunks, sizeof(uint64_t), GFP_KERNEL);
175 if (!chunk_array)
176 return -ENOMEM;
177
178 p->ctx = amdgpu_ctx_get(fpriv, cs->in.ctx_id);
179 if (!p->ctx) {
180 ret = -EINVAL;
181 goto free_chunk;
182 }
183
184 p->bo_list = amdgpu_bo_list_get(fpriv, cs->in.bo_list_handle);
185
186 /* get chunks */
187 INIT_LIST_HEAD(&p->validated);
188 chunk_array_user = (uint64_t __user *)(unsigned long)(cs->in.chunks);
189 if (copy_from_user(chunk_array, chunk_array_user,
190 sizeof(uint64_t)*cs->in.num_chunks)) {
191 ret = -EFAULT;
192 goto put_bo_list;
193 }
194
195 p->nchunks = cs->in.num_chunks;
196 p->chunks = kmalloc_array(p->nchunks, sizeof(struct amdgpu_cs_chunk),
197 GFP_KERNEL);
198 if (!p->chunks) {
199 ret = -ENOMEM;
200 goto put_bo_list;
201 }
202
203 for (i = 0; i < p->nchunks; i++) {
204 struct drm_amdgpu_cs_chunk __user **chunk_ptr = NULL;
205 struct drm_amdgpu_cs_chunk user_chunk;
206 uint32_t __user *cdata;
207
208 chunk_ptr = (void __user *)(unsigned long)chunk_array[i];
209 if (copy_from_user(&user_chunk, chunk_ptr,
210 sizeof(struct drm_amdgpu_cs_chunk))) {
211 ret = -EFAULT;
212 i--;
213 goto free_partial_kdata;
214 }
215 p->chunks[i].chunk_id = user_chunk.chunk_id;
216 p->chunks[i].length_dw = user_chunk.length_dw;
217
218 size = p->chunks[i].length_dw;
219 cdata = (void __user *)(unsigned long)user_chunk.chunk_data;
220 p->chunks[i].user_ptr = cdata;
221
222 p->chunks[i].kdata = drm_malloc_ab(size, sizeof(uint32_t));
223 if (p->chunks[i].kdata == NULL) {
224 ret = -ENOMEM;
225 i--;
226 goto free_partial_kdata;
227 }
228 size *= sizeof(uint32_t);
229 if (copy_from_user(p->chunks[i].kdata, cdata, size)) {
230 ret = -EFAULT;
231 goto free_partial_kdata;
232 }
233
234 switch (p->chunks[i].chunk_id) {
235 case AMDGPU_CHUNK_ID_IB:
236 p->num_ibs++;
237 break;
238
239 case AMDGPU_CHUNK_ID_FENCE:
240 size = sizeof(struct drm_amdgpu_cs_chunk_fence);
241 if (p->chunks[i].length_dw * sizeof(uint32_t) < size) {
242 ret = -EINVAL;
243 goto free_partial_kdata;
244 }
245
246 ret = amdgpu_cs_user_fence_chunk(p, (void *)p->chunks[i].kdata);
247 if (ret)
248 goto free_partial_kdata;
249
250 break;
251
252 case AMDGPU_CHUNK_ID_DEPENDENCIES:
253 break;
254
255 default:
256 ret = -EINVAL;
257 goto free_partial_kdata;
258 }
259 }
260
261
262 p->ibs = kcalloc(p->num_ibs, sizeof(struct amdgpu_ib), GFP_KERNEL);
263 if (!p->ibs) {
264 ret = -ENOMEM;
265 goto free_all_kdata;
266 }
267
268 kfree(chunk_array);
269 return 0;
270
271 free_all_kdata:
272 i = p->nchunks - 1;
273 free_partial_kdata:
274 for (; i >= 0; i--)
275 drm_free_large(p->chunks[i].kdata);
276 kfree(p->chunks);
277 put_bo_list:
278 if (p->bo_list)
279 amdgpu_bo_list_put(p->bo_list);
280 amdgpu_ctx_put(p->ctx);
281 free_chunk:
282 kfree(chunk_array);
283
284 return ret;
285 }
286
287 /* Returns how many bytes TTM can move per IB.
288 */
289 static u64 amdgpu_cs_get_threshold_for_moves(struct amdgpu_device *adev)
290 {
291 u64 real_vram_size = adev->mc.real_vram_size;
292 u64 vram_usage = atomic64_read(&adev->vram_usage);
293
294 /* This function is based on the current VRAM usage.
295 *
296 * - If all of VRAM is free, allow relocating the number of bytes that
297 * is equal to 1/4 of the size of VRAM for this IB.
298
299 * - If more than one half of VRAM is occupied, only allow relocating
300 * 1 MB of data for this IB.
301 *
302 * - From 0 to one half of used VRAM, the threshold decreases
303 * linearly.
304 * __________________
305 * 1/4 of -|\ |
306 * VRAM | \ |
307 * | \ |
308 * | \ |
309 * | \ |
310 * | \ |
311 * | \ |
312 * | \________|1 MB
313 * |----------------|
314 * VRAM 0 % 100 %
315 * used used
316 *
317 * Note: It's a threshold, not a limit. The threshold must be crossed
318 * for buffer relocations to stop, so any buffer of an arbitrary size
319 * can be moved as long as the threshold isn't crossed before
320 * the relocation takes place. We don't want to disable buffer
321 * relocations completely.
322 *
323 * The idea is that buffers should be placed in VRAM at creation time
324 * and TTM should only do a minimum number of relocations during
325 * command submission. In practice, you need to submit at least
326 * a dozen IBs to move all buffers to VRAM if they are in GTT.
327 *
328 * Also, things can get pretty crazy under memory pressure and actual
329 * VRAM usage can change a lot, so playing safe even at 50% does
330 * consistently increase performance.
331 */
332
333 u64 half_vram = real_vram_size >> 1;
334 u64 half_free_vram = vram_usage >= half_vram ? 0 : half_vram - vram_usage;
335 u64 bytes_moved_threshold = half_free_vram >> 1;
336 return max(bytes_moved_threshold, 1024*1024ull);
337 }
338
339 int amdgpu_cs_list_validate(struct amdgpu_device *adev,
340 struct amdgpu_vm *vm,
341 struct list_head *validated)
342 {
343 struct amdgpu_bo_list_entry *lobj;
344 struct amdgpu_bo *bo;
345 u64 bytes_moved = 0, initial_bytes_moved;
346 u64 bytes_moved_threshold = amdgpu_cs_get_threshold_for_moves(adev);
347 int r;
348
349 list_for_each_entry(lobj, validated, tv.head) {
350 bo = lobj->robj;
351 if (!bo->pin_count) {
352 u32 domain = lobj->prefered_domains;
353 u32 current_domain =
354 amdgpu_mem_type_to_domain(bo->tbo.mem.mem_type);
355
356 /* Check if this buffer will be moved and don't move it
357 * if we have moved too many buffers for this IB already.
358 *
359 * Note that this allows moving at least one buffer of
360 * any size, because it doesn't take the current "bo"
361 * into account. We don't want to disallow buffer moves
362 * completely.
363 */
364 if ((lobj->allowed_domains & current_domain) != 0 &&
365 (domain & current_domain) == 0 && /* will be moved */
366 bytes_moved > bytes_moved_threshold) {
367 /* don't move it */
368 domain = current_domain;
369 }
370
371 retry:
372 amdgpu_ttm_placement_from_domain(bo, domain);
373 initial_bytes_moved = atomic64_read(&adev->num_bytes_moved);
374 r = ttm_bo_validate(&bo->tbo, &bo->placement, true, false);
375 bytes_moved += atomic64_read(&adev->num_bytes_moved) -
376 initial_bytes_moved;
377
378 if (unlikely(r)) {
379 if (r != -ERESTARTSYS && domain != lobj->allowed_domains) {
380 domain = lobj->allowed_domains;
381 goto retry;
382 }
383 return r;
384 }
385 }
386 lobj->bo_va = amdgpu_vm_bo_find(vm, bo);
387 }
388 return 0;
389 }
390
391 static int amdgpu_cs_parser_relocs(struct amdgpu_cs_parser *p)
392 {
393 struct amdgpu_fpriv *fpriv = p->filp->driver_priv;
394 struct amdgpu_cs_buckets buckets;
395 struct list_head duplicates;
396 bool need_mmap_lock = false;
397 int i, r;
398
399 if (p->bo_list) {
400 need_mmap_lock = p->bo_list->has_userptr;
401 amdgpu_cs_buckets_init(&buckets);
402 for (i = 0; i < p->bo_list->num_entries; i++)
403 amdgpu_cs_buckets_add(&buckets, &p->bo_list->array[i].tv.head,
404 p->bo_list->array[i].priority);
405
406 amdgpu_cs_buckets_get_list(&buckets, &p->validated);
407 }
408
409 INIT_LIST_HEAD(&duplicates);
410 amdgpu_vm_get_pd_bo(&fpriv->vm, &p->validated, &p->vm_pd);
411
412 if (p->uf.bo)
413 list_add(&p->uf_entry.tv.head, &p->validated);
414
415 if (need_mmap_lock)
416 down_read(&current->mm->mmap_sem);
417
418 r = ttm_eu_reserve_buffers(&p->ticket, &p->validated, true, &duplicates);
419 if (unlikely(r != 0))
420 goto error_reserve;
421
422 amdgpu_vm_get_pt_bos(&fpriv->vm, &duplicates);
423
424 r = amdgpu_cs_list_validate(p->adev, &fpriv->vm, &duplicates);
425 if (r)
426 goto error_validate;
427
428 r = amdgpu_cs_list_validate(p->adev, &fpriv->vm, &p->validated);
429
430 error_validate:
431 if (r) {
432 amdgpu_vm_move_pt_bos_in_lru(p->adev, &fpriv->vm);
433 ttm_eu_backoff_reservation(&p->ticket, &p->validated);
434 }
435
436 error_reserve:
437 if (need_mmap_lock)
438 up_read(&current->mm->mmap_sem);
439
440 return r;
441 }
442
443 static int amdgpu_cs_sync_rings(struct amdgpu_cs_parser *p)
444 {
445 struct amdgpu_bo_list_entry *e;
446 int r;
447
448 list_for_each_entry(e, &p->validated, tv.head) {
449 struct reservation_object *resv = e->robj->tbo.resv;
450 r = amdgpu_sync_resv(p->adev, &p->ibs[0].sync, resv, p->filp);
451
452 if (r)
453 return r;
454 }
455 return 0;
456 }
457
458 static int cmp_size_smaller_first(void *priv, struct list_head *a,
459 struct list_head *b)
460 {
461 struct amdgpu_bo_list_entry *la = list_entry(a, struct amdgpu_bo_list_entry, tv.head);
462 struct amdgpu_bo_list_entry *lb = list_entry(b, struct amdgpu_bo_list_entry, tv.head);
463
464 /* Sort A before B if A is smaller. */
465 return (int)la->robj->tbo.num_pages - (int)lb->robj->tbo.num_pages;
466 }
467
468 /**
469 * cs_parser_fini() - clean parser states
470 * @parser: parser structure holding parsing context.
471 * @error: error number
472 *
473 * If error is set than unvalidate buffer, otherwise just free memory
474 * used by parsing context.
475 **/
476 static void amdgpu_cs_parser_fini(struct amdgpu_cs_parser *parser, int error, bool backoff)
477 {
478 struct amdgpu_fpriv *fpriv = parser->filp->driver_priv;
479 unsigned i;
480
481 if (!error) {
482 amdgpu_vm_move_pt_bos_in_lru(parser->adev, &fpriv->vm);
483
484 /* Sort the buffer list from the smallest to largest buffer,
485 * which affects the order of buffers in the LRU list.
486 * This assures that the smallest buffers are added first
487 * to the LRU list, so they are likely to be later evicted
488 * first, instead of large buffers whose eviction is more
489 * expensive.
490 *
491 * This slightly lowers the number of bytes moved by TTM
492 * per frame under memory pressure.
493 */
494 list_sort(NULL, &parser->validated, cmp_size_smaller_first);
495
496 ttm_eu_fence_buffer_objects(&parser->ticket,
497 &parser->validated,
498 parser->fence);
499 } else if (backoff) {
500 ttm_eu_backoff_reservation(&parser->ticket,
501 &parser->validated);
502 }
503 fence_put(parser->fence);
504
505 if (parser->ctx)
506 amdgpu_ctx_put(parser->ctx);
507 if (parser->bo_list)
508 amdgpu_bo_list_put(parser->bo_list);
509
510 for (i = 0; i < parser->nchunks; i++)
511 drm_free_large(parser->chunks[i].kdata);
512 kfree(parser->chunks);
513 if (parser->ibs)
514 for (i = 0; i < parser->num_ibs; i++)
515 amdgpu_ib_free(parser->adev, &parser->ibs[i]);
516 kfree(parser->ibs);
517 amdgpu_bo_unref(&parser->uf.bo);
518 amdgpu_bo_unref(&parser->uf_entry.robj);
519 }
520
521 static int amdgpu_bo_vm_update_pte(struct amdgpu_cs_parser *p,
522 struct amdgpu_vm *vm)
523 {
524 struct amdgpu_device *adev = p->adev;
525 struct amdgpu_bo_va *bo_va;
526 struct amdgpu_bo *bo;
527 int i, r;
528
529 r = amdgpu_vm_update_page_directory(adev, vm);
530 if (r)
531 return r;
532
533 r = amdgpu_sync_fence(adev, &p->ibs[0].sync, vm->page_directory_fence);
534 if (r)
535 return r;
536
537 r = amdgpu_vm_clear_freed(adev, vm);
538 if (r)
539 return r;
540
541 if (p->bo_list) {
542 for (i = 0; i < p->bo_list->num_entries; i++) {
543 struct fence *f;
544
545 /* ignore duplicates */
546 bo = p->bo_list->array[i].robj;
547 if (!bo)
548 continue;
549
550 bo_va = p->bo_list->array[i].bo_va;
551 if (bo_va == NULL)
552 continue;
553
554 r = amdgpu_vm_bo_update(adev, bo_va, &bo->tbo.mem);
555 if (r)
556 return r;
557
558 f = bo_va->last_pt_update;
559 r = amdgpu_sync_fence(adev, &p->ibs[0].sync, f);
560 if (r)
561 return r;
562 }
563
564 }
565
566 r = amdgpu_vm_clear_invalids(adev, vm, &p->ibs[0].sync);
567
568 if (amdgpu_vm_debug && p->bo_list) {
569 /* Invalidate all BOs to test for userspace bugs */
570 for (i = 0; i < p->bo_list->num_entries; i++) {
571 /* ignore duplicates */
572 bo = p->bo_list->array[i].robj;
573 if (!bo)
574 continue;
575
576 amdgpu_vm_bo_invalidate(adev, bo);
577 }
578 }
579
580 return r;
581 }
582
583 static int amdgpu_cs_ib_vm_chunk(struct amdgpu_device *adev,
584 struct amdgpu_cs_parser *parser)
585 {
586 struct amdgpu_fpriv *fpriv = parser->filp->driver_priv;
587 struct amdgpu_vm *vm = &fpriv->vm;
588 struct amdgpu_ring *ring;
589 int i, r;
590
591 if (parser->num_ibs == 0)
592 return 0;
593
594 /* Only for UVD/VCE VM emulation */
595 for (i = 0; i < parser->num_ibs; i++) {
596 ring = parser->ibs[i].ring;
597 if (ring->funcs->parse_cs) {
598 r = amdgpu_ring_parse_cs(ring, parser, i);
599 if (r)
600 return r;
601 }
602 }
603
604 r = amdgpu_bo_vm_update_pte(parser, vm);
605 if (!r)
606 amdgpu_cs_sync_rings(parser);
607
608 return r;
609 }
610
611 static int amdgpu_cs_handle_lockup(struct amdgpu_device *adev, int r)
612 {
613 if (r == -EDEADLK) {
614 r = amdgpu_gpu_reset(adev);
615 if (!r)
616 r = -EAGAIN;
617 }
618 return r;
619 }
620
621 static int amdgpu_cs_ib_fill(struct amdgpu_device *adev,
622 struct amdgpu_cs_parser *parser)
623 {
624 struct amdgpu_fpriv *fpriv = parser->filp->driver_priv;
625 struct amdgpu_vm *vm = &fpriv->vm;
626 int i, j;
627 int r;
628
629 for (i = 0, j = 0; i < parser->nchunks && j < parser->num_ibs; i++) {
630 struct amdgpu_cs_chunk *chunk;
631 struct amdgpu_ib *ib;
632 struct drm_amdgpu_cs_chunk_ib *chunk_ib;
633 struct amdgpu_ring *ring;
634
635 chunk = &parser->chunks[i];
636 ib = &parser->ibs[j];
637 chunk_ib = (struct drm_amdgpu_cs_chunk_ib *)chunk->kdata;
638
639 if (chunk->chunk_id != AMDGPU_CHUNK_ID_IB)
640 continue;
641
642 r = amdgpu_cs_get_ring(adev, chunk_ib->ip_type,
643 chunk_ib->ip_instance, chunk_ib->ring,
644 &ring);
645 if (r)
646 return r;
647
648 if (ring->funcs->parse_cs) {
649 struct amdgpu_bo_va_mapping *m;
650 struct amdgpu_bo *aobj = NULL;
651 uint64_t offset;
652 uint8_t *kptr;
653
654 m = amdgpu_cs_find_mapping(parser, chunk_ib->va_start,
655 &aobj);
656 if (!aobj) {
657 DRM_ERROR("IB va_start is invalid\n");
658 return -EINVAL;
659 }
660
661 if ((chunk_ib->va_start + chunk_ib->ib_bytes) >
662 (m->it.last + 1) * AMDGPU_GPU_PAGE_SIZE) {
663 DRM_ERROR("IB va_start+ib_bytes is invalid\n");
664 return -EINVAL;
665 }
666
667 /* the IB should be reserved at this point */
668 r = amdgpu_bo_kmap(aobj, (void **)&kptr);
669 if (r) {
670 return r;
671 }
672
673 offset = ((uint64_t)m->it.start) * AMDGPU_GPU_PAGE_SIZE;
674 kptr += chunk_ib->va_start - offset;
675
676 r = amdgpu_ib_get(ring, NULL, chunk_ib->ib_bytes, ib);
677 if (r) {
678 DRM_ERROR("Failed to get ib !\n");
679 return r;
680 }
681
682 memcpy(ib->ptr, kptr, chunk_ib->ib_bytes);
683 amdgpu_bo_kunmap(aobj);
684 } else {
685 r = amdgpu_ib_get(ring, vm, 0, ib);
686 if (r) {
687 DRM_ERROR("Failed to get ib !\n");
688 return r;
689 }
690
691 ib->gpu_addr = chunk_ib->va_start;
692 }
693
694 ib->length_dw = chunk_ib->ib_bytes / 4;
695 ib->flags = chunk_ib->flags;
696 ib->ctx = parser->ctx;
697 j++;
698 }
699
700 if (!parser->num_ibs)
701 return 0;
702
703 /* add GDS resources to first IB */
704 if (parser->bo_list) {
705 struct amdgpu_bo *gds = parser->bo_list->gds_obj;
706 struct amdgpu_bo *gws = parser->bo_list->gws_obj;
707 struct amdgpu_bo *oa = parser->bo_list->oa_obj;
708 struct amdgpu_ib *ib = &parser->ibs[0];
709
710 if (gds) {
711 ib->gds_base = amdgpu_bo_gpu_offset(gds);
712 ib->gds_size = amdgpu_bo_size(gds);
713 }
714 if (gws) {
715 ib->gws_base = amdgpu_bo_gpu_offset(gws);
716 ib->gws_size = amdgpu_bo_size(gws);
717 }
718 if (oa) {
719 ib->oa_base = amdgpu_bo_gpu_offset(oa);
720 ib->oa_size = amdgpu_bo_size(oa);
721 }
722 }
723 /* wrap the last IB with user fence */
724 if (parser->uf.bo) {
725 struct amdgpu_ib *ib = &parser->ibs[parser->num_ibs - 1];
726
727 /* UVD & VCE fw doesn't support user fences */
728 if (ib->ring->type == AMDGPU_RING_TYPE_UVD ||
729 ib->ring->type == AMDGPU_RING_TYPE_VCE)
730 return -EINVAL;
731
732 ib->user = &parser->uf;
733 }
734
735 return 0;
736 }
737
738 static int amdgpu_cs_dependencies(struct amdgpu_device *adev,
739 struct amdgpu_cs_parser *p)
740 {
741 struct amdgpu_fpriv *fpriv = p->filp->driver_priv;
742 struct amdgpu_ib *ib;
743 int i, j, r;
744
745 if (!p->num_ibs)
746 return 0;
747
748 /* Add dependencies to first IB */
749 ib = &p->ibs[0];
750 for (i = 0; i < p->nchunks; ++i) {
751 struct drm_amdgpu_cs_chunk_dep *deps;
752 struct amdgpu_cs_chunk *chunk;
753 unsigned num_deps;
754
755 chunk = &p->chunks[i];
756
757 if (chunk->chunk_id != AMDGPU_CHUNK_ID_DEPENDENCIES)
758 continue;
759
760 deps = (struct drm_amdgpu_cs_chunk_dep *)chunk->kdata;
761 num_deps = chunk->length_dw * 4 /
762 sizeof(struct drm_amdgpu_cs_chunk_dep);
763
764 for (j = 0; j < num_deps; ++j) {
765 struct amdgpu_ring *ring;
766 struct amdgpu_ctx *ctx;
767 struct fence *fence;
768
769 r = amdgpu_cs_get_ring(adev, deps[j].ip_type,
770 deps[j].ip_instance,
771 deps[j].ring, &ring);
772 if (r)
773 return r;
774
775 ctx = amdgpu_ctx_get(fpriv, deps[j].ctx_id);
776 if (ctx == NULL)
777 return -EINVAL;
778
779 fence = amdgpu_ctx_get_fence(ctx, ring,
780 deps[j].handle);
781 if (IS_ERR(fence)) {
782 r = PTR_ERR(fence);
783 amdgpu_ctx_put(ctx);
784 return r;
785
786 } else if (fence) {
787 r = amdgpu_sync_fence(adev, &ib->sync, fence);
788 fence_put(fence);
789 amdgpu_ctx_put(ctx);
790 if (r)
791 return r;
792 }
793 }
794 }
795
796 return 0;
797 }
798
799 static int amdgpu_cs_free_job(struct amdgpu_job *job)
800 {
801 int i;
802 if (job->ibs)
803 for (i = 0; i < job->num_ibs; i++)
804 amdgpu_ib_free(job->adev, &job->ibs[i]);
805 kfree(job->ibs);
806 if (job->uf.bo)
807 amdgpu_bo_unref(&job->uf.bo);
808 return 0;
809 }
810
811 int amdgpu_cs_ioctl(struct drm_device *dev, void *data, struct drm_file *filp)
812 {
813 struct amdgpu_device *adev = dev->dev_private;
814 union drm_amdgpu_cs *cs = data;
815 struct amdgpu_cs_parser parser = {};
816 bool reserved_buffers = false;
817 int i, r;
818
819 if (!adev->accel_working)
820 return -EBUSY;
821
822 parser.adev = adev;
823 parser.filp = filp;
824
825 r = amdgpu_cs_parser_init(&parser, data);
826 if (r) {
827 DRM_ERROR("Failed to initialize parser !\n");
828 amdgpu_cs_parser_fini(&parser, r, false);
829 r = amdgpu_cs_handle_lockup(adev, r);
830 return r;
831 }
832 r = amdgpu_cs_parser_relocs(&parser);
833 if (r == -ENOMEM)
834 DRM_ERROR("Not enough memory for command submission!\n");
835 else if (r && r != -ERESTARTSYS)
836 DRM_ERROR("Failed to process the buffer list %d!\n", r);
837 else if (!r) {
838 reserved_buffers = true;
839 r = amdgpu_cs_ib_fill(adev, &parser);
840 }
841
842 if (!r) {
843 r = amdgpu_cs_dependencies(adev, &parser);
844 if (r)
845 DRM_ERROR("Failed in the dependencies handling %d!\n", r);
846 }
847
848 if (r)
849 goto out;
850
851 for (i = 0; i < parser.num_ibs; i++)
852 trace_amdgpu_cs(&parser, i);
853
854 r = amdgpu_cs_ib_vm_chunk(adev, &parser);
855 if (r)
856 goto out;
857
858 if (amdgpu_enable_scheduler && parser.num_ibs) {
859 struct amdgpu_ring * ring = parser.ibs->ring;
860 struct amd_sched_fence *fence;
861 struct amdgpu_job *job;
862
863 job = kzalloc(sizeof(struct amdgpu_job), GFP_KERNEL);
864 if (!job) {
865 r = -ENOMEM;
866 goto out;
867 }
868
869 job->base.sched = &ring->sched;
870 job->base.s_entity = &parser.ctx->rings[ring->idx].entity;
871 job->adev = parser.adev;
872 job->owner = parser.filp;
873 job->free_job = amdgpu_cs_free_job;
874
875 job->ibs = parser.ibs;
876 job->num_ibs = parser.num_ibs;
877 parser.ibs = NULL;
878 parser.num_ibs = 0;
879
880 if (job->ibs[job->num_ibs - 1].user) {
881 job->uf = parser.uf;
882 job->ibs[job->num_ibs - 1].user = &job->uf;
883 parser.uf.bo = NULL;
884 }
885
886 fence = amd_sched_fence_create(job->base.s_entity,
887 parser.filp);
888 if (!fence) {
889 r = -ENOMEM;
890 amdgpu_cs_free_job(job);
891 kfree(job);
892 goto out;
893 }
894 job->base.s_fence = fence;
895 parser.fence = fence_get(&fence->base);
896
897 cs->out.handle = amdgpu_ctx_add_fence(parser.ctx, ring,
898 &fence->base);
899 job->ibs[job->num_ibs - 1].sequence = cs->out.handle;
900
901 trace_amdgpu_cs_ioctl(job);
902 amd_sched_entity_push_job(&job->base);
903
904 } else {
905 struct amdgpu_fence *fence;
906
907 r = amdgpu_ib_schedule(adev, parser.num_ibs, parser.ibs,
908 parser.filp);
909 fence = parser.ibs[parser.num_ibs - 1].fence;
910 parser.fence = fence_get(&fence->base);
911 cs->out.handle = parser.ibs[parser.num_ibs - 1].sequence;
912 }
913
914 out:
915 amdgpu_cs_parser_fini(&parser, r, reserved_buffers);
916 r = amdgpu_cs_handle_lockup(adev, r);
917 return r;
918 }
919
920 /**
921 * amdgpu_cs_wait_ioctl - wait for a command submission to finish
922 *
923 * @dev: drm device
924 * @data: data from userspace
925 * @filp: file private
926 *
927 * Wait for the command submission identified by handle to finish.
928 */
929 int amdgpu_cs_wait_ioctl(struct drm_device *dev, void *data,
930 struct drm_file *filp)
931 {
932 union drm_amdgpu_wait_cs *wait = data;
933 struct amdgpu_device *adev = dev->dev_private;
934 unsigned long timeout = amdgpu_gem_timeout(wait->in.timeout);
935 struct amdgpu_ring *ring = NULL;
936 struct amdgpu_ctx *ctx;
937 struct fence *fence;
938 long r;
939
940 r = amdgpu_cs_get_ring(adev, wait->in.ip_type, wait->in.ip_instance,
941 wait->in.ring, &ring);
942 if (r)
943 return r;
944
945 ctx = amdgpu_ctx_get(filp->driver_priv, wait->in.ctx_id);
946 if (ctx == NULL)
947 return -EINVAL;
948
949 fence = amdgpu_ctx_get_fence(ctx, ring, wait->in.handle);
950 if (IS_ERR(fence))
951 r = PTR_ERR(fence);
952 else if (fence) {
953 r = fence_wait_timeout(fence, true, timeout);
954 fence_put(fence);
955 } else
956 r = 1;
957
958 amdgpu_ctx_put(ctx);
959 if (r < 0)
960 return r;
961
962 memset(wait, 0, sizeof(*wait));
963 wait->out.status = (r == 0);
964
965 return 0;
966 }
967
968 /**
969 * amdgpu_cs_find_bo_va - find bo_va for VM address
970 *
971 * @parser: command submission parser context
972 * @addr: VM address
973 * @bo: resulting BO of the mapping found
974 *
975 * Search the buffer objects in the command submission context for a certain
976 * virtual memory address. Returns allocation structure when found, NULL
977 * otherwise.
978 */
979 struct amdgpu_bo_va_mapping *
980 amdgpu_cs_find_mapping(struct amdgpu_cs_parser *parser,
981 uint64_t addr, struct amdgpu_bo **bo)
982 {
983 struct amdgpu_bo_list_entry *reloc;
984 struct amdgpu_bo_va_mapping *mapping;
985
986 addr /= AMDGPU_GPU_PAGE_SIZE;
987
988 list_for_each_entry(reloc, &parser->validated, tv.head) {
989 if (!reloc->bo_va)
990 continue;
991
992 list_for_each_entry(mapping, &reloc->bo_va->valids, list) {
993 if (mapping->it.start > addr ||
994 addr > mapping->it.last)
995 continue;
996
997 *bo = reloc->bo_va->bo;
998 return mapping;
999 }
1000
1001 list_for_each_entry(mapping, &reloc->bo_va->invalids, list) {
1002 if (mapping->it.start > addr ||
1003 addr > mapping->it.last)
1004 continue;
1005
1006 *bo = reloc->bo_va->bo;
1007 return mapping;
1008 }
1009 }
1010
1011 return NULL;
1012 }