]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/gpu/drm/amd/amdgpu/amdgpu_ttm.c
drm/amdgpu: Consolidate visible vs. real vram check v2.
[mirror_ubuntu-jammy-kernel.git] / drivers / gpu / drm / amd / amdgpu / amdgpu_ttm.c
1 /*
2 * Copyright 2009 Jerome Glisse.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sub license, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19 * USE OR OTHER DEALINGS IN THE SOFTWARE.
20 *
21 * The above copyright notice and this permission notice (including the
22 * next paragraph) shall be included in all copies or substantial portions
23 * of the Software.
24 *
25 */
26 /*
27 * Authors:
28 * Jerome Glisse <glisse@freedesktop.org>
29 * Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
30 * Dave Airlie
31 */
32 #include <drm/ttm/ttm_bo_api.h>
33 #include <drm/ttm/ttm_bo_driver.h>
34 #include <drm/ttm/ttm_placement.h>
35 #include <drm/ttm/ttm_module.h>
36 #include <drm/ttm/ttm_page_alloc.h>
37 #include <drm/drmP.h>
38 #include <drm/amdgpu_drm.h>
39 #include <linux/seq_file.h>
40 #include <linux/slab.h>
41 #include <linux/swiotlb.h>
42 #include <linux/swap.h>
43 #include <linux/pagemap.h>
44 #include <linux/debugfs.h>
45 #include <linux/iommu.h>
46 #include "amdgpu.h"
47 #include "amdgpu_object.h"
48 #include "amdgpu_trace.h"
49 #include "amdgpu_amdkfd.h"
50 #include "bif/bif_4_1_d.h"
51
52 #define DRM_FILE_PAGE_OFFSET (0x100000000ULL >> PAGE_SHIFT)
53
54 static int amdgpu_map_buffer(struct ttm_buffer_object *bo,
55 struct ttm_mem_reg *mem, unsigned num_pages,
56 uint64_t offset, unsigned window,
57 struct amdgpu_ring *ring,
58 uint64_t *addr);
59
60 static int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev);
61 static void amdgpu_ttm_debugfs_fini(struct amdgpu_device *adev);
62
63 /*
64 * Global memory.
65 */
66
67 /**
68 * amdgpu_ttm_mem_global_init - Initialize and acquire reference to
69 * memory object
70 *
71 * @ref: Object for initialization.
72 *
73 * This is called by drm_global_item_ref() when an object is being
74 * initialized.
75 */
76 static int amdgpu_ttm_mem_global_init(struct drm_global_reference *ref)
77 {
78 return ttm_mem_global_init(ref->object);
79 }
80
81 /**
82 * amdgpu_ttm_mem_global_release - Drop reference to a memory object
83 *
84 * @ref: Object being removed
85 *
86 * This is called by drm_global_item_unref() when an object is being
87 * released.
88 */
89 static void amdgpu_ttm_mem_global_release(struct drm_global_reference *ref)
90 {
91 ttm_mem_global_release(ref->object);
92 }
93
94 /**
95 * amdgpu_ttm_global_init - Initialize global TTM memory reference
96 * structures.
97 *
98 * @adev: AMDGPU device for which the global structures need to be
99 * registered.
100 *
101 * This is called as part of the AMDGPU ttm init from amdgpu_ttm_init()
102 * during bring up.
103 */
104 static int amdgpu_ttm_global_init(struct amdgpu_device *adev)
105 {
106 struct drm_global_reference *global_ref;
107 struct amdgpu_ring *ring;
108 struct drm_sched_rq *rq;
109 int r;
110
111 /* ensure reference is false in case init fails */
112 adev->mman.mem_global_referenced = false;
113
114 global_ref = &adev->mman.mem_global_ref;
115 global_ref->global_type = DRM_GLOBAL_TTM_MEM;
116 global_ref->size = sizeof(struct ttm_mem_global);
117 global_ref->init = &amdgpu_ttm_mem_global_init;
118 global_ref->release = &amdgpu_ttm_mem_global_release;
119 r = drm_global_item_ref(global_ref);
120 if (r) {
121 DRM_ERROR("Failed setting up TTM memory accounting "
122 "subsystem.\n");
123 goto error_mem;
124 }
125
126 adev->mman.bo_global_ref.mem_glob =
127 adev->mman.mem_global_ref.object;
128 global_ref = &adev->mman.bo_global_ref.ref;
129 global_ref->global_type = DRM_GLOBAL_TTM_BO;
130 global_ref->size = sizeof(struct ttm_bo_global);
131 global_ref->init = &ttm_bo_global_init;
132 global_ref->release = &ttm_bo_global_release;
133 r = drm_global_item_ref(global_ref);
134 if (r) {
135 DRM_ERROR("Failed setting up TTM BO subsystem.\n");
136 goto error_bo;
137 }
138
139 mutex_init(&adev->mman.gtt_window_lock);
140
141 ring = adev->mman.buffer_funcs_ring;
142 rq = &ring->sched.sched_rq[DRM_SCHED_PRIORITY_KERNEL];
143 r = drm_sched_entity_init(&ring->sched, &adev->mman.entity,
144 rq, NULL);
145 if (r) {
146 DRM_ERROR("Failed setting up TTM BO move run queue.\n");
147 goto error_entity;
148 }
149
150 adev->mman.mem_global_referenced = true;
151
152 return 0;
153
154 error_entity:
155 drm_global_item_unref(&adev->mman.bo_global_ref.ref);
156 error_bo:
157 drm_global_item_unref(&adev->mman.mem_global_ref);
158 error_mem:
159 return r;
160 }
161
162 static void amdgpu_ttm_global_fini(struct amdgpu_device *adev)
163 {
164 if (adev->mman.mem_global_referenced) {
165 drm_sched_entity_fini(adev->mman.entity.sched,
166 &adev->mman.entity);
167 mutex_destroy(&adev->mman.gtt_window_lock);
168 drm_global_item_unref(&adev->mman.bo_global_ref.ref);
169 drm_global_item_unref(&adev->mman.mem_global_ref);
170 adev->mman.mem_global_referenced = false;
171 }
172 }
173
174 static int amdgpu_invalidate_caches(struct ttm_bo_device *bdev, uint32_t flags)
175 {
176 return 0;
177 }
178
179 /**
180 * amdgpu_init_mem_type - Initialize a memory manager for a specific
181 * type of memory request.
182 *
183 * @bdev: The TTM BO device object (contains a reference to
184 * amdgpu_device)
185 * @type: The type of memory requested
186 * @man:
187 *
188 * This is called by ttm_bo_init_mm() when a buffer object is being
189 * initialized.
190 */
191 static int amdgpu_init_mem_type(struct ttm_bo_device *bdev, uint32_t type,
192 struct ttm_mem_type_manager *man)
193 {
194 struct amdgpu_device *adev;
195
196 adev = amdgpu_ttm_adev(bdev);
197
198 switch (type) {
199 case TTM_PL_SYSTEM:
200 /* System memory */
201 man->flags = TTM_MEMTYPE_FLAG_MAPPABLE;
202 man->available_caching = TTM_PL_MASK_CACHING;
203 man->default_caching = TTM_PL_FLAG_CACHED;
204 break;
205 case TTM_PL_TT:
206 /* GTT memory */
207 man->func = &amdgpu_gtt_mgr_func;
208 man->gpu_offset = adev->gmc.gart_start;
209 man->available_caching = TTM_PL_MASK_CACHING;
210 man->default_caching = TTM_PL_FLAG_CACHED;
211 man->flags = TTM_MEMTYPE_FLAG_MAPPABLE | TTM_MEMTYPE_FLAG_CMA;
212 break;
213 case TTM_PL_VRAM:
214 /* "On-card" video ram */
215 man->func = &amdgpu_vram_mgr_func;
216 man->gpu_offset = adev->gmc.vram_start;
217 man->flags = TTM_MEMTYPE_FLAG_FIXED |
218 TTM_MEMTYPE_FLAG_MAPPABLE;
219 man->available_caching = TTM_PL_FLAG_UNCACHED | TTM_PL_FLAG_WC;
220 man->default_caching = TTM_PL_FLAG_WC;
221 break;
222 case AMDGPU_PL_GDS:
223 case AMDGPU_PL_GWS:
224 case AMDGPU_PL_OA:
225 /* On-chip GDS memory*/
226 man->func = &ttm_bo_manager_func;
227 man->gpu_offset = 0;
228 man->flags = TTM_MEMTYPE_FLAG_FIXED | TTM_MEMTYPE_FLAG_CMA;
229 man->available_caching = TTM_PL_FLAG_UNCACHED;
230 man->default_caching = TTM_PL_FLAG_UNCACHED;
231 break;
232 default:
233 DRM_ERROR("Unsupported memory type %u\n", (unsigned)type);
234 return -EINVAL;
235 }
236 return 0;
237 }
238
239 /**
240 * amdgpu_evict_flags - Compute placement flags
241 *
242 * @bo: The buffer object to evict
243 * @placement: Possible destination(s) for evicted BO
244 *
245 * Fill in placement data when ttm_bo_evict() is called
246 */
247 static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
248 struct ttm_placement *placement)
249 {
250 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
251 struct amdgpu_bo *abo;
252 static const struct ttm_place placements = {
253 .fpfn = 0,
254 .lpfn = 0,
255 .flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_SYSTEM
256 };
257
258 /* Don't handle scatter gather BOs */
259 if (bo->type == ttm_bo_type_sg) {
260 placement->num_placement = 0;
261 placement->num_busy_placement = 0;
262 return;
263 }
264
265 /* Object isn't an AMDGPU object so ignore */
266 if (!amdgpu_ttm_bo_is_amdgpu_bo(bo)) {
267 placement->placement = &placements;
268 placement->busy_placement = &placements;
269 placement->num_placement = 1;
270 placement->num_busy_placement = 1;
271 return;
272 }
273
274 abo = ttm_to_amdgpu_bo(bo);
275 switch (bo->mem.mem_type) {
276 case TTM_PL_VRAM:
277 if (!adev->mman.buffer_funcs_enabled) {
278 /* Move to system memory */
279 amdgpu_ttm_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
280 } else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
281 !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
282 amdgpu_bo_in_cpu_visible_vram(abo)) {
283
284 /* Try evicting to the CPU inaccessible part of VRAM
285 * first, but only set GTT as busy placement, so this
286 * BO will be evicted to GTT rather than causing other
287 * BOs to be evicted from VRAM
288 */
289 amdgpu_ttm_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
290 AMDGPU_GEM_DOMAIN_GTT);
291 abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
292 abo->placements[0].lpfn = 0;
293 abo->placement.busy_placement = &abo->placements[1];
294 abo->placement.num_busy_placement = 1;
295 } else {
296 /* Move to GTT memory */
297 amdgpu_ttm_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT);
298 }
299 break;
300 case TTM_PL_TT:
301 default:
302 amdgpu_ttm_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
303 }
304 *placement = abo->placement;
305 }
306
307 /**
308 * amdgpu_verify_access - Verify access for a mmap call
309 *
310 * @bo: The buffer object to map
311 * @filp: The file pointer from the process performing the mmap
312 *
313 * This is called by ttm_bo_mmap() to verify whether a process
314 * has the right to mmap a BO to their process space.
315 */
316 static int amdgpu_verify_access(struct ttm_buffer_object *bo, struct file *filp)
317 {
318 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
319
320 /*
321 * Don't verify access for KFD BOs. They don't have a GEM
322 * object associated with them.
323 */
324 if (abo->kfd_bo)
325 return 0;
326
327 if (amdgpu_ttm_tt_get_usermm(bo->ttm))
328 return -EPERM;
329 return drm_vma_node_verify_access(&abo->gem_base.vma_node,
330 filp->private_data);
331 }
332
333 /**
334 * amdgpu_move_null - Register memory for a buffer object
335 *
336 * @bo: The bo to assign the memory to
337 * @new_mem: The memory to be assigned.
338 *
339 * Assign the memory from new_mem to the memory of the buffer object
340 * bo.
341 */
342 static void amdgpu_move_null(struct ttm_buffer_object *bo,
343 struct ttm_mem_reg *new_mem)
344 {
345 struct ttm_mem_reg *old_mem = &bo->mem;
346
347 BUG_ON(old_mem->mm_node != NULL);
348 *old_mem = *new_mem;
349 new_mem->mm_node = NULL;
350 }
351
352 /**
353 * amdgpu_mm_node_addr - Compute the GPU relative offset of a GTT
354 * buffer.
355 */
356 static uint64_t amdgpu_mm_node_addr(struct ttm_buffer_object *bo,
357 struct drm_mm_node *mm_node,
358 struct ttm_mem_reg *mem)
359 {
360 uint64_t addr = 0;
361
362 if (mem->mem_type != TTM_PL_TT || amdgpu_gtt_mgr_has_gart_addr(mem)) {
363 addr = mm_node->start << PAGE_SHIFT;
364 addr += bo->bdev->man[mem->mem_type].gpu_offset;
365 }
366 return addr;
367 }
368
369 /**
370 * amdgpu_find_mm_node - Helper function finds the drm_mm_node
371 * corresponding to @offset. It also modifies
372 * the offset to be within the drm_mm_node
373 * returned
374 */
375 static struct drm_mm_node *amdgpu_find_mm_node(struct ttm_mem_reg *mem,
376 unsigned long *offset)
377 {
378 struct drm_mm_node *mm_node = mem->mm_node;
379
380 while (*offset >= (mm_node->size << PAGE_SHIFT)) {
381 *offset -= (mm_node->size << PAGE_SHIFT);
382 ++mm_node;
383 }
384 return mm_node;
385 }
386
387 /**
388 * amdgpu_copy_ttm_mem_to_mem - Helper function for copy
389 *
390 * The function copies @size bytes from {src->mem + src->offset} to
391 * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
392 * move and different for a BO to BO copy.
393 *
394 * @f: Returns the last fence if multiple jobs are submitted.
395 */
396 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
397 struct amdgpu_copy_mem *src,
398 struct amdgpu_copy_mem *dst,
399 uint64_t size,
400 struct reservation_object *resv,
401 struct dma_fence **f)
402 {
403 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
404 struct drm_mm_node *src_mm, *dst_mm;
405 uint64_t src_node_start, dst_node_start, src_node_size,
406 dst_node_size, src_page_offset, dst_page_offset;
407 struct dma_fence *fence = NULL;
408 int r = 0;
409 const uint64_t GTT_MAX_BYTES = (AMDGPU_GTT_MAX_TRANSFER_SIZE *
410 AMDGPU_GPU_PAGE_SIZE);
411
412 if (!adev->mman.buffer_funcs_enabled) {
413 DRM_ERROR("Trying to move memory with ring turned off.\n");
414 return -EINVAL;
415 }
416
417 src_mm = amdgpu_find_mm_node(src->mem, &src->offset);
418 src_node_start = amdgpu_mm_node_addr(src->bo, src_mm, src->mem) +
419 src->offset;
420 src_node_size = (src_mm->size << PAGE_SHIFT) - src->offset;
421 src_page_offset = src_node_start & (PAGE_SIZE - 1);
422
423 dst_mm = amdgpu_find_mm_node(dst->mem, &dst->offset);
424 dst_node_start = amdgpu_mm_node_addr(dst->bo, dst_mm, dst->mem) +
425 dst->offset;
426 dst_node_size = (dst_mm->size << PAGE_SHIFT) - dst->offset;
427 dst_page_offset = dst_node_start & (PAGE_SIZE - 1);
428
429 mutex_lock(&adev->mman.gtt_window_lock);
430
431 while (size) {
432 unsigned long cur_size;
433 uint64_t from = src_node_start, to = dst_node_start;
434 struct dma_fence *next;
435
436 /* Copy size cannot exceed GTT_MAX_BYTES. So if src or dst
437 * begins at an offset, then adjust the size accordingly
438 */
439 cur_size = min3(min(src_node_size, dst_node_size), size,
440 GTT_MAX_BYTES);
441 if (cur_size + src_page_offset > GTT_MAX_BYTES ||
442 cur_size + dst_page_offset > GTT_MAX_BYTES)
443 cur_size -= max(src_page_offset, dst_page_offset);
444
445 /* Map only what needs to be accessed. Map src to window 0 and
446 * dst to window 1
447 */
448 if (src->mem->mem_type == TTM_PL_TT &&
449 !amdgpu_gtt_mgr_has_gart_addr(src->mem)) {
450 r = amdgpu_map_buffer(src->bo, src->mem,
451 PFN_UP(cur_size + src_page_offset),
452 src_node_start, 0, ring,
453 &from);
454 if (r)
455 goto error;
456 /* Adjust the offset because amdgpu_map_buffer returns
457 * start of mapped page
458 */
459 from += src_page_offset;
460 }
461
462 if (dst->mem->mem_type == TTM_PL_TT &&
463 !amdgpu_gtt_mgr_has_gart_addr(dst->mem)) {
464 r = amdgpu_map_buffer(dst->bo, dst->mem,
465 PFN_UP(cur_size + dst_page_offset),
466 dst_node_start, 1, ring,
467 &to);
468 if (r)
469 goto error;
470 to += dst_page_offset;
471 }
472
473 r = amdgpu_copy_buffer(ring, from, to, cur_size,
474 resv, &next, false, true);
475 if (r)
476 goto error;
477
478 dma_fence_put(fence);
479 fence = next;
480
481 size -= cur_size;
482 if (!size)
483 break;
484
485 src_node_size -= cur_size;
486 if (!src_node_size) {
487 src_node_start = amdgpu_mm_node_addr(src->bo, ++src_mm,
488 src->mem);
489 src_node_size = (src_mm->size << PAGE_SHIFT);
490 } else {
491 src_node_start += cur_size;
492 src_page_offset = src_node_start & (PAGE_SIZE - 1);
493 }
494 dst_node_size -= cur_size;
495 if (!dst_node_size) {
496 dst_node_start = amdgpu_mm_node_addr(dst->bo, ++dst_mm,
497 dst->mem);
498 dst_node_size = (dst_mm->size << PAGE_SHIFT);
499 } else {
500 dst_node_start += cur_size;
501 dst_page_offset = dst_node_start & (PAGE_SIZE - 1);
502 }
503 }
504 error:
505 mutex_unlock(&adev->mman.gtt_window_lock);
506 if (f)
507 *f = dma_fence_get(fence);
508 dma_fence_put(fence);
509 return r;
510 }
511
512 /**
513 * amdgpu_move_blit - Copy an entire buffer to another buffer
514 *
515 * This is a helper called by amdgpu_bo_move() and
516 * amdgpu_move_vram_ram() to help move buffers to and from VRAM.
517 */
518 static int amdgpu_move_blit(struct ttm_buffer_object *bo,
519 bool evict, bool no_wait_gpu,
520 struct ttm_mem_reg *new_mem,
521 struct ttm_mem_reg *old_mem)
522 {
523 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
524 struct amdgpu_copy_mem src, dst;
525 struct dma_fence *fence = NULL;
526 int r;
527
528 src.bo = bo;
529 dst.bo = bo;
530 src.mem = old_mem;
531 dst.mem = new_mem;
532 src.offset = 0;
533 dst.offset = 0;
534
535 r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
536 new_mem->num_pages << PAGE_SHIFT,
537 bo->resv, &fence);
538 if (r)
539 goto error;
540
541 r = ttm_bo_pipeline_move(bo, fence, evict, new_mem);
542 dma_fence_put(fence);
543 return r;
544
545 error:
546 if (fence)
547 dma_fence_wait(fence, false);
548 dma_fence_put(fence);
549 return r;
550 }
551
552 /**
553 * amdgpu_move_vram_ram - Copy VRAM buffer to RAM buffer
554 *
555 * Called by amdgpu_bo_move().
556 */
557 static int amdgpu_move_vram_ram(struct ttm_buffer_object *bo, bool evict,
558 struct ttm_operation_ctx *ctx,
559 struct ttm_mem_reg *new_mem)
560 {
561 struct amdgpu_device *adev;
562 struct ttm_mem_reg *old_mem = &bo->mem;
563 struct ttm_mem_reg tmp_mem;
564 struct ttm_place placements;
565 struct ttm_placement placement;
566 int r;
567
568 adev = amdgpu_ttm_adev(bo->bdev);
569
570 /* create space/pages for new_mem in GTT space */
571 tmp_mem = *new_mem;
572 tmp_mem.mm_node = NULL;
573 placement.num_placement = 1;
574 placement.placement = &placements;
575 placement.num_busy_placement = 1;
576 placement.busy_placement = &placements;
577 placements.fpfn = 0;
578 placements.lpfn = 0;
579 placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT;
580 r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx);
581 if (unlikely(r)) {
582 return r;
583 }
584
585 /* set caching flags */
586 r = ttm_tt_set_placement_caching(bo->ttm, tmp_mem.placement);
587 if (unlikely(r)) {
588 goto out_cleanup;
589 }
590
591 /* Bind the memory to the GTT space */
592 r = ttm_tt_bind(bo->ttm, &tmp_mem, ctx);
593 if (unlikely(r)) {
594 goto out_cleanup;
595 }
596
597 /* blit VRAM to GTT */
598 r = amdgpu_move_blit(bo, true, ctx->no_wait_gpu, &tmp_mem, old_mem);
599 if (unlikely(r)) {
600 goto out_cleanup;
601 }
602
603 /* move BO (in tmp_mem) to new_mem */
604 r = ttm_bo_move_ttm(bo, ctx, new_mem);
605 out_cleanup:
606 ttm_bo_mem_put(bo, &tmp_mem);
607 return r;
608 }
609
610 /**
611 * amdgpu_move_ram_vram - Copy buffer from RAM to VRAM
612 *
613 * Called by amdgpu_bo_move().
614 */
615 static int amdgpu_move_ram_vram(struct ttm_buffer_object *bo, bool evict,
616 struct ttm_operation_ctx *ctx,
617 struct ttm_mem_reg *new_mem)
618 {
619 struct amdgpu_device *adev;
620 struct ttm_mem_reg *old_mem = &bo->mem;
621 struct ttm_mem_reg tmp_mem;
622 struct ttm_placement placement;
623 struct ttm_place placements;
624 int r;
625
626 adev = amdgpu_ttm_adev(bo->bdev);
627
628 /* make space in GTT for old_mem buffer */
629 tmp_mem = *new_mem;
630 tmp_mem.mm_node = NULL;
631 placement.num_placement = 1;
632 placement.placement = &placements;
633 placement.num_busy_placement = 1;
634 placement.busy_placement = &placements;
635 placements.fpfn = 0;
636 placements.lpfn = 0;
637 placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT;
638 r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx);
639 if (unlikely(r)) {
640 return r;
641 }
642
643 /* move/bind old memory to GTT space */
644 r = ttm_bo_move_ttm(bo, ctx, &tmp_mem);
645 if (unlikely(r)) {
646 goto out_cleanup;
647 }
648
649 /* copy to VRAM */
650 r = amdgpu_move_blit(bo, true, ctx->no_wait_gpu, new_mem, old_mem);
651 if (unlikely(r)) {
652 goto out_cleanup;
653 }
654 out_cleanup:
655 ttm_bo_mem_put(bo, &tmp_mem);
656 return r;
657 }
658
659 /**
660 * amdgpu_bo_move - Move a buffer object to a new memory location
661 *
662 * Called by ttm_bo_handle_move_mem()
663 */
664 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
665 struct ttm_operation_ctx *ctx,
666 struct ttm_mem_reg *new_mem)
667 {
668 struct amdgpu_device *adev;
669 struct amdgpu_bo *abo;
670 struct ttm_mem_reg *old_mem = &bo->mem;
671 int r;
672
673 /* Can't move a pinned BO */
674 abo = ttm_to_amdgpu_bo(bo);
675 if (WARN_ON_ONCE(abo->pin_count > 0))
676 return -EINVAL;
677
678 adev = amdgpu_ttm_adev(bo->bdev);
679
680 if (old_mem->mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
681 amdgpu_move_null(bo, new_mem);
682 return 0;
683 }
684 if ((old_mem->mem_type == TTM_PL_TT &&
685 new_mem->mem_type == TTM_PL_SYSTEM) ||
686 (old_mem->mem_type == TTM_PL_SYSTEM &&
687 new_mem->mem_type == TTM_PL_TT)) {
688 /* bind is enough */
689 amdgpu_move_null(bo, new_mem);
690 return 0;
691 }
692
693 if (!adev->mman.buffer_funcs_enabled)
694 goto memcpy;
695
696 if (old_mem->mem_type == TTM_PL_VRAM &&
697 new_mem->mem_type == TTM_PL_SYSTEM) {
698 r = amdgpu_move_vram_ram(bo, evict, ctx, new_mem);
699 } else if (old_mem->mem_type == TTM_PL_SYSTEM &&
700 new_mem->mem_type == TTM_PL_VRAM) {
701 r = amdgpu_move_ram_vram(bo, evict, ctx, new_mem);
702 } else {
703 r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu,
704 new_mem, old_mem);
705 }
706
707 if (r) {
708 memcpy:
709 r = ttm_bo_move_memcpy(bo, ctx, new_mem);
710 if (r) {
711 return r;
712 }
713 }
714
715 if (bo->type == ttm_bo_type_device &&
716 new_mem->mem_type == TTM_PL_VRAM &&
717 old_mem->mem_type != TTM_PL_VRAM) {
718 /* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
719 * accesses the BO after it's moved.
720 */
721 abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
722 }
723
724 /* update statistics */
725 atomic64_add((u64)bo->num_pages << PAGE_SHIFT, &adev->num_bytes_moved);
726 return 0;
727 }
728
729 /**
730 * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
731 *
732 * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
733 */
734 static int amdgpu_ttm_io_mem_reserve(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
735 {
736 struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
737 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
738 struct drm_mm_node *mm_node = mem->mm_node;
739
740 mem->bus.addr = NULL;
741 mem->bus.offset = 0;
742 mem->bus.size = mem->num_pages << PAGE_SHIFT;
743 mem->bus.base = 0;
744 mem->bus.is_iomem = false;
745 if (!(man->flags & TTM_MEMTYPE_FLAG_MAPPABLE))
746 return -EINVAL;
747 switch (mem->mem_type) {
748 case TTM_PL_SYSTEM:
749 /* system memory */
750 return 0;
751 case TTM_PL_TT:
752 break;
753 case TTM_PL_VRAM:
754 mem->bus.offset = mem->start << PAGE_SHIFT;
755 /* check if it's visible */
756 if ((mem->bus.offset + mem->bus.size) > adev->gmc.visible_vram_size)
757 return -EINVAL;
758 /* Only physically contiguous buffers apply. In a contiguous
759 * buffer, size of the first mm_node would match the number of
760 * pages in ttm_mem_reg.
761 */
762 if (adev->mman.aper_base_kaddr &&
763 (mm_node->size == mem->num_pages))
764 mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
765 mem->bus.offset;
766
767 mem->bus.base = adev->gmc.aper_base;
768 mem->bus.is_iomem = true;
769 break;
770 default:
771 return -EINVAL;
772 }
773 return 0;
774 }
775
776 static void amdgpu_ttm_io_mem_free(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
777 {
778 }
779
780 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
781 unsigned long page_offset)
782 {
783 struct drm_mm_node *mm;
784 unsigned long offset = (page_offset << PAGE_SHIFT);
785
786 mm = amdgpu_find_mm_node(&bo->mem, &offset);
787 return (bo->mem.bus.base >> PAGE_SHIFT) + mm->start +
788 (offset >> PAGE_SHIFT);
789 }
790
791 /*
792 * TTM backend functions.
793 */
794 struct amdgpu_ttm_gup_task_list {
795 struct list_head list;
796 struct task_struct *task;
797 };
798
799 struct amdgpu_ttm_tt {
800 struct ttm_dma_tt ttm;
801 u64 offset;
802 uint64_t userptr;
803 struct task_struct *usertask;
804 uint32_t userflags;
805 spinlock_t guptasklock;
806 struct list_head guptasks;
807 atomic_t mmu_invalidations;
808 uint32_t last_set_pages;
809 };
810
811 /**
812 * amdgpu_ttm_tt_get_user_pages - Pin pages of memory pointed to
813 * by a USERPTR pointer to memory
814 *
815 * Called by amdgpu_gem_userptr_ioctl() and amdgpu_cs_parser_bos().
816 * This provides a wrapper around the get_user_pages() call to provide
817 * device accessible pages that back user memory.
818 */
819 int amdgpu_ttm_tt_get_user_pages(struct ttm_tt *ttm, struct page **pages)
820 {
821 struct amdgpu_ttm_tt *gtt = (void *)ttm;
822 struct mm_struct *mm = gtt->usertask->mm;
823 unsigned int flags = 0;
824 unsigned pinned = 0;
825 int r;
826
827 if (!mm) /* Happens during process shutdown */
828 return -ESRCH;
829
830 if (!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY))
831 flags |= FOLL_WRITE;
832
833 down_read(&mm->mmap_sem);
834
835 if (gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) {
836 /* check that we only use anonymous memory
837 to prevent problems with writeback */
838 unsigned long end = gtt->userptr + ttm->num_pages * PAGE_SIZE;
839 struct vm_area_struct *vma;
840
841 vma = find_vma(mm, gtt->userptr);
842 if (!vma || vma->vm_file || vma->vm_end < end) {
843 up_read(&mm->mmap_sem);
844 return -EPERM;
845 }
846 }
847
848 /* loop enough times using contiguous pages of memory */
849 do {
850 unsigned num_pages = ttm->num_pages - pinned;
851 uint64_t userptr = gtt->userptr + pinned * PAGE_SIZE;
852 struct page **p = pages + pinned;
853 struct amdgpu_ttm_gup_task_list guptask;
854
855 guptask.task = current;
856 spin_lock(&gtt->guptasklock);
857 list_add(&guptask.list, &gtt->guptasks);
858 spin_unlock(&gtt->guptasklock);
859
860 if (mm == current->mm)
861 r = get_user_pages(userptr, num_pages, flags, p, NULL);
862 else
863 r = get_user_pages_remote(gtt->usertask,
864 mm, userptr, num_pages,
865 flags, p, NULL, NULL);
866
867 spin_lock(&gtt->guptasklock);
868 list_del(&guptask.list);
869 spin_unlock(&gtt->guptasklock);
870
871 if (r < 0)
872 goto release_pages;
873
874 pinned += r;
875
876 } while (pinned < ttm->num_pages);
877
878 up_read(&mm->mmap_sem);
879 return 0;
880
881 release_pages:
882 release_pages(pages, pinned);
883 up_read(&mm->mmap_sem);
884 return r;
885 }
886
887 /**
888 * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages
889 * as necessary.
890 *
891 * Called by amdgpu_cs_list_validate(). This creates the page list
892 * that backs user memory and will ultimately be mapped into the device
893 * address space.
894 */
895 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages)
896 {
897 struct amdgpu_ttm_tt *gtt = (void *)ttm;
898 unsigned i;
899
900 gtt->last_set_pages = atomic_read(&gtt->mmu_invalidations);
901 for (i = 0; i < ttm->num_pages; ++i) {
902 if (ttm->pages[i])
903 put_page(ttm->pages[i]);
904
905 ttm->pages[i] = pages ? pages[i] : NULL;
906 }
907 }
908
909 /**
910 * amdgpu_ttm_tt_mark_user_page - Mark pages as dirty
911 *
912 * Called while unpinning userptr pages
913 */
914 void amdgpu_ttm_tt_mark_user_pages(struct ttm_tt *ttm)
915 {
916 struct amdgpu_ttm_tt *gtt = (void *)ttm;
917 unsigned i;
918
919 for (i = 0; i < ttm->num_pages; ++i) {
920 struct page *page = ttm->pages[i];
921
922 if (!page)
923 continue;
924
925 if (!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY))
926 set_page_dirty(page);
927
928 mark_page_accessed(page);
929 }
930 }
931
932 /**
933 * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the
934 * user pages
935 *
936 * Called by amdgpu_ttm_backend_bind()
937 **/
938 static int amdgpu_ttm_tt_pin_userptr(struct ttm_tt *ttm)
939 {
940 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
941 struct amdgpu_ttm_tt *gtt = (void *)ttm;
942 unsigned nents;
943 int r;
944
945 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
946 enum dma_data_direction direction = write ?
947 DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
948
949 /* Allocate an SG array and squash pages into it */
950 r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
951 ttm->num_pages << PAGE_SHIFT,
952 GFP_KERNEL);
953 if (r)
954 goto release_sg;
955
956 /* Map SG to device */
957 r = -ENOMEM;
958 nents = dma_map_sg(adev->dev, ttm->sg->sgl, ttm->sg->nents, direction);
959 if (nents != ttm->sg->nents)
960 goto release_sg;
961
962 /* convert SG to linear array of pages and dma addresses */
963 drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages,
964 gtt->ttm.dma_address, ttm->num_pages);
965
966 return 0;
967
968 release_sg:
969 kfree(ttm->sg);
970 return r;
971 }
972
973 /**
974 * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
975 */
976 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_tt *ttm)
977 {
978 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
979 struct amdgpu_ttm_tt *gtt = (void *)ttm;
980
981 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
982 enum dma_data_direction direction = write ?
983 DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
984
985 /* double check that we don't free the table twice */
986 if (!ttm->sg->sgl)
987 return;
988
989 /* unmap the pages mapped to the device */
990 dma_unmap_sg(adev->dev, ttm->sg->sgl, ttm->sg->nents, direction);
991
992 /* mark the pages as dirty */
993 amdgpu_ttm_tt_mark_user_pages(ttm);
994
995 sg_free_table(ttm->sg);
996 }
997
998 int amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
999 struct ttm_buffer_object *tbo,
1000 uint64_t flags)
1001 {
1002 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
1003 struct ttm_tt *ttm = tbo->ttm;
1004 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1005 int r;
1006
1007 if (abo->flags & AMDGPU_GEM_CREATE_MQD_GFX9) {
1008 uint64_t page_idx = 1;
1009
1010 r = amdgpu_gart_bind(adev, gtt->offset, page_idx,
1011 ttm->pages, gtt->ttm.dma_address, flags);
1012 if (r)
1013 goto gart_bind_fail;
1014
1015 /* Patch mtype of the second part BO */
1016 flags &= ~AMDGPU_PTE_MTYPE_MASK;
1017 flags |= AMDGPU_PTE_MTYPE(AMDGPU_MTYPE_NC);
1018
1019 r = amdgpu_gart_bind(adev,
1020 gtt->offset + (page_idx << PAGE_SHIFT),
1021 ttm->num_pages - page_idx,
1022 &ttm->pages[page_idx],
1023 &(gtt->ttm.dma_address[page_idx]), flags);
1024 } else {
1025 r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
1026 ttm->pages, gtt->ttm.dma_address, flags);
1027 }
1028
1029 gart_bind_fail:
1030 if (r)
1031 DRM_ERROR("failed to bind %lu pages at 0x%08llX\n",
1032 ttm->num_pages, gtt->offset);
1033
1034 return r;
1035 }
1036
1037 /**
1038 * amdgpu_ttm_backend_bind - Bind GTT memory
1039 *
1040 * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
1041 * This handles binding GTT memory to the device address space.
1042 */
1043 static int amdgpu_ttm_backend_bind(struct ttm_tt *ttm,
1044 struct ttm_mem_reg *bo_mem)
1045 {
1046 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1047 struct amdgpu_ttm_tt *gtt = (void*)ttm;
1048 uint64_t flags;
1049 int r = 0;
1050
1051 if (gtt->userptr) {
1052 r = amdgpu_ttm_tt_pin_userptr(ttm);
1053 if (r) {
1054 DRM_ERROR("failed to pin userptr\n");
1055 return r;
1056 }
1057 }
1058 if (!ttm->num_pages) {
1059 WARN(1, "nothing to bind %lu pages for mreg %p back %p!\n",
1060 ttm->num_pages, bo_mem, ttm);
1061 }
1062
1063 if (bo_mem->mem_type == AMDGPU_PL_GDS ||
1064 bo_mem->mem_type == AMDGPU_PL_GWS ||
1065 bo_mem->mem_type == AMDGPU_PL_OA)
1066 return -EINVAL;
1067
1068 if (!amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
1069 gtt->offset = AMDGPU_BO_INVALID_OFFSET;
1070 return 0;
1071 }
1072
1073 /* compute PTE flags relevant to this BO memory */
1074 flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
1075
1076 /* bind pages into GART page tables */
1077 gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
1078 r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
1079 ttm->pages, gtt->ttm.dma_address, flags);
1080
1081 if (r)
1082 DRM_ERROR("failed to bind %lu pages at 0x%08llX\n",
1083 ttm->num_pages, gtt->offset);
1084 return r;
1085 }
1086
1087 /**
1088 * amdgpu_ttm_alloc_gart - Allocate GART memory for buffer object
1089 */
1090 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
1091 {
1092 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
1093 struct ttm_operation_ctx ctx = { false, false };
1094 struct amdgpu_ttm_tt *gtt = (void*)bo->ttm;
1095 struct ttm_mem_reg tmp;
1096 struct ttm_placement placement;
1097 struct ttm_place placements;
1098 uint64_t flags;
1099 int r;
1100
1101 if (bo->mem.mem_type != TTM_PL_TT ||
1102 amdgpu_gtt_mgr_has_gart_addr(&bo->mem))
1103 return 0;
1104
1105 /* allocate GTT space */
1106 tmp = bo->mem;
1107 tmp.mm_node = NULL;
1108 placement.num_placement = 1;
1109 placement.placement = &placements;
1110 placement.num_busy_placement = 1;
1111 placement.busy_placement = &placements;
1112 placements.fpfn = 0;
1113 placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
1114 placements.flags = (bo->mem.placement & ~TTM_PL_MASK_MEM) |
1115 TTM_PL_FLAG_TT;
1116
1117 r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
1118 if (unlikely(r))
1119 return r;
1120
1121 /* compute PTE flags for this buffer object */
1122 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, &tmp);
1123
1124 /* Bind pages */
1125 gtt->offset = (u64)tmp.start << PAGE_SHIFT;
1126 r = amdgpu_ttm_gart_bind(adev, bo, flags);
1127 if (unlikely(r)) {
1128 ttm_bo_mem_put(bo, &tmp);
1129 return r;
1130 }
1131
1132 ttm_bo_mem_put(bo, &bo->mem);
1133 bo->mem = tmp;
1134 bo->offset = (bo->mem.start << PAGE_SHIFT) +
1135 bo->bdev->man[bo->mem.mem_type].gpu_offset;
1136
1137 return 0;
1138 }
1139
1140 /**
1141 * amdgpu_ttm_recover_gart - Rebind GTT pages
1142 *
1143 * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
1144 * rebind GTT pages during a GPU reset.
1145 */
1146 int amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
1147 {
1148 struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
1149 uint64_t flags;
1150 int r;
1151
1152 if (!tbo->ttm)
1153 return 0;
1154
1155 flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, &tbo->mem);
1156 r = amdgpu_ttm_gart_bind(adev, tbo, flags);
1157
1158 return r;
1159 }
1160
1161 /**
1162 * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
1163 *
1164 * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
1165 * ttm_tt_destroy().
1166 */
1167 static int amdgpu_ttm_backend_unbind(struct ttm_tt *ttm)
1168 {
1169 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1170 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1171 int r;
1172
1173 /* if the pages have userptr pinning then clear that first */
1174 if (gtt->userptr)
1175 amdgpu_ttm_tt_unpin_userptr(ttm);
1176
1177 if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1178 return 0;
1179
1180 /* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1181 r = amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1182 if (r)
1183 DRM_ERROR("failed to unbind %lu pages at 0x%08llX\n",
1184 gtt->ttm.ttm.num_pages, gtt->offset);
1185 return r;
1186 }
1187
1188 static void amdgpu_ttm_backend_destroy(struct ttm_tt *ttm)
1189 {
1190 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1191
1192 if (gtt->usertask)
1193 put_task_struct(gtt->usertask);
1194
1195 ttm_dma_tt_fini(&gtt->ttm);
1196 kfree(gtt);
1197 }
1198
1199 static struct ttm_backend_func amdgpu_backend_func = {
1200 .bind = &amdgpu_ttm_backend_bind,
1201 .unbind = &amdgpu_ttm_backend_unbind,
1202 .destroy = &amdgpu_ttm_backend_destroy,
1203 };
1204
1205 /**
1206 * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1207 *
1208 * @bo: The buffer object to create a GTT ttm_tt object around
1209 *
1210 * Called by ttm_tt_create().
1211 */
1212 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1213 uint32_t page_flags)
1214 {
1215 struct amdgpu_device *adev;
1216 struct amdgpu_ttm_tt *gtt;
1217
1218 adev = amdgpu_ttm_adev(bo->bdev);
1219
1220 gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1221 if (gtt == NULL) {
1222 return NULL;
1223 }
1224 gtt->ttm.ttm.func = &amdgpu_backend_func;
1225
1226 /* allocate space for the uninitialized page entries */
1227 if (ttm_sg_tt_init(&gtt->ttm, bo, page_flags)) {
1228 kfree(gtt);
1229 return NULL;
1230 }
1231 return &gtt->ttm.ttm;
1232 }
1233
1234 /**
1235 * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1236 *
1237 * Map the pages of a ttm_tt object to an address space visible
1238 * to the underlying device.
1239 */
1240 static int amdgpu_ttm_tt_populate(struct ttm_tt *ttm,
1241 struct ttm_operation_ctx *ctx)
1242 {
1243 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1244 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1245 bool slave = !!(ttm->page_flags & TTM_PAGE_FLAG_SG);
1246
1247 /* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1248 if (gtt && gtt->userptr) {
1249 ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1250 if (!ttm->sg)
1251 return -ENOMEM;
1252
1253 ttm->page_flags |= TTM_PAGE_FLAG_SG;
1254 ttm->state = tt_unbound;
1255 return 0;
1256 }
1257
1258 if (slave && ttm->sg) {
1259 drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages,
1260 gtt->ttm.dma_address,
1261 ttm->num_pages);
1262 ttm->state = tt_unbound;
1263 return 0;
1264 }
1265
1266 #ifdef CONFIG_SWIOTLB
1267 if (adev->need_swiotlb && swiotlb_nr_tbl()) {
1268 return ttm_dma_populate(&gtt->ttm, adev->dev, ctx);
1269 }
1270 #endif
1271
1272 /* fall back to generic helper to populate the page array
1273 * and map them to the device */
1274 return ttm_populate_and_map_pages(adev->dev, &gtt->ttm, ctx);
1275 }
1276
1277 /**
1278 * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1279 *
1280 * Unmaps pages of a ttm_tt object from the device address space and
1281 * unpopulates the page array backing it.
1282 */
1283 static void amdgpu_ttm_tt_unpopulate(struct ttm_tt *ttm)
1284 {
1285 struct amdgpu_device *adev;
1286 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1287 bool slave = !!(ttm->page_flags & TTM_PAGE_FLAG_SG);
1288
1289 if (gtt && gtt->userptr) {
1290 amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1291 kfree(ttm->sg);
1292 ttm->page_flags &= ~TTM_PAGE_FLAG_SG;
1293 return;
1294 }
1295
1296 if (slave)
1297 return;
1298
1299 adev = amdgpu_ttm_adev(ttm->bdev);
1300
1301 #ifdef CONFIG_SWIOTLB
1302 if (adev->need_swiotlb && swiotlb_nr_tbl()) {
1303 ttm_dma_unpopulate(&gtt->ttm, adev->dev);
1304 return;
1305 }
1306 #endif
1307
1308 /* fall back to generic helper to unmap and unpopulate array */
1309 ttm_unmap_and_unpopulate_pages(adev->dev, &gtt->ttm);
1310 }
1311
1312 /**
1313 * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt
1314 * for the current task
1315 *
1316 * @ttm: The ttm_tt object to bind this userptr object to
1317 * @addr: The address in the current tasks VM space to use
1318 * @flags: Requirements of userptr object.
1319 *
1320 * Called by amdgpu_gem_userptr_ioctl() to bind userptr pages
1321 * to current task
1322 */
1323 int amdgpu_ttm_tt_set_userptr(struct ttm_tt *ttm, uint64_t addr,
1324 uint32_t flags)
1325 {
1326 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1327
1328 if (gtt == NULL)
1329 return -EINVAL;
1330
1331 gtt->userptr = addr;
1332 gtt->userflags = flags;
1333
1334 if (gtt->usertask)
1335 put_task_struct(gtt->usertask);
1336 gtt->usertask = current->group_leader;
1337 get_task_struct(gtt->usertask);
1338
1339 spin_lock_init(&gtt->guptasklock);
1340 INIT_LIST_HEAD(&gtt->guptasks);
1341 atomic_set(&gtt->mmu_invalidations, 0);
1342 gtt->last_set_pages = 0;
1343
1344 return 0;
1345 }
1346
1347 /**
1348 * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1349 */
1350 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1351 {
1352 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1353
1354 if (gtt == NULL)
1355 return NULL;
1356
1357 if (gtt->usertask == NULL)
1358 return NULL;
1359
1360 return gtt->usertask->mm;
1361 }
1362
1363 /**
1364 * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays
1365 * inside an address range for the
1366 * current task.
1367 *
1368 */
1369 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1370 unsigned long end)
1371 {
1372 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1373 struct amdgpu_ttm_gup_task_list *entry;
1374 unsigned long size;
1375
1376 if (gtt == NULL || !gtt->userptr)
1377 return false;
1378
1379 /* Return false if no part of the ttm_tt object lies within
1380 * the range
1381 */
1382 size = (unsigned long)gtt->ttm.ttm.num_pages * PAGE_SIZE;
1383 if (gtt->userptr > end || gtt->userptr + size <= start)
1384 return false;
1385
1386 /* Search the lists of tasks that hold this mapping and see
1387 * if current is one of them. If it is return false.
1388 */
1389 spin_lock(&gtt->guptasklock);
1390 list_for_each_entry(entry, &gtt->guptasks, list) {
1391 if (entry->task == current) {
1392 spin_unlock(&gtt->guptasklock);
1393 return false;
1394 }
1395 }
1396 spin_unlock(&gtt->guptasklock);
1397
1398 atomic_inc(&gtt->mmu_invalidations);
1399
1400 return true;
1401 }
1402
1403 /**
1404 * amdgpu_ttm_tt_userptr_invalidated - Has the ttm_tt object been
1405 * invalidated?
1406 */
1407 bool amdgpu_ttm_tt_userptr_invalidated(struct ttm_tt *ttm,
1408 int *last_invalidated)
1409 {
1410 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1411 int prev_invalidated = *last_invalidated;
1412
1413 *last_invalidated = atomic_read(&gtt->mmu_invalidations);
1414 return prev_invalidated != *last_invalidated;
1415 }
1416
1417 /**
1418 * amdgpu_ttm_tt_userptr_needs_pages - Have the pages backing this
1419 * ttm_tt object been invalidated
1420 * since the last time they've
1421 * been set?
1422 */
1423 bool amdgpu_ttm_tt_userptr_needs_pages(struct ttm_tt *ttm)
1424 {
1425 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1426
1427 if (gtt == NULL || !gtt->userptr)
1428 return false;
1429
1430 return atomic_read(&gtt->mmu_invalidations) != gtt->last_set_pages;
1431 }
1432
1433 /**
1434 * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1435 */
1436 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1437 {
1438 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1439
1440 if (gtt == NULL)
1441 return false;
1442
1443 return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1444 }
1445
1446 /**
1447 * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1448 *
1449 * @ttm: The ttm_tt object to compute the flags for
1450 * @mem: The memory registry backing this ttm_tt object
1451 */
1452 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1453 struct ttm_mem_reg *mem)
1454 {
1455 uint64_t flags = 0;
1456
1457 if (mem && mem->mem_type != TTM_PL_SYSTEM)
1458 flags |= AMDGPU_PTE_VALID;
1459
1460 if (mem && mem->mem_type == TTM_PL_TT) {
1461 flags |= AMDGPU_PTE_SYSTEM;
1462
1463 if (ttm->caching_state == tt_cached)
1464 flags |= AMDGPU_PTE_SNOOPED;
1465 }
1466
1467 flags |= adev->gart.gart_pte_flags;
1468 flags |= AMDGPU_PTE_READABLE;
1469
1470 if (!amdgpu_ttm_tt_is_readonly(ttm))
1471 flags |= AMDGPU_PTE_WRITEABLE;
1472
1473 return flags;
1474 }
1475
1476 /**
1477 * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict
1478 * a buffer object.
1479 *
1480 * Return true if eviction is sensible. Called by
1481 * ttm_mem_evict_first() on behalf of ttm_bo_mem_force_space()
1482 * which tries to evict buffer objects until it can find space
1483 * for a new object and by ttm_bo_force_list_clean() which is
1484 * used to clean out a memory space.
1485 */
1486 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1487 const struct ttm_place *place)
1488 {
1489 unsigned long num_pages = bo->mem.num_pages;
1490 struct drm_mm_node *node = bo->mem.mm_node;
1491 struct reservation_object_list *flist;
1492 struct dma_fence *f;
1493 int i;
1494
1495 /* If bo is a KFD BO, check if the bo belongs to the current process.
1496 * If true, then return false as any KFD process needs all its BOs to
1497 * be resident to run successfully
1498 */
1499 flist = reservation_object_get_list(bo->resv);
1500 if (flist) {
1501 for (i = 0; i < flist->shared_count; ++i) {
1502 f = rcu_dereference_protected(flist->shared[i],
1503 reservation_object_held(bo->resv));
1504 if (amdkfd_fence_check_mm(f, current->mm))
1505 return false;
1506 }
1507 }
1508
1509 switch (bo->mem.mem_type) {
1510 case TTM_PL_TT:
1511 return true;
1512
1513 case TTM_PL_VRAM:
1514 /* Check each drm MM node individually */
1515 while (num_pages) {
1516 if (place->fpfn < (node->start + node->size) &&
1517 !(place->lpfn && place->lpfn <= node->start))
1518 return true;
1519
1520 num_pages -= node->size;
1521 ++node;
1522 }
1523 return false;
1524
1525 default:
1526 break;
1527 }
1528
1529 return ttm_bo_eviction_valuable(bo, place);
1530 }
1531
1532 /**
1533 * amdgpu_ttm_access_memory - Read or Write memory that backs a
1534 * buffer object.
1535 *
1536 * @bo: The buffer object to read/write
1537 * @offset: Offset into buffer object
1538 * @buf: Secondary buffer to write/read from
1539 * @len: Length in bytes of access
1540 * @write: true if writing
1541 *
1542 * This is used to access VRAM that backs a buffer object via MMIO
1543 * access for debugging purposes.
1544 */
1545 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1546 unsigned long offset,
1547 void *buf, int len, int write)
1548 {
1549 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1550 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1551 struct drm_mm_node *nodes;
1552 uint32_t value = 0;
1553 int ret = 0;
1554 uint64_t pos;
1555 unsigned long flags;
1556
1557 if (bo->mem.mem_type != TTM_PL_VRAM)
1558 return -EIO;
1559
1560 nodes = amdgpu_find_mm_node(&abo->tbo.mem, &offset);
1561 pos = (nodes->start << PAGE_SHIFT) + offset;
1562
1563 while (len && pos < adev->gmc.mc_vram_size) {
1564 uint64_t aligned_pos = pos & ~(uint64_t)3;
1565 uint32_t bytes = 4 - (pos & 3);
1566 uint32_t shift = (pos & 3) * 8;
1567 uint32_t mask = 0xffffffff << shift;
1568
1569 if (len < bytes) {
1570 mask &= 0xffffffff >> (bytes - len) * 8;
1571 bytes = len;
1572 }
1573
1574 spin_lock_irqsave(&adev->mmio_idx_lock, flags);
1575 WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)aligned_pos) | 0x80000000);
1576 WREG32_NO_KIQ(mmMM_INDEX_HI, aligned_pos >> 31);
1577 if (!write || mask != 0xffffffff)
1578 value = RREG32_NO_KIQ(mmMM_DATA);
1579 if (write) {
1580 value &= ~mask;
1581 value |= (*(uint32_t *)buf << shift) & mask;
1582 WREG32_NO_KIQ(mmMM_DATA, value);
1583 }
1584 spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
1585 if (!write) {
1586 value = (value & mask) >> shift;
1587 memcpy(buf, &value, bytes);
1588 }
1589
1590 ret += bytes;
1591 buf = (uint8_t *)buf + bytes;
1592 pos += bytes;
1593 len -= bytes;
1594 if (pos >= (nodes->start + nodes->size) << PAGE_SHIFT) {
1595 ++nodes;
1596 pos = (nodes->start << PAGE_SHIFT);
1597 }
1598 }
1599
1600 return ret;
1601 }
1602
1603 static struct ttm_bo_driver amdgpu_bo_driver = {
1604 .ttm_tt_create = &amdgpu_ttm_tt_create,
1605 .ttm_tt_populate = &amdgpu_ttm_tt_populate,
1606 .ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1607 .invalidate_caches = &amdgpu_invalidate_caches,
1608 .init_mem_type = &amdgpu_init_mem_type,
1609 .eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1610 .evict_flags = &amdgpu_evict_flags,
1611 .move = &amdgpu_bo_move,
1612 .verify_access = &amdgpu_verify_access,
1613 .move_notify = &amdgpu_bo_move_notify,
1614 .fault_reserve_notify = &amdgpu_bo_fault_reserve_notify,
1615 .io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1616 .io_mem_free = &amdgpu_ttm_io_mem_free,
1617 .io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1618 .access_memory = &amdgpu_ttm_access_memory
1619 };
1620
1621 /*
1622 * Firmware Reservation functions
1623 */
1624 /**
1625 * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1626 *
1627 * @adev: amdgpu_device pointer
1628 *
1629 * free fw reserved vram if it has been reserved.
1630 */
1631 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1632 {
1633 amdgpu_bo_free_kernel(&adev->fw_vram_usage.reserved_bo,
1634 NULL, &adev->fw_vram_usage.va);
1635 }
1636
1637 /**
1638 * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1639 *
1640 * @adev: amdgpu_device pointer
1641 *
1642 * create bo vram reservation from fw.
1643 */
1644 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1645 {
1646 struct ttm_operation_ctx ctx = { false, false };
1647 struct amdgpu_bo_param bp;
1648 int r = 0;
1649 int i;
1650 u64 vram_size = adev->gmc.visible_vram_size;
1651 u64 offset = adev->fw_vram_usage.start_offset;
1652 u64 size = adev->fw_vram_usage.size;
1653 struct amdgpu_bo *bo;
1654
1655 memset(&bp, 0, sizeof(bp));
1656 bp.size = adev->fw_vram_usage.size;
1657 bp.byte_align = PAGE_SIZE;
1658 bp.domain = AMDGPU_GEM_DOMAIN_VRAM;
1659 bp.flags = AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED |
1660 AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS;
1661 bp.type = ttm_bo_type_kernel;
1662 bp.resv = NULL;
1663 adev->fw_vram_usage.va = NULL;
1664 adev->fw_vram_usage.reserved_bo = NULL;
1665
1666 if (adev->fw_vram_usage.size > 0 &&
1667 adev->fw_vram_usage.size <= vram_size) {
1668
1669 r = amdgpu_bo_create(adev, &bp,
1670 &adev->fw_vram_usage.reserved_bo);
1671 if (r)
1672 goto error_create;
1673
1674 r = amdgpu_bo_reserve(adev->fw_vram_usage.reserved_bo, false);
1675 if (r)
1676 goto error_reserve;
1677
1678 /* remove the original mem node and create a new one at the
1679 * request position
1680 */
1681 bo = adev->fw_vram_usage.reserved_bo;
1682 offset = ALIGN(offset, PAGE_SIZE);
1683 for (i = 0; i < bo->placement.num_placement; ++i) {
1684 bo->placements[i].fpfn = offset >> PAGE_SHIFT;
1685 bo->placements[i].lpfn = (offset + size) >> PAGE_SHIFT;
1686 }
1687
1688 ttm_bo_mem_put(&bo->tbo, &bo->tbo.mem);
1689 r = ttm_bo_mem_space(&bo->tbo, &bo->placement,
1690 &bo->tbo.mem, &ctx);
1691 if (r)
1692 goto error_pin;
1693
1694 r = amdgpu_bo_pin_restricted(adev->fw_vram_usage.reserved_bo,
1695 AMDGPU_GEM_DOMAIN_VRAM,
1696 adev->fw_vram_usage.start_offset,
1697 (adev->fw_vram_usage.start_offset +
1698 adev->fw_vram_usage.size), NULL);
1699 if (r)
1700 goto error_pin;
1701 r = amdgpu_bo_kmap(adev->fw_vram_usage.reserved_bo,
1702 &adev->fw_vram_usage.va);
1703 if (r)
1704 goto error_kmap;
1705
1706 amdgpu_bo_unreserve(adev->fw_vram_usage.reserved_bo);
1707 }
1708 return r;
1709
1710 error_kmap:
1711 amdgpu_bo_unpin(adev->fw_vram_usage.reserved_bo);
1712 error_pin:
1713 amdgpu_bo_unreserve(adev->fw_vram_usage.reserved_bo);
1714 error_reserve:
1715 amdgpu_bo_unref(&adev->fw_vram_usage.reserved_bo);
1716 error_create:
1717 adev->fw_vram_usage.va = NULL;
1718 adev->fw_vram_usage.reserved_bo = NULL;
1719 return r;
1720 }
1721 /**
1722 * amdgpu_ttm_init - Init the memory management (ttm) as well as
1723 * various gtt/vram related fields.
1724 *
1725 * This initializes all of the memory space pools that the TTM layer
1726 * will need such as the GTT space (system memory mapped to the device),
1727 * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1728 * can be mapped per VMID.
1729 */
1730 int amdgpu_ttm_init(struct amdgpu_device *adev)
1731 {
1732 uint64_t gtt_size;
1733 int r;
1734 u64 vis_vram_limit;
1735
1736 /* initialize global references for vram/gtt */
1737 r = amdgpu_ttm_global_init(adev);
1738 if (r) {
1739 return r;
1740 }
1741 /* No others user of address space so set it to 0 */
1742 r = ttm_bo_device_init(&adev->mman.bdev,
1743 adev->mman.bo_global_ref.ref.object,
1744 &amdgpu_bo_driver,
1745 adev->ddev->anon_inode->i_mapping,
1746 DRM_FILE_PAGE_OFFSET,
1747 adev->need_dma32);
1748 if (r) {
1749 DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1750 return r;
1751 }
1752 adev->mman.initialized = true;
1753
1754 /* We opt to avoid OOM on system pages allocations */
1755 adev->mman.bdev.no_retry = true;
1756
1757 /* Initialize VRAM pool with all of VRAM divided into pages */
1758 r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_VRAM,
1759 adev->gmc.real_vram_size >> PAGE_SHIFT);
1760 if (r) {
1761 DRM_ERROR("Failed initializing VRAM heap.\n");
1762 return r;
1763 }
1764
1765 /* Reduce size of CPU-visible VRAM if requested */
1766 vis_vram_limit = (u64)amdgpu_vis_vram_limit * 1024 * 1024;
1767 if (amdgpu_vis_vram_limit > 0 &&
1768 vis_vram_limit <= adev->gmc.visible_vram_size)
1769 adev->gmc.visible_vram_size = vis_vram_limit;
1770
1771 /* Change the size here instead of the init above so only lpfn is affected */
1772 amdgpu_ttm_set_buffer_funcs_status(adev, false);
1773 #ifdef CONFIG_64BIT
1774 adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1775 adev->gmc.visible_vram_size);
1776 #endif
1777
1778 /*
1779 *The reserved vram for firmware must be pinned to the specified
1780 *place on the VRAM, so reserve it early.
1781 */
1782 r = amdgpu_ttm_fw_reserve_vram_init(adev);
1783 if (r) {
1784 return r;
1785 }
1786
1787 /* allocate memory as required for VGA
1788 * This is used for VGA emulation and pre-OS scanout buffers to
1789 * avoid display artifacts while transitioning between pre-OS
1790 * and driver. */
1791 if (adev->gmc.stolen_size) {
1792 r = amdgpu_bo_create_kernel(adev, adev->gmc.stolen_size, PAGE_SIZE,
1793 AMDGPU_GEM_DOMAIN_VRAM,
1794 &adev->stolen_vga_memory,
1795 NULL, NULL);
1796 if (r)
1797 return r;
1798 }
1799 DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1800 (unsigned) (adev->gmc.real_vram_size / (1024 * 1024)));
1801
1802 /* Compute GTT size, either bsaed on 3/4th the size of RAM size
1803 * or whatever the user passed on module init */
1804 if (amdgpu_gtt_size == -1) {
1805 struct sysinfo si;
1806
1807 si_meminfo(&si);
1808 gtt_size = min(max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20),
1809 adev->gmc.mc_vram_size),
1810 ((uint64_t)si.totalram * si.mem_unit * 3/4));
1811 }
1812 else
1813 gtt_size = (uint64_t)amdgpu_gtt_size << 20;
1814
1815 /* Initialize GTT memory pool */
1816 r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_TT, gtt_size >> PAGE_SHIFT);
1817 if (r) {
1818 DRM_ERROR("Failed initializing GTT heap.\n");
1819 return r;
1820 }
1821 DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
1822 (unsigned)(gtt_size / (1024 * 1024)));
1823
1824 /* Initialize various on-chip memory pools */
1825 adev->gds.mem.total_size = adev->gds.mem.total_size << AMDGPU_GDS_SHIFT;
1826 adev->gds.mem.gfx_partition_size = adev->gds.mem.gfx_partition_size << AMDGPU_GDS_SHIFT;
1827 adev->gds.mem.cs_partition_size = adev->gds.mem.cs_partition_size << AMDGPU_GDS_SHIFT;
1828 adev->gds.gws.total_size = adev->gds.gws.total_size << AMDGPU_GWS_SHIFT;
1829 adev->gds.gws.gfx_partition_size = adev->gds.gws.gfx_partition_size << AMDGPU_GWS_SHIFT;
1830 adev->gds.gws.cs_partition_size = adev->gds.gws.cs_partition_size << AMDGPU_GWS_SHIFT;
1831 adev->gds.oa.total_size = adev->gds.oa.total_size << AMDGPU_OA_SHIFT;
1832 adev->gds.oa.gfx_partition_size = adev->gds.oa.gfx_partition_size << AMDGPU_OA_SHIFT;
1833 adev->gds.oa.cs_partition_size = adev->gds.oa.cs_partition_size << AMDGPU_OA_SHIFT;
1834 /* GDS Memory */
1835 if (adev->gds.mem.total_size) {
1836 r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GDS,
1837 adev->gds.mem.total_size >> PAGE_SHIFT);
1838 if (r) {
1839 DRM_ERROR("Failed initializing GDS heap.\n");
1840 return r;
1841 }
1842 }
1843
1844 /* GWS */
1845 if (adev->gds.gws.total_size) {
1846 r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GWS,
1847 adev->gds.gws.total_size >> PAGE_SHIFT);
1848 if (r) {
1849 DRM_ERROR("Failed initializing gws heap.\n");
1850 return r;
1851 }
1852 }
1853
1854 /* OA */
1855 if (adev->gds.oa.total_size) {
1856 r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_OA,
1857 adev->gds.oa.total_size >> PAGE_SHIFT);
1858 if (r) {
1859 DRM_ERROR("Failed initializing oa heap.\n");
1860 return r;
1861 }
1862 }
1863
1864 /* Register debugfs entries for amdgpu_ttm */
1865 r = amdgpu_ttm_debugfs_init(adev);
1866 if (r) {
1867 DRM_ERROR("Failed to init debugfs\n");
1868 return r;
1869 }
1870 return 0;
1871 }
1872
1873 /**
1874 * amdgpu_ttm_late_init - Handle any late initialization for
1875 * amdgpu_ttm
1876 */
1877 void amdgpu_ttm_late_init(struct amdgpu_device *adev)
1878 {
1879 /* return the VGA stolen memory (if any) back to VRAM */
1880 amdgpu_bo_free_kernel(&adev->stolen_vga_memory, NULL, NULL);
1881 }
1882
1883 /**
1884 * amdgpu_ttm_fini - De-initialize the TTM memory pools
1885 */
1886 void amdgpu_ttm_fini(struct amdgpu_device *adev)
1887 {
1888 if (!adev->mman.initialized)
1889 return;
1890
1891 amdgpu_ttm_debugfs_fini(adev);
1892 amdgpu_ttm_fw_reserve_vram_fini(adev);
1893 if (adev->mman.aper_base_kaddr)
1894 iounmap(adev->mman.aper_base_kaddr);
1895 adev->mman.aper_base_kaddr = NULL;
1896
1897 ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_VRAM);
1898 ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_TT);
1899 if (adev->gds.mem.total_size)
1900 ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GDS);
1901 if (adev->gds.gws.total_size)
1902 ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GWS);
1903 if (adev->gds.oa.total_size)
1904 ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_OA);
1905 ttm_bo_device_release(&adev->mman.bdev);
1906 amdgpu_ttm_global_fini(adev);
1907 adev->mman.initialized = false;
1908 DRM_INFO("amdgpu: ttm finalized\n");
1909 }
1910
1911 /**
1912 * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
1913 *
1914 * @adev: amdgpu_device pointer
1915 * @enable: true when we can use buffer functions.
1916 *
1917 * Enable/disable use of buffer functions during suspend/resume. This should
1918 * only be called at bootup or when userspace isn't running.
1919 */
1920 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
1921 {
1922 struct ttm_mem_type_manager *man = &adev->mman.bdev.man[TTM_PL_VRAM];
1923 uint64_t size;
1924
1925 if (!adev->mman.initialized || adev->in_gpu_reset)
1926 return;
1927
1928 /* this just adjusts TTM size idea, which sets lpfn to the correct value */
1929 if (enable)
1930 size = adev->gmc.real_vram_size;
1931 else
1932 size = adev->gmc.visible_vram_size;
1933 man->size = size >> PAGE_SHIFT;
1934 adev->mman.buffer_funcs_enabled = enable;
1935 }
1936
1937 int amdgpu_mmap(struct file *filp, struct vm_area_struct *vma)
1938 {
1939 struct drm_file *file_priv;
1940 struct amdgpu_device *adev;
1941
1942 if (unlikely(vma->vm_pgoff < DRM_FILE_PAGE_OFFSET))
1943 return -EINVAL;
1944
1945 file_priv = filp->private_data;
1946 adev = file_priv->minor->dev->dev_private;
1947 if (adev == NULL)
1948 return -EINVAL;
1949
1950 return ttm_bo_mmap(filp, vma, &adev->mman.bdev);
1951 }
1952
1953 static int amdgpu_map_buffer(struct ttm_buffer_object *bo,
1954 struct ttm_mem_reg *mem, unsigned num_pages,
1955 uint64_t offset, unsigned window,
1956 struct amdgpu_ring *ring,
1957 uint64_t *addr)
1958 {
1959 struct amdgpu_ttm_tt *gtt = (void *)bo->ttm;
1960 struct amdgpu_device *adev = ring->adev;
1961 struct ttm_tt *ttm = bo->ttm;
1962 struct amdgpu_job *job;
1963 unsigned num_dw, num_bytes;
1964 dma_addr_t *dma_address;
1965 struct dma_fence *fence;
1966 uint64_t src_addr, dst_addr;
1967 uint64_t flags;
1968 int r;
1969
1970 BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
1971 AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
1972
1973 *addr = adev->gmc.gart_start;
1974 *addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
1975 AMDGPU_GPU_PAGE_SIZE;
1976
1977 num_dw = adev->mman.buffer_funcs->copy_num_dw;
1978 while (num_dw & 0x7)
1979 num_dw++;
1980
1981 num_bytes = num_pages * 8;
1982
1983 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4 + num_bytes, &job);
1984 if (r)
1985 return r;
1986
1987 src_addr = num_dw * 4;
1988 src_addr += job->ibs[0].gpu_addr;
1989
1990 dst_addr = adev->gart.table_addr;
1991 dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
1992 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
1993 dst_addr, num_bytes);
1994
1995 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
1996 WARN_ON(job->ibs[0].length_dw > num_dw);
1997
1998 dma_address = &gtt->ttm.dma_address[offset >> PAGE_SHIFT];
1999 flags = amdgpu_ttm_tt_pte_flags(adev, ttm, mem);
2000 r = amdgpu_gart_map(adev, 0, num_pages, dma_address, flags,
2001 &job->ibs[0].ptr[num_dw]);
2002 if (r)
2003 goto error_free;
2004
2005 r = amdgpu_job_submit(job, ring, &adev->mman.entity,
2006 AMDGPU_FENCE_OWNER_UNDEFINED, &fence);
2007 if (r)
2008 goto error_free;
2009
2010 dma_fence_put(fence);
2011
2012 return r;
2013
2014 error_free:
2015 amdgpu_job_free(job);
2016 return r;
2017 }
2018
2019 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
2020 uint64_t dst_offset, uint32_t byte_count,
2021 struct reservation_object *resv,
2022 struct dma_fence **fence, bool direct_submit,
2023 bool vm_needs_flush)
2024 {
2025 struct amdgpu_device *adev = ring->adev;
2026 struct amdgpu_job *job;
2027
2028 uint32_t max_bytes;
2029 unsigned num_loops, num_dw;
2030 unsigned i;
2031 int r;
2032
2033 if (direct_submit && !ring->ready) {
2034 DRM_ERROR("Trying to move memory with ring turned off.\n");
2035 return -EINVAL;
2036 }
2037
2038 max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
2039 num_loops = DIV_ROUND_UP(byte_count, max_bytes);
2040 num_dw = num_loops * adev->mman.buffer_funcs->copy_num_dw;
2041
2042 /* for IB padding */
2043 while (num_dw & 0x7)
2044 num_dw++;
2045
2046 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, &job);
2047 if (r)
2048 return r;
2049
2050 job->vm_needs_flush = vm_needs_flush;
2051 if (resv) {
2052 r = amdgpu_sync_resv(adev, &job->sync, resv,
2053 AMDGPU_FENCE_OWNER_UNDEFINED,
2054 false);
2055 if (r) {
2056 DRM_ERROR("sync failed (%d).\n", r);
2057 goto error_free;
2058 }
2059 }
2060
2061 for (i = 0; i < num_loops; i++) {
2062 uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2063
2064 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
2065 dst_offset, cur_size_in_bytes);
2066
2067 src_offset += cur_size_in_bytes;
2068 dst_offset += cur_size_in_bytes;
2069 byte_count -= cur_size_in_bytes;
2070 }
2071
2072 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2073 WARN_ON(job->ibs[0].length_dw > num_dw);
2074 if (direct_submit) {
2075 r = amdgpu_ib_schedule(ring, job->num_ibs, job->ibs,
2076 NULL, fence);
2077 job->fence = dma_fence_get(*fence);
2078 if (r)
2079 DRM_ERROR("Error scheduling IBs (%d)\n", r);
2080 amdgpu_job_free(job);
2081 } else {
2082 r = amdgpu_job_submit(job, ring, &adev->mman.entity,
2083 AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2084 if (r)
2085 goto error_free;
2086 }
2087
2088 return r;
2089
2090 error_free:
2091 amdgpu_job_free(job);
2092 return r;
2093 }
2094
2095 int amdgpu_fill_buffer(struct amdgpu_bo *bo,
2096 uint32_t src_data,
2097 struct reservation_object *resv,
2098 struct dma_fence **fence)
2099 {
2100 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2101 uint32_t max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
2102 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2103
2104 struct drm_mm_node *mm_node;
2105 unsigned long num_pages;
2106 unsigned int num_loops, num_dw;
2107
2108 struct amdgpu_job *job;
2109 int r;
2110
2111 if (!adev->mman.buffer_funcs_enabled) {
2112 DRM_ERROR("Trying to clear memory with ring turned off.\n");
2113 return -EINVAL;
2114 }
2115
2116 if (bo->tbo.mem.mem_type == TTM_PL_TT) {
2117 r = amdgpu_ttm_alloc_gart(&bo->tbo);
2118 if (r)
2119 return r;
2120 }
2121
2122 num_pages = bo->tbo.num_pages;
2123 mm_node = bo->tbo.mem.mm_node;
2124 num_loops = 0;
2125 while (num_pages) {
2126 uint32_t byte_count = mm_node->size << PAGE_SHIFT;
2127
2128 num_loops += DIV_ROUND_UP(byte_count, max_bytes);
2129 num_pages -= mm_node->size;
2130 ++mm_node;
2131 }
2132 num_dw = num_loops * adev->mman.buffer_funcs->fill_num_dw;
2133
2134 /* for IB padding */
2135 num_dw += 64;
2136
2137 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, &job);
2138 if (r)
2139 return r;
2140
2141 if (resv) {
2142 r = amdgpu_sync_resv(adev, &job->sync, resv,
2143 AMDGPU_FENCE_OWNER_UNDEFINED, false);
2144 if (r) {
2145 DRM_ERROR("sync failed (%d).\n", r);
2146 goto error_free;
2147 }
2148 }
2149
2150 num_pages = bo->tbo.num_pages;
2151 mm_node = bo->tbo.mem.mm_node;
2152
2153 while (num_pages) {
2154 uint32_t byte_count = mm_node->size << PAGE_SHIFT;
2155 uint64_t dst_addr;
2156
2157 dst_addr = amdgpu_mm_node_addr(&bo->tbo, mm_node, &bo->tbo.mem);
2158 while (byte_count) {
2159 uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2160
2161 amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data,
2162 dst_addr, cur_size_in_bytes);
2163
2164 dst_addr += cur_size_in_bytes;
2165 byte_count -= cur_size_in_bytes;
2166 }
2167
2168 num_pages -= mm_node->size;
2169 ++mm_node;
2170 }
2171
2172 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2173 WARN_ON(job->ibs[0].length_dw > num_dw);
2174 r = amdgpu_job_submit(job, ring, &adev->mman.entity,
2175 AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2176 if (r)
2177 goto error_free;
2178
2179 return 0;
2180
2181 error_free:
2182 amdgpu_job_free(job);
2183 return r;
2184 }
2185
2186 #if defined(CONFIG_DEBUG_FS)
2187
2188 static int amdgpu_mm_dump_table(struct seq_file *m, void *data)
2189 {
2190 struct drm_info_node *node = (struct drm_info_node *)m->private;
2191 unsigned ttm_pl = *(int *)node->info_ent->data;
2192 struct drm_device *dev = node->minor->dev;
2193 struct amdgpu_device *adev = dev->dev_private;
2194 struct ttm_mem_type_manager *man = &adev->mman.bdev.man[ttm_pl];
2195 struct drm_printer p = drm_seq_file_printer(m);
2196
2197 man->func->debug(man, &p);
2198 return 0;
2199 }
2200
2201 static int ttm_pl_vram = TTM_PL_VRAM;
2202 static int ttm_pl_tt = TTM_PL_TT;
2203
2204 static const struct drm_info_list amdgpu_ttm_debugfs_list[] = {
2205 {"amdgpu_vram_mm", amdgpu_mm_dump_table, 0, &ttm_pl_vram},
2206 {"amdgpu_gtt_mm", amdgpu_mm_dump_table, 0, &ttm_pl_tt},
2207 {"ttm_page_pool", ttm_page_alloc_debugfs, 0, NULL},
2208 #ifdef CONFIG_SWIOTLB
2209 {"ttm_dma_page_pool", ttm_dma_page_alloc_debugfs, 0, NULL}
2210 #endif
2211 };
2212
2213 /**
2214 * amdgpu_ttm_vram_read - Linear read access to VRAM
2215 *
2216 * Accesses VRAM via MMIO for debugging purposes.
2217 */
2218 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2219 size_t size, loff_t *pos)
2220 {
2221 struct amdgpu_device *adev = file_inode(f)->i_private;
2222 ssize_t result = 0;
2223 int r;
2224
2225 if (size & 0x3 || *pos & 0x3)
2226 return -EINVAL;
2227
2228 if (*pos >= adev->gmc.mc_vram_size)
2229 return -ENXIO;
2230
2231 while (size) {
2232 unsigned long flags;
2233 uint32_t value;
2234
2235 if (*pos >= adev->gmc.mc_vram_size)
2236 return result;
2237
2238 spin_lock_irqsave(&adev->mmio_idx_lock, flags);
2239 WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000);
2240 WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31);
2241 value = RREG32_NO_KIQ(mmMM_DATA);
2242 spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
2243
2244 r = put_user(value, (uint32_t *)buf);
2245 if (r)
2246 return r;
2247
2248 result += 4;
2249 buf += 4;
2250 *pos += 4;
2251 size -= 4;
2252 }
2253
2254 return result;
2255 }
2256
2257 /**
2258 * amdgpu_ttm_vram_write - Linear write access to VRAM
2259 *
2260 * Accesses VRAM via MMIO for debugging purposes.
2261 */
2262 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2263 size_t size, loff_t *pos)
2264 {
2265 struct amdgpu_device *adev = file_inode(f)->i_private;
2266 ssize_t result = 0;
2267 int r;
2268
2269 if (size & 0x3 || *pos & 0x3)
2270 return -EINVAL;
2271
2272 if (*pos >= adev->gmc.mc_vram_size)
2273 return -ENXIO;
2274
2275 while (size) {
2276 unsigned long flags;
2277 uint32_t value;
2278
2279 if (*pos >= adev->gmc.mc_vram_size)
2280 return result;
2281
2282 r = get_user(value, (uint32_t *)buf);
2283 if (r)
2284 return r;
2285
2286 spin_lock_irqsave(&adev->mmio_idx_lock, flags);
2287 WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000);
2288 WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31);
2289 WREG32_NO_KIQ(mmMM_DATA, value);
2290 spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
2291
2292 result += 4;
2293 buf += 4;
2294 *pos += 4;
2295 size -= 4;
2296 }
2297
2298 return result;
2299 }
2300
2301 static const struct file_operations amdgpu_ttm_vram_fops = {
2302 .owner = THIS_MODULE,
2303 .read = amdgpu_ttm_vram_read,
2304 .write = amdgpu_ttm_vram_write,
2305 .llseek = default_llseek,
2306 };
2307
2308 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS
2309
2310 /**
2311 * amdgpu_ttm_gtt_read - Linear read access to GTT memory
2312 */
2313 static ssize_t amdgpu_ttm_gtt_read(struct file *f, char __user *buf,
2314 size_t size, loff_t *pos)
2315 {
2316 struct amdgpu_device *adev = file_inode(f)->i_private;
2317 ssize_t result = 0;
2318 int r;
2319
2320 while (size) {
2321 loff_t p = *pos / PAGE_SIZE;
2322 unsigned off = *pos & ~PAGE_MASK;
2323 size_t cur_size = min_t(size_t, size, PAGE_SIZE - off);
2324 struct page *page;
2325 void *ptr;
2326
2327 if (p >= adev->gart.num_cpu_pages)
2328 return result;
2329
2330 page = adev->gart.pages[p];
2331 if (page) {
2332 ptr = kmap(page);
2333 ptr += off;
2334
2335 r = copy_to_user(buf, ptr, cur_size);
2336 kunmap(adev->gart.pages[p]);
2337 } else
2338 r = clear_user(buf, cur_size);
2339
2340 if (r)
2341 return -EFAULT;
2342
2343 result += cur_size;
2344 buf += cur_size;
2345 *pos += cur_size;
2346 size -= cur_size;
2347 }
2348
2349 return result;
2350 }
2351
2352 static const struct file_operations amdgpu_ttm_gtt_fops = {
2353 .owner = THIS_MODULE,
2354 .read = amdgpu_ttm_gtt_read,
2355 .llseek = default_llseek
2356 };
2357
2358 #endif
2359
2360 /**
2361 * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2362 *
2363 * This function is used to read memory that has been mapped to the
2364 * GPU and the known addresses are not physical addresses but instead
2365 * bus addresses (e.g., what you'd put in an IB or ring buffer).
2366 */
2367 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2368 size_t size, loff_t *pos)
2369 {
2370 struct amdgpu_device *adev = file_inode(f)->i_private;
2371 struct iommu_domain *dom;
2372 ssize_t result = 0;
2373 int r;
2374
2375 /* retrieve the IOMMU domain if any for this device */
2376 dom = iommu_get_domain_for_dev(adev->dev);
2377
2378 while (size) {
2379 phys_addr_t addr = *pos & PAGE_MASK;
2380 loff_t off = *pos & ~PAGE_MASK;
2381 size_t bytes = PAGE_SIZE - off;
2382 unsigned long pfn;
2383 struct page *p;
2384 void *ptr;
2385
2386 bytes = bytes < size ? bytes : size;
2387
2388 /* Translate the bus address to a physical address. If
2389 * the domain is NULL it means there is no IOMMU active
2390 * and the address translation is the identity
2391 */
2392 addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2393
2394 pfn = addr >> PAGE_SHIFT;
2395 if (!pfn_valid(pfn))
2396 return -EPERM;
2397
2398 p = pfn_to_page(pfn);
2399 if (p->mapping != adev->mman.bdev.dev_mapping)
2400 return -EPERM;
2401
2402 ptr = kmap(p);
2403 r = copy_to_user(buf, ptr + off, bytes);
2404 kunmap(p);
2405 if (r)
2406 return -EFAULT;
2407
2408 size -= bytes;
2409 *pos += bytes;
2410 result += bytes;
2411 }
2412
2413 return result;
2414 }
2415
2416 /**
2417 * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2418 *
2419 * This function is used to write memory that has been mapped to the
2420 * GPU and the known addresses are not physical addresses but instead
2421 * bus addresses (e.g., what you'd put in an IB or ring buffer).
2422 */
2423 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2424 size_t size, loff_t *pos)
2425 {
2426 struct amdgpu_device *adev = file_inode(f)->i_private;
2427 struct iommu_domain *dom;
2428 ssize_t result = 0;
2429 int r;
2430
2431 dom = iommu_get_domain_for_dev(adev->dev);
2432
2433 while (size) {
2434 phys_addr_t addr = *pos & PAGE_MASK;
2435 loff_t off = *pos & ~PAGE_MASK;
2436 size_t bytes = PAGE_SIZE - off;
2437 unsigned long pfn;
2438 struct page *p;
2439 void *ptr;
2440
2441 bytes = bytes < size ? bytes : size;
2442
2443 addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2444
2445 pfn = addr >> PAGE_SHIFT;
2446 if (!pfn_valid(pfn))
2447 return -EPERM;
2448
2449 p = pfn_to_page(pfn);
2450 if (p->mapping != adev->mman.bdev.dev_mapping)
2451 return -EPERM;
2452
2453 ptr = kmap(p);
2454 r = copy_from_user(ptr + off, buf, bytes);
2455 kunmap(p);
2456 if (r)
2457 return -EFAULT;
2458
2459 size -= bytes;
2460 *pos += bytes;
2461 result += bytes;
2462 }
2463
2464 return result;
2465 }
2466
2467 static const struct file_operations amdgpu_ttm_iomem_fops = {
2468 .owner = THIS_MODULE,
2469 .read = amdgpu_iomem_read,
2470 .write = amdgpu_iomem_write,
2471 .llseek = default_llseek
2472 };
2473
2474 static const struct {
2475 char *name;
2476 const struct file_operations *fops;
2477 int domain;
2478 } ttm_debugfs_entries[] = {
2479 { "amdgpu_vram", &amdgpu_ttm_vram_fops, TTM_PL_VRAM },
2480 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS
2481 { "amdgpu_gtt", &amdgpu_ttm_gtt_fops, TTM_PL_TT },
2482 #endif
2483 { "amdgpu_iomem", &amdgpu_ttm_iomem_fops, TTM_PL_SYSTEM },
2484 };
2485
2486 #endif
2487
2488 static int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2489 {
2490 #if defined(CONFIG_DEBUG_FS)
2491 unsigned count;
2492
2493 struct drm_minor *minor = adev->ddev->primary;
2494 struct dentry *ent, *root = minor->debugfs_root;
2495
2496 for (count = 0; count < ARRAY_SIZE(ttm_debugfs_entries); count++) {
2497 ent = debugfs_create_file(
2498 ttm_debugfs_entries[count].name,
2499 S_IFREG | S_IRUGO, root,
2500 adev,
2501 ttm_debugfs_entries[count].fops);
2502 if (IS_ERR(ent))
2503 return PTR_ERR(ent);
2504 if (ttm_debugfs_entries[count].domain == TTM_PL_VRAM)
2505 i_size_write(ent->d_inode, adev->gmc.mc_vram_size);
2506 else if (ttm_debugfs_entries[count].domain == TTM_PL_TT)
2507 i_size_write(ent->d_inode, adev->gmc.gart_size);
2508 adev->mman.debugfs_entries[count] = ent;
2509 }
2510
2511 count = ARRAY_SIZE(amdgpu_ttm_debugfs_list);
2512
2513 #ifdef CONFIG_SWIOTLB
2514 if (!(adev->need_swiotlb && swiotlb_nr_tbl()))
2515 --count;
2516 #endif
2517
2518 return amdgpu_debugfs_add_files(adev, amdgpu_ttm_debugfs_list, count);
2519 #else
2520 return 0;
2521 #endif
2522 }
2523
2524 static void amdgpu_ttm_debugfs_fini(struct amdgpu_device *adev)
2525 {
2526 #if defined(CONFIG_DEBUG_FS)
2527 unsigned i;
2528
2529 for (i = 0; i < ARRAY_SIZE(ttm_debugfs_entries); i++)
2530 debugfs_remove(adev->mman.debugfs_entries[i]);
2531 #endif
2532 }